
GAMAdocumentation

GAMAteam

GAMAdocumentation

v 1.7 2

Contents

I Platform 21

1 Installation 25

Table of contents . 25

System Requirements . 25

Installation of Java . 26

2 Launching GAMA 29

Table of contents . 29

Launching the Application . 29

Choosing a Workspace . 31

Welcome Page . 32

3 Headless Mode 35

Table of contents . 35

Command . 36

Experiment Input File . 37

Output Directory . 39

Simulation Output . 40

Snapshot files . 41

3

GAMAdocumentation Contents

4 Updating GAMA 43

Table of contents . 43

Manual Update . 43

Automatic Update . 47

5 Installing Plugins 51

Table of contents . 52

Installation . 52

Selected Plugins . 55

6 Troubleshooting 63

Table of contents . 63

On Ubuntu (& Linux Systems) . 64

On Windows . 64

On MacOS X . 64

Memory problems . 65

Submitting an Issue . 67

7 Navigating in theWorkspace 73

Table of contents . 74

The Different Categories of Models . 74

Inspect Models . 79

Moving Models Around . 82

Closing and Deleting Projects . 83

8 ChangingWorkspace 87

Table of contents . 87

Switching to another Workspace . 87

Cloning the Current Workspace . 89

v 1.7 4

GAMAdocumentation Contents

9 Importing Models 93

Table of contents . 93

The “Import…” Menu Command . 94

Silent import . 96

Drag’n Drop / Copy-Paste Limitations . 96

10 The GAML Editor - Generalities 101

Table of contents . 101

Creating a first model . 101

Status of models in editors . 106

Editor Preferences . 108

Additional informations in the Editor . 111

Multiple editors . 111

Local history . 112

11 The GAML Editor Toolbar 117

Table of contents . 118

Visualization tools in the editor . 118

Navigation tools in the editor . 121

Format tools in the editor . 122

Vocabulary tools in the editor . 124

12 Validation of Models 129

Table of contents . 129

Syntactic errors . 129

Semantic errors . 130

Semantic warnings . 132

Semantic information . 134

Semantic documentation . 136

v 1.7 5

GAMAdocumentation Contents

Changing the visual indicators . 136

Errors in imported files . 137

Cleaning models . 142

13 Launching Experiments from the User Interface 145

Table of contents . 145

From an Editor . 145

From the Navigator . 146

Running Experiments Automatically . 146

Running Several Simulations . 149

14 Experiments User Interface 151

15 Menus and Commands 153

Table of contents . 153

Experiment Menu . 153

Agents Menu . 155

General Toolbar . 157

16 Parameters View 163

Table of contents . 163

Built-in parameters . 163

Parameters View . 164

Modification of parameters values . 166

17 Inspectors and monitors 167

Table of contents . 167

Agent Browser . 167

Agent Inspector . 170

Monitor . 170

v 1.7 6

GAMAdocumentation Contents

18 Displays 175

Table of contents . 175

Classical displays (java2D) . 175

OpenGL displays . 176

19 Batch Specific UI 181

Table of contents . 181

Information bar . 181

Batch UI . 182

20Errors View 185

Table of contents . 187

Opening Preferences . 187

Simulation . 188

UI . 190

General . 191

Display . 191

Editor . 196

External . 196

Advanced Preferences . 198

II GAML (GAMAModeling Language) 201

How to proceed to learn better ? . 203

Table of contents . 204

Lexical semantics of GAML . 205

Translation into a concrete syntax . 206

Vocabulary correspondance with the object-oriented paradigm as in Java 208

Vocabulary correspondance with the agent-based paradigm as in NetLogo 209

v 1.7 7

GAMAdocumentation Contents

21 Organization of a model 211

Table of contents . 211

Model Header (model species) . 212

Species declarations . 213

Experiment declarations . 214

Basic skeleton of a model . 215

22 Basic programming concepts in GAML 217

Index . 217

Variables . 218

Declare variables using facet . 220

Operators in GAMA . 221

Conditional structures . 222

Loop . 223

Manipulate containers . 224

Random values . 227

23 The global species 229

Index . 229

Declaration . 229

Environment size . 231

Built-in attributes . 231

Built-in Actions . 233

The init statement . 234

24 Regular species 235

Index . 235

Declaration . 235

Built-in attributes . 236

v 1.7 8

GAMAdocumentation Contents

Built-in action . 237

The init statement . 238

The aspect statement . 238

Instantiate an agent . 239

25 Defining actions and behaviors 241

Index . 241

Action . 241

Behavior . 243

Example . 243

26 Interaction between agents 247

Index . 247

The ask statement . 247

Pseudo variables . 249

Some useful interaction operators . 251

Example . 252

27 Attaching Skills 255

Index . 255

Skills . 255

28 Inheritance 263

Index . 263

Mother species / child species . 263

Virtual action . 264

Get all the subspecies from a species . 265

v 1.7 9

GAMAdocumentation Contents

29 Grid Species 269

Index . 269

Declaration . 269

Built-in attributes . 270

Access to a cell . 272

Display Grid . 273

Grid from a matrix . 274

Example . 276

30Graph Species 279

Index . 279

Declaration . 280

Useful operators with graph . 285

31 Mirror species 297

Index . 297

Declaration . 297

Example . 298

32 Multi-level architecture 301

Index . 301

Declaration of micro-species . 301

Access to micro-agents, host agent . 302

Representation of an entity as different types of agent 304

Dynamic migration of agents . 305

Example: . 305

v 1.7 10

GAMAdocumentation Contents

33 Defining Parameters 311

Index . 311

Defining parameters . 311

Additional facets . 313

34 Defining displays (Generalities) 317

Index . 317

Displays and layers . 317

Organize your layers . 318

Example of layers . 323

35 Defining Charts 325

Index . 325

Define a chart . 325

Data definition . 326

Different types of chart . 327

36 Defining 3D Displays 329

Table of contents . 329

OpenGL display . 329

Camera . 332

Dynamic camera . 332

Lighting . 333

37 Defining monitors and inspectors 335

Index . 335

Define a monitor . 335

Define an inspector . 336

v 1.7 11

GAMAdocumentation Contents

38Defining export files 339

Index . 339

The Save Statement . 339

Export files in experiment . 340

Autosave . 341

39 Defining user interaction 343

Index . 343

Catch Mouse Event . 343

Define User command . 344

User Control Architecture . 351

40Run Several Simulations 353

Index . 353

Create a simulation . 353

Manipulate simulations . 355

Random seed . 360

41 Defining Batch Experiments 369

Table of contents . 369

The batch experiment facets . 369

Action step The_step_action of an experiment is called at the end of a simulation.
It is possible to override this action to apply a specific action at the end of
each simulation. Note that at the experiment level, you have access to all the
species and all the global variables. 370

Reflexes . 371

Permanent . 371

v 1.7 12

GAMAdocumentation Contents

42 Exploration Methods 373

Table of contents . 373

The method element . 373

Exhaustive exploration of the parameter space 374

Hill Climbing . 375

Simulated Annealing . 376

Tabu Search . 377

Reactive Tabu Search . 378

Genetic Algorithm . 379

43 Runtime Concepts 383

Table of contents . 383

Simulation initialization . 383

Agents Creation . 384

Agents Step . 384

Schedule Agents . 385

44Optimizing Models 387

Table of contents . 387

machine_time . 388

Scheduling . 388

Grid . 389

Operators . 390

Displays . 392

45 Control Architectures 397

Index . 398

Finite State Machine . 398

Task Based . 401

v 1.7 13

GAMAdocumentation Contents

User Control Architecture . 403

Other Control Architectures . 406

46Using Equations 407

Introduction . 407

Example of a SIR model . 408

Why and when can we use ODE in agent-based models ? 409

Use of ODE in a GAML model . 409

equation . 410

solve an equation . 413

More details . 413

47 Manipulate OSM Datas 425

48 Implementing diffusion 441

Index . 441

Diffuse statement . 442

Diffusion with matrix . 444

Diffusion with parameters . 450

Computation methods . 452

Using mask . 453

Pseudo code . 459

49Using Database Access 461

Description . 462

Supported DBMS . 462

SQLSKILL . 462

MDXSKILL . 468

AgentDB . 472

Using database features to define environment or create species 476

v 1.7 14

GAMAdocumentation Contents

50 Calling R 481

Introduction . 481

Table of contents . 481

Configuration in GAMA . 482

Calling R from GAML . 482

51 Using FIPA ACL 489

Variables . 489

52 Using GAMAnalyzer 493

Install . 493

Built-in Variable . 493

Example . 494

53 Using BDI 497

Install . 497

Acteur Projet . 497

An introduction to cognitive agent . 497

Basic Example: A fire rescue model using cognitive agent 498

54 Advanced Driving Skill 505

Table of contents . 505

Structure of the network: road and roadNode skills 505

Advanced driving skill . 506

Application example . 509

55 Manipulate Dates 515

Managing Time in Models . 515

Definition of the step and use of temporal unity values 515

The date variable type and the use of a real calendar 516

v 1.7 15

GAMAdocumentation Contents

56 Implementing light 519

Index . 520

Light generalities . 520

Default light . 524

Custom lights . 524

57 Using Comodel 529

Introduction . 529

Example of a Comodel . 529

Why and when can we use Comodel ? . 529

Use of Comodel in a GAML model . 530

Visualize micro-model . 531

More details . 531

Example of the comodel . 531

III GAML References (Documentation) 535
Table of Contents . 537

agent . 537

AgentDB . 538

base_edge . 540

experiment . 540

graph_edge . 540

graph_node . 540

model . 541

physical_world . 541

58 The ‘agent’ built-in species (Under Construction) 543

agent attributes . 543

agent actions . 543

v 1.7 16

GAMAdocumentation Contents

59 The ‘model’ built-in species (Under Construction) 545

model attributes . 545

model actions . 545

60The ‘experiment’ built-in species (Under Construction) 547

experiment attributes . 547

experiment actions . 547

61 Built-in Skills 549

Introduction . 549

Table of Contents . 550

advanced_driving . 550

driving . 555

fipa . 557

GAMASQL . 563

grid . 564

MDXSKILL . 564

messaging . 565

moving . 566

moving3D . 568

physics . 569

skill_road . 570

skill_road_node . 571

SQLSKILL . 572

62 Built-in Architectures 575

INTRODUCTION . 575

Table of Contents . 575

fsm . 576

v 1.7 17

GAMAdocumentation Contents

probabilistic_tasks . 576

reflex . 576

simple_bdi . 577

sorted_tasks . 583

user_first . 584

user_last . 584

user_only . 584

weighted_tasks . 584

63 Statements 585

Table of Contents . 585

Statements by kinds . 585

Statements by embedment . 587

General syntax . 590

64 Types 705

Table of contents . 705

Primitive built-in types . 707

Complex built-in types . 709

Defining custom types . 721

65 File Types 725

Table of contents . 727

Text File . 728

CSV File . 729

Shapefile . 730

OSM File . 733

Constants . 735

Graphics units . 736

v 1.7 18

GAMAdocumentation Contents

Length units . 737

Surface units . 738

Time units . 739

Volume units . 739

Weight units . 740

Colors . 740

66 Pseudo-variables 749

Table of contents . 749

self . 749

myself . 750

each . 750

67 Variables and Attributes 753

Table of contents . 753

Direct Access . 753

Remote Access . 755

68Operators 757

Definition . 757

Priority between operators . 758

Using actions as operators . 759

Table of Contents . 759

Operators by categories . 760

Operators . 768

Papers about GAMA . 1099

PhD theses . 1100

Research papers that use GAMA as modeling/simulation support 1101

Papers about GAMA . 1106

v 1.7 19

GAMAdocumentation Contents

PhD theses . 1107

Research papers that use GAMA as modeling/simulation support 1108

v 1.7 20

Part I

Platform

21

GAMAdocumentation

Installation and Launching

TheGAMAplatform can be easily installed in yourmachine, either if you are usingWindows,
Mac OS or Ubuntu. GAMA can then be extended by using a number of additional plugins.

This part is dedicated to explain how to install GAMA, launching GAMA and extend the
platform by installing additional plugins. All the known issues concerning installation are
also explain. The GAMA team provides you a continuous support by proposing corrections
to some serious issues through updating patchs. In this part, we will also present you briefly
an other way to launch GAMA without any GUI : the headless mode.

• Installation
• Launching GAMA
• Headless Mode
• Updating GAMA
• Installing Plugins
• Troubleshooting

v 1.7 23

Installation
Troubleshooting

GAMAdocumentation

v 1.7 24

Chapter 1

Installation

GAMA 1.7 comes in 5 different versions (32 & 64 bits for Windows & Linux, and 64 bits for
MacOS X). You first need to determine which version to use (it depends on your computer,
which may, or not, support 64 bits instructions, but also on the version of Java already in-
stalled, as the number of bits of the two versions must match).

You can then download the right version from the Downloads page, expand the zip file wher-
ever you want on your machine, and launch GAMA.

Table of contents

• Installation

– System Requirements
– Installation of Java

* On MacOS X
* On Windows
* On Ubuntu & Linux

System Requirements

GAMA 1.7 requires that Java 1.7 be installed on yourmachine, approximately 200MB of disk
space and a minimum of 4GB of RAM (to increase the portion of memory usable by GAMA,
please refer to these instructions).

25

http://vps226121.ovh.net/download#GAMALATEST

GAMAdocumentation Chapter 1. Installation

Installation of Java

On all environments, the recommended Java Virtual Machine under which GAMA has been
tested is the one distributed by Oracle (http://www.java.com/en/download/manual.jsp). It
may work with others — or not. For better performances, you may also want to install the
JDK version of the JVM (and not the standard JRE), although is it not mandatory (GAMA
should run fine, but slower, under a JRE).

OnMacOS X

The latest version of GAMA requires a JVM (or JDK or JRE) compatible with Java 1.7 to run.

Note for GAMA 1.6.1 users: if you plan to keep a copy of GAMA 1.6.1, you will need to
have both Java 1.6 (distributed by Apple) and Java 1.7 (distributed by Oracle) installed
at the same time. Because of this bug in SWT (https://bugs.eclipse.org/bugs/show_-
bug.cgi?id=374199), GAMA 1.6.1 will not run correctly under Java 1.7 (all the displays
will appear empty). To install the JDK 1.6 distributed by Apple, follow the instructions
here : http://support.apple.com/kb/DL1572. Alternatively, you might want to go to
https://developer.apple.com/downloads and, after a free registration step if you’re not an
Apple Developer, get the complete JDK from the list of downloads.

OnWindows

Please notice that, by default, Internet Explorer and Chrome browsers will download a 32
bits version of the JRE. Running GAMA 32 bits for Windows is ok, but you may want to
download the latest JDK instead, in order to both improve the performances of the simulator
and be able to run GAMA 64 bits.

• To download the appropriate java version, follow this link:
http://www.java.com/en/download/manual.jsp

• Execute the downloaded file
• You can check that a Java\jre7 (or jre8) folder has been installed at the location
C:\Program Files\

In order for Java to be found by Windows, you may have to modify environment variables:

• Go to the Control Panel

v 1.7 26

http://www.java.com/en/download/manual.jsp

GAMAdocumentation Chapter 1. Installation

• In the new window, go to System
• On the left, click on Advanced System parameters
• In the bottom, click on Environment Variables
• In System Variables, choose to modify the Path variable
• At the end, add ;C:\Program Files\Java\jre7\bin (or jre8\bin)

On Ubuntu & Linux

To have a complete overview of java management on Ubuntu, have a look at:

• Ubuntu Java documentation
• for French speaking users: http://doc.ubuntu-fr.org/java#installations_alternatives

Basically, you need to do:� �
sudo add-apt-repository ppa:webupd8team/java
sudo apt-get update
sudo apt-get install oracle-java7-installer (or oracle-java8-

installer)� �
You can then switch between java version using:� �
sudo update-alternatives --config java� �
See the troubleshooting page for more information on workaround for problems on Un-
buntu.

v 1.7 27

https://help.ubuntu.com/community/Java
http://doc.ubuntu-fr.org/java#installations_alternatives

GAMAdocumentation Chapter 1. Installation

v 1.7 28

Chapter 2

Launching GAMA

Running GAMA for the first time requires that you launch the application (Gama.app on
MacOS X, Gama.exe onWindows, Gama on Linux, located in the folder called Gama once you
have unzipped the archive). Other folders and files are present here, but you don’t have to
care about them for the moment. In case you are unable to launch the application, of if error
messages appear, please refer to the installation or troubleshooting instructions.

Table of contents

• Launching GAMA

– Launching the Application
– Choosing a Workspace
– Welcome Page

Launching the Application

Note that GAMA can also be launched in two different other ways:

1. In a so-called headless mode (i.e. without user interface, from the command line, in
order to conduct experiments or to be run remotely). Please refer to the corresponding
instructions.

29

GAMAdocumentation Chapter 2. Launching GAMA

2. From the terminal, using a path to a model file and the name or number of an ex-
periment, in order to allow running this experiment directly (note that the two argu-
ments are optional: if the second is omitted, the file is imported in the workspace if
not already present and opened in an editor; if both are omitted, GAMA is launched
as usual):

• Gama.app/Contents/MacOS/Gama path_to_a_model_file#
experiment_name_or_number on MacOS X

• Gama path_to_a_model_file#experiment_name_or_number on Linux
• Gama.exe path_to_a_model_file#experiment_name_or_number on Windows

Figure 2.1: Eclipse folder.

v 1.7 30

GAMAdocumentation Chapter 2. Launching GAMA

Choosing aWorkspace

Past the splash screen, GAMA will ask you to choose a workspace in which to store your
models and their associated data and settings. The workspace can be any folder in your
filesystem on which you have read/write privileges. If you want GAMA to remember your
choice next time you run it (it can be handy if you run Gama from the command line), simply
check the corresponding option. If this dialog does not show up when launching GAMA, it
probably means that you inherit from an older workspace used with GAMA 1.6 or 1.5.1 (and
still “remembered”). In that case, a warning will be produced to indicate that the models
library is out of date, offering you the possibility to create a new workspace.

Figure 2.2: Window to choose the workspace.

You can enter its address or browse your filesystem using the appropriate button. If the
folder already exists, it will be reused (after a warning if it is not already a workspace). If
not, it will be created. It is always a good idea, when you launch a new version of GAMA for
the first time, to create a newworkspace. You will then, later, be able to import your existing
models into it. Failing to do so might lead to odd errors in the various validation processes.

v 1.7 31

GAMAdocumentation Chapter 2. Launching GAMA

Figure 2.3: This pop-up appears when the user wants to create a new workspace. Click on
OK.

Welcome Page

As soon as the workspace is created, GAMAwill open and you will be presented with its first
window. GAMA is based on Eclipse and reuses most of its visual metaphors for organizing
the work of the modeler. The main window is then composed of several parts, which can
be views or editors, and are organized in a perspective. GAMA proposes 2 main per-
spectives: Modeling, dedicated to the creation of models, and Simulation, dedicated to their
execution and exploration. Other perspectives are available if you use shared models.

The default perspective in which GAMA opens isModeling. It is composed of a central area
where GAML editors are displayed, which is surrounded by a Navigator view on the left-
hand side of the window, an Outline view (linked with the open editor) and the Problems
view, which indicates errors and warnings present in the models stored in the workspace.

In the absence of previously open models, GAMA will display a Welcome page (actually a
web page), from which you can find links to the website, current documentation, tutorials,
etc. This page can be kept open (for instance if you want to display the documentation when
editing models) but it can also be safely closed (and reopened later from the “Views” menu).

From this point, you are now able to edit a new model, navigate in the models libraries, or
import an existing model.

v 1.7 32

http://www.eclipse.org

GAMAdocumentation Chapter 2. Launching GAMA

Figure 2.4: GAMA after the first launch.

Figure 2.5: Menu to open new views.

v 1.7 33

GAMAdocumentation Chapter 2. Launching GAMA

v 1.7 34

Chapter 3

Headless Mode

The aim of this feature is to be able to run one or multiple instances of GAMA without any
user interface, so that models and experiments can be launched on a grid or a cluster. With-
out GUI, the memory footprint, as well as the speed of the simulations, are usually greatly
improved.

In this mode, GAMA can only be used to run experiments and that editing or managing
models is not possible. In order to launch experiments and still benefit from a user interface
(which can be used to prepare headless experiments), launchGAMAnormally (see here) and
refer to this page for instructions.

Table of contents

• Headless Mode

– Command

* Shell Script
* Java Command

– Experiment Input File

* Heading
* Parameters
* Outputs

– Output Directory
– Simulation Output

35

GAMAdocumentation Chapter 3. Headless Mode

* Step
* Variable

– Snapshot files

Command

There are two ways to run a GAMA experiment in headless mode: using a dedicated shell
script (recommended) or directly from the command line. These commands take 2 argu-
ments: an experiment file and an output directory.

Shell Script

It can be found in the headless directory located inside Gama. Its name is gama-headless.
sh on MacOSX and Linux, and gama-headless.bat on Windows.� �
sh gama-headless.sh [m/c/t/hpc/v] $1 $2� �
• with:

– $1 input parameter file : an xml file determining experiment parameters and
attended outputs

– $2 output directory path : a directory which contains simulation results (numer-
ical data and simulation snapshot)

– options [-m/c/t/hpc/v]

* -m memory : memory allocated to gama
* -c : consolemode, the simulation description could bewrittenwith the stdin
* -t : tunneling mode, simulation description are read from the stdin, simula-
tion results are printed out in stdout

* -hpc nb_of_cores : allocate a specific number of cores for the experiment
plan

* -v : verbose mode. trace are displayed in the console

• For example (using the provided sample), navigate in your terminal to the GAMA root
folder and type :

v 1.7 36

GAMAdocumentation Chapter 3. Headless Mode

� �
sh headless/gama-headless.sh headless/samples/predatorPrey.xml

outputHeadLess� �
As specified in predatorPrey.xml, this command runs the prey - predator model for 1000
steps and record a screenshot of themain display every 5 steps. The screenshots are recorded
in the directory outputHeadLess (under the GAMA root folder).

Not that the current directory to run gama-headless command must be $GAMA_PATH/-
headless

Java Command� �
java -cp $GAMA_CLASSPATH -Xms512m -Xmx2048m -Djava.awt.headless=

true org.eclipse.core.launcher.Main -application msi.gama.
headless.id4 $1 $2� �
• with:

– $GAMA_CLASSPATH gama classpath: contains relative or absolute path of jars
inside the gama plugin directory and jars created by users

– $1 input parameter file: an xml file determining experiment parameters and at-
tended outputs

– $2 output directory path: a directory which contains simulation results (numer-
ical data and simulation snapshot)

Note that the output directory is created during the experiment and should not exist before.

Experiment Input File

The XML input file contains for example:� �
<?xml version="1.0" encoding="UTF-8"?>
<Experiment_plan >
<Simulation id="2" sourcePath="./predatorPrey/predatorPrey.gaml"

finalStep="1000" experiment="predPrey">
<Parameters >

v 1.7 37

GAMAdocumentation Chapter 3. Headless Mode

<Parameter name="nb_predator_init" type="INT" value="53" />
<Parameter name="nb_preys_init" type="INT" value="621" />

</Parameters >
<Outputs>

<Output id="1" name="main_display" framerate="10" />
<Output id="2" name="number_of_preys" framerate="1" />
<Output id="3" name="number_of_predators" framerate="1" />
<Output id="4" name="duration" framerate="1" />

</Outputs>
</Simulation >

</Experiment_plan >� �
Note that several simulations could be determined in one experiment plan. These simula-
tions are run in parallel according to the number of allocated cores.

Heading� �
<Simulation id="2" sourcePath="./predatorPrey/predatorPrey.gaml"

finalStep="1000" experiment="predPrey">� �
• with:

– id: permits to prefix output files for experiment plan with huge simulations.
– sourcePath: contains the relative or absolute path to read the gaml model.
– finalStep: determines the number of simulation step you want to run.
– experiment: determines which experiment should be run on the model. This
experiment should exist, otherwise the headless mode will exit.

Parameters

One line per parameter you want to specify a value to:� �
<Parameter name="nb_predator_init" type="INT" value="53" />� �

• with:

– name: name of the parameter in the gaml model
– type: type of the parameter (INT, FLOAT, BOOLEAN, STRING)
– value: the chosen value

v 1.7 38

GAMAdocumentation Chapter 3. Headless Mode

Outputs

One line per output value you want to retrieve. Outputs can be names of monitors or dis-
plays defined in the ‘output’ section of experiments, or the names of attributes defined in
the experiment or the model itself (in the ‘global’ section).� �

... with the name of a monitor defined in the 'output'
section of the experiment...
<Output id="2" name="number_of_preys" framerate="1" />
... with the name of a (built-in) variable defined in the

experiment itself...
<Output id="4" name="duration" framerate="1" />� �

• with:

– name : name of the output in the ‘output’/‘permanent’ section in the experiment
or name of the experiment/model attribute to retrieve

– framerate : the frequency of the monitoring (each step, each 2 steps, each 100
steps…).

• Note that :

– the lower the framerate value the longer the experiment.
– if the chosen output is a display, an image is produced and the output file con-
tains the path to access this image

Output Directory

During headless experiments, a directory is created with the following structure:� �
Outputed -directory -path/

|-simulation -output.xml
|- snapshot

|- main_display2 -0.png
|- main_display2 -10.png
|- ...� �

• with:

v 1.7 39

GAMAdocumentation Chapter 3. Headless Mode

– simulation-output.xml: containing the results
– snapshot: containing the snapshots produced during the simulation

Is it possible to change the output directory for the images by adding the attribute “output_-
path” in the xml :

If we write <Output id="1" name="my_display" file:"/F:/path/imageName"
framerate="10" />, then the display “my_display” will have the name “imageName-
stepNb.png” and will be written in the folder “/F:/path/”

Simulation Output

A file named simulation-output.xml is created with the following contents when the ex-
periment runs.� �
<?xml version="1.0" encoding="UTF-8"?>
<Simulation id="2" >

<Step id='0' >
<Variable name='main_display ' value='main_display2 -0.png

'/>
<Variable name='number_of_preys ' value='613'/>
<Variable name='number_of_predators ' value='51'/>

<Variable name='duration' value='6' />
</Step>
<Step id='1' >

<Variable name='main_display ' value='main_display2 -0.png
'/>

<Variable name='number_of_preys ' value='624'/>
<Variable name='number_of_predators ' value='51'/>

<Variable name='duration' value='5' />
</Step>

<Step id='2'>

...� �
• With:

– <Simulation id="2" > : block containing results of the simulation 2 (this Id is
identified in the Input Experiment File)

v 1.7 40

GAMAdocumentation Chapter 3. Headless Mode

– <Step id='1' > ... </Step>: one block per step done. The id corresponds to
the step number

Step� �
<Step id='1' >

<Variable name='main_display ' value='main_display2 -0.png
'/>

<Variable name='number_of_preys ' value='624'/>
<Variable name='number_of_predators ' value='51'/>

<Variable name='duration' value='6' />
</Step>� �

There is one Variable block per Output identified in the output experiment file.

Variable� �
<Variable name='main_display ' value='main_display2 -0.png'/>� �
• with:

– name: name of the output, the model variable
– value: the current value of model variable.

Note that the value of an output is repeated according to the framerate defined in the input
experiment file.

Snapshot files

This directory contains images generated during the experiment. There is one image per dis-
played output per step (according to the framerate). File names follow a naming convention,
e.g:� �

[outputName][SimulationID]_[stepID].png -> main_display2 -20.
png� �

Note that images are saved in ‘.png’ format.

v 1.7 41

GAMAdocumentation Chapter 3. Headless Mode

v 1.7 42

Chapter 4

Updating GAMA

Unless you are using the version of GAMA built from the sources available in the GIT repos-
itory of the project (see here), you are normally running a specific release of GAMA that
sports a given version number (e.g. GAMA 1.6.1, GAMA 1.7, etc.). When new features
were developed, or when serious issues were fixed, the release you had on your disk, prior
to GAMA 1.6.1, could not benefit from them. Since this version, however, GAMA has been
enhanced to support a self_updatemechanism, which allows to import from the GAMA up-
date site additional plugins (offering new features) or updated versions of the plugins that
constitute the core of GAMA.

Table of contents

• Updating GAMA

– Manual Update
– Automatic Update

Manual Update

To activate this feature, you have to invoke the “Check for Updates” or “Install New Soft-
ware…” menu commands in the “Help” menu.

43

GAMAdocumentation Chapter 4. Updating GAMA

The first one will only check if the existing plugins have any updates available, while the
second will, in addition, scan the update site to detect any new plugins that might be added
to the current installation.

Figure 4.1: Menu to install new extensions to GAMA.

In general, it is preferable to use the second command, as more options (including that of
desinstalling some plugins) are provided. Once invoked, it makes the following dialog ap-
pear:

GAMA expects the user to enter a so-called update site. You can copy and paste the following
line (or choose it from the drop-down menu as this address is built inside GAMA):� �
http://updates.gama-platform.org� �
GAMA will then scan the entire update site, looking both for new plugins (the example be-
low) and updates to existing plugins. The list available in your installation will of course be
different from the one displayed here.

Choose the ones you want to install (or update) and click “Next…”. A summary page will
appear, indicating which plugins will actually be installed (since some plugins might require

v 1.7 44

GAMAdocumentation Chapter 4. Updating GAMA

Figure 4.2: Window where the user enters the adress of an update site and can choose plug-
ins to install.

v 1.7 45

GAMAdocumentation Chapter 4. Updating GAMA

Figure 4.3: Display of the list of available extensions.

v 1.7 46

GAMAdocumentation Chapter 4. Updating GAMA

additional plugins to runproperly), followedby a license page that youhave to accept. GAMA
will then proceed to the installation (that can be cancelled any time) of the plugins chosen.

During the course of the installation, you might receive the following warning, that you can
dismiss by clicking “OK”.

Figure 4.4: Warning window that can be dismissed.

Once the plugins are installed, GAMA will ask you whether you want to restart or not. It is
always safer to do so, so select “Yes” and let it close by itself, register the new plugins and
restart.

Automatic Update

GAMA offers a mechanism to monitor the availability of updates to the plugins already in-
stalled. To install this feature, open the preferences of GAMA and choose the button “Ad-
vanced…”, which gives access to additional preferences.

In the dialog that appears, navigate to “Install/Update > Automatic Updates”. Then, enable
the option using the check-box on the top of the dialog and choose the best settings for your
workflow. Clicking on “OK” will save these preferences and dismiss the dialog.

From now on, GAMA will continuously support you in having an up-to-date version of the
platform, provided you accept the updates.

v 1.7 47

GAMAdocumentation Chapter 4. Updating GAMA

Figure 4.5: After installation, GAMA has to be restarted.

v 1.7 48

GAMAdocumentation Chapter 4. Updating GAMA

Figure 4.6: Button to give access to additional preferences.

v 1.7 49

GAMAdocumentation Chapter 4. Updating GAMA

Figure 4.7: Check for automatic update.

v 1.7 50

Chapter 5

Installing Plugins

Besides the plugins delivered by the developers of the GAMA platform, which can be in-
stalled and updated as explained here, there are a number of additional plugins that can be
installed to add new functionalities to GAMA or enhance the existing ones. GAMA being
based on Eclipse, a number of plugins developed for Eclipse are then available (a complete
listing of Eclipse plugins can be found in the so-called Eclipse MarketPlace).

There are, however, three important restrictions:

1. The current version of GAMA is based on Eclipse Juno (version number 3.8.2), which
excludes de facto all the plugins targeting solely the 4.3 (Kepler) or 4.4 (Luna) versions
of Eclipse. These will refuse to install anyway.

2. The Eclipse foundations in GAMA are only a subset of the complete Eclipse platform,
and a number of libraries or frameworks (for example the Java Development Toolkit)
are not (and will never be) installed in GAMA. So plugins relying on their existence
will refuse to install as well.

3. Some components of GAMA rely on a specific version of other plugins and will refuse
toworkwith other versions, essentially because their compatibility will not be ensured
anymore. For instance, the parser and validator of the GAML language in GAMA 1.6.1
require XText v. 2.4.1 to be installed (and neither XText 2.5.4 norXText 2.3will satisfy
this dependency).

With these restrictions in mind, it is however possible to install interesting additional plug-
ins. We propose here a list of some of these plugins (known to work with GAMA), but feel
free to either add a comment if you have tested plugins not listed here or create an issue if a
plugin does not work, in order for us to see what the requirements to make it work are and
how we can satisfy them (or not) in GAMA.

51

http://marketplace.eclipse.org
http://www.eclipse.org/Xtext/

GAMAdocumentation Chapter 5. Installing Plugins

Table of contents

• Installing Plugins

– Installation
– Selected Plugins

* Overview
* Git
* CKEditor (#ckeditor)
* Startexplorer
* Pathtools
* CSV Edit
* Quickimage

Installation

Installing new plugins is a process identical to the one describedwhen updating GAMA, with
one exception: the update site to enter is normally provided by the vendor of the additional
plugin andmust be entered instead ofGAMA’s one in the dialog. Let us suppose, for instance,
thatwewant to install aRSS feed reader available on this site. An excerpt from the page reads
that :

All plugins are installed with the standard update manager of Eclipse. It will
guide you through the installation process and also eases keeping your plugins
up-to-date. Just add the update site: http://www.junginger.biz/eclipse/

So we just have to follow these instructions, which leads us to the following dialog, in which
we select “RSS view” and click “Next”.

The initial dialog is followed by two other ones, a first to report that the plugin satisfies all
the dependencies, a second to ask the user to accept the license agreement.

v 1.7 52

http://junginger.biz/eclipse/

GAMAdocumentation Chapter 5. Installing Plugins

Figure 5.1: images/dialog_install_plugins.png

v 1.7 53

GAMAdocumentation Chapter 5. Installing Plugins

Once we dismiss the warning that the plugin is not signed and accept to restart GAMA, we

v 1.7 54

GAMAdocumentation Chapter 5. Installing Plugins

can test the new plugin by going to the “Views” menu.

Figure 5.2: images/menu_other_views.png

The new RSS view is available in the list of views that can be displayed in GAMA.

And we can enjoy (after setting some preferences available in its local menu) monitoring the
Issues of GAMA from within GAMA itself !

Selected Plugins

In addition to the RSS reader described above, below is a list of plugins that have been tested
to work with GAMA. There are many others so take the time to explore them !

Overview

• A very useful plugin for working with large model files. It renders an overview of the
file in a separate view (with a user selectable font size), allowing to know where the
edition takes place, but also to navigate very quickly and efficiently to different places
in the model.

• Update site: http://sandipchitaleseclipseplugins.googlecode.com/svn/trunk/text.overview.updatesite/site.xml
• After installing the plugin, an error might happen when closing GAMA. It is harmless.
After restarting GAMA, go to Views > Open View > Others… > Overview >.

v 1.7 55

GAMAdocumentation Chapter 5. Installing Plugins

Figure 5.3: images/dialog_show_view.png

v 1.7 56

GAMAdocumentation Chapter 5. Installing Plugins

Figure 5.4: images/feed_working.png

Git

• Git is a version control system (like CVS or SVN, extensively used inGAMA) http://git-
scm.com/. Free sharing space are provided onwebsite such as GitHub or Google Code
among others. Installing Git allows to share or gather models that are available in Git
repositories.

• Update site (general): http://download.eclipse.org/releases/juno/
• Select the two following plugins:

– Eclipse EGit
– Git Team Provider Core

CKEditor

• CKEditor is a lightweight and powerful web-based editor, perfect for almost WYSI-
WYG edition of HTML files. It can be installed, directly in GAMA, in order to edit
.html, .htm, .xml, .svg, etc. files directly without leaving the platform. No other de-
pendencies are required. A must !

• Update site: http://kosz.bitbucket.org/eclipse-ckeditor/update-site

Startexplorer

• A nice utility that allows the user to select files, folders or projects in the Navigator
and open them in the filesystem (either the UI Explorer, Finder, whatever, or in a
terminal).

v 1.7 57

https://github.com/
https://code.google.com/

GAMAdocumentation Chapter 5. Installing Plugins

• Update site: http://basti1302.github.com/startexplorer/update/

Figure 5.5: images/start_explorer.png

Pathtools

• Same purpose as StartExplorer, but much more complete, and additionally offers the
possibility to addnewcommands to handle files (open them in specific editors, execute
external programs on them, etc.). Very nice and professional. Works flawlessly in

v 1.7 58

GAMAdocumentation Chapter 5. Installing Plugins

GAMA except that contributions to the toolbar are not accepted (so you have to rely
on the commands present in the Navigator pop-up menu).

• Update site: http://pathtools.googlecode.com/svn/trunk/
PathToolsUpdateSite/site.xml

• Website: https://pathtools.googlecode.com

CSV Edit

• An editor for CSV files. Quite handy if you do not want to launch Excel every time you
need to inspect or change the CSV data files used in models.

• Update site: http://csvedit.googlecode.com/svn/trunk/csvedit.update

Quickimage

• A lightweight viewer of images, which can be useful when several images are used in
a model.

• Update site: http://psnet.nu/eclipse/updates

v 1.7 59

GAMAdocumentation Chapter 5. Installing Plugins

Figure 5.6: images/csv_edit.png

v 1.7 60

GAMAdocumentation Chapter 5. Installing Plugins

Figure 5.7: images/quick_image.png

v 1.7 61

GAMAdocumentation Chapter 5. Installing Plugins

v 1.7 62

Chapter 6

Troubleshooting

This page exposes some of the most common problems a user may encounter when run-
ning GAMA — and offers advices and workarounds for them. It will be regularly enriched
with new contents. Note also that the Issues section of the website might contain precious
information on crashes and bugs encountered by other users. If neither the workarounds de-
scribed here nor the solutions provided by other users allow to solve your particular problem,
please submit a new issue report to the developers.

Table of contents

• Troubleshooting

– Table of contents
– On Ubuntu (& Linux Systems)

* Workaround if GAMA crashes when displaying web contents
* Workaround if GAMA does not display the menus (the ‘Edit’ menu is the
only one working)

– OnWindows
– On MacOS X

* Workaround in case of glitches in the UI
* Workaround in case of corrupted icons in menus under El Capitan

– Memory problems
– Submitting an Issue

63

https://github.com/gama-platform/gama/issues

GAMAdocumentation Chapter 6. Troubleshooting

On Ubuntu (& Linux Systems)

Workaround if GAMA crashes when displaying web contents

In case GAMA crashes whenever trying to display a web page or the pop-up on-
line documentation, you may try to edit the file Gama.ini and add the line -Dorg.
eclipse.swt.browser.DefaultType=mozilla to it. This workaround is described here:
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=705420 and in Issue 700 (on Google
Code).

Workaround if GAMAdoes not display themenus (the ‘Edit’ menu
is the only one working)

If, when selecting a menu, nothing happens (or, in the case of the ‘Agents’ menu,
all population submenus appear empty), it is likely that you have run into this issue:
https://bugs.eclipse.org/bugs/show_bug.cgi?id=330563. The only workaround known is
to launch GAMA from the command line (or from a shell script) after having told Ubuntu to
attach its menu back to its main window. For example (if you are in the directory where the
“Gama” executable is present):� �
export UBUNTU_MENUPROXY=0
./Gama� �
No fix can be provided from the GAMA side for the moment.

OnWindows

No common trouble…

OnMacOS X

Workaround in case of glitches in the UI

The only problems reported so far on MacOS X (from Lion to Yosemite) concern visual
glitches in the UI and problems with displays, either not showing or crashing the JVM.Most

v 1.7 64

GAMAdocumentation Chapter 6. Troubleshooting

(all ?) of these problems are usually related to the fact that GAMA does not run under the
correct version of Java Virtual Machine. In that case, follow these instructions to install the
correct version.

Workaround in case of corrupted icons inmenus under El Capitan

For some particular configurations (in particular some particular graphic cards), the icons of
the menus (e.g. Edit menu) may be corrupted. This bug is documented for all RCP products
under El Capitan. See these references: https://bugs.eclipse.org/bugs/show_bug.cgi?id=
479590 https://trac.filezilla-project.org/ticket/10669

These is nothing we can do now except using the workaround that consists in switching the
language of the OS to English (in System Preferences, Language & Region).

Memory problems

Themost common causes of problemswhen runningGAMAarememory problems. Depend-
ing on your activities, on the size of themodels you are editing, on the size of the experiments
you are running, etc., you have a chance to require morememory than what is currently allo-
cated to GAMA. A typical GAMA installation will need between 40 and 200MB ofmemory to
run “normally” and launch small models. Memory problems are easy to detect: on the bot-
tom right corner of its window, GAMA will always display the status of the current memory.
The first number represents the memory currently used (in MB), the second (always larger)
the memory currently allocated by the JVM. And the little trash icon allows to “garbage col-
lect” the memory still used by agents that are not used anymore (if any). If GAMA appears
to hang or crash and if you can see that the two numbers are very close, it means that the
memory required by GAMA exceeds the memory allocated.

Figure 6.1: images/memory_status.png

There are two ways to circumvent this problem: the first one is to increase the memory al-
located to GAMA by the Java Virtual Machine. The second, detailed on this page is to try to
optimize your models to reduce their memory footprint at runtime. To increase thememory
allocated, first locate the file called Gama.ini. On Windows and Ubuntu, it is located next

v 1.7 65

https://bugs.eclipse.org/bugs/show_bug.cgi?id=479590
https://bugs.eclipse.org/bugs/show_bug.cgi?id=479590
https://trac.filezilla-project.org/ticket/10669

GAMAdocumentation Chapter 6. Troubleshooting

to the executable. On MacOS X, you have to right-click on Gama.app, choose “Display Pack-
age Contents…”, and you will find Gama.ini in Contents/MacOS. This file typically looks
like the following (some options/keywords may vary depending on the system), and we are
interested in two JVM arguments:

Figure 6.2: images/gama_ini.png

-Xms supplies the minimal amount of memory the JVM should allocate to GAMA, -Xmx the
maximal amount. By changing these values (esp. the second one, of course, for example to
4096M, or 4g), saving the file and relaunching GAMA, you can probably solve your problem.
Note that 32 bits versions of GAMA will not accept to run with a value of -Xmx greater than
1500M. See here for additional information on these two options.

v 1.7 66

http://stackoverflow.com/questions/14763079/what-are-the-xms-and-xmx-parameters-when-starting-jvms

GAMAdocumentation Chapter 6. Troubleshooting

Submitting an Issue

If you think you have found a newbug/issue inGAMA, it is time to create an issue report here
! Alternatively, you can click the Issues tab on the project site, search if a similar problem
has already been reported (and, maybe, solved) and, if not, enter a new issue with as much
information as possible: * A complete description of the problem and how it occurred. * The
GAMA model or code you are having trouble with. If possible, attach a complete model. *
Screenshots or other files that help describe the issue.

Two filesmay be particularly interesting to attach to your issue: the configuration details
and the error log. Both can be obtained quite easily fromwithin GAMA itself in a few steps.
First, click the “About GAMA…” menu item (under the “Gama” menu on MacOS X, “Help”
menu on Linux & Windows)

In the dialog that appears, you will find a button called “Installation Details”.

Click this button and a new dialog appears with several tabs.

To provide a complete information about the status of your system at the time of the error,
you can

(1) copy and paste the text found in the tab “Configuration” into your issue. Although, it
is preferable to attach it as a text file (using textEdit, Notepad or Emacs e.g.) as it may
be too long for the comment section of the issue form.

(2) click the “View error log” button, which will bring you to the location, in your file
system, of a file called “log”, which you can then attach to your issue as well.

v 1.7 67

https://github.com/gama-platform/gama/issues/new
https://github.com/gama-platform/gama/issues

GAMAdocumentation Chapter 6. Troubleshooting

Figure 6.3: images/menu_about_gama.png

v 1.7 68

GAMAdocumentation Chapter 6. Troubleshooting

Figure 6.4: images/dialog_about_gama.png

v 1.7 69

GAMAdocumentation Chapter 6. Troubleshooting

Figure 6.5: images/dialog_configuration.png

v 1.7 70

GAMAdocumentation Chapter 6. Troubleshooting

Figure 6.6: images/log_file.png

v 1.7 71

GAMAdocumentation Chapter 6. Troubleshooting

Workspace, Projects and Models

The workspace is a directory in which GAMA stores all the current projects on which the
user is working, links to other projects, as well as some meta-data like preference settings,
current status of the different projects, error markers, and so on.

Except when running in headless mode, GAMA cannot function without a valid
workspace.

The workspace is organized in 3 categories, which are themselves organized into projects.

The projects present in the workspace can be either directly stored within it (as sub-
directories), which is usually the case when the user creates a new project, or linked from
it (so the workspace will only contain a link to the directory of the project, supposed to be
somewhere in the filesystem or on the network). A same project can be linked from differ-
entworkspaces.

GAMA models files are stored in these projects, which may contain also other files
(called resources) necessary for the models to function. A project may of course contain
severalmodel files, especially if they are importing each other, if they represent different
views on the same topic, or if they share the same resources.

Learning how to navigate in the workspace, how to switch workspace or how to import, ex-
port is a necessity to use GAMA correctly. It is the purpose of the following sections.

• 1. Navigating in the Workspace

• 2. Changing Workspace

• 3. Importing Models

v 1.7 72

Chapter 7

Navigating in theWorkspace

All the models that you edit or run using GAMA are accessible from a central location: the
Navigator, which is always on the left-hand side of the main window and cannot be closed.
This view presents the models currently present in (or linked from) yourworkspace.

Figure 7.1: images/navigator_first.png

73

GAMAdocumentation Chapter 7. Navigating in the Workspace

Table of contents

• Navigating in the Workspace

– The Different Categories of Models

* Models library
* Plugin models
* User models

– Inspect Models
– Moving Models Around
– Closing and Deleting Projects

The Different Categories of Models

In the Navigator, models are organized in three different categories: Models library, Plu-
gin models, and User models. This organization is purely logical and does not reflect where
the models are actually stored in the workspace (or elsewhere). Whatever their actual loca-
tion, model files need to be stored in projects, which may contain also other files (called
resources) necessary for the models to function. A project may of course contain several
model files, especially if they are importing each other, if they represent different models on
the same topic, or if they share the same resources.

Models library

This category represents the models that are shipped with each version of GAMA. They
do not reside in the workspace, but are considered as linked from it. This link is estab-
lished every time a new workspace is created. Their actual location is within a plugin
(msi.gama.models) of the GAMA application. This category contains four main projects in
GAMA 1.6.1, which are further refined in folders and sub-folders that contain model files
and resources.

It may happen, in some occasions, that the library of models is not synchronized with the
version of GAMA that uses your workspace. This is the case if you use different versions
of GAMA to work with the same workspace. In that case, it is required that the library be
manually updated. This can be done using the “Update library” item in the contextual menu.

v 1.7 74

GAMAdocumentation Chapter 7. Navigating in the Workspace

Figure 7.2: images/navigator_3_categories.png

v 1.7 75

GAMAdocumentation Chapter 7. Navigating in the Workspace

Figure 7.3: images/navigator_library_2_folders_expanded.png

v 1.7 76

GAMAdocumentation Chapter 7. Navigating in the Workspace

Figure 7.4: images/navigator_update_library.png

To look up for a particular model in the library, users can use the “Search for file” menu item.
A search dialog is then displayed, which allows to look for models by their title (for example,
models containing “GIS” in the example below).

v 1.7 77

GAMAdocumentation Chapter 7. Navigating in the Workspace

Plugin models

This category represents the models that are related to a specific plugin (additional or inte-
grated by default). The corresponding plugin is shown between parenthesis.

Figure 7.5: images/navigator_plugin_models.png

For each projects, you can see the list of plugins needed, and a caption to show you if the
plugin is actually installed in your GAMA version or not : green if the plugin is installed, red
otherwise.

v 1.7 78

GAMAdocumentation Chapter 7. Navigating in the Workspace

User models

This category regroups all the projects that have been created or imported in the workspace
by the user. Each project is actually a folder that resides in the folder of the workspace (so
they can be easily located from within the filesystem). Any modification (addition, removal
of files…) made to them in the filesystem (or using another application) is immediately re-
flected in the Navigator and vice-versa.

Model files, although it is by no means mandatory, usually reside in a sub-folder of the
project called “models”.

Figure 7.6: images/navigator_user_expanded.png

Inspect Models

Each models is presented as a node in the navigation workspace, including Experiment but-
tons and/or Requires node and/or Uses node.

• Experiment button : Experiment button are present if your model contains exper-
iments (it is usually the case !). To run the corresponding experiment, just click on it.
To learn more about running experiments, jump into this section.

v 1.7 79

GAMAdocumentation Chapter 7. Navigating in the Workspace

Figure 7.7: images/inspect_model.png

v 1.7 80

GAMAdocumentation Chapter 7. Navigating in the Workspace

• Require node : The node Require is present if your model uses some plugins (addi-
tional or integrated by default). Each plugin is listed in this node, with a green icon
if the plugin is already installed in your GAMA, and a red one if it is not the case. If
the plugin you want in not installed, an error will be raised in your model. Please read
about how to install plugins to learn some more about it.

Figure 7.8: images/requires_plugin_not_found.png

• Uses node : The node Uses is present if your model uses some external resources,
and if the path to the resource is correct (if the path to the resource is not correct, the
resource will not be displayed under Uses)

v 1.7 81

GAMAdocumentation Chapter 7. Navigating in the Workspace

Moving Models Around

Model files, as well as resources, or even complete projects, can be moved around between
the “Models Library”/“Plugin Models” and “Users Models” categories, or within them, di-
rectly in the Navigator. Drag’n drop operations are supported, as well as copy and paste.
For example, themodel “Life.gaml”, present in the “Models Library”, can perfectly be copied
and then pasted in a project in the “Users Model”. This local copy in the workspace can then
be further edited by the user without altering the original one.

v 1.7 82

GAMAdocumentation Chapter 7. Navigating in the Workspace

Figure 7.9: images/navigator_menu_copy_paste.png

Closing and Deleting Projects

Users can choose to get rid of old projects by either closing or deleting them. Closing a
project means that it will still reside in the workspace (and be still visible, although a bit
differently, in the Navigator) but its model(s) won’t participate to the build process and
won’t be displayable until the project is opened again.

v 1.7 83

GAMAdocumentation Chapter 7. Navigating in the Workspace

v 1.7 84

GAMAdocumentation Chapter 7. Navigating in the Workspace

Deleting a project must be invoked when the user wants this project to not appear in the
workspace anymore (unless, that is, it is imported again). Invoking this command will effec-
tively make the workspace “forget” about this project, and this can be further doubled with
a deletion of the projects resources and models from the filesystem.

v 1.7 85

GAMAdocumentation Chapter 7. Navigating in the Workspace

v 1.7 86

Chapter 8

ChangingWorkspace

It is possible, and actually common, to store different projects/models in different
workspaces and to tell GAMA to switch between these workspaces. Doing so involves be-
ing able to create one or several new workspace locations (even if GAMA has been told to
remember the current one) and being able to easily switch between them.

Table of contents

• Changing Workspace

– Switching to another Workspace
– Cloning the Current Workspace

Switching to another Workspace

This process is similar to the choice of the workspace location when GAMA is launched for
the first time. The only preliminary step is to invoke the appropriate command (“Switch
Workspace”) from the “File” menu.

In the dialog that appears, the current workspace location should already be entered. Chang-
ing it to a new location (or choosing one in the file selector invoked by clicking on “Browse…”)
and pressing “OK” will then either create a new workspace if none existed at that location or
switch to this newworkspace. Both operations will restart GAMA and set the newworkspace

87

GAMAdocumentation Chapter 8. Changing Workspace

Figure 8.1: images/menu_switch.png

v 1.7 88

GAMAdocumentation Chapter 8. Changing Workspace

location. To come back to the previous location, just repeat this step (the previous location
is normally now accessible from the combo box).

Figure 8.2: images/dialog_switch_ok.png

Cloning the Current Workspace

Another possibility, if you havemodels in your current workspace that youwould like to keep
in the new one (and that you do not want to import one by one after switching workspace),
or if you change workspace because you suspect the current one is corrupted, or outdated,
etc. but you still want to keep your models, is to clone the current workspace into a new (or
existing) one.

Please note that cloning (as its name implies) is an operation that will make a
copy of the files into a new workspace. So, if projects are stored in the current
workspace, this will result in two different instances of the same projets/mod-
els with the same name in the two workspaces. However, for projects that are
simply linked from the current workspace, only the link will be copied (which
allows to have different workspaces “containing” the same project)

This can be done by entering the new workspace location and choosing “Clone current
workspace” in the previous dialog instead of “Ok”.

v 1.7 89

GAMAdocumentation Chapter 8. Changing Workspace

Figure 8.3: images/dialog_switch_clone.png

If the new location does not exist, GAMA will ask you to confirm the creation and cloning
using a specific dialog box. Dismissing it will cancel the operation.

If the new location is already the location of an existing workspace, another confirmation
dialog is produced. It is important to note that all projects in the target workspace
will be erased and replaced by the projects in the current workspace if you pro-
ceed. Dismissing it will cancel the operation.

There are two caseswhere cloning is not accepted. The first one iswhen the user tries to clone
the current workspace into itself (i.e. the new location is the same as the current location).

The second case is when the user tries to clone the current workspace into one of its subdi-
rectories (which is not feasible).

v 1.7 90

GAMAdocumentation Chapter 8. Changing Workspace

Figure 8.4: images/clone_confirm_new.png

Figure 8.5: images/clone_confirm_existing.png

v 1.7 91

GAMAdocumentation Chapter 8. Changing Workspace

Figure 8.6: images/close_error_same.png

Figure 8.7: images/close_error_subdir.png

v 1.7 92

Chapter 9

Importing Models

Importing a model refers to making a model file (or a complete project) available for edi-
tion and experimentation in the workspace. With the exception of headless experiments,
GAMA requires that models be manageable in the current workspace to be able to validate
them and eventually experiment them.

There are many situations where a model needs to be imported by the user: someone sent it
to him/her by mail, it has been attached to an issue report, it has been shared on the web or
an SVN server, or it belongs to a previous workspace after the user has switched workspace.
The instructions below apply equally to all these situations.

Since model files need to reside in a project to be managed by GAMA, it is usually preferable
to import a whole project rather than individual files (unless, of course, the corresponding
models are simple enough to not require any additional resources, in which case, the model
file can be importedwith no harm into an existing project). GAMAwill then try to detect situ-
ations where a model file is imported alone and, if a corresponding project can be found (for
instance, in the upper directories of this file), to import the project instead of the file. As the
last resort, GAMA will import orphan model files into a generic project called “Unclassified
Models” (which will be created if it does not exist yet).

Table of contents

• Importing Models

– The “Import…” Menu Command
– Silent import

93

GAMAdocumentation Chapter 9. Importing Models

– Drag’n Drop / Copy-Paste Limitations

The “Import…” Menu Command

The simplest, safest andmost secure way to import a project into the workspace is to use the
built-in “Import…” menu command, available in the “File” menu or in the contextual menu
of the Navigator.

Figure 9.1: images/menu_file_import.png

When invoked, this command will open a dialog asking the user to choose the source of the

v 1.7 94

GAMAdocumentation Chapter 9. Importing Models

importation. It can be a directory in the filesystem (in which GAMA will look for existing
projects), a zip file, a SVN site, etc. It is safer in any case to choose “Existing Projects into
Workspace”.

Figure 9.2: images/dialog_import.png

Note that when invoked from the contextual menu, “Import…” will directly give access to a
shortcut of this source in a submenu.

Both options will lead the user to a last dialog where he/she will be asked to:

1. Enter a location (or browse to a location) containing the GAMA project(s) to import
2. Choose among the list of available projects (computed by GAMA) the ones to effec-

tively import
3. Indicate whether or not these projects need to be copied to or linked from the

workspace (the latter is done by default)

v 1.7 95

GAMAdocumentation Chapter 9. Importing Models

Figure 9.3: images/menu_navigator_import.png

Silent import

Another (possibly simpler, but less controllable) way of importing projects and models is to
either pass a path to a model when launching GAMA from the command line or to double-
click on a model file (ending in .gaml) in the Explorer or Finder (depending on your OS).

If the file is not already part of an imported project in the current workspace, GAMA will:

1. silently import the project (by creating a link to it),
2. open an editor on the file selected.

This procedure may fail, however, if a project of the same name (but in a different location)
already exists in the workspace, in which case GAMA will refuse to import the project (and
hence, the file). The solution in this case is to rename the project to import (or to rename
the existing project in the workspace).

Drag’n Drop / Copy-Paste Limitations

Currently, there is no way to drag and drop an entire project into GAMA Navigator (or
to copy a project in the filesystem and paste it in the Navigator). Only individual model

v 1.7 96

GAMAdocumentation Chapter 9. Importing Models

Figure 9.4: images/dialog_import_2.png

v 1.7 97

GAMAdocumentation Chapter 9. Importing Models

files, folders or resources can bemoved this way (and they have to be dropped or pasted into
existing projects).

This limitation might be removed some time in the future, however, allowing users to use
the Navigator as a project drop or paste target, but it is not the case yet.

v 1.7 98

GAMAdocumentation Chapter 9. Importing Models

Editing Models

Editing models in GAMA is very similar to editing programs in a modern IDE like Eclipse.
After having successfully launched the program, the user has two fundamental concepts at its
disposal: aworkspace, which containsmodels or links tomodels organized like a hierarchy
of files in a filesystem, and the workbench (aka, the main window), which contains the
tools to create, modify and experiment these models.

Understanding how to navigate in theworkspace is covered in another section and, for the
purpose of this section, we just need to understand that it is organized in projects, which
containmodels and their associated data. Projects are further categorized, in GAMA, into
three categories : Models Library (built-in models shipped with GAMA and automatically
linked from the workspace), Shared Models, and User Models.

This section covers the following sub-sections :

• 1. GAML Editor Generalities

• 2. GAML Editor Toolbar

• 3. Validation of Models

• 4. Graphical Editor

v 1.7 99

http://www.eclipse.rog

GAMAdocumentation Chapter 9. Importing Models

v 1.7 100

Chapter 10

The GAML Editor - Generalities

The GAML Editor is a text editor that proposes several services to support the modeler in
writing correct models: an integrated live validation system, a ribbon header that gives ac-
cess to experiments, information, warning and error markers.

Table of contents

• The GAML Editor - Generalities

– Creating a first model
– Status of models in editors
– Editor Preferences
– Multiple editors
– Local history

Creating a first model

Editing amodel requires that at least one project is created inUserModels. If there is none,
right-click on User Models and choose “New… > Gama Project…” (if you already have user
projects and want to create a model in one of them, skip the next step).

A dialog is then displayed, offering you to enter the name of the project as well as its location
on the filesystem. Unless you are absolutely sure of what you are doing, keep the “Use default
location” option checked. An error will be displayed if the project name already exists in the

101

GAMAdocumentation Chapter 10. The GAML Editor - Generalities

Figure 10.1: images/1.new_project.png

v 1.7 102

GAMAdocumentation Chapter 10. The GAML Editor - Generalities

workspace, in which case you will have to change it. Two projects with similar names can
not coexist in the workspace (even if they belong to different categories).

Figure 10.2: images/2.new_project2.png

Once the project is created (or if you have an existing project), navigate to it and right-click
on it. This time, choose “New…>Model file…” to create a new model.

A new dialog is displayed, which asks for several required or optional information. The Con-
tainer is normally the name of the project you have selected, but you can choose to place
the file elsewhere. An error will be displayed if the container does not exist (yet) in the
workspace. You can then choose whether you want to use a template or not for producing
the initial file, and you are invited to give this file a name. An error is displayed if this name
already exists in this project. The name of the model, which is by default computed with
respect to the name of the file, can be actually completely different (but it may not contain
white spaces or punctuation characters). The name of the author, as well as the textual de-
scription of the model and the creation of an HTML documentation, are optional.

v 1.7 103

GAMAdocumentation Chapter 10. The GAML Editor - Generalities

Figure 10.3: images/3.new_model.png

v 1.7 104

GAMAdocumentation Chapter 10. The GAML Editor - Generalities

Figure 10.4: images/4.new_model2.png

v 1.7 105

GAMAdocumentation Chapter 10. The GAML Editor - Generalities

Status of models in editors

Once this dialog is filled and accepted, GAMA will display the new “empty” model.

Figure 10.5: images/5.view_model.png

Although GAML files are just plain text files, and can therefore be produced or modified in
any text processor, using the dedicated GAML editor offers a number of advantages, among
which the live display of errors andmodel statuses. Amodel can actually be in four different
states, which are visually accessible above the editing area: Functional (orange color), Ex-
perimentable (green color), InError (red color), InImportedError_(yellow color). See the
section on model compilation for more precise information about these statuses._

In its initial state, amodel is always in the Functional state, whichmeans it compiles without
problems, but cannot be used to launch experiments. The InError state, depicted below,
occurs when the file contains errors (syntactic or semantic ones).

While the file is not saved, these errors remain displayed in the editor and nowhere else. If
you save the file, they are now considered as “workspace errors” and get displayed in the
“Problems” view below the editor.

Reaching the Experimentable state requires that all errors are eliminated and that at least
one experiment is defined in the model, which is the case now in our toy model. The exper-
iment is immediately displayed as a button in the toolbar, and clicking on it will allow to

v 1.7 106

GAMAdocumentation Chapter 10. The GAML Editor - Generalities

Figure 10.6: images/6.view_model_with_error.png

Figure 10.7: images/7.view_model_with_error_saved.png

v 1.7 107

GAMAdocumentation Chapter 10. The GAML Editor - Generalities

launch this experiment on your model. See the section about running experiments for more
information on this point.

Figure 10.8: images/8.view_model_with_experiment.png

Experiment buttons are updated in real-time to reflect what’s in your code. If more than one
experiment is defined, corresponding buttons will be displayed in addition to the first one.

Editor Preferences

Text editing in general, and especially in Eclipse-based editors, sports a number of options
and preferences. Youmight want to turn off/on the numbering of the lines, change the fonts
used, change the colors used to highlight the code, etc. All of these preferences are accessible
from the “Preferences…” item of the editor contextual menu.

Explore the different items present there, keeping in mind that these preferences will apply
to all the editors of GAMA and will be stored in your workspace.

v 1.7 108

GAMAdocumentation Chapter 10. The GAML Editor - Generalities

Figure 10.9: images/9.view_model_with_3_experiments.png

Figure 10.10: images/10.view_model_with_preferences.png

v 1.7 109

GAMAdocumentation Chapter 10. The GAML Editor - Generalities

Figure 10.11: images/11.editor_preferences.png

v 1.7 110

GAMAdocumentation Chapter 10. The GAML Editor - Generalities

Figure 10.12: images/additional_informations_in_editor.png

Additional informations in the Editor

You can choose to display or not some informations in your Editor

One particular option, shipped by default with GAMA, is the possibility to not only highlight
the code of your model, but also its structure (complementing, in that sense, the Outline
view). It is a slightly modified version of a plugin called EditBox, which can be activated by
clicking on the “green square” icon in the toolbar.

The Default theme of EditBox might not suit everyone’s tastes, so the preferences allow to
entirely customize how the “boxes” are displayed and how they can support the modeler in
better understanding “where” it is in the code. The “themes” defined in this way are stored
in the workspace, but can also be exported for reuse in other workspaces, or sharing them
with other modelers.

Multiple editors

GAMA inherits from Eclipse the possibility to entirely configure the placement of the views,
editors, etc. This can be done by rearranging their position using the mouse (click and hold

v 1.7 111

http://sourceforge.net/projects/editbox/
http://sourceforge.net/projects/editbox/
http://www.eclipse.org

GAMAdocumentation Chapter 10. The GAML Editor - Generalities

Figure 10.13: images/12.view_model_with_editbox_default.png

on an editor’s title and move it around). In particular, you can have several editors side by
side, which can be useful for viewing the documentation while coding a model.

Local history

Among the various options present to work withmodels, which you are invited to try out and
test at will, one, called Local history is particularly interesting andworth a small explanation.
When you edit models, GAMA keeps in the background all the successive versions you save
(the history duration is configurable in the preferences), whether or not you are using a
versioning system like SVN or Git. This local history is accessible from different places in
GAMA (the Navigator, the Viewsmenu, etc.), including the contextual menu of the editor.

This command invokes the opening of a new view, which you can see on the figure below,
and which lists the different versions of your file so far. You can then choose one and, right-
clicking on it, either open it in a new editor, or compare it to your current version.

This allows you to precisely pinpoint the modifications brought to the file and, in case of
problems, to revert them easily, or even revert the entire file to a previous version. Never
lose your work again !

v 1.7 112

GAMAdocumentation Chapter 10. The GAML Editor - Generalities

Figure 10.14: images/13.editbox_preferences.png

v 1.7 113

GAMAdocumentation Chapter 10. The GAML Editor - Generalities

Figure 10.15: images/14.view_model_side_by_side.png

Figure 10.16: images/15.view_model_with_local_history_menu.png

v 1.7 114

GAMAdocumentation Chapter 10. The GAML Editor - Generalities

Figure 10.17: images/16.view_model_with_local_history_compare_menu.png

Figure 10.18: images/17.view_model_with_local_history_side_by_side.png

v 1.7 115

GAMAdocumentation Chapter 10. The GAML Editor - Generalities

This short introduction to GAML editors is now over. You might want to take a look, now,
at how the models you edit are parsed, validated and compiled, and how this information is
accessible to the modeler.

v 1.7 116

Chapter 11

The GAML Editor Toolbar

The GAML Editor provide some tools to make the editing easier, covering a lot of function-
alities, such as tools for changes of visualization, tools for navigation through your model,
tools to format your code, or also tools to help you finding the correct keywords to use in a
given context.

Figure 11.1: images/graphical_editor_toolbar.png

117

GAMAdocumentation Chapter 11. The GAML Editor Toolbar

Table of contents

• The GAML Editor Toolbar * Visualization tools in the editor * Navigation tools in the
editor * Format tools in the editor * Vocabulary tools in the editor

Visualization tools in the editor

Figure 11.2: images/additional_informations_in_editor.png

You can choose to display or not some informations in your Editor. Here are the different
features for this part:

Display the number of lines

The first toggle is used to show / hide the number of lines.

v 1.7 118

GAMAdocumentation Chapter 11. The GAML Editor Toolbar

Expand / Collapse lines

The second toggle provides you the possibility to expand or collapse lines in your model
depending on the indentation. This feature can be very useful for big models, to collapse the
part you have already finished.

Mark the occurrences

This third toggle is used to show occurrences when your cursor is pointing on one word.

Display colorization of code section

One particular option, shipped by default with GAMA, is the possibility to not only highlight
the code of your model, but also its structure (complementing, in that sense, the Outline
view). It is a slightly modified version of a plugin called EditBox, which can be activated by
clicking on the “green square” icon in the toolbar.

Figure 11.3: images/12.view_model_with_editbox_default.png

The Default theme of EditBox might not suit everyone’s tastes, so the preferences allow to
entirely customize how the “boxes” are displayed and how they can support the modeler in

v 1.7 119

http://sourceforge.net/projects/editbox/
http://sourceforge.net/projects/editbox/

GAMAdocumentation Chapter 11. The GAML Editor Toolbar

better understanding “where” it is in the code. The “themes” defined in this way are stored
in the workspace, but can also be exported for reuse in other workspaces, or sharing them
with other modelers.

Figure 11.4: images/13.editbox_preferences.png

Change the font size

The two last tools of this section are used to increase / decrease the size of the displayed text.

v 1.7 120

GAMAdocumentation Chapter 11. The GAML Editor Toolbar

Navigation tools in the editor

Figure 11.5: images/navigation_in_editor.png

In the Editor toolbar, you have some tools for search and navigation through the code. Here
are the explanation for each functionalities:

The search engine

In order to search an occurrence of a word (or the part of a word), you can type your search
in the field, and the result will be highlighted automatically in the text editor.

With the left / right arrows, you can highlight the previous / next occurrence of the word.
The two toggles just in the right side of the search field are used to constraint the results as
“case sensitive” or “whole word”. If you prefer the eclipse interface for the search engine, you
can also access to the tool by taping Ctrl+F.

Previous / Next location

The two arrow shape buttons that are coming after are used to jump from the current location
of your cursor to the last position, even if the last position was in an other file (and even if

v 1.7 121

GAMAdocumentation Chapter 11. The GAML Editor Toolbar

Figure 11.6: images/search_engine.png

this file has been closed !).

Show outline

This last tool of this section is used to show the global architecture of your model, with ex-
plicit icons for each section. A search field is also available, if you want to search a specific
section. By double clicking one line of the outline, you can jump directly to the chosen sec-
tion. This feature can be useful if you have big model to manipulate.

Format tools in the editor

Some other tools are available in the toolbar to help for the indentation of the model:

Shift left / shift right

Those two first buttons are used to shift a line (or a group of lines) on the left or the right.

v 1.7 122

GAMAdocumentation Chapter 11. The GAML Editor Toolbar

Figure 11.7: images/show_outline.png

Figure 11.8: images/format_the_text_in_editor.png

v 1.7 123

GAMAdocumentation Chapter 11. The GAML Editor Toolbar

Format

This useful feature re-indent automatically all your model.

Re-serialize

Re-serialize your model.

Comment

The two last buttons of this section are useful to comment a line (or a group of lines).

Vocabulary tools in the editor

Figure 11.9: images/vocabulary_help_in_editor.png

The last group of buttons are used to search the correct way to write a certain keyword.

v 1.7 124

GAMAdocumentation Chapter 11. The GAML Editor Toolbar

Templates

The templates button is used to insert directly a code snippet in the current position of the
cursor. Some snippets are already available, ordered by scope. You can custom the list of
template as much as you want, it is very easy to add a new template.

Built-in attributes, built-in actions

With this feature, you can easily know the list of built-in attributes and built-in actions you
can use in such or such context. With this feature, you can also insert some templates to
help you, for example to insert a pre-made species using a particular skill, as it is shown it
the following screenshot:

Figure 11.10: images/insert_species_with_moving_skill1.png

… will generate the following code:

All the comments are generated automatically from the current documentation.

v 1.7 125

GAMAdocumentation Chapter 11. The GAML Editor Toolbar

Figure 11.11: images/insert_species_with_moving_skill2.png

Operators

Once again, this powerful feature is used to generate example of structures for all the oper-
ators, ordered by categories.

Colors

Here is the list of the name for the different pre-made colors you can use. You can also add
some custom colors.

v 1.7 126

GAMAdocumentation Chapter 11. The GAML Editor Toolbar

Figure 11.12: images/color.pngv 1.7 127

GAMAdocumentation Chapter 11. The GAML Editor Toolbar

v 1.7 128

Chapter 12

Validation of Models

When editing a model, GAMA will continuously validate (i.e. compile) what the modeler is
entering and indicate, with specific visual affordances, various information on the state of
the model. This information ranges from documentation items to errors indications. We
will review some of them in this section.

Table of contents

• Validation of Models

– Syntactic errors
– Semantic errors
– Semantic warnings
– Semantic information
– Semantic documentation
– Changing the visual indicators
– Errors in imported files
– Cleaning models

Syntactic errors

These errors are produced when the modeler enters a sentence that has no meaning in
the grammar of GAML (see the documentation of the language). It can either be a non-

129

GAMAdocumentation Chapter 12. Validation of Models

existing symbol (like “globals” (instead of global) in the example below), a wrong punctu-
ation scheme, or any other construct that puts the parser in the incapacity of producing
a correct syntax tree. These errors are extremely common when editing models (since in-
complete keywords or sentences are continuously validated). GAMA will report them using
several indicators: the icon of the file in the title of the editor will sport an error icon and the
gutter of the editor (i.e. the vertical space beside the line numbers) will use errormarkers
to report two or more errors: one on the statement defining the model, and one (or more)
in the various places where the parser has failed to produce the syntax tree. In addition, the
toolbar over the editor will turn red and indicate that errors have been detected.

Figure 12.1: images/model_with_syntactic_errors.png

Hovering over one of thesemarkers indicates what went wrong during the syntactic valida-
tion. Note that these errors are sometimes difficult to interpret, since the parser might fail
in places that are not precisely those where a wrong syntax is being used (it will usually fail
after).

Semantic errors

When syntactic errors are eliminated, the validation enters a so-called semantic phase, dur-
ing which it ensures that what the modeler has written makes sense with respect to the vari-

v 1.7 130

GAMAdocumentation Chapter 12. Validation of Models

Figure 12.2: images/model_with_syntactic_errors_and_hover.png

ous rules of the language. To understand the difference between the two phases, take a look
at the following example.

This sentence below is syntactically correct:� �
species my_species parent: my_species;� �
But it is semantically incorrect because a species cannot be parent of itself. No syntactic
errors will be reported here, but the validation will fail with a semantic error.

Figure 12.3: images/semantic_error_detail.png

Semantic errors are reported in a way similar to syntactic errors, except that no marker
are displayed beside the model statement. The compiler tries to report them as precisely
as possible, underlining the places where they have been found and outputting hopefully
meaningful error messages. In the example below, for instance, we use a wrong number of
arguments for defining a square geometry. Although the sentence is syntactically correct,
GAMA will nevertheless issue an error and prevent the model from being experimentable.

v 1.7 131

GAMAdocumentation Chapter 12. Validation of Models

Figure 12.4: images/model_with_semantic_errors.png

The message accompanying this error can be obtained by hovering over the errormarker
found in the gutter (multiplemessages can actually be produced for a same error, see below).

While the editor is in a so-calleddirty state (i.e. themodel has not been saved), errors are only
reported locally (in the editor itself). However, as soon as the user saves a model containing
syntactic or semantic errors, they are “promoted” to become workspace errors, and, as such,
indicated in other places: the file icon in the Navigator, and a new line in the Errors view.

Semantic warnings

The semantic validation phase does not only report errors. It also outputs various indicators
that can help the modeler in verifying the correctness of his/her model. Among them are
warnings. A warning is an indication that something is not completely right in the way
the model is written, although it can probably be worked around by GAMA when the model
will be executed. For instance, in the example below, we pass a string argument to the facet
“number:” of the “create” statement. GAMA will emit a warning in such a case, indicating
that “number:” expects an integer, and that the string passed will be casted to int when the
model will be executed. Warnings are to be considered seriously, as they usually indicate

v 1.7 132

GAMAdocumentation Chapter 12. Validation of Models

Figure 12.5: images/model_with_semantic_errors_and_hover.png

Figure 12.6: images/model_with_semantic_errors_saved.png

v 1.7 133

GAMAdocumentation Chapter 12. Validation of Models

some flaws in the logic of the model.

Figure 12.7: images/model_with_warnings.png

Hovering over the warningmarkerwill allow themodeler to have access to the explanation
and hopefully fix the cause of the warning.

Semantic information

Besides warnings, another type of harmless feedback is produce by the semantic validation
phase: informationmarkers. They are used to indicate useful information to the modeler,
for example that an attribute has been redefined in a sub-species, or that some operation
will take place when running themodel (for instance, the truncation of a float to an int). The
visual affordance used in this case is voluntarily discrete (a small “i” in the editor’s gutter).

As with the other types ofmarkers, informationmarkers unveil their messages when being
hovered.

v 1.7 134

GAMAdocumentation Chapter 12. Validation of Models

Figure 12.8: images/model_with_warnings_and_hover.png

Figure 12.9: images/model_with_info.png

v 1.7 135

GAMAdocumentation Chapter 12. Validation of Models

Figure 12.10: images/model_with_info_and_hover.png

Semantic documentation

The last type of output of the semantic validation phase consists in a complete documenta-
tion of the various elements present in the model, which the user can retrieve by hovering
over the different symbols. Note that although the best effort is being made in producing a
complete and consistent documentation, it may happen that some symbols do not produce
anything. In that case, please report a new Issue here.

Changing the visual indicators

The default visual indicators depicted in the examples above to report errors, warnings and
information can be customized to be less (or more) intrusive. This can be done by choosing
the “Preferences…” item of the editor contextual menu and navigating to “General > Editors
> Text Editors > Annotations”. There, you will find the variousmarkers used, and you will
be able to change how they are displayed in the editor’s view. For instance, if you prefer to
highlight errors in the text, you can change it here.

Which will result in the following visual feedback for errors:

v 1.7 136

https://code.google.com/p/gama-platform/issues/list

GAMAdocumentation Chapter 12. Validation of Models

Figure 12.11: images/model_with_no_errors_and_hover.png

Errors in imported files

Finally, even if your model has been cleansed of all errors, it may happen that it refuses to
launch because it imports another model that cannot be compiled. In the following screen-
shot, “My First Model.gaml” imports “My Imported Model.gaml”, which sports a syntactic
error.

In such a case, the importing model refuses to compile (although it is itself valid) and to pro-
pose experiments. There are cases, however, where the same importation can work. Con-
sider the following example, where, this time, “My ImportedModel.gaml” sports a semantic
error in the definition of the global ‘shape’ attribute. Without further modifications, the use
case is similar to the first one.

However, if “My First Model.gaml” happens to redefine the shape attribute (in global), it is
now considered as valid. All the valid sections of “My Imported Model.gaml” are effectively
imported, while the erroneous definition is superseded by the new one.

This process is described by the information marker next to the redefinition.

v 1.7 137

GAMAdocumentation Chapter 12. Validation of Models

Figure 12.12: images/preferences_annotations.png

v 1.7 138

GAMAdocumentation Chapter 12. Validation of Models

Figure 12.13: images/model_with_semantic_error_different_annotation.png

v 1.7 139

GAMAdocumentation Chapter 12. Validation of Models

Figure 12.14: images/model_with_imported_errors.png

Figure 12.15: images/model_with_imported_semantic_error.png

v 1.7 140

GAMAdocumentation Chapter 12. Validation of Models

Figure 12.16: images/model_with_superseded_semantic_error.png

Figure 12.17: images/model_with_superseded_semantic_error_and_hover.png

v 1.7 141

GAMAdocumentation Chapter 12. Validation of Models

Cleaning models

It may happen that the metadata that GAMA maintains about the different projects (which
includes the variousmarkers on files in the workspace, etc.) becomes corrupted from time
to time. This especially happens if you frequently switch workspaces, but not only. In those
(hopefully rare) cases, GAMA may report incorrect errors for perfectly legible files.

When such odd behaviors are detected, or if you want to regularly keep your metadata in a
good shape, you can clean all your project, by clicking on the button “Clear and validate all
projects” (in the syntax errors view).

Figure 12.18: images/action_clean.png

v 1.7 142

GAMAdocumentation Chapter 12. Validation of Models

Running Experiments

Running an experiment is the only way, in GAMA, to execute simulations on a model. Ex-
periments can be run in different ways. 1. The first, and most common way, consists in
launching an experiment from the Modeling perspective, using the user interface proposed
by the simulation perspective to run simulations. 1. The second way, detailed on this page,
allows to automatically launch an experiment when opening GAMA, subsequently using the
same user interface. 1. The last way, known as running headless experiments, does notmake
use of the user interface and allows to manipulate GAMA entirely from the command line.

All three ways are strictly equivalent in terms of computations (with the exception of the last
one omitting all the computations necessary to render simulations on displays or in the UI).
They simply differ by their usage: 1. The first one is heavily used when designing models
or demonstrating several models. 1. The second is intended to be used when demonstrat-
ing or experimenting a single model. 1. The last one is useful when running large sets of
simulations, especially over networks or grids of computers.

v 1.7 143

GAMAdocumentation Chapter 12. Validation of Models

v 1.7 144

Chapter 13

Launching Experiments from the
User Interface

GAMA supports multiple ways of launching experiments fromwithin theModeling Perspec-
tive, in editors or in the navigator.

Table of contents

• Launching Experiments from the User Interface

– From an Editor
– From the Navigator
– Running Experiments Automatically
– Running Several Simulations

From an Editor

As already mentioned on this page, GAML editors will provide the easiest way to launch
experiments. Whenever a model that contains the definition of experiments is validated,
these experiments will appear as distinct buttons, in the order in which they are defined in
the file, in the header ribbon above the text. Simply clicking one of these buttons launches
the corresponding experiment.

145

GAMAdocumentation Chapter 13. Launching Experiments from the User Interface

Figure 13.1: images/editor_launch.png

For each of those launching buttons, you can see 2 different pictograms, showing the type
of experiment. An experiment can either be a GUI Experiment or a Batch Experiment.

From the Navigator

You can also launch your experiments from the navigator, by expanding amodel and double
clicking on one of the experiments available (The number of experiments for each model is
visible also in the navigator). As for the editor, the two types of experimentations (gui and
batch) are differentiated by a pictogram.

Running Experiments Automatically

Once an experiment has been launched (unless it is run in headless mode, of course), it
normally displays its views and waits from an input from the user, usually a click on the
“Run” or “Step” buttons (see here).

v 1.7 146

GAMAdocumentation Chapter 13. Launching Experiments from the User Interface

Figure 13.2: images/editor_different_types_of_experiment.png

Figure 13.3: images/navigator_launch.png

v 1.7 147

GAMAdocumentation Chapter 13. Launching Experiments from the User Interface

It is however possible to make experiments run directly once launched, without requiring
any intervention from the user. To install this feature, open the preferences of GAMA.On the
first tab, simply check “Auto-run experiments when they are launched” (which is unchecked
by default) and hit “OK” to dismiss the dialog. Next time you’ll launch an experiment, it
will run automatically (this option also applies to experiments launched from the command
line).

Figure 13.4: images/prefs_auto_run.png

v 1.7 148

GAMAdocumentation Chapter 13. Launching Experiments from the User Interface

Running Several Simulations

It is possible in GAMA to run several simulations. Each simulation will be launched with the
same seed (which means that if the parameters are the same, then the result will be exactly
the same). All those simulations are synchronized in the same cycle.

To run several experiments, you have to write it directly in your model.

Figure 13.5: images/run_several_simulations.png

v 1.7 149

GAMAdocumentation Chapter 13. Launching Experiments from the User Interface

v 1.7 150

Chapter 14

Experiments User Interface

As soon as an experiment is launched, the modeler is facing a new environment (with dif-
ferent menus and views) called the Simulation Perspective). The Navigator is still opened
in this perspective, though, and it is still possible to edit models in it, but it is considered as
good practice to use each perspective for what is has been designed for. Switching perspec-
tives is easy. The small button in the top-left corner of the window allows to switch back and
forth the two perspectives.

The actual contents of the simulation perspective will depend on the experiment being run
and the outputs it defines. The next sections will present themost common ones (inspectors,
monitors and displays), as well as the views that are not defined in outputs, like the Param-
eters or Errors view. An overview of the menus and commands specific to the simulation
perspective is also available.

151

GAMAdocumentation Chapter 14. Experiments User Interface

Figure 14.1: images/button_switch.png

v 1.7 152

Chapter 15

Menus and Commands

The simulation perspective adds on the user interface a number of new menus and com-
mands (i.e. buttons) that are specific to experiment-related tasks.

Table of contents

• Menus and Commands

– Experiment Menu
– Agents Menu
– General Toolbar

Experiment Menu

Amenu, called “Experiment”, allows to control the current experiment. It shares some of its
commands with the general toolbar (see below).

• Run/Pause: allows to run or pause the experiment depending on its current state.
• Step by Step: runs the experiment for one cycle and pauses it after.
• Reload: stops the current experiment, deletes its contents, and reloads it, taking
into account the parameters values that might have been changed by the
user.

153

GAMAdocumentation Chapter 15. Menus and Commands

Figure 15.1: images/menu_experiment.png

v 1.7 154

GAMAdocumentation Chapter 15. Menus and Commands

• Stop at first error: if checked, the current experiment will stop running when an
error is issued. The default value can be configured in the preferences.

• Treat warnings as errors: if checked, a warning will be considered as an error
(and if the previous item is checked, will stop the experiment). The default value can
be configured in the preferences.

• Display warnings and errors: if checked, displays the errors and warnings issued
by the experiment. If not, do not display them. The default value can be configured in
the preferences.

• Force interrupt: forces the experiment to stop, whatever it is currently doing,
purges thememory from it, and switches to themodeling perspective. Use this com-
mandwith caution, as it can have undesirable effects depending on the state of the
experiment (for example, if it is reading files, or outputting data, etc.).

Agents Menu

A second menu is added in the simulation perspective: “Agents”. This menu allows for an
easy access to the different agents that populate an experiment.

This hierarchical menu is always organized in the same way, whatever the experiment be-
ing run. A first level is dedicated to the current simulation agent: it allows to browse its
population or to inspect the simulation agent itself. Browsing the population will give ac-
cess to the current experiment agent (the “host” of this population). A second level lists the
“micro-populations” present in the simulation agent. And the third level will give access to
each individual agent in these populations. This organization is of course recursive: if these
agents are themselves hosts of micro-populations, they will be displayed in their individual
menu.

Each agent, when selected, will reveal a similar individual menu. This menu will contain a
set of predefined actions, the commands defined by the user for this species, if any, and then
the micro-populations hosted by this agent, if any. Agents (like the instances of “ant” below)
that do not host other agents and whose species has no user commands will have a “simple”
individual menu.

These are the 4 actions that will be there most of the time:

• Inspect: open an inspector on this agent.
• Highlight: makes this agent the current “highlighted” agent, forcing it to appear
“highlighted” in all the displays that might have been defined.

v 1.7 155

GAMAdocumentation Chapter 15. Menus and Commands

Figure 15.2: images/menu_agents.png

Figure 15.3: images/menu_agents_2.png

v 1.7 156

GAMAdocumentation Chapter 15. Menus and Commands

Figure 15.4: images/menu_agents_3.png

• Focus: this option is not accessible if no displays are defined. Makes the current
display zoom on the selected agent (if it is displayed) so that it occupies the whole
view.

• Kill: destroys the selected agent and disposes of it. Use this command with cau-
tion, as it can have undesirable effects if the agent is currently executing its behavior.

If an agent hosts other agents (it is the case in multi-level architecture), you can access to
the micro-population quite easily:

If user commands are defined for a species (for example in the existingmodel Features/Driv-
ing Skill/Road Traffic simple (City)), their individual menu will look like the following:

General Toolbar

The last piece of user interface specific to the Simulation Perspective is a toolbar, which
contains controls and information displays related to the current experiment.

This toolbar is voluntarily minimalist, with three buttons already present in the experiment
menu (namely, “Play/Pause”, “Step by Step” and “Reload”), which don’t need to be detailed

v 1.7 157

GAMAdocumentation Chapter 15. Menus and Commands

Figure 15.5: images/menu_agents_multi_level.png

Figure 15.6: images/menu_agents_user_command.png

v 1.7 158

GAMAdocumentation Chapter 15. Menus and Commands

here, and two new controls (“Experiment status” and “Cycle Delay”), which are explained
below.

Figure 15.7: images/toolbar.png

While opening an experiment, the status will display some information about what’s going
on. For instance, that GAMA is busy instantiating the agents, or opening the displays.

Figure 15.8: images/toolbar_instantiating_agents.png

Figure 15.9: images/toolbar_building_outputs.png

The orange color usually means that, although the experiment is not ready, things are pro-
gressingwithout problems (a red colormessage is an indication that somethingwent wrong).
When the loading of the experiment is finished, GAMA displays the message “Simulation
ready” on a green background. If the user runs the simulation, the status changes and dis-
plays the number of cycles already elapsed in the simulation currently managed by the ex-
periment.

Hovering over the status produces a more accurate information about the internal clock of
the simulation.

v 1.7 159

GAMAdocumentation Chapter 15. Menus and Commands

Figure 15.10: images/toolbar_running.png

Figure 15.11: images/toolbar_running_with_info.png

v 1.7 160

GAMAdocumentation Chapter 15. Menus and Commands

From top to bottom of this hover, we find the number of cycles elapsed, the simulated time
already elapsed (in the example above, one cycle lasts one second of simulated time), the du-
ration of cycle inmilliseconds, the average duration of one cycle (computed over the number
of cycles elapsed), and the total duration, so far, of the simulation (still in milliseconds).

Although these durations are entirely dependent on the speed of the simulation engine (and,
of course, the number of agents, their behaviors, etc.), there is a way to control it partially
with the second control, which allows the user to force a minimal duration (in milliseconds)
for a cycle, from 0 (its initial position) to 1000. Note that this minimal duration (or delay)
will remain the same for the subsequent reloads of the experiment.

Figure 15.12: images/toolbar_running_with_delay.png

In case it is necessary to have more than 1s of delay, it has to be defined, instead, as an
attribute of the experiment.

v 1.7 161

GAMAdocumentation Chapter 15. Menus and Commands

v 1.7 162

Chapter 16

Parameters View

In the case of an experiment, the modeler can define the parameters he wants to be able to
modify to explore the simulation, and thus the ones he wants to be able to display and alter
in the GUI interface.

It important to notice that all modificationmade in the parameters are used for
simulation reload only. Creation of a new simulation from themodel will erase
the modifications.

Table of contents

• Parameters View

– Built-in parameters
– Parameters View
– Modification of parameters values

Built-in parameters

Every GUI experiment displays a pane named “Parameters” containing at least two built-
in parameters related to the random generator: * the Random Number Generator, with a
choice between 3 RNG implementations, * the Random Seed

163

GAMAdocumentation Chapter 16. Parameters View

Figure 16.1: images/parameters_built_in.png

Parameters View

The modeler can define himself parameters that can be displayed in the GUI and that are
sorted by categories. Note that the interface will depend on the data type of the parameter:
for example, for integer or float parameters, a simple text box will be displayed whereas a
color selector will be available for color parameters. The parameters value displayed are the
initial value provided to the variables associated to the parameters in the model.

The above parameters view is generated from the following code:� �
global
{

int i;
float f;
string s;
list l;
matrix m;
pair p;
rgb c;

}

experiment maths type: gui {
parameter "my_integer" var: i <- 0 category:"Simple types";
parameter "my_float" var: f <- 0.0 category:"Simple types";
parameter "my_string" var: s <- "" category:"Simple types";

v 1.7 164

GAMAdocumentation Chapter 16. Parameters View

Figure 16.2: images/parameters.png

v 1.7 165

GAMAdocumentation Chapter 16. Parameters View

parameter "my_list" var: l <- [] category:"Complex types";
parameter "my_matrix" var: m <- matrix([[1,2],[3,4]])

category:"Complex types";
parameter "my_pair" var: p <- 3::5 category:"Complex types";
parameter "my_color" var: c <- #green category:"Complex types

";

output {}
}� �
Click on Edit button in case of list or map parameters or the color or matrix will open an
additional window to modify the parameter value.

Modification of parameters values

The modeler can modify the parameter values. After modifying the parameter values, you
can reload the simulation by clicking on the top-right circular arrow button.

You can also add a new simulation to the old one, using those new parameters, by clicking
on the top-right plus symbol button.

If he wants to come back to the initial value of parameters, he can click on the top-right red
curved arrow of the parameters view.

v 1.7 166

Chapter 17

Inspectors and monitors

GAMA offers some tools to obtain informations about one or several agents. There are two
kinds of tools : * agent browser * agent inspector

GAMA offers as well a tool to get the value of a specific expression: monitors.

Table of contents

• Inspectors and monitors

– Agent Browser
– Agent Inspector
– Monitor

Agent Browser

The species browser provides informations about all or a selection of agents of a species.

The agent browser is available through the Agents menu or by right clicking on a display
(screenshots from the).

It displays in a table all the values of the agent variables of the considered species; each line
corresponding to an agent. The list of attributes is displayed on the left side of the view, and
you can select the attributes you want to be displayed, simply by clicking on it (Ctrl + Click
for multi-selection).

167

GAMAdocumentation Chapter 17. Inspectors and monitors

Figure 17.1: images/browse-menu.png

Figure 17.2: images/browse_right_clicking.png

v 1.7 168

GAMAdocumentation Chapter 17. Inspectors and monitors

Figure 17.3: images/browse_result.png

v 1.7 169

GAMAdocumentation Chapter 17. Inspectors and monitors

By clicking on the right mouse button on a line, it is possible to do some action for the cor-
responding agent.

Agent Inspector

The agent inspector provides information about one specific agent. It also allows to change
the values of its variables during the simulation. The agent inspector is available from the
Agents menu, by right_clicking on a display, in the species inspector or when inspecting
another agent.

Figure 17.4: images/Agent_inspector.png

It is possible to «highlight» the selected agent.

To change the color of the highlighted agent, go to Preferences/Display.

Monitor

Monitors allow to follow the value of a GAML expression. For instance the followingmonitor
allow to follow the number of infected people agents during the simulation. The monitor is
updated at each simulation step.

It is possible to define a monitor inside a model (see this page). It is also possible to define
a monitor through the graphical interface.

v 1.7 170

GAMAdocumentation Chapter 17. Inspectors and monitors

Figure 17.5: images/Inspector_highlight.png

To define a monitor, first choose Add Monitor in the Views menu (or by clicking on the
icon in the Monitor view), then define the display legend and the expression to monitor.

In the following example, we defined a monitor with the legend “Number initial of preys”
and that has for value the global variable “nb_preys_init”.

The expression should be written with the GAML language. See this page for more details
about the GAML language.

v 1.7 171

GAMAdocumentation Chapter 17. Inspectors and monitors

Figure 17.6: images/Inspector_change_highlight_color.png

Figure 17.7: images/monitor.png

v 1.7 172

GAMAdocumentation Chapter 17. Inspectors and monitors

Figure 17.8: images/add_monitor.png

Figure 17.9: images/monitor_definition.png

v 1.7 173

GAMAdocumentation Chapter 17. Inspectors and monitors

v 1.7 174

Chapter 18

Displays

GAMA allows modelers to define several and several kinds of displays in a GUI experiment:
* java 2D displays * OpenGL displays

These 2 kinds of display allows the modeler to display the same objects (agents, charts, texts
…). The OpenGL display offers extended features in particular in terms of 3D visualisation.
The OpenGL displays offers in addition better performance when zooming in and out.

Table of contents

• Displays

– Classical displays (java2D)
– OpenGL displays

Classical displays (java2D)

The classical displays displaying any kind of content can be manipulated via the mouse (if
no mouse event has been defined): * the mouse left press and move allows to move the
camera (in 2D), * the mouse right click opens a context menu allowing the modeler to
inspect displayed agents, * thewheel allows the modeler to zoom in or out.

Each display provides several buttons to manipulate the display (from left to right): *
Show/hide side bar, * Show/hide overlay, *Browse through all displayed agents:

175

GAMAdocumentation Chapter 18. Displays

Figure 18.1: images/display-java2D.png

open a context menu to inspect agents, * Update every X step: configure the refresh fre-
quence of the display, *Pause the-display: when pressed, the display will not be displayed
anymore, the simulation is still running, * Synchronize the display and the execution
of the model, * Zoom in, * Zoom to fit view, * Zoom out, * Take a snapshot: take a
snapshot saved as a png image in the snapshots folder of the models folder.

The Show/Hide side bar button opens a side panel in the display allowing the modeler to
configure: * Properties of the display: background and highlight color, display the scale
bar * For each layer, we can configure visibility, transparency, position and size of the layer.
For grid layers, we can in addition show/hide grids. For species layers, we can also configure
the displayed aspect. For text layers, we can the expression displayed with the color and the
font.

The bottom overlay bar displays information about the way it is displayed: * the position
of the mouse in the display, * the zoom ratio, * the scale of the display (depending on the
zoom).

OpenGL displays

The OpenGL display has an additional button 3D Options providing 3D features: * Use
FreeFly camera/Use Arcball camera: switch between cameras, the default camera is
the Arcball one, *Use mouse to rotate/Use mouse to drag (only with Arcball camera):
use left click for one of the 2 actions, left click + Ctrl for the other of the 2 actions. * Apply
inertia (only with Arcball camera): in inertia mode, when the modeler stops moving the
camera, there is no straight halt but a kind of inertia. * Rotate scene: rotate the scene
around an axis orthogonal to the scene, * Split layers/Merge layers: display each layer
at a distinct height, * Triangulate scene: display the polygon primitives.

In addition, the bottom overlay bar provides the Camera position in 3D.

FreeFly camera commands

v 1.7 176

GAMAdocumentation Chapter 18. Displays

Figure 18.2: images/display-sidebar-overlay.png

v 1.7 177

GAMAdocumentation Chapter 18. Displays

Figure 18.3: images/display-OpenGL.png

Key Function

Double Click Zoom Fit
+ Zoom In
- Zoom Out
Up Move forward
Down Move backward
Left Strafe left
Right Strafe right
SHIFT+Up Look up
SHIFT+Down Look down
SHIFT+Left Look left
SHIFT+Right Look right
MOUSE Makes the camera look up, down, left and right
MouseWheel Zoom-in/out to the current target (center of the screen)

ArcBall camera commands

Key Function

Double Click Zoom Fit
+ Zoom In
- Zoom Out
Up Horizontal movement to the top
Down Horizontal movement to the bottom
Left Horizontal movement to the left
Right Horizontal movement to the right
SHIFT+Up Rotate the model up (decrease the phi angle of the

spherical coordinates)
SHIFT+Down Rotate the model down (increase the phi angle of the

spherical coordinates)
SHIFT+Left Rotate the model left (increase the theta angle of the

spherical coordinates)
SHIFT+Right Rotate the model right (decrease the theta angle of the

spherical coordinates)
SPACE Reset the pivot to the center of the envelope
KEYPAD 2,4,6,8 Quick rotation (increase/decrease phi/theta by 30°)
CMD+MOUSE1 Makes the camera rotate around the model

v 1.7 178

GAMAdocumentation Chapter 18. Displays

Key Function

ALT+LEFT_MOUSE Enables ROI Agent Selection
SHIFT+LEFT_MOUSE Enables ROI Zoom
SCROLL Zoom-in/out to the current target (center of the sphere)
WHEEL CLICK Reset the pivot to the center of the envelope

v 1.7 179

GAMAdocumentation Chapter 18. Displays

v 1.7 180

Chapter 19

Batch Specific UI

When an experiment of type Batch is run, a dedicated UI is displayed, depending on the
parameters to explore and of the exploration methods.

Table of contents

• Batch Specific UI

– Information bar
– Batch UI

Information bar

In batch mode, the top information bar displays 3 distinct information (instead of only the
cycle number in the GUI experiment): * The run number: One run corresponds to X exe-
cutions of simulation with one given parameters values (X is an integer given by the facet
repeat in the definition of the exploration method); * The simulation number: the num-
ber of replications done (and the number of replications specified with the repeat facet); *
The number of thread: the number of threads used for the simulation.

181

GAMAdocumentation Chapter 19. Batch Specific UI

Figure 19.1: images/batch_Information_bar.png

Batch UI

The parameters view is also a bit different in the case of a Batch UI. The following interface
is generated given the following model part:� �
experiment Batch type: batch repeat: 2 keep_seed: true until: (

food_gathered = food_placed) or (time > 400) {
parameter 'Size of the grid:' var: gridsize init: 75 unit: '
width and height ';
parameter 'Number:' var: ants_number init: 200 unit: 'ants';
parameter 'Evaporation:' var: evaporation_rate among: [0.1,
0.2, 0.5, 0.8, 1.0] unit: 'rate every cycle (1.0 means 100%)';
parameter 'Diffusion:' var: diffusion_rate min: 0.1 max: 1.0
unit: 'rate every cycle (1.0 means 100%)' step: 0.3;

method exhaustive maximize: food_gathered;� �
The interface summarizes all model parameters and the parameters given to the exploration
method: *Environment and Population: displays all the model parameters that should
not be explored; * Parameters to explore: the parameters to explore are the parameters
defined in the experiment with a range of values (with among facet or min, max and step
facets); * Exploration method: it summarizes the Exploration method and the stop con-
dition. For exhaustive method it also evaluates the parameter space. For other methods, it
also displays the method parameters (e.g. mutation or crossover probability…). Finally the
best fitness found and the last fitness found are displayed (with the associated parameter
set).

v 1.7 182

GAMAdocumentation Chapter 19. Batch Specific UI

Figure 19.2: images/batch_Parameters_pane.png

v 1.7 183

GAMAdocumentation Chapter 19. Batch Specific UI

v 1.7 184

Chapter 20

Errors View

Whenever a runtime error, or a warning, is issued by the currently running experiment,
a view called “Errors” is opened automatically. This view provides, together with the er-
ror/warning itself, some contextual information about who raised the error (i.e. which
agent(s)) and where (i.e. in which portion of the model code). As with other “status” in
GAMA, errors will appear in red color and warnings in orange.

Since an error appearing in the code is likely to be raised by several agents at once, GAMA
groups similar errors together, simply indicating which agent(s) raised them. Note that,
unless the error is raised by the experiment agent itself, its message will indicate that at
least 2 agents raised it: the original agent and the experiment in which it is plunged.

185

GAMAdocumentation Chapter 20. Errors View

Figure 20.1: images/errors_view.png

v 1.7 186

GAMAdocumentation Chapter 20. Errors View

Preferences

Various preferences are accessible in GAMA to allow users andmodelers to personalize their
working environment. This section review the different preference tabs available in the cur-
rent version of GAMA, as well as how to access the preferences and settings inherited by
GAMA from Eclipse.

Please note that the preferences specific to GAMA will be shared, on a same machine, and
for a same user, among all the workspaces managed by GAMA. Changing workspace will
not alter them. If you happen to run several instances of GAMA, they will also share these
preferences.

Table of contents

• Preferences

– Opening Preferences
– Simulation
– Display
– Editor
– External
– Advanced Preferences

Opening Preferences

To open the preferences dialog of GAMA, either click on the small “form” button on the top-
left corner of the window or select “Preferences…” from the Gama, “Help” or “Views” menu
depending on your OS.

v 1.7 187

GAMAdocumentation Chapter 20. Errors View

Figure 20.2: images/open_prefs.png

Simulation

• Random Number Generation: all the options pertaining to generating random
numbers in simulations

– RandomNumberGenerator: the name of the generator to use by default (if none
is specified in the model).

– Define a default seed: whether or not a default seed should be used if none is
specified in the model (otherwise it is chosen randomly by GAMA)

– Default Seed value: the value of this default seed
– Include in the parameters of models: whether the choice of generator and seed
is included by default in the parameters views of experiments or not.

• Errors: how to manage and consider simulation errors

– Display Errors: whether errors should be displayed or not.
– Number of errors to display: how many errors should be displayed at once
– Displaymost recent first: errors will be sorted in the inverse chronological order
if true.

– Stop simulation at first error: if false, the simulations will display the errors and
continue (or try to).

– Treat warnings as errors: if true, no more distinction is made between warnings
(which do not stop the simulation) and errors (which can potentially stop it.

v 1.7 188

GAMAdocumentation Chapter 20. Errors View

Figure 20.3: images/simulation.png

v 1.7 189

GAMAdocumentation Chapter 20. Errors View

• Runtime: various settings regarding the execution of experiments.

– Default Step for Delay Slider: the number of seconds that one step of the slider
used to impose a delay between two cycles of a simulation lasts.

– Auto-run experiments when they are launched: see this page.
– Ask to close the previous simulation before launching a new one: if false, previ-
ous simulations (if any) will be closed without warning.

UI

Figure 20.4: images/UI.png

• Menus

v 1.7 190

GAMAdocumentation Chapter 20. Errors View

– Break down agents in menu every: when inspecting a large number of agents,
how many should be displayed before the decision is made to separate the pop-
ulation in sub-menus.

– Sort colors menu by
– Sort operators menu by

• Console

– Max. number of characters to display in the console (-1 means no limit)
– Max. number of characters to keep inmemory when console is paused (-1means
no limit)

• Icons

– Icons and buttons dark mode (restart to see the change): Change the highlight
for the icons and the button.

– Size of icons in the UI (restart to see the change): Size of the icons in pixel

• Viewers

– Default shapefile viewer fill color:
– Default shapefile viewer line color:
– Default image viewer background color: Background color for the image viewer
(when you select an image from the model explorer for example)

General

• Startup

– Display welcome page at startup: if true, and if no editors are opened, the wel-
come page is displayed when opening GAMA.

Display

• Properties: various properties of displays

– Default display method: use either ‘Java2D’ or ‘OpenGL’ if nothing is specified
in the declaration of a display.

v 1.7 191

GAMAdocumentation Chapter 20. Errors View

Figure 20.5: images/general.png

v 1.7 192

GAMAdocumentation Chapter 20. Errors View

Figure 20.6: images/display.png

v 1.7 193

GAMAdocumentation Chapter 20. Errors View

– Synchronize displays with simulations: if true, simulation cycles will wait for the
displays to have finished their rendering before passing to the next cycle (this
setting can be changed on an individual basis dynamically here).

– Show display overlay: if true, the bottom overlay is visible when opening a dis-
play.

– Show scale bar in overlay: if true, the scale bar is displayed in the bottom overlay.
– Apply antialiasing: if true, displays are drawn using antialiasing, which is slower
but renders a better quality of image and text (this setting can be changed on an
individual basis dynamically here).

– Default background color: indicates which color to use when none is specified
in the declaration of a display.

– Default highlight color: indicates which color to use for highlighting agents in
the displays.

– Stack displays on screen…: if true, the display views, in case they are stacked on
one another, will put the first display declared in the model on top of the stack.

• Default Aspect: which aspect to use when an ‘agent’ or ‘species’ layer does not indi-
cate it

– Default shape: a choice between ‘shape’ (which represents the actual geometrical
shape of the agent) and geometrical operators (‘square’, etc.).

– Default size: what size to use. This expression must be a constant.
– Default color: what color to use.
– Default font to use in text layers or draw statements when none is specified

• OpenGL: various properties specific to OpenGL-based displays

– Use improved z positioning: if true, two agents positioned at the same z value
will be slightly shifted in z in order to draw them more accurately.

– Draw 3D referential: if true, the shape of the world and the 3 axes are drawn
– Show number of frames per second
– Enable lighting: if true, lights can be defined in the display
– Draw normals to objects: if true, the ‘normal’ of each object is displayed together
with it.

– Display as a cube: if true, the scene is drawn on all the facets of a cube.

v 1.7 194

GAMAdocumentation Chapter 20. Errors View

Figure 20.7: images/editor.png

v 1.7 195

GAMAdocumentation Chapter 20. Errors View

Editor

Most of the settings and preferences regarding editors can be found in the advanced prefer-
ences.

• Options

– Automatically switch toModeling Persepective: if true, if amodel is edited in the
Simulation Perspective, then the perspective is automatically switched to Mod-
eling (inactive for the moment)

– Automatically close curly brackets ({)
– Automatically close square brackets (])
– Automatically close parenthesis
– Mark occurrences of symbols in models: if true, when a symbol is selected in a
model, all its occurrences are also highlighted.

– Applying formatting to models on save: if true, every time a model file is saved,
its code is formatted.

– Save all model files before launching an experiment
– Ask before saving each file

• Validation

– Show warning markers when editing a model
– Show information markers when editing a model

• Presentation

– Turn on colorization of code sections by default
– Font of editors
– Background color of editors

• Toolbars

– Show edition toolbar by default
– Show other models’ experiments in toolbar: if true, you are able to launch other
models’ experiments from a particular model.

External

These preferences pertain to the use of external libraries or data with GAMA.

v 1.7 196

GAMAdocumentation Chapter 20. Errors View

Figure 20.8: images/external.png

v 1.7 197

GAMAdocumentation Chapter 20. Errors View

• Paths

– Path to Spatialite: the path to the Spatialite library (http://www.gaia-gis.it/gaia-
sins/) in the system.

– Path to RScript: the path to the RScript library (http://www.r-project.org) in
the system.

• GIS Coordinate Reference Systems: settings about CRS to use when loading or
saving GIS files

– LetGAMAdecidewhichCRS to use to projectGIS data: if true, GAMAwill decide
which CRS, based on input, should be used to project GIS data. Default is false
(i.e. only one CRS, entered below, is used to project data in the models)

– …or use the following CRS (EPSG code): choose a CRS that will be ap-
plied to all GIS data when projected in the models. Please refer to
http://spatialreference.org/ref/epsg/ for a list of EPSG codes.

– When no .prj file or CRS is supplied, consider GIS data to be already projected: if
true, GIS data that is not accompanied by a CRS information will be considered
as projected using the above code.

– …or use the following CRS (EPSG code): choose a CRS that will represent the
default code for loading uninformed GIS data.

– When no CRS is provided, save the GIS data with the current CRS: if true, saving
GIS data will use the projected CRS unless a CRS is provided.

– …or use the following CRS (EPSG code): otherwise, you might enter a CRS to
use to save files.

Advanced Preferences

The set of preferences described above are specific to GAMA. But there are other preferences
or settings that are inherited from the Eclipse underpinnings of GAMA, which concern ei-
ther the “core” of the platform (workspace, editors, updates, etc.) or plugins (like SVN, for
instance) that are part of the distribution of GAMA.

These “advanced” preferences are accessible by clicking on the “Advanced…” button in the
Preferences view.

Depending on what is installed, the second view that appears will contain a tree of options
on the left and preference pages on the right. Contrary to the first set of preferences,
please note that these preferences will be saved in the current workspace, which

v 1.7 198

GAMAdocumentation Chapter 20. Errors View

Figure 20.9: images/advanced.png

means that changing workspace will revert them to their default values. It is however pos-
sible to import them in the new workspace using of the wizards provided in the standard
“Import…” command (see here).

Figure 20.10: images/advanced_2.png

v 1.7 199

GAMAdocumentation Chapter 20. Errors View

v 1.7 200

Part II

GAML (GAMAModeling Language)

201

GAMAdocumentation

Learn GAML step by step

This large progressive tutorial has been designed to help you to learn GAML (GAma
Modeling Language). It will cover the main part of the possibilities provided by GAML,
and guide you to learn some more.

How to proceed to learn better ?

As you will progress in the tutorial, you will see several links (written in blue) to makes you
jump to another part. You can click on them if you want to learn directly about a specific
topic, but we do not encourage to do this, because you can get easily lost by reading this
tutorial this way. As it is named, we encourage you to follow this tutorial “step by step”. For
each chapter, some links are available in the “search” tab, if you want to learn more about
this subject.

Although, if you really want to learn about a specific topic, our advise is to use the “learning
graph” interface, in the website, so that you can choose your area of interest, and a learning
path will be automatically design for you to assimilate the specific concept better.

Good luck with your reading, and please do not hesitate to contact us through the mailing
list if you have a question/suggestion !

v 1.7 203

https://groups.google.com/forum/#!forum/gama-platform
https://groups.google.com/forum/#!forum/gama-platform

GAMAdocumentation

Introduction

GAML is an agent-oriented language dedicated to the definition of agent-based simulations.
It takes its roots in object-oriented languages like Java or Smalltalk, but extends the object-
oriented programming approach with powerful concepts (like skills, declarative definitions
or agent migration) to allow for a better expressivity in models.

It is of course very close to agent_based modeling languages like, e.g., NetLogo, but, in
addition to enriching the traditional representation of agents with modern computing no-
tions like inheritance, type safety or multi-level agency, and providing the possibility to use
different behavioral architectures for programming agents, GAML extends the agent-based
paradigm to eliminate the boundaries between the domain of amodel (which, in ABM, is rep-
resented with agents) and the experimental processes surrounding its simulations (which
are usually not represented with agents), including, for example, visualization processes.
This paper (Drogoul A., Vanbergue D., Meurisse T., Multi-Agent Based Simulation: Where
are the Agents ?, Multi-Agent Based Simulation 3, pp. 1-15, LNCS, Springer-Verlag. 2003)
was in particular foundational in the definition of the concepts onwhich GAMA (andGAML)
are based today.

This orientation has several conceptual consequences among which at least two are of imme-
diate practical interest for modelers: * Since simulations, or experiments, are represented
by agents, GAMA is bound to support high-level model compositionality, i.e. the definition
of models that can use other models as inner agents, leveraging multi-modeling or multi-
paradigmmodeling as particular cases of composition. * The visualization of models can be
expressed bymodels of visualization, composed of agents entirely dedicated to visually rep-
resent other agents, allowing for a clear separation of concerns between a simulation and its
representation and, hence, the possibility to play with multiple representations of the same
model at once.

Table of contents

• Key Concepts (Under construction)

– Lexical semantics of GAML
– Translation into a concrete syntax

v 1.7 204

http://ccl.northwestern.edu/netlogo/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.7241&rep=rep1&type=pdf

GAMAdocumentation

– Vocabulary correspondance with the object-oriented paradigm as in Java
– Vocabulary correspondance with the agent-based paradigm as in NetLogo

Lexical semantics of GAML

The vocabulary of GAML is described in the following sentences, in which the meaning and
relationships of the important words of the language (in bold face) are summarized.

1. The role of GAML is to support modelers in writingmodels, which are specifications
of simulations that can be executed and controlled during experiments, them-
selves specified by experiment plans.

2. The agent-orientedmodeling paradigmmeans that everything “active” (entities of a
model, systems, processes, activities, like simulations and experiments) can be repre-
sented in GAML as an agent (which can be thought of as a computational component
owning its own data and executing its own behavior, alone or in interaction with other
agents).

3. Like in the object-oriented paradigm, where the notion of class is used to supply a
specification for objects, agents in GAML are specified by their species, which pro-
vide them with a set of attributes (what they know), actions (what they can do),
behaviors (what they actually do) and also specifies properties of their population,
for instance its topology (how they are connected) or schedule (in which order and
when they should execute).

4. Any species can be nested in another species (called its macro-species), in which
case the populations of its instances will imperatively be hosted by an instance of
this macro-species. A species can also inherit its properties from another species
(called its parent species), creating a relationship similar to specialization in object-
oriented design. In addition to this, species can be constructed in a compositional
way with the notion of skills, bundles of attributes and actions that can be shared
between different species and inherited by their children.

5. Given that all agents are specified by a species, simulations and experiments are
then instances of two species which are, respectively, calledmodel and experiment
plan. Think of them as “specialized” categories of species.

6. The relationships between species, models and experiment plans are codified
in the meta-model of GAML in the form of a framework composed of three abstract
species respectively called agent (direct or indirect parent of all species), model
(parent of all species that define a model) and experiment (parent of all species
that define an experiment plan). In this meta-model, instances of the children of

v 1.7 205

GAMAdocumentation

agent know the instance of the child of model in which they are hosted as their
world, while the instance of experimentplan identifies the same agent as one of the
simulations it is in charge of. The following diagram summarizes this framework:

Figure 20.11: framework.png

Putting this all together, writing a model in GAML then consists in defining a species which
inherits frommodel, in which other species, inheriting (directly or not) from agent and
representing the entities that populate this model, will be nested, and which is itself nested
in one or several experiment plans among which a user will be able to choose which ex-
periment he/she wants to execute.

At the operational level, i.e. when running an experiment in GAMA,

Translation into a concrete syntax

The concepts presented above are expressed in GAML using a syntax which bears resem-
blances with mainstream programming languages like Java, while reusing some structures
from Smalltalk (namely, the syntax of facets or the infix notation of operators). While this
syntax is fully described in the subsequent sections of the documentation, we summarize
here the meaning of its most prominent structures and their correspondance (when it ex-
ists) with the ones used in Java and NetLogo.

v 1.7 206

GAMAdocumentation

Figure 20.12: user_model.png

v 1.7 207

GAMAdocumentation

1. A model is composed of a header, in which it can refer to other models, and a
sequence of species and experiments declarations, in the form of special declar-
ative statements of the language.

2. A statement can be either a declaration or a command. It is always composed of
a keyword followed by an optional expression, followed by a sequence of facets,
each of them composed of a keyword (terminated by a ‘:’) and an expression.

3. facets allow to pass arguments to statements. Their value is an expression of
a given type. An expression can be a literary constant, the name of an attribute,
variable or pseudo-variable, the name of a unit or constant of the language, or
the application of an operator.

4. A type can be a primitive type, a species type or a parametric type (i.e. a com-
position of types).

5. Some statements can include sub-statements in a block (sequence of statements
enclosed in curly brackets).

6. declarative statements support the definition of special constructs of the language:
for instance, species (including global and experiment species), attributes, ac-
tions, behaviors, aspects, variables, parameters and outputs of experi-
ments.

7. imperative statements that execute something or control the flow of execution of
actions, behaviors and aspects are called commands.

8. A species declaration (global, species or grid keywords) can only include 6 types of
declarative statements : attributes, actions, behaviors, aspects, equations and
(nested) species. In addition, experiment species allow to declare parameters,
outputs and batchmethods.

Vocabulary correspondance with the object-oriented
paradigm as in Java

GAML Java

species class
micro-species nested class
parent species superclass
child species subclass
model program
experiment (main) class
agent object

v 1.7 208

GAMAdocumentation

GAML Java

attribute member
action method
behavior collection of methods
aspect collection of methods, mixed with the behavior
skill interface (on steroids)
statement statement
type type
parametric type generics

Vocabulary correspondance with the agent-based
paradigm as in NetLogo

GAML NetLogo

species breed
micro-species -
parent species -
child species - (only from ‘turtle’)
model model
experiment observer
agent turtle/observer
attribute ‘breed’-own
action global function applied only to one breed
behavior collection of global functions applied to one breed
aspect only one, mixed with the behavior
skill -
statement primitive
type type
parametric type -

v 1.7 209

GAMAdocumentation

Start with GAML

In this part, we will present you some basic concepts of GAML that will help you a lot for the
next pages.

You will first learn how to organize a standard model, then you will learn about some
basis about GAML, such as how to declare a variable, how to use the basic operators, how
to write a conditional structure or a loop, how tomanipulate containers and how to generate
random values.

v 1.7 210

Chapter 21

Organization of a model

As already extensively detailed in the introduction page, defining amodel in GAML amounts
to defining a model species, which later allows to instantiate a model agent (aka a simula-
tion), whichmay or may not containmicro-species, and which can be flanked by experiment
plans in order to be simulated.

This conceptual structure is respected in the definition ofmodel files, which follows a similar
pattern:

1. Definition of the global species, preceded by a header, in order to represent themodel
species

2. Definition of the different micro-species (either nested inside the global species or at
the same level)

3. Definition of the different experiment plans that target this model

Table of contents

• Model Header (model species)
• Species declarations
• Experiment declarations
• Basic skeleton of a model

211

GAMAdocumentation Chapter 21. Organization of a model

Model Header (model species)

The header of a model file begins with the declaration of the name of the model. Contrarily
to other statements, this declaration does not end with a semi-colon.� �
model name_of_the_model� �
The name of the model is not necessarily the same as the name of the file. It must conform
to the general rule for naming species, i.e. be a valid identifier (beginning with a letter, con-
taining only letters, digits and dashes). This name will be used for building the name of
the model species, from which simulations will be instantiated. For instance, the following
declaration:� �
model dummy� �
will internally create a species called dummy_model, child of the abstract species model, from
which simulations (called dummy_model0, dummy_model1, etc.) will be instantiated.

This declaration is followed by optional import statements that indicate which other models
this model is importing. Import statements do not end with a semi-colon.

Importing a model can take two forms. The first one, called inheritance import, is declared
as follows:� �
import "relative_path_to_a_model_file"
import "relative_path_to_another_model_file"� �
The second one, called usage import, is declared as follows:� �
import "relative_path_to_a_model_file" as model_identifier� �
When importing models using the first form, all the declarations of the model(s) imported
will be merged with those of the current model (in the order with which the import state-
ments are declared, i.e. the latest definitions of global attributes or behaviors superseding
the previous ones). The second form is reserved for using models as micro-models of the
current model. This possibility is still experimental in the current version of GAMA.

The last part of the header is the definition of the global species, which is the actual defini-
tion of themodel species itself.� �
global {

v 1.7 212

GAMAdocumentation Chapter 21. Organization of a model

// Definition of [global attributes](GlobalSpecies#
declaration), [actions and behaviors](
DefiningActionsAndBehaviors)

}� �
Note that neither the imports nor the definition of global are mandatory. Only the model
statement is.

Species declarations

The header is followed by the declaration of the different species of agents that populate the
model.

The special species global is the world species. You will declare here all the global at-
tributes/actions/behaviors. The global species does not have name, and is unique in your
model.� �
global {

// definition of global attributes , actions, behaviors
}� �
Regular species can be declared with the keyword species. You can declare several regular
species, and they all have to be named.� �
species nameOfSpecies {

// definition of your [species attributes](RegularSpecies#
declaration), [actions and behaviors](
DefiningActionsAndBehaviors)

}� �
Note that the possibility to define the species after the global definition is actually a conve-
nience: these species are micro-species of the model species and, hence, could be perfectly
defined as nested species of global. For instance:� �
global {

// definition of global attributes , actions, behaviors
}

species A …{}

v 1.7 213

GAMAdocumentation Chapter 21. Organization of a model

species B …{}� �
is completely equivalent to:� �
global {

// definition of [global attributes](GlobalSpecies#
declaration), actions, behaviors

species A …{}

species B …{}
}� �
Experiment declarations

Experiments are usually declared at the end of the file. They start with the keyword
experiment. They contains the simulation parameters, and the definition of the output
(such as displays, monitors or inspectors). You can declare as much experiments as you
want.� �
experiment first_experiment {

// definition of parameters (intputs)

// definition of output
output {...}

}

experiment second_experiment {
// definition of parameters (inputs)

// definition of output
}� �
Note that you have two types of experiments: AGUI experiment allows to display a graphical
interface with input parameters and outputs. It is declared with the following structure :� �
experiment gui_experiment type:gui {

[...]
}� �
v 1.7 214

GAMAdocumentation Chapter 21. Organization of a model

A Batch experiment allows to execute numerous successive simulation runs (often used for
model exploration). It is declared with the following structure :� �
experiment batch_experiment type:batch {

[...]
}� �
Basic skeleton of a model

Here is the basic skeleton of a model :� �
model name_of_the_model

global {
// definition of [global attributes](GlobalSpecies#

declaration), actions, behaviours
}

species my_specie {
// definition of attributes , actions, behaviours

}

experiment my_experiment /* + specify the type : "type:gui" or "
type:batch" */

{
// here the definition of your experiment , with...
// ... your inputs
output {

// ... and your outputs
}

}� �
Don’t forget this structure ! This will be the basis for all the models you will create from now.
//: # (endConcept|model_structure)

v 1.7 215

GAMAdocumentation Chapter 21. Organization of a model

v 1.7 216

Chapter 22

Basic programming concepts in
GAML

In this part, we will focus on the very basic structures in GAML, such as how to declare a
variable, how to use loops, or how to manipulate lists. We will overfly quickly all those basic
programming concepts, admitting that you already have some basics in coding.

Index

• Variables
• Basic types
• The point type
• A word about dimensions
• Declare variables using facet
• Operators in GAMA
• Logical operators
• Comparison operators
• Type casting operators
• Other operators
• Conditional structures
• Loop
• Manipulate containers
• Random values

217

GAMAdocumentation Chapter 22. Basic programming concepts in GAML

Variables

Variables are declared very easily in GAML, starting with the keyword for the type, following
by the name you want for your variable. NB: The declaration has to be inside the global
scope, or inside the species scope.� �
typeName myVariableName;� �
Basic types

All the “basic” types are present in GAML:int, float, string, bool. The operator for the
affectation in GAML is <- (the operator = is used to test the equality).� �
int integerVariable <- 3;
float floatVariable <- 2.5;
string stringVariable <- "test"; // you can also write simple ' :

<- 'test'
bool booleanVariable <- true; // or false� �
To follow the behavior of variable, we can write their value in the console. Let’s go back
to our basic skeleton of a model, and let’s create a reflex in the global scope (to be short, a
reflex is a function that is executed in each step. We will come back to this concept later).
The write function works very easily, simply writing down the keyword write and the name
of the variable we want to be displayed.� �
model firstModel

global {
int integerVariable <- 3;
float floatVariable <- 2.5;
string stringVariable <- "test"; // you can also write simple
' : <- 'test'
bool booleanVariable <- true; // or false
reflex writeDebug {

write integerVariable;
write floatVariable;
write stringVariable;
write booleanVariable;

}

v 1.7 218

GAMAdocumentation Chapter 22. Basic programming concepts in GAML

}

experiment myExperiment
{
}� �
The function write is overloaded for each type of variable (even for the more complex type,
such as containers).

Note that before being initialized, a variable has the value nil.� �
reflex update {

string my_string;
write my_string; // this will write "nil".
int my_int;
write my_int; // this will write "0", which is the default

value for int.
}� �
nil is also a literal you can use to initialize your variable (you can learn more about the
concept of literal in this page).� �
reflex update {

string my_string <- "a string";
my_string <- nil;
write my_string; // this will write "nil".
int my_int <- 6;
my_int <- nil;
write my_int; // this will write "0", which is the default

value for int.
}� �
The point type

Another variable type you should know is the point variable. This type of variable is used
to describe coordinates. It is in fact a complex variable, composed of two float variables (or
three if you are working in 3D). To declare it, you have to use the curly bracket {:� �
point p <- {0.2,2.4};� �
v 1.7 219

GAMAdocumentation Chapter 22. Basic programming concepts in GAML

The first field is related to the x value, and the second, to the y value. You can easily get this
value as following:� �
point p <- {0.2,2.4};
write p.x; // the output will be 0.2
write p.y; // the output will be 2.4� �
You can’t modify directly the value. But if you want, you can do a simple operation to get
what you want:� �
point p <- {0.2,2.4};
p <- p + {0.0,1.0};
write p.y; // the output will be 3.4� �
A world about dimensions

When manipulating float values, you can specify the dimension of your value. Dimensions
are preceded by # or ° (exactly the same).� �
float a <- 5°m;
float b <- 4#cm;
float c <- a + b; // c is equal to 5.0399999 (it's not equal to

5.04 because it is a float value, not as precise as int)� �
Declare variables using facet

Facets are used to describe the behavior of a variable during its declaration, by adding the
keyword facet just after the variable name, followed by the value you want for the facet (or
also just after the initial value).� �
type variableName <- initialValue facet1:valueForFacet1 facet2:

valueForFacet2;
// or:
type variableName facet1:valueForFacet1 facet2:valueForFacet2;
variableName <- initialValue;� �
You can use the facet update if you want to change the value of your variable. For example,
to increment your integer variable each step, you can do as follow:

v 1.7 220

GAMAdocumentation Chapter 22. Basic programming concepts in GAML

� �
int integerVariable <- 3 min:0 max:10 update:integerVariable+1;
// nb: the operator "++" doesn't exist in gaml.� �
You can use the facet min and max to constraint the value in a specific range of values:� �
int integerVariable <- 3 min:0 max:10 update:integerVariable+1;
// the result will be 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 10 - 10 -

...� �
The facet among can also be useful (that can be seen as an enum):� �
string fruits <- "banana" among:["pear","apple","banana"];� �
Operators in GAMA

In GAML language, you can use a lot of different operators. They are all listed in this page,
but here are the most useful ones:

- Mathematical operators

The basic arithmetical operators, such as +(add), -(substract), *(multiply), /(divide), ^
(power) are used this way:

FirstOperand Operator SecondOperand –> ex: 5 * 3; // return 15

Some other operators, such as cos(cosinus), sin(sinus), tan(tangent), sqrt(square root),
round(rounding) etc… are used this way:� �
Operator(Operand) --> ex: sqrt(49); // return 7� �
Logical operators

Logical operators such as and(and), or(inclusive or) are used the same way as basic arith-
metical operators. The operator !(negation) has to be placed just before the operand. They
return a boolean result.� �
FirstOperand Operator SecondOperand --> ex: true or false; //

return true
NegationOperator Operand --> ex: !(true or false); // return

false� �
v 1.7 221

GAMAdocumentation Chapter 22. Basic programming concepts in GAML

Comparison operators

The comparison operators !=(different than), <(smaller than), <=(smaller of equal), =
(equal), >(bigger than), >=(bigger or equal) are used the same way as basic arithmetical
operators:� �
FirstOperand Operator SecondOperand --> ex: 5 < 3; // return

false� �
Type casting operators

You can cast an operand to a special type using casting operator:� �
Operator(Operand); --> ex: int(2.1); // return 2� �
Other operators

A lot of other operators exist in GAML. The standard way to use those operators is as fol-
lowed:� �
Operator(FirstOperand ,SecondOperand ,...) --> ex: rnd(1,8);� �
Some others are used in a more intuitive way:� �
FirstOperand Operator SecondOperand --> ex: 2[6,4,5] contains(5);� �
Conditional structures

You can write if/else if/else in GAML:� �
if (integerVariable <0) {

write "my value is negative !! The exact value is " +
integerVariable;

}
else if (integerVariable >0) {

write "my value is positive !! The exact value is " +
integerVariable;

v 1.7 222

GAMAdocumentation Chapter 22. Basic programming concepts in GAML

}
else if (integerVariable=0) {

write "my value is equal to 0 !!";
}
else {

write "hey... This is not possible , right ?";
}� �
GAML also accepts ternary operator:� �
stringVariable <- (booleanVariable) ? "booleanVariable = true" :

"booleanVariable = false";� �
Loop

Loops in GAML are designed by the keyword loop. As for variables, a loop have multiple
facet to determine its behavior:

• The facet times, to repeat a fixed number of times a set of statements:

� �
loop times: 2 {
write "helloWorld";
}
// the output will be helloWorld - helloWorld� �

• The facet while, to repeat a set of statements while a condition is true:

� �
loop while: (true) {
}
// infinity loop� �

• The facet from / to, to repeat a set of statements while an index iterates over a range
of values with a fixed step of 1:

v 1.7 223

GAMAdocumentation Chapter 22. Basic programming concepts in GAML

� �
loop i from:0 to: 5 { // or loop name:i from:0 to:5 -> the name

is also a facet
write i;

}
// the output will be 0 - 1 - 2 - 3 - 4 - 5� �

• The facet from / to combine with the facet step to choose the step:� �
loop i from:0 to: 5 step: 2 {

write i;
}
// the output will be 0 - 2 - 4� �

• The facet over to browse containers, as we will see in the next part.

Nb: you can interrupt a loop at any time by using the break statement.

Manipulate containers

We saw in the previous parts “simple” types of variable. You also have a multiple containers
types, such as list, matrix, map, pair… In this section, we will only focus on the container
list (you can learn the other by reading the section about datatypes).

How to declare a list?

To declare a list, you can either or not specify the type of the data of its elements:� �
list<int> listOfInt <- [5,4,9,8];
list listWithoutType <- [2,4.6,"oij",["hoh",0.0]];� �
How to know the number of elements of a list?

To know the number of element of a list, you can use the operator length that returns the
number of elements (note that this operator also works with strings).� �
int numberOfElements <- length([12,13]); // will return 2
int numberOfElements <- length([]); // will return 0
int numberOfElements <- length("stuff"); // will return 5� �
v 1.7 224

GAMAdocumentation Chapter 22. Basic programming concepts in GAML

There is an other operator, empty, that returns you a boolean telling you if the list is empty
or not.� �
bool isEmpty <- empty([12,13]); // will return false
bool isEmpty <- empty([]); // will return true
bool isEmpty <- empty("stuff"); // will return false� �
How to get an element from a list?

To get an element from a list by its index, you have to use the operator at (nb: it is indeed
an operator, and not a facet, so no “:” after the keyword).� �
int theFirstElementOfTheList <- [5,4,9,8] at 0; // this will

return 5
int theThirdElementOfTheList <- [5,4,9,8] at 2; // this will

return 9� �
How to know the index of an element of a list?

You can know the index of the first occurrence of a value in a list using the operator index_of
. You can know the index of the last occurrence of a value in a list using the operator
last_index_of.� �
int result <- [4,2,3,4,5,4] last_index_of 4; // result equals 5
int result <- [4,2,3,4,5,4] index_of 4; // result equals 0� �
How to know if an element exists in a list?

You can use the operator contains (return a boolean):� �
bool result <- [{1,2}, {3,4}, {5,6}] contains {3,4}; // result

equals true� �
How to insert/remove an element to/from a list?

For those operation, no operator are available, but you can use a statement instead. The
statements add and put are used to insert/modify an element, while the statement remove
is used to remove an element. Here are some example of how to use those 3 statements with
the most common facets:� �
list<int> list_int <- [1,5,7,6,7];
remove from:list_int index:1; // remove the 2nd element of the

list
write list_int; // the output is : [1,7,6,7]

v 1.7 225

GAMAdocumentation Chapter 22. Basic programming concepts in GAML

remove item:7 from:list_int; // remove the 1st occurrence of 7
write list_int; // the output is : [1,6,7]
add item:9 to: list_int at: 2; // add 9 in the 3rd position
write list_int; // the output is : [1,6,9,7]
add 0 to: list_int; // add 0 in the last position
write list_int; // the output is : [1,6,9,7,0]
put 3 in: list_int at: 0; // put 3 in the 1st position
write list_int; // the output is : [3,6,9,7,0]
put 2 in: list_int key: 2; // put 2 in the 3rd position
write list_int; // the output is : [3,6,2,7,0]� �
How to add 2 lists?

You can add 2 lists by creating a third one and browsing the 2 first one, but you can do it
much easily by using the operator + :� �
list<int> list_int1 <- [1,5,7,6,7];
list<int> list_int2 <- [6,9];
list<int> list_int_result <- list_int1 + list_int2;� �
How to browse a list?

You can use the facet over of a loop:� �
list<int> exampleOfList <- [4,2,3,4,5,4];
loop i over:exampleOfList {

write i;
}
// the output will be 4 - 2 - 3 - 4 - 5 - 4� �
How to filter a list?

If you want to get all the elements of a list that fulfill a particular condition, you need the
operator where. In the condition, you can design all the element of a particular list by using
the pseudo variable each as followed:� �
list<int> exampleOfList <- [4,2,3,4,5,4] where (each <= 3);
// the list is now [2,3]� �
Other useful operators for the manipulation of lists:

Here are some other operators which can be useful to manipulate lists: sort, sort_by,
shuffle, reverse, collect, accumulate, among. Please read the GAML Reference if you
want to know more about those operators.

v 1.7 226

GAMAdocumentation Chapter 22. Basic programming concepts in GAML

Random values

When you will implement your model, you will have to manipulate some random values
quite often.

To get a random value in a range of value, use the operator rnd. You can use this operator
in many ways:� �
int var0 <- rnd (2); // var0 equals 0, 1 or 2
float var1 <- rnd (1000) / 1000; // var1 equals a float

between 0 and 1 with a precision of 0.001
point var2 <- rnd ({2.0, 4.0}, {2.0, 5.0, 10.0}, 1); // var2

equals a point with x = 2.0, y equal to 2.0, 3.0 or 4.0 and z
between 0.0 and 10.0 every 1.0

float var3 <- rnd (2.0, 4.0, 0.5); // var3 equals a float number
between 2.0 and 4.0 every 0.5

float var4 <- rnd(3.4); // var4 equals a random float between
0.0 and 3.4

int var5 <- rnd (2, 12, 4); // var5 equals 2, 6 or 10
point var6 <- rnd ({2.5,3, 0.0}); // var6 equals {x,y} with x

in [0.0,2.0], y in [0.0,3.0], z = 0.0
int var7 <- rnd (2, 4); // var7 equals 2, 3 or 4
point var8 <- rnd ({2.0, 4.0}, {2.0, 5.0, 10.0}); // var8

equals a point with x = 2.0, y between 2.0 and 4.0 and z
between 0.0 and 10.0

float var9 <- rnd (2.0, 4.0); // var9 equals a float number
between 2.0 and 4.0� �

Use the operator flip if you want to pick a boolean value with a certain probability:� �
bool result <- flip(0.2); // result will have 20% of chance to be

true� �
You can use randomness in list, by using the operator shuffle, or also by using the operator
among to pick randomly one (or several) element of your list:� �
list TwoRandomValuesFromTheList <- 2 among [5,4,9,8];
// the list will be for example [5,9].� �
You can use probabilistic laws, using operators such as gauss, poisson, binomial, or
truncated_gauss (we invite you to read the documentation for those operators). //: # (end-
Concept|programming_basis)

v 1.7 227

GAMAdocumentation Chapter 22. Basic programming concepts in GAML

Manipulate basic species

In this chapter, we will learn how to manipulate some basic species. As you already know,
a species can be seen as the definition of a type of agent (we call agent the instance of a
species). In OOP (Object-Oriented Programming), a species can be seen as the class. Each
species is then defined by some attributes (“member” inOOP), actions (“method” inOOP)
and behavior (“method” in OOP).

In this section, wewill first learn how to declare theworld agent, using the global species.
We will then learn how to declare regular species which will populate our world. The fol-
lowing lessonwill be dedicated to learn how todefine actions and behaviors for all those
species. Wewill then learnhowagents can interact betweeneachother, especiallywith
the statement ask. In the next chapter then, we will see how to attach skills to our species,
giving them new attributes and actions. This section will be closed with a last lesson dealing
with how inheritence works in GAML.

v 1.7 228

Chapter 23

The global species

We will start this chapter by studying a special species: the global species. In the global
species you can define the attributes, actions and behaviors that describe the world agent.
There is one unique world agent per simulation: it is this agent that is created when a user
runs an experiment and that initializes the simulation through its init scope. The global
species is a species like other and can bemanipulated as them. In addition, the global species
automatically inherits from several of built-in variables and actions. Note that a specificity
of the global species is that all its attributes can be referred by all agents of the simulation.

Index

• Declaration
• Environment Size
• Built-in Attributes
• Built-in Actions
• The init statement

Declaration

A GAMAmodel contains a unique global section that defines the global species.� �
global {

// definition of global attributes , actions, behaviours

229

GAMAdocumentation Chapter 23. The global species

}� �
global can use facets, such as the torus facet, to make the environment a torus or not (if
it is a torus, all the agents going out of the environment will appear in the other side. If it’s
not, the agents won’t be able to go out of the environment). By default, the environment is
not a torus.

Figure 23.1: images/torus.png� �
global torus:true {

// definition of global attributes , actions, behaviours
}� �
Other facets such as control or schedules are also available, but we will explain them later.

Directly in the global scope, you have to declare all your global attributes (can be seen as
“static members” in Java or C++). To declare them, proceed exactly as for declaring basic
variables. Those attributes are accessible wherever you want inside the species scope.

v 1.7 230

GAMAdocumentation Chapter 23. The global species

Environment size

In the global context, you have to define a size and a shape for your environment. In fact, an
attribute already exists for the global species: it’s called shape, and its type is a geometry. By
default, shape is equal to a 100m*100m square. You can change the geometry of the shape
by affecting another value:� �
geometry shape <- circle(50#mm);
geometry shape <- rectangle(10#m,20#m);
geometry shape <- polygon([{1°m,2°m},{3°m,50°cm},{3.4°m,60°dm}]);� �
nb: there are just examples. Try to avoid mixing dimensions! If no dimensions are specify,
it’ll be meter by default.

Built-in attributes

Some attributes exist by default for the global species. The attribute shape is one of them
(refers to the shape of the environment). Here is the list of the other built-in attributes:

Like the other attributes of the global species, global built-in attributes can be accessed (and
sometimes modified) by the world agent and every other agents in the model.

world

• represents the sole instance of the model species (i.e. the one defined in the global
section). It is accessible from everywhere (including experiments) and gives access to
built-in or user-defined global attributes and actions.

cycle

• integer, read-only, designates the (integer) number of executions of the simulation
cycles. Note that the first cycle is the cycle with number 0.

To learn more about time, please read the recipe about dates.

v 1.7 231

GAMAdocumentation Chapter 23. The global species

step

• float, is the length, in model time, of an interval between two cycles, in seconds. Its
default value is 1 (second). Each turn, the value of time is incremented by the value
of step. The definition of step must be coherent with that of the agents’ variables like
speed. The use of time unit is particularly relevant for its definition.

To learn more about time, please read the recipe about dates.� �
global {
...

float step <- 10°h;
...
}� �
time

• float, read-only, represents the current simulated time in seconds (the default unit).
It is time in the model time. Begins at zero. Basically, we have: time = cycle * step .� �

global {
...

int nb_minutes function: { int(time / 60)};
...
}� �
To learn more about time, please read the recipe about dates.

duration

• string, read-only, represents the value that is equal to the duration in real machine
time of the last cycle.

total_duration

• string, read-only, represents the sum of duration since the beginning of the simula-
tion.

v 1.7 232

GAMAdocumentation Chapter 23. The global species

average_duration

• string, read-only, represents the average of duration since the beginning of the simu-
lation.

machine_time

• float, read-only, represents the current machine time in milliseconds.

agents

• list, read-only, returns a list of all the agents of the model that are considered as “ac-
tive” (i.e. all the agents with behaviors, excluding the places). Note that obtaining this
list can be quite time consuming, as the world has to go through all the species and get
their agents before assembling the result. For instance, instead of writing something
like:

� �
ask agents of_species my_species {
...
}� �
one would prefer to write (which is much faster):� �
ask my_species {
...
}� �
Note that any agent has the agents attribute, representing the agents it contains. So to get
all the agents of the simulation, we need to access the agents of the world using: world.
agents.

Built-in Actions

The global species is provided with two specific actions.

v 1.7 233

GAMAdocumentation Chapter 23. The global species

halt

• stops the simulation.

� �
global {

...
reflex halting when: empty (agents) {

do halt;
}

}� �
pause

• pauses the simulation, which can then be continued by the user.

� �
global {

...
reflex toto when: time = 100 {

do pause;
}

}� �
The init statement

After declaring all the global attributes and defining your environment size, you can define
an initial state (before launching the simulation). Here, you normally initialize your global
variables, and you instantiate your species. We will see in the next session how to initialize
a regular species. //: # (endConcept|global_species)

v 1.7 234

Chapter 24

Regular species

Regular species are composed of attributes, actions, reflex, aspect etc… They describes the
behavior of our agents. You can instantiate as much as you want agents from a regular
species, and you can define as much as you want different regular species. You can see a
species as a “class” in OOP.

Index

• Declaration
• Built-in Attributes
• Built-in Actions
• The init statement
• The aspect statement
• Instantiate an agent

Declaration

The regular species declaration starts with the keyword species followed by the name (or
followed by the facet name:) :� �
species my_specie {
}� �

235

GAMAdocumentation Chapter 24. Regular species

or:� �
species name:my_specie {
}� �
Directly in the “species” scope, you have to declare all your attributes (or “member” in OOP).
You declare them exactly the way you declare basic variables. Those attributes are accessible
wherever you want inside the species scope.� �
species my_specie {

int variableA;
}� �
Built-in attributes

As for the global species, some attributes exist already by default in a regular species. Here
is the list of built-in attributes:

• name (type: string) is used to name your agent. By default, the name is equal to the
name of your species + an incremental number. This name is the one visible on the
species inspector.

• location (type: point) is used to control the position of your agent. It refers to the
center of the envelop of the shape associated to the agent.

• shape (type: geometry) is used to describe the geometry of your agent. If you want to
use some intersection operator between agents for instance, it is this geometry that is
computed (nb : it can be totally different from the aspect you want to display for your
agent !). By default, the shape is a point.

• host (type: agent) is used when your agent is part of another agent. We will see this
concept a bit further, in the topic multi-level architecture.

All those 4 built-in attributes can be accessed in both reading and writing very easily:� �
species my_species {

init {
name <- "custom_name";
location <- {0,1};
shape <- rectangle(5,1);

}
}� �
v 1.7 236

GAMAdocumentation Chapter 24. Regular species

All those built-in attributes are attributes of an agent (an instance of a species). Species has
also their own attributes, which can be accessed with the following syntax (read only) :� �
name_of_your_species.attribute_you_want� �
Notice that the world agent is also an agent ! It has all the built-in attributes declared above.
The world agent is defined inside the global scope. From the global scope then, you can
for example access to the center of the envelop of the world shape :� �
global
{

init {
write location; // writes {50.0,50.0,0.0}

}
}� �
Here is the list of those attributes:

• name (type: string) returns the name of your species
• attributes (type: list of string) returns the list of the names of the attributes of your
species

• population (type: list) returns the list of agent that belong to it
• subspecies (type: list of string) returns the list of species that inherit directly from
this species (we will talk about the concept of inheritance later)

• parent (type: species) returns its parent species if it belongs to the model, or nil
otherwise (we will talk about the concept of inheritance later)

Built-in action

Some actions are define by default for a minimal agent. We already saw quickly the action
write, used to display a message in the console. Another very useful built-in action is the
action die, used to destroy an agent.� �
species my_species{

reflex being_killed {
do die;

}
}� �
v 1.7 237

GAMAdocumentation Chapter 24. Regular species

Here is the list of the other built-in actions which you can find in the documentation: debug,
message, tell.

The init statement

After declaring all the attributes of your species, you can define an initial state (before launch-
ing the simulation). It can be seen as the “constructor of the class” in OOP.� �
species my_species {

int variableA;
init {

variableA <- 5;
}

}� �
The aspect statement

Inside each species, you can define one or several aspects. This scope allows you to define
how you want your species to be represented in the simulation. Each aspect has a special
name (so that they can be called from the experiment). Once again, you can name your
aspect by using the facet name:, or simply by naming it just after the aspect keyword.� �
species my_species {

aspect standard_aspect { // or "aspect name:standard_aspect"
}

}� �
You can then define your aspect by using the statement draw. You can then choose a geom-
etry for your aspect (facet geometry), a color (facet color), an image (facet image), a text
(facet text)… We invite you to read the documentation about the draw statement to know
more about.� �
species name:my_species {

aspect name:standard_aspect {
draw geometry:circle(1) color:#blue;

}
}� �
v 1.7 238

GAMAdocumentation Chapter 24. Regular species

In the experiment scope, you have to tell the program to display a particular species with a
particular aspect (nb : you can also choose to display your species with several aspect in the
same display).� �
experiment my_experiment type:gui
{

output{
display my_display {

species my_species aspect:standard_aspect;
}

}
}� �
Now there is only one thing missing to display our agent: we have to instantiate them.

Instantiate an agent

As already said quickly in the last session, the instantiation of the agents is most often in the
init scope of the global species (this is not mandatory of course. You can instantiate your
agents from an action / behavior of any specie). Use the statement create to instantiate an
agent. The facet species is used to specify which species you want to instantiate. The facet
number is used to tell how many instantiation you want. The facet with is used to specify
some default values for some attributes of your instance. For example, you can specify the
location.� �
global{

init{
create species:my_species number:1 with:(location:{0,0},

vA:8);
}

}

species name:my_specie {
int vA;

}� �
Here is an example of model that display an agent with a circle aspect in the center of the
environment:

v 1.7 239

GAMAdocumentation Chapter 24. Regular species

� �
model display_one_agent

global{
float worldDimension <- 50#m;
geometry shape <- square(worldDimension);
init{

point center <- {(worldDimension/2),(worldDimension/2)};
create species:my_species number:1 with:(location:center)

;
}

}

species name:my_species {
aspect name:standard_aspect {

draw geometry:circle(1#m);
}

}

experiment my_experiment type:gui
{

output{
display myDisplay {

species my_species aspect:standard_aspect;
}

}
}� �

v 1.7 240

Chapter 25

Defining actions and behaviors

Both actions and behaviors can be seen as methods in OOP. They can be defined in any
species.

Index

• Action
• Declare an action
• Call an action
• Behavior
• Example

Action

Declare an action

An action is a function run by an instance of species. An action can return a value (in that
case, the type of return has to be specify just before the name of the action), or not (in that
case, you just have to put the keyword action before the name of the action).� �
species my_species {

int action_with_return_value {
// statements...

241

GAMAdocumentation Chapter 25. Defining actions and behaviors

return 1;
}
action action_without_return_value {

// statements...
}

}� �
Arguments can also be mandated in your action. You have to specify the type and the name
of the argument:� �
action action_without_return_value (int argA, float argB) {

// statements...
}� �
If you want to have some optional arguments in the list, you can give some by default values
to turn them optional. Nb: it is better to define the optional arguments at the end of the list
of argument.� �
action my_action (int argA, float argB <- 5.1, point argC <-

{0,0}) {
// statements...

}� �
Call an action

To call an action, you have to use the statement do. You can use the statement do different
ways:

• With facets : after specifying the name of your action, you can specify the values of
your arguments as if the name of your arguments were facets:� �

do my_action argA:5 argB:5.1;� �
• With parenthesis : after specifying the name of your action, you can specify the values
of your arguments in the same order they were declared, between parenthesis:� �

do my_action (5,5.1);� �
v 1.7 242

GAMAdocumentation Chapter 25. Defining actions and behaviors

We incite you to promote the second writing. To catch the returned value, you can also skip
the do statement, and store the value directly in a temporary variable:� �
int var1 <- my_action(5,5.1);� �
Behavior

A behavior, or reflex, is an action which is called automatically at each time step by an agent.� �
reflex my_reflex {

write ("Executing the inconditional reflex");
// statements...
}� �
With the facet when, this reflex is only executed when the boolean expression evaluates to
true. It is a convenient way to specify the behavior of agents.� �
reflex my_reflex when:flip(0.5) {

write ("Executing the conditional reflex");
// statements...
}� �
Reflex, unlike actions, cannot be called from another context. But a reflex can, of course, call
actions.

Nb : Init is a special reflex, that occurs only when the agent is created.

Example

To practice a bit with those notions, we will build an easy example. Let’s build a model with
a species balloon that has 2 attributes: balloon_size (float) and balloon_color (rgb). Each
balloon has a random position and color, his aspect is a sphere. Each step, a balloon has
a probability to spawn in the environment. Once a balloon is created, its size is 10cm, and
each step, the size increases by 1cm. Once the balloon size reaches 50cm, the balloon has a
probability to burst. Once 10 balloons are destroyed, the simulation stops. The volume of
each balloon is displayed in the balloon position.

Here is one of the multiple possible implementation:

v 1.7 243

GAMAdocumentation Chapter 25. Defining actions and behaviors

Figure 25.1: images/burst_the_baloon.png

v 1.7 244

GAMAdocumentation Chapter 25. Defining actions and behaviors

� �
model burst_the_baloon

global{
float worldDimension <- 5#m;
geometry shape <- square(worldDimension);
int nbBaloonDead <- 0;

reflex buildBaloon when:(flip(0.1)) {
create species:balloon number:1;

}

reflex endSimulation when:nbBaloonDead >10 {
do halt;

}
}

species balloon {
float balloon_size;
rgb balloon_color;
init {

balloon_size <- 0.1;
balloon_color <- rgb(rnd(255),rnd(255),rnd(255));

}

reflex balloon_grow {
balloon_size <- balloon_size + 0.01;
if (balloon_size > 0.5) {

if (flip(0.2)) {
do balloon_burst;

}
}

}

float balloon_volume (float diameter) {
float exact_value <- 2/3*#pi*diameter^3;
float round_value <- (round(exact_value*1000))/1000;
return round_value;

}

action balloon_burst {

v 1.7 245

GAMAdocumentation Chapter 25. Defining actions and behaviors

write "the baloon is dead !";
nbBaloonDead <- nbBaloonDead + 1;
do die;

}

aspect balloon_aspect {
draw circle(balloon_size) color:balloon_color;
draw text:string(balloon_volume(balloon_size)) color:#

black;
}

}

experiment my_experiment type:gui
{

output{
display myDisplay {

species balloon aspect:balloon_aspect;
}

}
}� �

v 1.7 246

Chapter 26

Interaction between agents

In this part, we will learn how interaction between agents works. We will also present you a
bunch of operators useful for your modelling.

Index

• The ask statement
• Pseudo variables
• Some useful interaction operators
• Example

The ask statement

The ask statement can be used in any reflex or action scope. It is used to specify the inter-
action between the instances of your species and the other agents. You only have to specify
the species of the agents you want to interact with. Here are the different ways of calling the
ask statement:

• If you want to interact with one particular agent (for example, defined as an attribute
of your species):

247

GAMAdocumentation Chapter 26. Interaction between agents

� �
species my_species {

agent target;
reflex update {

ask target {
// statements

}
}

}� �
• If you want to interact with a group of agents:

� �
species my_species {

list<agent> targets;
reflex update {

ask targets {
// statements

}
}

}� �
• If you want to interact with agents, as if they were instance of a certain species (can
raise an error if it’s not the case!):

� �
species my_species {

list<agent> targets;
reflex update {

ask targets as:my_species {
// statements

}
}

}� �
• If you want to interact with all the agent of a species:

v 1.7 248

GAMAdocumentation Chapter 26. Interaction between agents

� �
species my_species {

list<agent> targets;
reflex update {

ask other_species {
// statements

}
}

}

species other_species {
}� �
Note that you can use the attribute population of species if you find it more explicit:� �
ask other_species.population� �

• If you want to interact with all the agent of a particular species from a list of agents
(for example, using the global variable “agents”):

� �
species my_specie {

reflex update {
ask species of_species my_specie {

// statements
}

}
}� �

Pseudo variables

Once you are in the ask scope, you can use some pseudo variables to refer to the receiver
agent (the one specify just after the ask statement) or the transmitter agent (the agent which
is asking). We use the pseudo variable self to refer to the receiver agent, and the pseudo
variable myself to refer to the transmitter agent. The pseudo variable self can be omitted
when calling actions or attributes.

v 1.7 249

GAMAdocumentation Chapter 26. Interaction between agents

� �
species speciesA {

init {
name <- "speciesA";

}
reflex update {

ask speciesB {
write name; // output : "speciesB"
write self.name; // output : "speciesB"

write myself.name; // output : "speciesA"
}

}
}

species speciesB {
init {

name <- "speciesB";
}

}� �
Now, if we introduce a third species, we can write an ask statement inside another.� �
species speciesA {

init {
name <- "speciesA";

}
reflex update {

ask speciesB {
write self.name; // output : "speciesB"
write myself.name; // output : "speciesA"
ask speciesC {

write self.name; // output : "speciesC"
write myself.name; // output : "speciesB"

}
}

}
}

species speciesB {
init {

name <- "speciesB";

v 1.7 250

GAMAdocumentation Chapter 26. Interaction between agents

}
}

species speciesC {
init {

name <- "speciesC";
}

}� �
Nb: try to avoid multiple imbrications of ask statements. Most of the time, there is another
way to do the same thing.

Some useful interaction operators

The operator at_distance can be used to know the list of agents that are in a certain distance
from another agent.� �
species my_species {

reflex update {
list<agent> neighbours <- agents at_distance(5);
// neighbours contains the list of all the agents located

at a distance <= 5 from the caller agent.
}

}� �
The operator closest_to returns the closest agent of a position among a container.� �
species my_species {

reflex update {
agent agentA <- agents closest_to(self);
// agentA contains the closest agent from the caller

agent.
agent agentB <- other_specie closest_to({2,3});
// agentB contains the closest instance of other_specie

from the location {2,3}.
}

}

species other_specie {
}� �
v 1.7 251

GAMAdocumentation Chapter 26. Interaction between agents

Example

Topractice those notions, here is a short basic example. Let’s build amodelwith a fix number
of agents with a circle shape. They can move randomly on the environment, and when they
are close enough from another agent, a line is displayed between them. This line is destroyed
when the distance between the two agents is too important. Hint: use the operator polyline
to construct a line. List the points between angle brackets [].

Here is one example of implementation:� �
model connect_the_neighbours

global{
float speed <- 0.2;
float distance_to_intercept <- 10.0;
int number_of_circle <- 100;
init {

create my_species number:number_of_circle;
}

}

species my_species {
reflex move {

location <- {location.x+rnd(-speed,speed),location.y+rnd
(-speed,speed)};
}
aspect default {

draw circle(1);
ask my_species at_distance(distance_to_intercept) {

draw polyline([self.location ,myself.location]) color
:#black;

}
}

}

experiment my_experiment type:gui
{

output{
display myDisplay {

species my_species aspect:default;
}

v 1.7 252

GAMAdocumentation Chapter 26. Interaction between agents

Figure 26.1: images/connect_the_neighbours.png

v 1.7 253

GAMAdocumentation Chapter 26. Interaction between agents

}
}� �

v 1.7 254

Chapter 27

Attaching Skills

GAMA allows to attach skills to agents through the facet skills. Skills are built-in mod-
ules that provide a set of related built-in attributes and built-in actions (in addition to those
already proposed by GAMA) to the species that declare them.

Index

• The moving skill
• Other skills
• Example of implementation

Skills

A declaration of skill is done by filling the skills facet in the species definition:� �
species my_species skills: [skill1,skill2] {
}� �
A very useful and common skill is the moving skill.� �
species my_species skills: [moving] {
}� �

255

GAMAdocumentation Chapter 27. Attaching Skills

Once your species has the moving skill, it earns automatically the following attributes:
speed, heading, destination and the following actions: move, goto, follow, wander and
wander_3D.

Attributes:

• speed (float) designs the speed of the agent, in m/s.
• heading (int) designs the heading of an agent in degrees, which means that is the
maximum angle the agent can turn around each step.

• destination (point) is the updated destination of the agent, with respect to its speed
and heading. It’s a read-only attribute, you can’t change its value.

Actions:

follow

moves the agent along a given path passed in the arguments.

• returns: path

• speed (float): the speed to use for this move (replaces the current value of speed)

• path (path): a path to be followed.

• move_weights (map): Weights used for the moving.

• return_path (boolean): if true, return the path followed (by default: false)

goto

moves the agent towards the target passed in the arguments.

• returns: path

• target (agent,point,geometry): the location or entity towards which to move.

v 1.7 256

GAMAdocumentation Chapter 27. Attaching Skills

• speed (float): the speed to use for this move (replaces the current value of speed)

• on (graph): graph that restrains this move

• recompute_path (boolean): if false, the path is not recompute even if the graph is
modified (by default: true)

• return_path (boolean): if true, return the path followed (by default: false)

• move_weights (map): Weights used for the moving.

move

moves the agent forward, the distance being computed with respect to its speed and heading.
The value of the corresponding variables are used unless arguments are passed.

• returns: path

• speed (float): the speed to use for this move (replaces the current value of speed)

• heading (int): a restriction placed on the random heading choice. The new heading
is chosen in the range (heading - amplitude/2, heading+amplitude/2)

• bounds (geometry,agent): the geometry (the localized entity geometry) that restrains
this move (the agent moves inside this geometry

wander

Moves the agent towards a random location at the maximum distance (with respect to its
speed). The heading of the agent is chosen randomly if no amplitude is specified. This action
changes the value of heading.

• returns: void

• speed (float): the speed to use for this move (replaces the current value of speed)

v 1.7 257

GAMAdocumentation Chapter 27. Attaching Skills

• amplitude (int): a restriction placed on the randomheading choice. The new heading
is chosen in the range (heading - amplitude/2, heading+amplitude/2)

• bounds (agent,geometry): the geometry (the localized entity geometry) that restrains
this move (the agent moves inside this geometry

wander_3D

Moves the agent towards a random location (3D point) at the maximum distance (with re-
spect to its speed). The heading of the agent is chosen randomly if no amplitude is specified.
This action changes the value of heading.

• returns: path

• speed (float): the speed to use for this move (replaces the current value of speed)

• amplitude (int): a restriction placed on the randomheading choice. The new heading
is chosen in the range (heading - amplitude/2, heading+amplitude/2)

• z_max (int): the maximum altitude (z) the geometry can reach

• bounds (agent,geometry): the geometry (the localized entity geometry) that restrains
this move (the agent moves inside this geometry

Other skills

A lot of other skills are available. Some of them can be built in skills, integrated by default
in GAMA, other are linked to additional plugins.

This is the list of skills: Advanced_driving, communication, driving, GAMASQL,
graphic, grid, MDXSKILL, moving, moving3D, physical3D, skill_road, skill_road,
skill_road_node, SQLSKILL

Example

We can now build a model using the skill moving. Let’s design 2 species, one is “species_-
red”, the other is “species_green”. Species_green agents aremoving randomlywith a certain

v 1.7 258

GAMAdocumentation Chapter 27. Attaching Skills

speed and a certain heading. Species_red agents wait for a species_green agent to be in a
certain range of distance. Once it is the case, the agentmove toward the species_green agent.
A line link the red_species agent and its target.

Here is an example of implementation:� �
model green_and_red_species

global{
float distance_to_intercept <- 10.0;
int number_of_green_species <- 50;
int number_of_red_species <- 50;
init {

create speciesA number:number_of_green_species;
create speciesB number:number_of_red_species;

}
}

species speciesA skills:[moving] {
init {

speed <- 1.0;
}
reflex move {

do wander amplitude:90;
}
aspect default {

draw circle(1) color:#green;
}

}

species speciesB skills:[moving] {
speciesA target;
init {

speed <- 0.0;
heading <- 90;

}
reflex search_target when:target=nil {

ask speciesA at_distance(distance_to_intercept) {
myself.target <- self;

}
}
reflex follow when:target!=nil {

v 1.7 259

GAMAdocumentation Chapter 27. Attaching Skills

Figure 27.1: images/green_and_red_species.png

v 1.7 260

GAMAdocumentation Chapter 27. Attaching Skills

speed <- 0.8;
do goto target:target;

}
aspect default {

draw circle(1) color:#red;
if (target!=nil) {

draw polyline([self.location ,target.location]) color
:#black;

}
}

}

experiment my_experiment type:gui
{

output{
display myDisplay {

species speciesA aspect:default;
species speciesB aspect:default;

}
}

}� �

v 1.7 261

GAMAdocumentation Chapter 27. Attaching Skills

v 1.7 262

Chapter 28

Inheritance

As for multiple programming language, inheritance can be used in GAML. It is used to struc-
ture better your code, when you have some complex models.

Index

• Mother species / child species
• Virtual actions
• Get all the subspecies from a species

Mother species / child species

To make a species inherit from a mother species, you have to add the facet parent, and
specify the mother species.� �
species mother_species {
}

species child_species parent:mother_species {
}� �
Thus, all the attributes, actions and reflex of the mother species are inherited to the child
species.

263

GAMAdocumentation Chapter 28. Inheritance

� �
species mother_species {

int attribute_A;
action action_A {}

}

species child_species parent:mother_species {
init {

attribute_A <- 5;
do action_A;

}
}� �
If the mother species has a particular skill, its children will inherit all the attributes and
actions.� �
species mother_species skills:[moving] {
}

species child_species parent:mother_species {
init {

speed <- 2.0;
}
reflex update {

do wander;
}

}� �
You can redefine an action or a reflex by declaring an action or a reflex with the same name.

Virtual action

You have also the possibility to declare a virtual action in the mother species, which means
an action without implementation, by using the facet virtual:� �
action virtual_action virtual:true;� �
When you declare an action as virtual in a species, this species becomes abstract, which
means you cannot instantiate agent from it. All the children of this species has to implement
this virtual action.

v 1.7 264

GAMAdocumentation Chapter 28. Inheritance

� �
species virtual_mother_species {

action my_action virtual:true;
}

species child_species parent:virtual_mother_species {
action my_action {

// some statements
}

}� �
Get all the subspecies from a species

If you declare a “mother” species, you create a “child” agent, then “mother” will return the
population of agents “mother” and not the population of agents “child”, as it is shown in the
following example :� �
global
{

init {
create child number:2;
create mother number:1;

}
reflex update {

write length(mother); // will write 1 and not 3
}

}

species mother {}

species child parent:mother {}� �
We reminds you that “subspecies” is a built-in attribute of the agent. Using this attribute,
you can easily get all the subspecies agents of the mother species by writing the following
gaml function :� �
global
{

init {

v 1.7 265

GAMAdocumentation Chapter 28. Inheritance

create child number:2;
create mother number:1;

}
reflex update {

write length(get_all_instances(mother)); // will write 3
(1+2)
}
list<agent> get_all_instances(species<agent> spec) {

return spec.population + spec.subspecies accumulate (
get_all_instances(each));
}

}

species mother {}

species child parent:mother {}� �

v 1.7 266

GAMAdocumentation Chapter 28. Inheritance

Defining Advanced Species

In the previous chapter, we saw how to declare and manipulate regular species and the
global species (as a reminder, the instance of the global species is theworld agent).

Wewill now see that GAMAprovides you the possibility to declare some special species, such
as grids or graphs, with their own built-in attributes and their own built-in actions. We
will also see how to declaremirror species, which is a “copy” of a regular species, in order
to give it an other representation. Finally, we will learn how to represent several agents
through one unique agent, withmulti-level architecture.

v 1.7 267

GAMAdocumentation Chapter 28. Inheritance

v 1.7 268

Chapter 29

Grid Species

A grid is a particular species of agents. Indeed, a grid is a set of agents that share a grid
topology (until now, we only saw species with continuous topology). As other agents, a
grid species can have attributes, attributes, behaviors, aspects However, contrary to regular
species, grid agents are created automatically at the beginning of the simulation. It is thus
not necessary to use the create statement to create them. Moreover, in addition to classic
built-in variables, grid a provided with a set of additional built-in variables.

Index

• Declaration
• Built-in attributes
• Access to cells
• Display grid
• Grid with matrix
• Example

Declaration

Instead of using the species keyword, use the keyword grid to declare a grid species. The
grid species has exactly the same facets of the regular species, plus some others. To declare
a grid, you have to specify the number of columns and rows first. You can do it two different
ways:

269

GAMAdocumentation Chapter 29. Grid Species

Using the two facets width: and height: to fix the number of cells (the size of each cells will
be determined thanks to the environment dimension).� �
grid my_grid width:8 height:10 {
// my_grid has 8 columns and 10 rows
}� �
Using the two facets cell_width: and cell_height: to fix the size of each cells (the number
cells will be determined thanks to the environment dimension).� �
grid my_grid cell_width:3 cell_height:2 {
// my_grid has cells with dimension 3m width by 2m height
}� �
By default, a grid is composed by 100 rows and 100 columns.

Another facet exists for grid only, very useful. It is the neighbors facet, used to determine
how many neighbors has each cell. You can choose among 3 values: 4 (Von Neumann), 6
(hexagon) or 8 (Moore).

Figure 29.1: images/grid_neighbors.png

A grid can also be provided with specific facets that allows to optimize the computation
time and the memory space, such as use_regular_agents, use_indivitual_shapes and
use_neighbours_cache. Please refer to the GAML Reference for more explanation about
those particular facets.

Built-in attributes

grid_x

This variable stores the column index of a cell.

v 1.7 270

GAMAdocumentation Chapter 29. Grid Species

� �
grid cell width: 10 height: 10 neighbors: 4 {

init {
write "my column index is:" + grid_x;

}
}� �

grid_y

This variable stores the row index of a cell.� �
grid cell width: 10 height: 10 neighbors: 4 {

init {
write "my row index is:" + grid_y;

}
}� �

agents

return the set of agents located inside the cell. Note the use of this variable is deprecated. It
is preferable to use the inside operator: //: # (keyword|operator_inside)� �
grid cell width: 10 height: 10 neighbors: 4 {

list<bug> bugs_inside -> {bug inside self};
}� �

color

The color built-in variable is used by the optimized grid display. Indeed, it is possible to use
for grid agents an optimized aspect by using in a display the grid keyword. In this case, the
grid will be displayed using the color defined by the color variable. The border of the cells
can be displayed with a specific color by using the lines facet.

Here an example of the display of a grid species named cell with black border.� �
experiment main_xp type: gui{

output {

v 1.7 271

GAMAdocumentation Chapter 29. Grid Species

display map {
grid cell lines: rgb("black") ;

}
}

}� �
neighbors

The neighbors built-in variable returns the list of cells at a distance of 1.� �
grid my_grid {

reflex writeNeighbors {
write neighbors;

}
}� �
grid_value

The grid_value built-in variable is used when initializing a grid from grid file (see later). It
is also used for the 3D representation of DEM.

Access to a cell

there are several ways to access to a specific cell:

• by a location: by casting a location to a cell (the unity (#m, #cm, etc…) is defined when
you choose your environment size, in the global species.� �

global {
init {

write "cell at {57.5, 45} :" + cell({57.5, 45});
}

}

grid cell width: 10 height: 10 neighbors: 4 {
}� �

v 1.7 272

GAMAdocumentation Chapter 29. Grid Species

• by the row and column indexes: like matrix, it is possible to directly access to a cell
from its indexes

� �
global {

init {
write "cell [5,8] :" + cell[5,8];

}
}
grid cell width: 10 height: 10 neighbors: 4 {
}� �

The operator grid_at also exists to get a particular cell. You just have to specify the index
of the cell you want (in x and y):� �

global {
init {

agent cellAgent <- cell grid_at {5,8};
write "cell [5,8] :" + cellAgent;

}
}
grid cell width: 10 height: 10 neighbors: 4 {
}� �

Display Grid

You can easily display your grid in your experiment as followed :� �
experiment MyExperiment type: gui {

output {
display MyDisplay type: opengl {

grid MyGrid;
}

}
}� �
The grid will be displayed, using the color you defined for each cell (with the “color” built-in
attribute). You can also show border of each cell by using the facet “line:” and choosing a
rgb color:

v 1.7 273

GAMAdocumentation Chapter 29. Grid Species

� �
grid MyGrid line:#black;� �
An other way to display a grid will be to define an aspect in your grid agent (the same way
as for a regular species), and define your grid as a regular species then in your experiment,
choosing your aspect :� �
grid MyGrid {

aspect firstAspect {
draw square(1);

}
aspect secondAspect {

draw circle(1);
}

}

experiment MyExperiment type: gui {
output {

display MyDisplay type: opengl {
species MyGrid aspect:firstAspect;

}
}

}� �
Beware : don’t use this second display when you have large grids : it’s much slower.

Grid from amatrix

An easyway to load some values in a grid is to usematrix data. A matrix is a type of container
(we invite you to learn somemore about this useful type here). Once you have declared your
matrix, you can set the values of your cells using the ask statement :� �
global {

init {
matrix data <- matrix([[0,1,1],[1,2,0]]);
ask cell {

grid_value <- float(data[grid_x, grid_y]);
}

}
}� �
v 1.7 274

GAMAdocumentation Chapter 29. Grid Species

Declaring largermatrix inGAMLcan be boring as you can imagine. You can load yourmatrix
directly from a csv file with the operator matrix (used for the contruction of the matrix).� �
file my_file <- csv_file("path/file.csv","separator");
matrix my_matrix <- matrix(my_file);� �
You can try to read the following csv :� �
0,0,0,0,0,0,0,0,0,0,0
0,0,0,1,1,1,1,1,0,0,0
0,0,1,1,0,0,0,1,1,0,0
0,1,1,0,0,0,0,0,0,0,0
0,1,1,0,0,1,1,1,1,0,0
0,0,1,1,0,0,1,1,1,0,0
0,0,0,1,1,1,1,0,1,0,0
0,0,0,0,0,0,0,0,0,0,0� �
With the following model :� �
model import_csv

global {
file my_csv_file <- csv_file("../includes/test.csv",",");
init {

matrix data <- matrix(my_csv_file);
ask my_gama_grid {

grid_value <- float(data[grid_x,grid_y]);
write data[grid_x,grid_y];

}
}

}

grid my_gama_grid width: 11 height: 8 {
reflex update_color {

write grid_value;
color <- (grid_value = 1) ? #blue : #white;

}
}

experiment main type: gui{
output {

display display_grid {

v 1.7 275

GAMAdocumentation Chapter 29. Grid Species

grid my_gama_grid;
}

}
}� �
For more complicated models, you can read some other files, such as ASCII files (asc), DEM
files…

Example

To practice a bit those notions, we will build a quick model. A “regular” species will move
randomly on the environment. A grid is displayed, and its cells becomes red when an in-
stance of the regular species is waking inside this cell, and yellow when the regular agent is
in the surrounding of this cell. If no regular agent is on the surrounding, the cell turns green.

Here is an example of implementation:� �
model my_grid_model

global{
float max_range <- 5.0;
int number_of_agents <- 5;
init {

create my_species number:number_of_agents;
}
reflex update {

ask my_species {
do wander amplitude:180;
ask my_grid at_distance(max_range)
{

if(self overlaps myself)
{

self.color_value <- 2;
}
else if (self.color_value != 2)
{

self.color_value <- 1;
}

}
}

v 1.7 276

GAMAdocumentation Chapter 29. Grid Species

Figure 29.2: images/my_grid_model.png

v 1.7 277

GAMAdocumentation Chapter 29. Grid Species

ask my_grid {
do update_color;

}
}

}

species my_species skills:[moving] {
float speed <- 2.0;
aspect default {

draw circle(1) color:#blue;
}

}

grid my_grid width:30 height:30 {
int color_value <- 0;
action update_color {

if (color_value = 0) {
color <- #green;

}
else if (color_value = 1) {

color <- #yellow;
}
else if (color_value = 2) {

color <- #red;
}
color_value <- 0;

}
}

experiment MyExperiment type: gui {
output {

display MyDisplay type: java2D {
grid my_grid lines:#black;
species my_species aspect:default;

}
}

}� �

v 1.7 278

Chapter 30

Graph Species

Using a graph species enables to easily show interaction between agents of a same species.
This kind of species is particularly useful when trying to show the interaction (especially the
non-spatial one) that exist between agents.

Index

• Declaration
• Declare a graph with handmade agents
• Declare a graph by using an geometry file
• Declare a graph with nodes and edges
• Useful operators with graph
• Knowing the degree of a node
• Get the neighbors of a node
• Compute the shortest path
• Control the weight in graph
• Example

279

GAMAdocumentation Chapter 30. Graph Species

Declaration

Declare a graph with handmade agents

To instantiate this graph species, several steps must be followed. First the graph species
must inherit from the abstract species graph_node, then the method related_to must be
redefined and finally an auxiliary species that inherits from base_edge used to represent
the edges of the generated graph must be declared. A graph node is an abstract species that
must redefine one method called related_to.� �
species graph_agent parent: graph_node edge_species: edge_agent{

bool related_to(graph_agent other){
return true;

}
}

species edge_agent parent: base_edge {
}� �
The method related_to returns a boolean, and take the agents from the current species in
argument. If the method returns true, the two agents (the current instance and the one as
argument) will be linked.� �
global{

int number_of_agents <- 5;
init {

create graph_agent number:number_of_agents;
}

}

species graph_agent parent: graph_node edge_species: edge_agent{
bool related_to(graph_agent other){

return true;
}
aspect base {

draw circle(1) color:#green;
}

}

species edge_agent parent: base_edge {
aspect base {

v 1.7 280

GAMAdocumentation Chapter 30. Graph Species

draw shape color:#blue;
}

}

experiment MyExperiment type: gui {
output {

display MyDisplay type: java2D {
species graph_agent aspect:base;
species edge_agent aspect:base;

}
}

}� �

Figure 30.1: graph_related_to.png

You can for example link 2 agents when they are closer than a certain distance. Beware: The
topology used in graph species is the graph topology, and not the continuous topology. You
can force the use of the continuous topology with the action using as follow:

v 1.7 281

GAMAdocumentation Chapter 30. Graph Species

� �
bool related_to(graph_agent other){

using topology:topology(world) {
return (self.location distance_to other.location < 20);

}
}� �

Figure 30.2: graph_related_to2.png

The abstract mother species “graph_node” has an attribute “my_graph”, with the type
“graph”. The graph type represent a graph composed of vertices linked with edges. This
type has built-in attributes such as edges (the list of all the edges agents), or vertices (the
list of all the vertices agents).

v 1.7 282

GAMAdocumentation Chapter 30. Graph Species

Declare a graph by using an geometry file

In most cases, you will have to construct a graph from an existing file (example: a “shp” file).
In that case, you will have to first instantiate a species from the shape file (with the create
statement, using the facet from). When, you will have to extract a graph from the agent,
using the operator as_edge_graph.� �
model load_shape_file

global {
file roads_shapefile <- file("../includes/road.shp");
geometry shape <- envelope(roads_shapefile);
graph road_network;

init {
create road from: roads_shapefile;
road_network <- as_edge_graph(road);

}
}

species road {
aspect geom {

draw shape color: #black;
}

}

experiment main_experiment type:gui{
output {

display map {
species road aspect:geom;

}
}

}� �
Declare a graph with nodes and edges

Another way to create a graph is building it manually nodes by nodes, and then edges by
edges, without using agent structures. Use the add_node operator and the add_edge opera-
tor to do so. Here is an example of how to do:

v 1.7 283

GAMAdocumentation Chapter 30. Graph Species

� �
add point(0.0,0.0) to:nodes;
add point(90.0,90.0) to:nodes;
add point(20.0,20.0) to:nodes;
add point(40.0,50.0) to:nodes;
add point(100.0,0.0) to:nodes;

loop nod over:nodes {
my_graph <- my_graph add_node(nod);

}

my_graph <- my_graph add_edge (nodes at 0::nodes at 2);
my_graph <- my_graph add_edge (nodes at 2::nodes at 3);
my_graph <- my_graph add_edge (nodes at 3::nodes at 1);
my_graph <- my_graph add_edge (nodes at 0::nodes at 4);
my_graph <- my_graph add_edge (nodes at 4::nodes at 1);� �
Using this solution, my_graph can have two types: it can be an a-spatial graph, or a spatial
graph. The spatial graphwill have a proper geometry, with segments that follow the position
of your graph (you can access to the segments by using the built-in “segments”). The a-
spatial graph will not have any shape.� �
global
{

graph my_spatial_graph <-spatial_graph([]);
graph my_aspatial_graph <-graph([]);

init {
point node1 <- {0.0,0.0};
point node2 <- {10.0,10.0};
my_spatial_graph <- my_spatial_graph add_node(node1);
my_spatial_graph <- my_spatial_graph add_node(node2);
my_spatial_graph <- my_spatial_graph add_edge(node1::

node2);
write my_spatial_graph.edges;
// the output is [polyline

([{0.0,0.0,0.0},{10.0,10.0,0.0}])]
my_aspatial_graph <- my_aspatial_graph add_node(node1);
my_aspatial_graph <- my_aspatial_graph add_node(node2);
my_aspatial_graph <- my_aspatial_graph add_edge(node1::

node2);

v 1.7 284

GAMAdocumentation Chapter 30. Graph Species

write my_aspatial_graph.edges;
// the output is [{0.0,0.0,0.0}::{10.0,10.0,0.0}]

}
}� �
Useful operators with graph

Knowing the degree of a node

The operator degree_of returns the number of edge attached to a node. To use it, you have
to specify a graph (on the left side of the operator), and a node (on the right side of the
operator).

The following code (to put inside the node species) displays the number of edges attached to
each node:� �
aspect base
{

draw text:string(my_graph degree_of node(5)) color:# black;
status <- 0;

}� �
Get the neighbors of a node

To get the list of neighbors of a node, you should use the neighbors_of operator. On the left
side of the operator, specify the graph you are using, and on the right side, specify the node.
The operator returns the list of nodes located at a distance inferior or equal to 1, considering
the graph topology.� �
species graph_agent parent: graph_node edge_species: edge_agent
{

list<graph_agent > list_neighbors <- list<graph_agent >(my_graph
neighbors_of (self));

}� �
Here is an example of model using those two previous concepts (a random node is chosen
each step, displayed in red, and his neighbors are displayed in yellow):

v 1.7 285

GAMAdocumentation Chapter 30. Graph Species

Figure 30.3: graph_model.png

v 1.7 286

GAMAdocumentation Chapter 30. Graph Species

� �
model graph_model

global
{

int number_of_agents <- 50;
init
{

create graph_agent number: number_of_agents;
}

reflex update {
ask graph_agent(one_of(graph_agent)) {

status <- 2;
do update_neighbors;

}
}

}

species graph_agent parent: graph_node edge_species: edge_agent
{

int status <- 0;
list<int> list_connected_index;

init {
int i<-0;
loop over:graph_agent {

if (flip(0.1)) {
add i to:list_connected_index;

}
i <- i+1;

}
}

bool related_to(graph_agent other){
if (list_connected_index contains (graph_agent index_of

other)) {
return true;

}
return false;

}

v 1.7 287

GAMAdocumentation Chapter 30. Graph Species

action update_neighbors {

list<graph_agent > list_neighbors <- list<graph_agent >(
my_graph neighbors_of (self));

loop neighb over:list_neighbors {
neighb.status <- 1;

}
}

aspect base
{

if (status = 0) {
draw circle(2) color: # green;

}
else if (status = 1) {

draw circle(2) color: # yellow;
}
else if (status = 2) {

draw circle(2) color: # red;
}
draw text:string(my_graph degree_of self) color:# black

size:4 at:point(self.location.x-1,self.location.y-2);
status <- 0;

}
}

species edge_agent parent: base_edge
{

aspect base
{

draw shape color: # blue;
}

}

experiment MyExperiment type: gui
{

output
{

display MyDisplay type: java2D

v 1.7 288

GAMAdocumentation Chapter 30. Graph Species

{
species graph_agent aspect: base;
species edge_agent aspect: base;

}
}

}� �
Compute the shortest path

To compute the shortest path to go from a point to another, pick a source and a destination
among the vertices you have for your graph. Store those values as point type.� �
point source;
point destination;
source <- point(one_of(my_graph.vertices));
destination <- point(one_of(my_graph.vertices));� �
Then, you can use the operator path_between to return the shortest path. To use this action,
you have to give the graph, then the source point, and the destination point. This action
returns a path type.� �
path shortest_path;
shortest_path <- path_between (my_graph, source,destination);� �
Another operator exists, paths_between, that returns a list of shortest paths between two
points. Please read the documentation to learn more about this operator.

Here is an example of code that show the shortest path between two points of a graph:� �
model graph_model

global
{

int number_of_agents <- 50;
point source;
point target;
graph my_graph;
path shortest_path;

init

v 1.7 289

GAMAdocumentation Chapter 30. Graph Species

Figure 30.4: shortest_path.png

v 1.7 290

GAMAdocumentation Chapter 30. Graph Species

{
create graph_agent number: number_of_agents;

}

reflex pick_two_points {
if (my_graph=nil) {

ask graph_agent {
myself.my_graph <- self.my_graph;
break;

}
}
shortest_path <- nil;
loop while:shortest_path=nil {

source <- point(one_of(my_graph.vertices));
target <- point(one_of(my_graph.vertices));
if (source != target) {

shortest_path <- path_between (my_graph , source,
target);

}
}

}
}

species graph_agent parent: graph_node edge_species: edge_agent
{

list<int> list_connected_index;

init {
int i<-0;
loop over:graph_agent {

if (flip(0.1)) {
add i to:list_connected_index;

}
i <- i+1;

}
}

bool related_to(graph_agent other) {
using topology:topology(world) {

return (self.location distance_to other.location <
20);

v 1.7 291

GAMAdocumentation Chapter 30. Graph Species

}
}

aspect base {
draw circle(2) color: # green;

}
}

species edge_agent parent: base_edge
{

aspect base {
draw shape color: # blue;

}
}

experiment MyExperiment type: gui {
output {

display MyDisplay type: java2D {
species graph_agent aspect: base;
species edge_agent aspect: base;
graphics "shortest path" {

if (shortest_path != nil) {
draw circle(3) at: source color: #yellow;
draw circle(3) at: target color: #cyan;
draw (shortest_path.shape+1) color: #magenta;

}
}

}
}

}� �
Control the weight in graph

You can add a map of weight for the edges that compose the graph. Use the operator
with_weights to put weights in your graph. The graph has to be on the left side of the
operator, and the map has to be on the right side. In the map, you have to put edges as key,
and the weight for that edge as value. One common use is to put the distance as weight:� �
my_graph <- my_graph with_weights (my_graph.edges as_map (each::

geometry(each).perimeter));

v 1.7 292

GAMAdocumentation Chapter 30. Graph Species

� �
The calculation of shortest path can change according to the weight you choose for your
edges. For example, here is the result of the calculation of the shortest path when all the
edges have 1 as weight value (it is the default graph topology), and when the edges have
their length as weight.

Figure 30.5: path_weight.png

Here is an example of implementation:� �
model shortest_path_with_weight

global
{

graph my_graph<-spatial_graph([]);
path shortest_path;
list<point> nodes;

init
{

add point(10.0,10.0) to:nodes;
add point(90.0,90.0) to:nodes;
add point(40.0,20.0) to:nodes;

v 1.7 293

GAMAdocumentation Chapter 30. Graph Species

add point(80.0,50.0) to:nodes;
add point(90.0,20.0) to:nodes;

loop nod over:nodes {
my_graph <- my_graph add_node(nod);

}

my_graph <- my_graph add_edge (nodes at 0::nodes at 2);
my_graph <- my_graph add_edge (nodes at 2::nodes at 3);
my_graph <- my_graph add_edge (nodes at 3::nodes at 1);
my_graph <- my_graph add_edge (nodes at 0::nodes at 4);
my_graph <- my_graph add_edge (nodes at 4::nodes at 1);

// comment/decomment the following line to see the
difference.

my_graph <- my_graph with_weights (my_graph.edges as_map
(each::geometry(each).perimeter));

shortest_path <- path_between(my_graph ,nodes at 0, nodes
at 1);
}

}

experiment MyExperiment type: gui {
output {

display MyDisplay type: java2D {
graphics "shortest path" {

if (shortest_path != nil) {
draw circle(3) at: point(shortest_path.source

) color: #yellow;
draw circle(3) at: point(shortest_path.target

) color: #cyan;
draw (shortest_path.shape+1) color: #magenta;

}
loop edges over: my_graph.edges {

draw edges color: #black;
}

}
}

}
}

v 1.7 294

GAMAdocumentation Chapter 30. Graph Species

� �

v 1.7 295

GAMAdocumentation Chapter 30. Graph Species

v 1.7 296

Chapter 31

Mirror species

Amirror species is a species whose population is automatically managed with respect to an-
other species. Whenever an agent is created or destroyed from the other species, an instance
of the mirror species is created or destroyed. Each of these ‘mirror agents’ has access to its
reference agent (called its target). Mirror species can be used in different situations but the
one we describe here is more oriented towards visualization purposes.

Index

• Declaration
• Example

Declaration

A mirror species can be defined using the mirrors keyword as following:� �
species B mirrors: A{
}� �
In this case the species B mirrors the species A.

By default the location of the species B will be random but in many cases, once want to place
the mirror agent at the same location of the reference species. This can be achieve by simply
adding the following lines in the mirror species :

297

GAMAdocumentation Chapter 31. Mirror species

� �
species B mirrors: A{

point location <- target.location update: target.location;
}� �
target is a built-in attribute of a mirror species. It refers to the instance of the species
tracked.

In the same spirit any attribute of a reference species can be reach using the same syntax.
For instance if the species A has an attribute called attribute1 of type int is is possible to
get this attribute from the mirror species B using the following syntax:� �
int value <- target.attribute1;� �

Example

Topractice a bitwith themirror notion, wewill nowbuild a simplemodel displaying a species
A (aspect: white circle) moving randomly, and another species B (aspect: blue sphere) with
the species A location on x and y, with an upper value for the z axis.

Here is an example of implementation for this model:� �
model Mirror

global {
init{

create A number:100;
}

}

species A skills:[moving]{
reflex update{

do wander;
}
aspect base{

draw circle(1) color: #white;
}

}
species B mirrors: A{

v 1.7 298

GAMAdocumentation Chapter 31. Mirror species

Figure 31.1: images/mirror_model.png

v 1.7 299

GAMAdocumentation Chapter 31. Mirror species

point location <- target.location update: point(target.
location.x,target.location.y,target.location.z+5);
aspect base {

draw sphere(2) color: #blue;
}

}

experiment mirroExp type: gui {
output {

display superposedView type: opengl{
species A aspect: base;
species B aspect: base transparency:0.5;

}
}

}� �

v 1.7 300

Chapter 32

Multi-level architecture

Themulti-level architecture offers themodeler the following possibilities: the declaration of
a species as a micro-species of another species, the representation of an entity as different
types of agent (i.e., GAML species), the dynamic migration of agents between populations.

Index

• Declaration of micro-species
• Access to micro-agents / host agent
• Representation of an entity as different types of agent
• Dynamic migration of agents
• Example

Declaration of micro-species

A species can have other species as micro-species. Themicro-species of a species is declared
inside the species’ declaration.� �
species macro_species {

species micro_species_in_group {
}

}� �
301

GAMAdocumentation Chapter 32. Multi-level architecture

In the above example, “micro_species_in_group” is a micro-species of “macro_species”.
An agent of “macro_species” can have agents “micro_species_in_group” as micro-agents.
Agents of “micro_species_in_group” have an agent of “macro_species” as “host” agent.

As the species “micro_species_in_group” is declared inside the species “macro_species”,
“micro_species_in_group” will return a list of “micro_species_in_group” agent inside the
given “macro_species” agent.� �
global
{

init {
create macro_species number:5;

}
}

species macro_species
{

init {
create micro_species_in_group number:rnd(10);
write "the macro species named "+name+" contains "+length

(micro_species_in_group)+" micro-species.";
}

species micro_species_in_group {
}

}

experiment my_experiment type: gui {
}� �
In this above example, we create 5macro-species, and each one of thesemacro-species create
a randomnumber of innermicro-species. We can see that “micro_species_in_group” refers
to the list of micro-species inside the given macro-species.

Access to micro-agents, host agent

To access to micro-agents (from a macro-agent), and to host agent (from a micro-agents),
you have to use two built-in attributes.

v 1.7 302

GAMAdocumentation Chapter 32. Multi-level architecture

The members built-in attribute is used inside the macro-agent, to get the list of all its micro-
agents.� �
species macro_species
{

init {
create first_micro_species number:3;
create second_micro_species number:6;
write "the macro species named "+name+" contains "+length

(members)+" micro-species.";
}

species first_micro_species {
}

species second_micro_species {
}

}� �
The host built-in attribute is used inside the micro-agent to get the host macro-agent.� �
species macro_species {

micro_species_in_group micro_agent;

init {
create micro_species_in_group number:rnd(10);
write "the macro species named "+name+" contains "+length

(members)+" micro-species.";
}

species micro_species_in_group {
init {

write "the micro species named "+name+" is hosted by
"+host;

}
}

}� �
NB:We already said that the world agent is a particular agent, instantiated just once. In fact,
the world agent is the host of all the agents. You can try to get the host for a regular species,

v 1.7 303

GAMAdocumentation Chapter 32. Multi-level architecture

you will get the world agent itself (named as you named your model). You can also try to get
the members of your world (from the global scope for example), and you will get the list of
the agents presents in the world.� �
global
{

init {
create macro_species number:5;
write "the world has "+length(members)+" members.";

}
}

species macro_species
{

init {
write "the macro species named "+name+" is hosted by "+

host;
}

}� �
Representation of an entity as different types of agent

The multi-level architecture is often used in order to represent an entity through different
types of agent. For example, an agent “bee” can have a behavior when it is alone, but when
the agent is near from a lot of agents, he can changes his type to “bee_in_swarm”, defined as
amicro-species of amacro-species “swarm”. Other example: an agent “pedestrian” can have
a certain behavior when walking on the street, and then change his type to “pedestrian_-
in_building” when he is in a macro-species “building”. You have then to distinguish two
different species to define your micro-species: - The first can be seen as a regular species (it
is the “bee” or the “pedestrian” for instance). We will name this species as “micro_species”.
- The second is the real micro-species, defined inside the macro-species (it is the “bee_in_-
swarm” or the “pedestrian_in_building” for instance). Wewill name this species as “micro_-
species_in_group”. This species has to inherit from the “micro_species”.� �
species micro_species {
}

species macro_species
{

v 1.7 304

GAMAdocumentation Chapter 32. Multi-level architecture

species micro_species_in_group parent: micro_species {
}

}� �
Dynamic migration of agents

In our example about bees, a “swarm” entity is composed of nearby flying “bee” entities.
When a “bee” entity approaches a “swarm” entity, this “bee” entity will become a member
of the group. To represent this, the modeler lets the “bee” agent change its species to “bee_-
in_swarm” species. The “bee” agent hence becomes a “bee_in_swarm” agent. To change
species of agent, we can use one of the following statements: capture, release, migrate.

The statement capture is used by the “macro_species” to capture one (or several) “micro_-
species” agent(s), and turn it (them) to a “micro_species_in_group”. You can specify which
agent (or list of agents) you want to capture by using the facet target. The facet as is used
to cast the agent from “micro_species” to “micro_species_in_group”. You can use the facet
return to get the newly captured agent(s).� �
capture target:micro_species as:micro_species_in_group;� �
The statement release is used by the “macro_species” to release one (or several) “micro_-
species_in_group” agent(s), and turn it (them) to a “micro_species”. You can specify which
agent (or list of agents) you want to release by using the facet target. The facet as is used
to cast the agent from “micro_species_in_group” to “micro_species”. The facet in is used
to specify the new host (by default, it is the host of the “macro_species”). You can use the
facet return to get the newly released agent(s).� �
release target:list(micro_species_in_group) as:micro_species in:

world;� �
The statement migrate, less used, permits agents tomigrate from one population/species to
another population/species and stay in the same host after the migration. Read the GAML
Reference to learn more about this statement. //: # (endConcept|multi_level)

Example:

Here is an example of micro_species that gather together in macro_species when they are
close enough.

v 1.7 305

GAMAdocumentation Chapter 32. Multi-level architecture

Figure 32.1: images/multilevel_model.png

v 1.7 306

GAMAdocumentation Chapter 32. Multi-level architecture

� �
model multilevel

global {
int release_time <- 20;
int capture_time <- 100;
int remaining_release_time <- 0;
int remaining_capture_time <- capture_time;
init {

create micro_species number:200;
}
reflex reflex_timer {

if (remaining_release_time=1)
{

remaining_release_time <- 0;
remaining_capture_time <- capture_time;

}
else if (remaining_capture_time=1)
{

remaining_capture_time <- 0;
remaining_release_time <- release_time;

}
remaining_release_time <- remaining_release_time - 1;
remaining_capture_time <- remaining_capture_time - 1;

}
reflex capture_micro_species when:(remaining_capture_time >0

and flip(0.1)) {
ask macro_species {

list<micro_species > micro_species_in_range <-
micro_species at_distance 1;

if (micro_species_in_range != []) {
do capture_micro_species(micro_species_in_range);

}
}
ask micro_species {

list<micro_species > micro_species_list_to_be_captured
<- micro_species at_distance 1;

if(micro_species_list_to_be_captured != []) {
create macro_species {

location <- myself.location;
add item:myself to:

v 1.7 307

GAMAdocumentation Chapter 32. Multi-level architecture

micro_species_list_to_be_captured;
do capture_micro_species(

micro_species_list_to_be_captured);
}

}
}

}
}

species micro_species skills:[moving] {
geometry shape <- circle(1);
aspect base {

draw shape;
}
reflex move{

do wander;
}

}

species macro_species {
geometry shape <- circle(1) update:circle(length(members));

species micro_species_in_group parent:micro_species {
}

action capture_micro_species(list<micro_species > micro_list)
{

loop mic_sp over:micro_list {
capture mic_sp as:micro_species_in_group;

}
}

reflex release_reflex when:(remaining_release_time >0 and flip
(0.1)) {

release members as:micro_species /*in:world*/;
do die;

}

aspect base {
draw shape;
draw text:string(length(members)) color:#black size:4;

v 1.7 308

GAMAdocumentation Chapter 32. Multi-level architecture

}
}

experiment MyExperiment type: gui {
output {

display MyDisplay type: java2D {
species macro_species aspect: base;
species micro_species aspect: base;

}
}

}� �

v 1.7 309

GAMAdocumentation Chapter 32. Multi-level architecture

Defining GUI Experiments

When you execute your simulation, you will often need to display some information. For
each simulation, you can define some inputs and outputs: * The inputs will be composed of
parameters manipulated by the user for each simulation. * The outputs will be composed of
displays, monitors or output files. They will be define inside the scope output.� �
experiment exp_name type: gui {

[input]
output {

[display statements]
[monitor statements]
[file statements]

}
}� �
You can define two types of experiment (through the facet type): * gui experiments (the de-
fault type) are used to play an experiment, and interpret its outputs. * batch experiments are
used to play an experiment several times (usually with other input values), used for model
exploration. We will come back to this notion a bit further in the tutorial.

Inside experiment scope, you can access to some built-ins which can be useful, such as
minimum_cycle_duration, to force the duration of one cycle.� �
experiment my_experiment type: gui {

float minimum_cycle_duration <- 2.0#minute;
}� �
Other built-ins are available, to learn more about, go to the page experiment built-in.

In this part, we will focus on the gui experiments. We will start with learning how to de-
fine input parameters, then we will study the outputs, such as displays,monitors and
inspectors, andexport files. Wewill finish this partwith how to defineuser commands.
//: # (endConcept|gui_experiments)

v 1.7 310

Chapter 33

Defining Parameters

When playing simulation, you have the possibility to define input parameters, in order to
change them and replay the simulation. Defining parameters allows to make the value of a
global variable definable by the user through the user graphic interface.

Index

• Defining parameters
• Additional facets

Defining parameters

You can define parameters inside the global scope, when defining your global variables with
the facet parameter:� �
global
{

int my_integer_global_value <- 5 parameter: "My integer
global value";

}� �
When launching your experiment, the parameter will appear in your “Parameters” panel,
with the name you chose for the parameter facet.

311

GAMAdocumentation Chapter 33. Defining Parameters

Figure 33.1: images/parameter1.png

You can also define your parameter inside the experiment, using the statement parameter.
You have to specify first the name of your parameter, then the name of the global variable
through the facet var.� �
global
{

int my_integer_global_value <- 5;
}� �
experiment MyExperiment type: gui { parameter “My integer global value” var:my_inte-
ger_global_value; }

NB: This variable has to be initialized with a value. If you don’t want to initialize your value
on the global scope, you can initialize the value directly on the parameter statement, using
the facet init.� �
global
{

int my_integer_global_value;
}

v 1.7 312

GAMAdocumentation Chapter 33. Defining Parameters

experiment MyExperiment type: gui {
parameter "My integer global value" var:

my_integer_global_value init:5;
}� �

Additional facets

You can use some facets to arrange your parameters. For example, you can categorize your
parameters under a label, using the facet category:� �
global
{

int attr_1 <- 5 parameter:"attr 1" category:"category 1";
int attr_2 <- 5 parameter:"attr 2" category:"category 1";
int attr_3 <- 5 parameter:"attr 3" category:"category 2";

}� �
You also can add some facets such as min, max or among to improve the declaration of the
parameter.� �
global
{

string fruit <- "none" among:["none","apple","banana"]
parameter:"fruit" category:"food";
string vegetable <- "none" among:["none","cabbage","carrot"]

parameter:"vegetable" category:"food";
int integer_variable <- 5 parameter:"integer variable" min:0

max:100 category:"other";
}

experiment MyExperiment type: gui {
}� �
v 1.7 313

GAMAdocumentation Chapter 33. Defining Parameters

Figure 33.2: images/parameter2.png

v 1.7 314

GAMAdocumentation Chapter 33. Defining Parameters

//: # (endConcept|define_parameters)

v 1.7 315

GAMAdocumentation Chapter 33. Defining Parameters

v 1.7 316

Chapter 34

Defining displays (Generalities)

Index

• Displays and layers
• Organize your layers
• Example of layers
• agents layer
• species layer
• image layer
• text layer
• graphics layer

Displays and layers

A display is the graphical output of your simulation. You can define several displays related
with what you want to represent from your model execution. To define a display, use the
keyword display inside the output scope, and specify a name (name facet).� �
experiment my_experiment type: gui {

output {
display "display1" {
}
display name:"display2" {
}

317

GAMAdocumentation Chapter 34. Defining displays (Generalities)

}
}� �
Other facets are available when defining your display: * Use background to define a color
for your background� �
display "my_display" background:#red� �

• Use refresh if you want to refresh the display when a condition is true (to refresh
your display every number of steps, use the operator every)� �
display "my_display" refresh:every(10)� �

You can choose between two types of displays, by using the facet type: * java2D displays will
be usedwhen youwant to have 2D visualization. It is used for example when youmanipulate
charts. This is the default value for the facet type. * opengl displays allows you to have 3D
visualization.

You can save the display on the disk, as a png file, in the folder name_of_model/models/s-
napshots, by using the facet autosave. This facet takes one a boolean as argument (to allow
or not to save each frame) or a point (to define the size of your image). By default, the reso-
lution of the output image is 500x500px (note that when no unit is provided, the unit is #px
(pixel)).� �
display my_display autosave:true type:java2D {}� �
is equivalent to :� �
display my_display autosave:{500,500} type:java2D {}� �
Each display can be decomposed in one or several layers. Here is a screenshot (from the
Toy Model Ant) to better understand those different notions we are about to tackle in this
session.

Organize your layers

In one 2D display, you will have several types of layers, giving what you want to display in
your model. You have a large number of layers available. You already know some of them,

v 1.7 318

GAMAdocumentation Chapter 34. Defining displays (Generalities)

Figure 34.1: images/difference_layer_display.png

such as species, agents, grid, but other specific layers such as image (to display image)
and graphics (to freely draw shapes/geometries/texts without having to define a species)
are also available

Each layer will be displayed in the same order as you declare them. The last declared layer
will be above the others.

Thus, the following code:� �
experiment expe type:gui {

output {
display my_display {

graphics "layer1" {
draw square(20) at:{10,10} color:#gold;

}
graphics "layer2" {

draw square(20) at:{15,15} color:#darkorange;
}
graphics "layer3" {

draw square(20) at:{20,20} color:#cornflowerblue;
}

v 1.7 319

GAMAdocumentation Chapter 34. Defining displays (Generalities)

}
}

}� �
Will have this output:

Figure 34.2: images/layers_order.png

Most of the layers have the transparency facet in order to see the layers which are under.� �
experiment expe type:gui {

output {
display my_display {

graphics "layer1" {
draw square(20) at:{10,10} color:#darkorange;

}
graphics "layer2" transparency:0.5 {

draw square(20) at:{15,15} color:#cornflowerblue;
}

}
}

}� �
v 1.7 320

GAMAdocumentation Chapter 34. Defining displays (Generalities)

Figure 34.3: images/layers_transparency.png

To specify a position and a size for your layer, you can use the position and the size facets.
The position facet is used with a point type, between {0,0} and {1,1}, which corresponds
to the position of the upper left corner of your layer in percentage. Then, if you choose the
point {0.5,0.5}, the upper left corner of your layer will be in the center of your display. By
default, this value is {0,0}. The size facet is used with a point type, between {0,0} and {1,1}
also. It corresponds to the size occupied by the layer in percentage. By default, this value is
{1,1}.� �
experiment expe type:gui {

output {
display my_display {

graphics "layer1" position:{0,0} size:{0.5,0.8} {
draw shape color:#darkorange;

}
graphics "layer2" position:{0.3,0.1} size:{0.6,0.2} {

draw shape color:#cornflowerblue;
}
graphics "layer3" position:{0.4,0.2} size:{0.3,0.8} {

draw shape color:#gold;
}

}
}

v 1.7 321

GAMAdocumentation Chapter 34. Defining displays (Generalities)

}� �

Figure 34.4: images/layers_size_position.png

NB : displays can have background, while graphics can’t. If you want to put a background
for your graphics, a solution can be to draw the shape of the world (which is, by default, a
square 100m*100m).

A lot of other facets are available for the different layers. Please read the documentation of
graphics for more information.

v 1.7 322

GAMAdocumentation Chapter 34. Defining displays (Generalities)

Example of layers

agents layer

agents allows the modeler to display only the agents that fulfill a given condition.

Please read the documentation about agents statement if you are interested.

species layer

species allows modeler to display all the agent of a given species in the current display. In
particular, modeler can choose the aspect used to display them.

Please read the documentation about species statement if you are interested.

image layer

image allows modeler to display an image (e.g. as background of a simulation).

Please read the documentation about image statement if you are interested.

graphics layer

graphics allows the modeler to freely draw shapes/geometries/texts without having to de-
fine a species.

Please read the documentation about graphics statement if you are interested.

v 1.7 323

GAMAdocumentation Chapter 34. Defining displays (Generalities)

v 1.7 324

Chapter 35

Defining Charts

To visualize result and make analysis about you model, you will certainly have to use charts.
You can define 3 types of charts in GAML: histograms, pie, and series. For each type, you
will have to determine the data you want to highlight.

Index

• Define a chart
• Data definition
• Different types of charts

Define a chart

To define a chart, we have to use the chart statement. A chart has to be named (with the
name facet), and the type has to be specified (with the type facet). The value of the type facet
can be histogram, pie, series, scatter, xy. A chart has to be defined inside a display.� �
experiment my_experiment type: gui {

output {
display "my_display" {

chart "my_chart" type:pie {
}

}

325

GAMAdocumentation Chapter 35. Defining Charts

}
}� �
After declaring your chart, you have to define the data you want to display in your chart.

Data definition

Data can be specified with: * several data statements to specify each series * one datalist
statement to give a list of series. It can be useful if the number of series is unknown, variable
or too high.

The data statement is used to specify which variable will be displayed. You have to give your
data a name (that will be displayed in your chart), the value of the variable youwant to follow
(using the value facet). You can add come optional facets such as color to specify the color
of your data.� �
global
{

int numberA <- 2 update:numberA*2;
int numberB <- 10000 update:numberB -1000;

}

experiment my_experiment type: gui {
output {

display "my_display" {
chart "my_chart" type:pie {

data "numberA" value:numberA color:#red;
data "numberB" value:numberB color:#blue;

}
}

}
}� �
(TODO_IMAGE)

The datalist statement is used several variables in one statement. Instead of giving simple
values, datalist is used with lists.� �
datalist ["numberA","numberB"] value:[numberA,numberB] color:[#

red,#blue];� �
v 1.7 326

GAMAdocumentation Chapter 35. Defining Charts

[TODO] Datalist provides you some additional facets you can use. If you want to learn more
about them, please read the documentation [URL]

Different types of chart

As we already said, you can display 3 types of graphs: the histograms, the pies and the series.

The histograms

[TODO]

v 1.7 327

GAMAdocumentation Chapter 35. Defining Charts

v 1.7 328

Chapter 36

Defining 3D Displays

Table of contents

• OpenGL display

– Position
– Size

• Camera
• Dynamic camera

– Camera position
– Camera direction (Look Position)
– Camera orientation (Up Vector)

* Default view
* First person view
* Third Person view

• Lighting

OpenGL display

• Define the attribute type of the display with type:opengl in the output of your model
(or use the preferences->display windows to use it by default):

329

GAMAdocumentation Chapter 36. Defining 3D Displays

� �
output {

display DisplayName type:opengl {
species mySpecies;

}� �
The opengl display share most of the feature that the java2D offers and that are described
here.

Using 3D display offers many way to represent a simulation. A layer can be positioned and
scaled in a 3D world. It is possible to superpose layer on different z value and display differ-
ent information on the model at different position on the screen.

Position

Layer can be drawn on different position (x,y and z) value using the position facet

Size

Layer can be drawn with different size (x,y and z) using the size facet

Here is an example of display using all the previous facet (experiment factice to add to the
model Incremental Model 5). You can also dynamically change those value by showing the
side bar in the display.� �
experiment expe_test type:gui {

output {
display city_display type: opengl{

species road aspect: geom refresh:false;
species building aspect: geom transparency:0.5 ;
species people aspect: sphere3D position:{0,0,0.1};
species road aspect: geom size:{0.3,0.3,0.3};

}
}

}� �
v 1.7 330

GAMAdocumentation Chapter 36. Defining 3D Displays

Figure 36.1: images/species_layer.png

v 1.7 331

GAMAdocumentation Chapter 36. Defining 3D Displays

Camera

<a href=‘http://www.youtube.com/watch?feature=player_embedded&v=rMIVQlul1Ag’
target=’_blank’>

Arcball Camera

FreeFly Camera

Dynamic camera

User have the possibility to set dynamically the parameter of the camera (observer). The
basic camera properties are its position, the direction in which is pointing, and its ori-
entation. Those 3 parameters can be set dynamically at each iteration of the simulation.

Camera position

The facet camera_pos(x,y,z) places the camera at the given position. The default camera
positon is (world.width/2,world/height/2,world.maxDim*1.5) to place the camera at the
middle of the environement at an altitude that enables to see the entire environment.

Camera direction (Look Position)

The facet camera_look_pos(x,y,z) points the camera toward the given position. The de-
fault look position is (world.width/2,world/height/2,0) to look at the center of the environ-
ment.

Camera orientation (Up Vector)

The camera camera_up_vector(x,y,z) sets the up vector of the camera. The up vector
direction in your scene is the up direction on your display screen. The default value is (0,1,0)

Here are some examples that can be done using those 3 parameters. You can test it by run-
ning the following model:

<a href=‘http://www.youtube.com/watch?feature=player_embedded&v=lQVGD8aDKZY’
target=’_blank’>

v 1.7 332

GAMAdocumentation Chapter 36. Defining 3D Displays

Boids 3D Camera movement

Default view� �
display RealBoids type:opengl{
...
}� �
First person view

You can set the position as a first person shooter video game using:� �
display FirstPerson type:opengl
camera_pos:{boids(1).location.x,-boids(1).location.y,10}
camera_look_pos:{cos(boids(1).heading)*world.shape.width,-sin(

boids(1).heading)*world.shape.height ,0}
camera_up_vector:{0.0,0.0,1.0}{
...
}� �
Third Person view

You can follow an agent during a simulation by positioning the camera above it using:� �
display ThirdPerson type:opengl camera_pos:{boids(1).location.x

,-boids(1).location.y,250} camera_look_pos:{boids(1).location
.x,-boids(1).location.y,boids(1).location.z}{

...
}� �

Lighting

In a 3D scene once can define light sources. Theway how light sources and 3Dobject interact
is called lighting. Lighting is an important factor to render realistic scenes.

v 1.7 333

https://code.google.com/p/gama-platform/source/browse/branches/GAMA_CURRENT/msi.gama.models/models/Features/3D%20Visualization/Toy%20Models/Boids%203D%20Camera%20movement.gaml

GAMAdocumentation Chapter 36. Defining 3D Displays

In a real world, the color that we see depend on the interaction between color material sur-
faces, the light sources and the position of the viewer. There are four kinds of lighting called
ambient, diffuse, specular and emissive.

Gama handle ambient and diffuse light.

• ambient_light: Allows to define the value of the ambient light either using an int
(ambient_light:(125)) or a rgb color ((ambient_light:rgb(255,255,255)). default is
rgb(125,125,125).

• diffuse_light: Allows to define the value of the diffuse light either using an
int (diffuse_light:(125)) or a rgb color ((diffuse_light:rgb(255,255,255)). default is
rgb(125,125,125).

• diffuse_light_pos: Allows to define the position of the diffuse
light either using an point (diffuse_light_pos:{x,y,z}). default is
{world.shape.width/2,world.shape.height/2,world.shape.width*2}.

• is_light_on: Allows to enable/disable the light. Default is true.
• draw_diffuse_light: Allows to enable/disable the drawing of the diffuse light. De-
fault is false“)),

Here is an example using all the available facet to define a diffuse light that rotate around
the world.

<a href=‘http://www.youtube.com/watch?feature=player_embedded&v=op56elmEEYs’
target=’_blank’>� �
display View1 type:opengl draw_diffuse_light:true ambient_light

:(0) diffuse_light:(255) diffuse_light_pos:{50+ 150*sin(time
*2) ,50,150*cos(time*2){

...
}� �

v 1.7 334

Chapter 37

Defining monitors and inspectors

Other outputs can be very useful to study better the behavior of your agents.

Index

• Define a monitor
• Define an inspector

Define a monitor

A monitor allows to follow the value of an arbitrary expression in GAML. It will appear, in
the User Interface, in a small window on its own and be recomputed every time step (or
according to its refresh facet).

Definition of a monitor:� �
monitor monitor_name value: an_expression refresh:

boolean_statement;� �
with: * value: mandatory, the expression whose value will be displayed by the monitor. *
refresh: bool statement, optional : the new value is computed if the bool statement returns
true.

Example:

335

GAMAdocumentation Chapter 37. Defining monitors and inspectors

� �
experiment my_experiment type: gui {

output {
monitor monitor_name value: cycle refresh:every(1);

}
}� �
NB : you can also declare monitors during the simulation, by clicking on the button “Add
new monitor”, and specifying the name of the variable you want to follow.

Define an inspector

During the simulation, the user interface ofGAMAprovides the user the possibility to inspect
an agent, or a group of agents. But you can also define the inspector you want directly from
your model, as an output of the experiment.

Use the statement inspect to define your inspector, in the output scope of your gui experi-
ment. The inspector has to be named (using the facet name), a value has to be specified (with
the value facet).� �
inspect name:"inspector_name" value:the_value_you_want_to_display

;� �
Note that you can inspect any type of species (regular species, grid species, even the world…).

The optional facet type is used to specify the type of your inspector. 2 values are possible
: * agent (default value) if you want to display the information as a regular agent inspector.
Note that if you want to inspect a large number of agents, this can take a lot of time. In this
case, prefer the other type table * table if you want to display the information as an agent
browser

The optional facet attribute is used to filter the attributes you want to be displayed in your
inspector.

Beware : only one agent inspector (type:agent) can be used for an experiment. Beside,
you can add as many agent browser (type:table) as you want for your experiment.

Example of implementation :� �
model new

global {

v 1.7 336

GAMAdocumentation Chapter 37. Defining monitors and inspectors

init {
create my_species number:3;

}
}

species my_species {
int int_attr <- 6;
string str_attr <- "my_value";
string str_attr_not_important <- "blabla";

}

grid my_grid_species width: 10 height: 10 {
int rnd_value <- rnd(5);

}

experiment my_experiment type:gui {
output {

inspect name:"my_species_inspector" value:my_species
attributes:["int_attr","str_attr"];

inspect name:"my_species_browser" value:my_species type:
table;

inspect name:"my_grid_species_browser" value:5 among
my_grid_species type:table;
}

}� �
Another statement, browse, is doing a similar thing, but preferring the table type (if you
want to browse an agent species, the default type will be the table type). //: # (endCon-
cept|monitors_and_inspectors)

v 1.7 337

GAMAdocumentation Chapter 37. Defining monitors and inspectors

v 1.7 338

Chapter 38

Defining export files

Index

• The Save Statement
• Export files in experiment
• Autosave

The Save Statement

Allows to save data in a file. The type of file can be “shp”, “text” or “csv”. The save state-
ment can be use in an init block, a reflex, an action or in a user command. Do not use it in
experiments.

Facets

• to (string): an expression that evaluates to an string, the path to the file
• data (any type), (omissible) : any expression, that will be saved in the file
• crs (any type): the name of the projectsion, e.g. crs:“EPSG:4326” or its EPSG id,
e.g. crs:4326. Here a list of the CRS codes (and EPSG id): http://spatialreference.org

• rewrite (boolean): an expression that evaluates to a boolean, specifying whether the
save will ecrase the file or append data at the end of it

• type (an identifier): an expression that evaluates to an string, the type of the output
file (it can be only “shp”, “text” or “csv”)

339

GAMAdocumentation Chapter 38. Defining export files

• with (map):

Usages

• Its simple syntax is:� �
save data to: output_file type: a_type_file;� �

• To save data in a text file:� �
save (string(cycle) + "->" + name + ":" + location) to: "

save_data.txt" type: "text";� �
• To save the values of some attributes of the current agent in csv file:� �

save [name, location , host] to: "save_data.csv" type: "csv";� �
• To save the geometries of all the agents of a species into a shapefile (with optional
attributes):� �

save species_of(self) to: "save_shapefile.shp" type: "shp" with:
[name::"nameAgent", location::"locationAgent"] crs: "EPSG:4326
";� �

Export files in experiment

Displays are not the only output you can manage in GAMA. Saving data to a file during an
experiment can also be achieved in several ways, depending on the needs of the modeler.
One way is provided by the save statement, which can be used everywhere in a model or
a species. The other way, described here, is to include an output_file statement in the
output section.� �
output_file name:"file_name" type:file_type data:data_to_write;� �
with:

file_type: text, csv or xml file_name: string data_to_write: string

v 1.7 340

GAMAdocumentation Chapter 38. Defining export files

Example:� �
file name: "results" type: text data: time + "; " + nb_preys + ";

" + nb_predators refresh:every(2);� �
Each time step (or according to the frequency defined in the refresh facet of the file output),
a new line will be added at the end of the file. If rewrite: false is defined in its facets, a
new file will be created for each simulation (identified by a timestamp in its name).

Optionally, a footer and a header can also be described with the corresponding facets (of
type string).

Autosave

Image files can be exported also through the autosave facet of the display, as explained in
this previous part. //: # (endConcept|export_files)

v 1.7 341

GAMAdocumentation Chapter 38. Defining export files

v 1.7 342

Chapter 39

Defining user interaction

During the simulation, GAML provides you the possibility to define some function the user
can execute during the execution. In this chapter, we will see how to define buttons to exe-
cute action during the simulation, how to catch click event, and how to use the user control
architecture.

Index

• Catch Mouse Event
• Define User command
• … in the GUI Experiment scope
• … in global or regular species
• user_location
• user_input
• User Control Architecture

Catch Mouse Event

You can catchmouse event during the simulation using the statement event. This statement
has 2 required facets: * name (identifier) : Specify which event do youwant to trigger (among
the following values : mouse_down, mouse_down, mouse_move, mouse_enter, mouse_exit).
* action (identifier) : Specify the name of the global action to call.

343

GAMAdocumentation Chapter 39. Defining user interaction

� �
event mouse_down action: my_action;� �
The event statement has to be defined in the experiment/output/display scope. Once the
event is triggered, the global action linked will be called. The action linked has to have 2
arguments : the location of the click (type point) and the list of agents which are displayed
at this position.� �
global
{

action my_action (point loc, list<my_species > selected_agents
)
{

write "do action";
}

}

species my_species
{
}

experiment my_experiment type: gui
{

output
{

display my_display
{

species my_species;
event mouse_down action: my_action;

}
}

}� �
Define User command

Anywhere in the global block, in a species or in an (GUI) experiment, user_command state-
ments can be implemented. They can either call directly an existing action (with or without
arguments) or be followed by a block that describes what to do when this command is run.

v 1.7 344

GAMAdocumentation Chapter 39. Defining user interaction

Their syntax can be (depending of the modeler needs) either:� �
user_command cmd_name action: action_without_arg_name;
//or
user_command cmd_name action: action_name with: [arg1::val1, arg2

::val2];
//or
user_command cmd_name {

// statements
}� �
For instance:� �
user_command kill_myself action: die;
//or
user_command kill_myself action: some_action with: [arg1::5, arg2

::3];
//or
user_command kill_myself {

do die;
}� �
Defining User command in GUI Experiment scope

The user command can be defined directly inside the GUI experiment scope. In that case,
the implemented action appears as a button in the top of the parameter view.

Here is a very short code example :� �
model quick_user_command_model

global {
action createAgent
{

create my_species;
}

}

species my_species {
aspect base {

draw circle(1) color:#blue;

v 1.7 345

GAMAdocumentation Chapter 39. Defining user interaction

}
}

experiment expe type:gui {
user_command cmd_inside_experiment action:createAgent;
output {

display my_display {
species my_species aspect:base;

}
}

}� �
And here is screenshots of the execution :

Figure 39.1: images/user_command_inside_expe.png

v 1.7 346

GAMAdocumentation Chapter 39. Defining user interaction

Defining User command in a global or regular species

The user command can also be defined inside a species scope (either global or regular one).
Here is a quick example of model :

� �
model quick_user_command_model

global {
init {

create my_species number:10;
}

}

species my_species {
user_command cmd_inside_experiment action:die;
aspect base {

draw circle(1) color:#blue;
}

}

experiment expe type:gui {
output {

display my_display {
species my_species aspect:base;

}
}

}� �

During the execution, you have 2 ways to access to the action : *When the agent is inspected,
they appear as buttons above the agents’ attributes

v 1.7 347

GAMAdocumentation Chapter 39. Defining user interaction

* When the agent is selected by a right-click in a display, these command appear under the
usual “Inspect”, “Focus” and “Highlight” commands in the pop-up menu.

Remark: The execution of a command obeys the following rules: * when the command is
called from right-click pop-menu, it is executed immediately * when the command is called
from panels, its execution is postponed until the end of the current step and then executed
at that time.

user_location

In the special case when the user_command is called from the pop-up menu (from a right-
click on an agent in a display), the location chosen by the user (translated into the model
coordinates) is passed to the execution scope under the name user_location.

Example:� �
global {

user_command "Create agents here" {
create my_species number: 10 with: [location::user_location

];
}

v 1.7 348

GAMAdocumentation Chapter 39. Defining user interaction

Figure 39.2: images/user_command_inside_species2.png

v 1.7 349

GAMAdocumentation Chapter 39. Defining user interaction

}� �
This will allow the user to click on a display, choose the world (always present now), and
select the menu item “Create agents here”.

Note that if the world is inspected (this user_command appears thus as a button) and the user
chooses to push the button, the agent will be created at a random location.

user_input

As it is also, sometimes, necessary to ask the user for some values (not defined as param-
eters), the user_input unary operator has been introduced. This operator takes a map
[string::value] as argument (the key is the name of the chosen parameter, the value is the
default value), displays a dialog asking the user for these values, and returns the same map
with the modified values (if any). You can also add a text as first argument of the operator,
which will be displayed as a title for your dialog popup. The dialog is modal and will inter-
rupt the execution of the simulation until the user has either dismissed or accepted it. It can
be used, for instance, in an init section like the following one to force the user to input new
values instead of relying on the initial values of parameters.

Here is an example of implementation:� �
model quick_user_command_model

global {
init {

map values <- user_input("choose a number of agent to
create",["Number" :: 100]);

create my_species number : int(values at "Number");
}

}

species my_species {
aspect base {

draw circle(1) color:#blue;
}

}

experiment expe type:gui {
output {

v 1.7 350

GAMAdocumentation Chapter 39. Defining user interaction

display my_display {
species my_species aspect:base;

}
}

}� �
When running this model, you will first have to input a number:

Figure 39.3: images/input_cmd.png

User Control Architecture

An other way to define user interaction is to use the user control architecture. Please jump
directly to the section user control architecture if you want to learn more about this point.

v 1.7 351

GAMAdocumentation Chapter 39. Defining user interaction

Exploring Models

We just learnt how to launch GUI Experiments from GAMA. A GUI Experiment will start
with a particular set of input, compute several outputs, and will stop at the end (if asked).

In order to explore models (by automatically running the Experiment using several configu-
rations to analyze the outputs), a first approach is to run several simulations from the same
experiment, considering each simulation as an agent. A second approach, much more effi-
cient for larger explorations, is to run an other type of experiment : theBatch Experiment.

We will start this part by learning how to run several simulations from the same exper-
iment. Then, we will see how batch experiments work, and we will focus on how to use
those batch experiments to explore models by using exploration methods.

v 1.7 352

Chapter 40

Run Several Simulations

To explore a model, the easiest and the most intuitive way to proceed is running several
simulations with several parameter value, and see the differences from the output. GAMA
provides you the possibility to launch several simulations from the GUI.

Index

• Create a simulation
• Manipulate simulations
• Random seed
• Defining the seed from the model
• Defining the seed from the experiment
• Run several simulations with the same random numbers
• Change the RNG

Create a simulation

Let’s remind you that in GAMA, everything is an agent. We already saw that the “world”
agent is the agent of themodel. The model is thus a species, called modelName_model
:� �
model toto // <- the name of the species is "toto_model"� �

353

GAMAdocumentation Chapter 40. Run Several Simulations

New highlight of the day : an Experiment is also an agent ! It’s a special agent which will
instantiate automatically an agent from the model species. You can then perfectly create
agents (model agents) from your experiment, using the statement create :� �
model multi_simulations // the "world" is an instance of the "

multi_simulations_model"

global {
}

experiment my_experiment type:gui {
init {

create multi_simulations_model;
}

}� �
This sort model will instantiate 2 simulations (two instance of the model) : one is created
automatically by the experiment, and the second one is explicitly created through the state-
ment create.

To simplify the syntax, you can use the built-in attribute simulation of your experiment.
When you have amodel called “multi_simulations”, the two following lines are strictly equal
:� �
create multi_simulations_model;
create simulation;� �
As it was the case for creating regular species, you can specify the parameters of your agent
during the creation through the facet with: :� �
model multi_simulations

global {
rgb bgd_color;

}

experiment my_experiment type:gui {
parameter name:"background color:" var:bgd_color init:#blue;
init {

create simulation with:[bgd_color::#red];
}
output {

v 1.7 354

GAMAdocumentation Chapter 40. Run Several Simulations

display "my_display" background:bgd_color{}
}

}� �
Manipulate simulations

When you think the simulations as agents, it gives you a lot of new possibilities. You can
for example create a reflex from your experiment, asking to create simulations during the
experiment execution !

The following short model for example will create a new simulation at each 10 cycles :� �
model multi_simulations

global {
init {

write "new simulation created ! Its name is "+name;
}

}

experiment my_experiment type:gui {
init {
}
reflex when:(mod(cycle ,10)=0 and cycle!=0) {

create simulation;
}
output {
}

}� �
You may ask, what is the purpose of such a thing ? Well, with such a short model, it is not
very interesting, for sure. But you can imagine running a simulation, and if the simulation
reaches a certain state, it can be closed, and another simulation can be run instead with
different parameters (a simulation can be closed by doing a “do die” on itself). You can
also imagine to run two simulations, and to communicate from one to an other through the
experiment, as it is shown in this easy model, where agents can move from one simulation
to another :� �
model smallWorld

v 1.7 355

GAMAdocumentation Chapter 40. Run Several Simulations

Figure 40.1: resources/images/exploringModel/change_world.png

v 1.7 356

GAMAdocumentation Chapter 40. Run Several Simulations

global {
int grid_size <- 10;
bool modelleft <- true;
int id<- 0;
int nb_agents <- 50;

init {
create people number: nb_agents {

my_cell <- one_of(cell);
location <- my_cell.location;

}
if (modelleft) {

ask cell where (each.grid_x = (grid_size - 1)) {
color <- #red;

}
} else {

ask cell where (each.grid_x = 0) {
color <- #red;

}
}

}

action changeWorld(rgb color, point loc) {
create people with:[color::color, location::loc] {

my_cell <- cell(location);
}

}
}

species people {
rgb color <- rnd_color(255);
cell my_cell;

reflex move {
if (modelleft and my_cell.color = #red) {

ask smallWorld_model[1] {
do changeWorld(myself.color, {100 - myself.

location.x,myself.location.y});
}
do die;

v 1.7 357

GAMAdocumentation Chapter 40. Run Several Simulations

} else {
list<cell> free_cells <- list<cell> (my_cell.

neighbors) where empty(people inside each);
if not empty(free_cells) {

my_cell <- one_of(free_cells);
location <- my_cell.location;

}
}

}
aspect default {

draw circle(50/grid_size) color: color;
}

}

grid cell width: grid_size height: grid_size;

experiment fromWorldToWorld type: gui {
init {

create simulation with:[grid_size::20, modelleft::false,
id::1, nb_agents::0];
}

output {
display map {

grid cell lines: #black;
species people;

}
}

}� �

Here is an other example of application of application, available in the model library. Here
we run 4 times the Ant Foraging model, with different parameters.

v 1.7 358

GAMAdocumentation Chapter 40. Run Several Simulations

Figure 40.2: resources/images/exploringModel/multi_foraging.jpg

v 1.7 359

GAMAdocumentation Chapter 40. Run Several Simulations

Random seed

Defining the seed from the model

If you run several simulations, you may want to use the same seed for each one of those sim-
ulations (to compare the influence of a certain parameter, in exactly the same conditions).

Let’s remind you that seed is a built-in attribute of the model. You than just need to specify
the value of your seed during the creation of the simulation if you want to fix the seed :� �
create simulation with:[seed::10.0];� �
You can also specify the seed if you are inside the init scope of your global agent.� �
global {

init {
seed <-10.0;

}
}� �
Notice that if you affect the value of your seed built-in directly in the global scope, the affec-
tation of the parameters (for instance specified with the facet with of the statement create),
and the “init” will be done after will be done at the end.

Defining the seed from the experiment

The experiment agent also have a built-in attribute seed. The value of this seed is defined in
your simulation preferences. The first simulation created is created with the seed value
of the experiment.

The following sequence diagram can explain you better how the affectation of the seed at-
tribute works :

The affectation of an attribute is always done in this order : (1) the attribute is affected with
a specific value in the species scope. If no attribute value is specified, the value is a default
value. (2) if a value is specified for this attribute in the create statement, then the attribute
value is affected again. (3) the attribute value can be changed again in the init scope.

v 1.7 360

GAMAdocumentation Chapter 40. Run Several Simulations

Figure 40.3: resources/images/exploringModel/sequence_diagram_seed_affectation.png

Run several simulations with the same random numbers

The following code shows how to run several simulations with a specific seed, determined
from the experiment agent :� �
model multi_simulations

global {
init {

create my_species;
}

}

species my_species skills:[moving] {
reflex update {

do wander;
}
aspect base {

draw circle(2) color:#green;
}

}

experiment my_experiment type:gui {
float seedValue <- 10.0;

v 1.7 361

GAMAdocumentation Chapter 40. Run Several Simulations

float seed <- seedValue; // force the value of the seed.
init {

// create a second simulation with the same seed as the
main simulation

create simulation with:[seed::seedValue];
}
output {

display my_display {
species my_species aspect:base;

}
}

}� �
When you run this simulation, their execution is exactly similar.

Figure 40.4: resources/images/exploringModel/same_simulation_one_agent.png

Let’s try now to add a new species in this model, and to add a parameter to the simulation
for the number of agents created for this species.� �
model multi_simulations

global {
int number_of_speciesB <- 1;
init {

create my_speciesA;

v 1.7 362

GAMAdocumentation Chapter 40. Run Several Simulations

create my_speciesB number:number_of_speciesB;
}

}

species my_speciesA skills:[moving] {
reflex update {

do wander;
}
aspect base {

draw circle(2) color:#green;
}

}

species my_speciesB skills:[moving] {
reflex update {

do wander;
}
aspect base {

draw circle(2) color:#red;
}

}

experiment my_experiment type:gui {
float seedValue <- 10.0;
float seed <- seedValue; // force the value of the seed.
init {

create simulation with:[seed::seedValue ,
number_of_speciesB::2];
}
output {

display my_display {
species my_speciesA aspect:base;
species my_speciesB aspect:base;

}
}

}� �
Then you run the experiment, you may find something strange…

Even if the first step seems ok (the greed agent and one of the two red agent is initialized
with the same location), the simulation differs completly. You should have expected to have

v 1.7 363

GAMAdocumentation Chapter 40. Run Several Simulations

Figure 40.5: resources/images/exploringModel/same_simulation_2_species.png

the same behavior for the greed agent in both of the simulation, but it is not the case. The
explaination of this behavior is that a randomnumber generator has generatedmore random
numbers in the second simulation than in the first one.

If you don’t understand, here is a short example that may help you to understand better :� �
model multi_simulations

global {
int iteration_number <- 1;
reflex update {

float value;
loop times:iteration_number {

value<-rnd(10.0);
write value;

}
write "cycle "+cycle+" in experiment "+name+" : "+value;

}
}

experiment my_experiment type:gui {
float seedValue <- 10.0;
float seed <- seedValue; // force the value of the seed.
init {

v 1.7 364

GAMAdocumentation Chapter 40. Run Several Simulations

create simulation with:[seed::seedValue ,iteration_number
::2];
}
output {
}

}� �
The output will be something like that :� �
7.67003069780383
cycle 0 in experiment multi_simulations_model0 : 7.67003069780383
7.67003069780383
0.22889843360303863
cycle 0 in experiment multi_simulations_model1 :

0.22889843360303863
0.22889843360303863
cycle 1 in experiment multi_simulations_model0 :

0.22889843360303863
4.5220913306263855
0.8363180333035425
cycle 1 in experiment multi_simulations_model1 :

0.8363180333035425
4.5220913306263855
cycle 2 in experiment multi_simulations_model0 :

4.5220913306263855
5.460148568140819
4.158355846617511
cycle 2 in experiment multi_simulations_model1 :

4.158355846617511
0.8363180333035425
cycle 3 in experiment multi_simulations_model0 :

0.8363180333035425
1.886091659169562
4.371253083874633
cycle 3 in experiment multi_simulations_model1 :

4.371253083874633� �
Which means :

Cycle Value generated in simulation 0 Value generated in simulation 1

1 7.67003069780383 7.67003069780383

v 1.7 365

GAMAdocumentation Chapter 40. Run Several Simulations

Cycle Value generated in simulation 0 Value generated in simulation 1

0.22889843360303863
2 0.22889843360303863 4.5220913306263855

0.8363180333035425
3 4.5220913306263855 5.460148568140819

4.158355846617511

When writing your models, you have to be aware of this behavior. Remember that each
simulation has it’s own random number generator.

Change the RNG

The RNG (random number generator) can also be changed : rng is a string built-in attribute
of the experiment (and also of the model). You can choose among the following rng : -
mersenne (by default) - cellular - java

The following model shows how to run 4 simulations with the same seed but with some
different RNG :� �
model multi_simulations

global {
init {

create my_species number:50;
}

}

species my_species skills:[moving] {
reflex update {

do wander;
}
aspect base {

draw square(2) color:#blue;
}

}

experiment my_experiment type:gui {
float seed <- 10.0;
init {

v 1.7 366

GAMAdocumentation Chapter 40. Run Several Simulations

create simulation with:[rng::"cellular",seed::10.0];
create simulation with:[rng::"java",seed::10.0];

}
output {

display my_display {
species my_species aspect:base;
graphics "my_graphic" {

draw rectangle(35,10) at:{0,0} color:#lightgrey;
draw rng at:{3,3} font:font("Helvetica", 20 , #

plain) color:#black;
}

}
}

}� �

v 1.7 367

GAMAdocumentation Chapter 40. Run Several Simulations

v 1.7 368

Chapter 41

Defining Batch Experiments

Batch experiments allows to execute numerous successive simulation runs.They are used to
explore the parameter space of a model or to optimize a set of model parameters.

A Batch experiment is defined by:� �
experiment exp_title type: batch {

[parameter to explore]
[exploration method]
[reflex]
[permanent]

}� �
Table of contents

• The batch experiment facets
• Action _step
• Reflexes
• Permanent

The batch experiment facets

Batch experiment have the following three facets: * until: (expression) Specifies when to
stop each simulations. Its value is a condition on variables defined in the model. The run

369

GAMAdocumentation Chapter 41. Defining Batch Experiments

will stop when the condition is evaluated to true. If omitted, the first simulation run will
go forever, preventing any subsequent run to take place (unless a halt command is used in
the model itself). * repeat: (integer) A parameter configuration corresponds to a set of val-
ues assigned to each parameter. The attribute repeat specifies the number of times each
configuration will be repeated, meaning that as many simulations will be run with the same
parameter values. Different random seeds are given to the pseudo-random number genera-
tor. This allows to get some statistical power from the experiments conducted. Default value
is 1. * keep_seed: (boolean) If true, the same series of random seeds will be used from one
parameter configuration to another. Default value is false.� �
experiment my_batch_experiment type: batch repeat: 5 keep_seed:

true until: time = 300 {
[parameter to explore]
[exploration method]

}� �
Action step The_step_action of an experiment is called
at the end of a simulation. It is possible to override this
action to apply a specific action at the end of each sim-
ulation. Note that at the experiment level, you have ac-
cess to all the species and all the global variables.

For instance, the following experiment runs the simulation 5 times, and, at the end of each
simulation, saves the people agents in a shapefile.� �
experiment 'Run 5 simulations ' type: batch repeat: 5 keep_seed:

true until: (time > 1000) {
int cpt <- 0;
action _step_ {

save people type:"shp" to:"people_shape" + cpt + ".shp"
with: [is_infected::"INFECTED",is_immune::"IMMUNE"];

cpt <- cpt + 1;
}

}

A second solution to achieve the same result is to use reflexes (
see below).

v 1.7 370

GAMAdocumentation Chapter 41. Defining Batch Experiments

� �
Reflexes

It is possible to write reflexes inside a batch experiment. This reflex will be executed at the
end of each simulation. For instance, the following reflexwrites at the end of each simulation
the value of the variable food_gathered:� �
reflex info_sim {

write "Running a new simulation " + simulation + " -> " +
food_gathered;

}� �
Permanent

The permanent section allows to define a output block that will not be re-initialized at the
beginning of each simulation but will be filled at the end of each simulation. For instance,
thispermanent sectionwill allows to display for each simulation the end value of the food_-
gathered variable.� �
permanent {

display Ants background: rgb('white') refresh:every(1) {
chart "Food Gathered" type: series {

data "Food" value: food_gathered;
}

}
}� �

v 1.7 371

GAMAdocumentation Chapter 41. Defining Batch Experiments

v 1.7 372

Chapter 42

Exploration Methods

Several batch methods are currently available. Each is described below.

Table of contents

• The method element
• Exhaustive exploration of the parameter space
• Hill Climbing
• Simulated Annealing
• Tabu Search
• Reactive Tabu Search
• Genetic Algorithm

The method element

The optional method element controls the algorithm which drives the batch.

If this element is omitted, the batchwill run in a classical way, changing one parameter value
at each step until all the possible combinations of parameter values have been covered. See
the Exhaustive exploration of the parameter space for more details.

When used, this element must contain at least a name attribute to specify the algorithm to
use. It has theses facets: * minimize or a maximize (mandatory for optimization method): a
attribute defining the expression to be optimized. * aggregation (optional): possible values

373

GAMAdocumentation Chapter 42. Exploration Methods

(“min”, “max”). Each combination of parameter values is tested repeat times. The aggre-
gated fitness of one combination is by default the average of fitness values obtained with
those repetitions. This facet can be used to tune this aggregation function and to choose
to compute the aggregated fitness value as the minimum or the maximum of the obtained
fitness values. * other parameters linked to exploration method (optional) : see below for a
description of these parameters.

Exemples of use of the method elements:� �
method exhaustive minimize: nb_infected ;

method genetic pop_dim: 3 crossover_prob: 0.7 mutation_prob: 0.1
nb_prelim_gen: 1 max_gen: 5 minimize: nb_infected aggregation
: "max";� �

Exhaustive exploration of the parameter space

Parameter definitions accepted: List with step and Explicit List. Parameter type accepted:
all.

This is the standard batch method. The exhaustive mode is defined by default when there is
nomethod element present in the batch section. It explores all the combination of parameter
values in a sequential way.

Example (models/ants/batch/ant_exhaustive_batch.xml):� �
experiment Batch type: batch repeat: 2 keep_seed: true until: (

food_gathered = food_placed) or (time > 400) {
parameter 'Evaporation:' var: evaporation_rate among: [0.1 ,
0.2 , 0.5 , 0.8 , 1.0] unit: 'rate every cycle (1.0 means

100%)';
parameter 'Diffusion:' var: diffusion_rate min: 0.1 max: 1.0

unit: 'rate every cycle (1.0 means 100%)' step: 0.3;
}� �
The order of the simulations depends on the order of the param. In our example, the first
combinations will be the followings: * evaporation_rate = 0.1, diffusion_rate = 0.1, (2 times)
* evaporation_rate =0.1, diffusion_rate =0.4, (2 times) * evaporation_rate =0.1, diffusion_-
rate = 0.7, (2 times) * evaporation_rate = 0.1, diffusion_rate = 1.0, (2 times) * evaporation_-
rate = 0.2, diffusion_rate = 0.1, (2 times) * …

v 1.7 374

GAMAdocumentation Chapter 42. Exploration Methods

Note: this method can also be used for optimization by adding an method element with
maximize or a minimize attribute:� �
experiment Batch type: batch repeat: 2 keep_seed: true until: (

food_gathered = food_placed) or (time > 400) {
parameter 'Evaporation:' var: evaporation_rate among: [0.1 ,
0.2 , 0.5 , 0.8 , 1.0] unit: 'rate every cycle (1.0 means

100%)';
parameter 'Diffusion:' var: diffusion_rate min: 0.1 max: 1.0

unit: 'rate every cycle (1.0 means 100%)' step: 0.3;
method exhaustive maximize: food_gathered;

}� �

Hill Climbing

Name: hill_climbing Parameter definitions accepted: List with step and Explicit List. Pa-
rameter type accepted: all.

This algorithm is an implementation of the Hill Climbing algorithm. See the wikipedia arti-
cle.

Algorithm:� �
Initialization of an initial solution s
iter = 0
While iter <= iter_max , do:

Choice of the solution s' in the neighborhood of s that
maximize the fitness function
If f(s') > f(s)

s = ’s
Else

end of the search process
EndIf
iter = iter + 1

EndWhile� �
Method parameters: * iter_max: number of iterations

Example (models/ants/batch/ant_hill_climbing_batch.xml):

v 1.7 375

GAMAdocumentation Chapter 42. Exploration Methods

� �
experiment Batch type: batch repeat: 2 keep_seed: true until: (

food_gathered = food_placed) or (time > 400) {
parameter 'Evaporation:' var: evaporation_rate among: [0.1 ,
0.2 , 0.5 , 0.8 , 1.0] unit: 'rate every cycle (1.0 means

100%)';
parameter 'Diffusion:' var: diffusion_rate min: 0.1 max: 1.0

unit: 'rate every cycle (1.0 means 100%)' step: 0.3;
method hill_climbing iter_max: 50 maximize : food_gathered;

}� �
Simulated Annealing

Name: annealing Parameter definitions accepted: List with step and Explicit List. Parame-
ter type accepted: all.

This algorithm is an implementation of the Simulated Annealing algorithm. See the
wikipedia article.

Algorithm:� �
Initialization of an initial solution s
temp = temp_init
While temp > temp_end , do:

iter = 0
While iter < nb_iter_cst_temp , do:

Random choice of a solution s2 in the neighborhood of s
df = f(s2)-f(s)
If df > 0

s = s2
Else,

rand = random number between 0 and 1
If rand < exp(df/T)

s = s2
EndIf

EndIf
iter = iter + 1

EndWhile
temp = temp * nb_iter_cst_temp

EndWhile� �
v 1.7 376

GAMAdocumentation Chapter 42. Exploration Methods

Method parameters: * temp_init: Initial temperature * temp_end: Final temperature *
temp_decrease: Temperature decrease coefficient * nb_iter_cst_temp: Number of itera-
tions per level of temperature

Example (models/ants/batch/ant_simulated_annealing_batch.xml):� �
experiment Batch type: batch repeat: 2 keep_seed: true until: (

food_gathered = food_placed) or (time > 400) {
parameter 'Evaporation:' var: evaporation_rate among: [0.1 ,
0.2 , 0.5 , 0.8 , 1.0] unit: 'rate every cycle (1.0 means

100%)';
parameter 'Diffusion:' var: diffusion_rate min: 0.1 max: 1.0

unit: 'rate every cycle (1.0 means 100%)' step: 0.3;
method annealing temp_init: 100 temp_end: 1 temp_decrease:

0.5 nb_iter_cst_temp: 5 maximize: food_gathered;
}� �
Tabu Search

Name: tabu Parameter definitions accepted: List with step andExplicit List. Parameter type
accepted: all.

This algorithm is an implementation of the Tabu Search algorithm. See the wikipedia article.

Algorithm:� �
Initialization of an initial solution s
tabuList = {}
iter = 0
While iter <= iter_max , do:

Choice of the solution s2 in the neighborhood of s such that:
s2 is not in tabuList
the fitness function is maximal for s2

s = s2
If size of tabuList = tabu_list_size

removing of the oldest solution in tabuList
EndIf
tabuList = tabuList + s
iter = iter + 1

EndWhile� �
v 1.7 377

GAMAdocumentation Chapter 42. Exploration Methods

Method parameters: * iter_max: number of iterations * tabu_list_size: size of the tabu list� �
experiment Batch type: batch repeat: 2 keep_seed: true until: (

food_gathered = food_placed) or (time > 400) {
parameter 'Evaporation:' var: evaporation_rate among: [0.1 ,
0.2 , 0.5 , 0.8 , 1.0] unit: 'rate every cycle (1.0 means

100%)';
parameter 'Diffusion:' var: diffusion_rate min: 0.1 max: 1.0

unit: 'rate every cycle (1.0 means 100%)' step: 0.3;
method tabu iter_max: 50 tabu_list_size: 5 maximize:

food_gathered;
}� �
Reactive Tabu Search

Name: reactive_tabu Parameter definitions accepted: List with step and Explicit List. Pa-
rameter type accepted: all.

This algorithm is a simple implementation of the Reactive Tabu Search algorithm ((Battiti et
al., 1993)). This Reactive Tabu Search is an enhance version of the Tabu search. It adds two
newelements to the classic TabuSearch. The first one concerns the size of the tabu list: in the
Reactive Tabu Search, this one is not constant anymore but it dynamically evolves according
to the context. Thus, when the exploration process visits too often the same solutions, the
tabu list is extended in order to favor the diversification of the search process. On the other
hand, when the process has not visited an already known solution for a high number of
iterations, the tabu list is shortened in order to favor the intensification of the search process.
The second new element concerns the adding of cycle detection capacities. Thus, when a
cycle is detected, the process applies random movements in order to break the cycle.

Method parameters: * iter_max: number of iterations * tabu_list_size_init: initial size of
the tabu list * tabu_list_size_min: minimal size of the tabu list * tabu_list_size_max: max-
imal size of the tabu list * nb_tests_wthout_col_max: number of movements without colli-
sion before shortening the tabu list * cycle_size_min: minimal size of the considered cycles
* cycle_size_max: maximal size of the considered cycles� �
experiment Batch type: batch repeat: 2 keep_seed: true until: (

food_gathered = food_placed) or (time > 400) {
parameter 'Evaporation:' var: evaporation_rate among: [0.1 ,
0.2 , 0.5 , 0.8 , 1.0] unit: 'rate every cycle (1.0 means

100%)';

v 1.7 378

GAMAdocumentation Chapter 42. Exploration Methods

parameter 'Diffusion:' var: diffusion_rate min: 0.1 max: 1.0
unit: 'rate every cycle (1.0 means 100%)' step: 0.3;
method reactive_tabu iter_max: 50 tabu_list_size_init: 5

tabu_list_size_min: 2 tabu_list_size_max: 10
nb_tests_wthout_col_max: 20 cycle_size_min: 2 cycle_size_max:
20 maximize: food_gathered;

}� �

Genetic Algorithm

Name: genetic Parameter definitions accepted: List with step and Explicit List. Parameter
type accepted: all.

This is a simple implementation of Genetic Algorithms (GA). See the wikipedia article. The
principle of GA is to search an optimal solution by applying evolution operators on an initial
population of solutions There are three types of evolution operators: * Crossover: Two solu-
tions are combined in order to produce new solutions * Mutation: a solution is modified *
Selection: only a part of the population is kept. Different techniques can be applied for this
selection. Most of them are based on the solution quality (fitness).

Representation of the solutions: * Individual solution: {Param1 = val1; Param2 = val2; …} *
Gene: Parami = vali

Initial population building: the system builds nb_prelim_gen random initial populations
composed of pop_dim individual solutions. Then, the best pop_dim solutions are selected
to be part of the initial population.

Selection operator: roulette-wheel selection: the probability to choose a solution is equals
to: fitness(solution)/ Sum of the population fitness. A solution can be selected several times.
Ex: population composed of 3 solutions with fitness (that we want to maximize) 1, 4 and 5.
Their probability to be chosen is equals to 0.1, 0.4 and 0.5.

Mutation operator: The value of one parameter is modified. Ex: The solution {Param1 = 3;
Param2 = 2} can mute to {Param1 = 3; Param2 = 4}

Crossover operator: A cut point is randomly selected and two new solutions are built by
taking the half of each parent solution. Ex: let {Param1 = 4; Param2 = 1} and {Param1 = 2;
Param2 = 3} be two solutions. The crossover operator builds two new solutions: {Param1 =
2; Param2 = 1} and {Param1 = 4; Param2 = 3}.

v 1.7 379

GAMAdocumentation Chapter 42. Exploration Methods

Method parameters: * pop_dim: size of the population (number of individual solutions) *
crossover_prob: crossover probability between two individual solutions * mutation_prob:
mutation probability for an individual solution * nb_prelim_gen: number of random popu-
lations used to build the initial population * max_gen: number of generations� �
experiment Batch type: batch repeat: 2 keep_seed: true until: (

food_gathered = food_placed) or (time > 400) {
parameter 'Evaporation:' var: evaporation_rate among: [0.1 ,
0.2 , 0.5 , 0.8 , 1.0] unit: 'rate every cycle (1.0 means

100%)';
parameter 'Diffusion:' var: diffusion_rate min: 0.1 max: 1.0

unit: 'rate every cycle (1.0 means 100%)' step: 0.3;
method genetic maximize: food_gathered pop_dim: 5

crossover_prob: 0.7 mutation_prob: 0.1 nb_prelim_gen: 1
max_gen: 20;

}� �

v 1.7 380

GAMAdocumentation Chapter 42. Exploration Methods

Optimizing Models

Now you are becoming more comfortable with GAML, it is time to think about how the run-
time works, to be able to run some more optimized models. Indeed, if you already tried to
write some models by yourself using GAML, you could have notice that the execution time
depends a lot of how you implemented your model !

We will first present you in this part some runtime concepts (and present you the species
facet scheduler), and we will then show you some tips to optimize yourmodels (how to
increase performances using scheduler, grids, displays and how to choose your operators).

v 1.7 381

GAMAdocumentation Chapter 42. Exploration Methods

v 1.7 382

Chapter 43

Runtime Concepts

When a model is being simulated, a number of algorithms are applied, for instance to deter-
mine the order in which to run the different agents, or the order in which the initialization
of agents is performed, etc. This section details some of them, which can be important when
building models and understanding how they will be effectively simulated.

Table of contents

• Simulation initialization
• Agents Creation
• Agents Step
• Schedule Agents

Simulation initialization

Once the user launches an experiment, GAMAstarts the initialization of the simulation. First
it creates a world agent.

It initializes all its attributes with their init values. This includes its shape (that will be used
as environment of the simulation).

If a species of type grid exists in the model, agents of species are created.

383

GAMAdocumentation Chapter 43. Runtime Concepts

Finally the init statement is executed. It should include the creation of all the other agents
of regular species of the simulation. After their creation and initialization, they are added in
the list members the world (that contains all the micro-agent of the world).

Agents Creation

Except grid agents, other agents are created using the create statement. It is used to allo-
cate memory for each agent and to initialize all its attributes.

If no explicit initialization exists for an attribute, it will get the default value corresponding
to its type.

The initialization of an attribute canbe located at several places in the code; they are executed
in the following order (which means that, if several ways are used, the attribute will finally
have the value of the last applied one): * using the from: facet of the create statement; * in
the embedded block of the create statement; * in the attribute declaration, using the init
facet; * in the init block of the species.

Agents Step

When an agent is asked to step, it means that it is expected to update its variables, run its
behaviors and then step its micro-agents (if any).� �
step of agent agent_a

{
species_a <- agent_a.species
architecture_a <- species_a.architecture
ask architecture_a to step agent_a {

ask agent_a to update species_a.variables
ask agent_a to run architecture_a.behaviors

}

ask each micro-population mp of agent_a to step {
list<agent> sub-agents <- mp.

compute_agents_to_schedule
ask each agent_b of sub-agents to step //… recursive

call...
}

v 1.7 384

GAMAdocumentation Chapter 43. Runtime Concepts

}� �

Schedule Agents

The global scheduling of agents is then simply the application of this previous step to the
experiment agent, keeping in mind that this agent has only one micro-population (of sim-
ulation agents, each instance of the model species), and that the simulation(s) inside this
population contain(s), in turn, all the “regular” populations of agents of the model.

To influence this schedule, then, one possible way is to change the way populations com-
pute their lists of agents to schedule, which can be done in a model by providing custom
definitions to the “schedules:” facet of one or several species.

A practical application of this facet is to reduce simulation artifacts created by the default
scheduling of populations, which is sequential (i.e. their agents are executed in turn in their
order of creation). To enable a pseudo-parallel scheduling based on a random scheduling
recomputed at each step, one has simply to define the corresponding species like in the fol-
lowing example:� �
species A schedules: shuffle(A) …{}� �
Moving further, it is possible to enable a completely random scheduling that will eliminate
the sequential scheduling of populations:� �
global schedules: [world] + shuffle(A + B + C) …{}

species A schedules: [] …{}
species B schedules: [] …{}
species C schedules: [] …{}� �
It is important to (1) explicitly invoke the scheduling of the world (although it doesn’t have
to be the first); (2) suppress the population-based scheduling to avoid having agent being
scheduled 2 times (one time in the custom definition, one time by their population).

Other schemes are possible. For instance, the following definition will completely suppress
the default schedulingmechanism to replace it with a custom scheduler that will execute the
world, then all agents of species A in a random way and then all agents of species B in their
order of creation:

v 1.7 385

GAMAdocumentation Chapter 43. Runtime Concepts

� �
global schedules: [world] + shuffle(A) + B …{} // explicit

scheduling in the world

species A schedules [];

species B schedules: [];� �
Complex conditions can be used to express which agents need to be scheduled each step.
For instance, in the following definition, only agents of A that return true to a particular
condition are scheduled:� �
species A schedules: A where each.can_be_scheduled() {

bool can_be_scheduled() {
…
returns true_or_false;

}
}� �
Be aware that enabling a custom scheduling can potentially end up in non-functional simu-
lations. For example, the following definitions will result in a simulation that will never be
executed:� �
global schedules: [] {}; // the world is NEVER scheduled

species my_scheduler schedules: [world] ; // so its micro-species
'my_scheduler ' is NOT scheduled either.� �

and this one will result in an infinite loop (which will trigger a stack overflow at some
point):� �
global {} // The world is normally scheduled...

species my_scheduler schedules: [world]; // … but schedules
itself again as a consequence of scheduling the micro-species
'my_scheduler '� �

v 1.7 386

Chapter 44

Optimizing Models

This page aims at presenting some tips to optimize the memory footprint or the execution
time of a model in GAMA.

Note: since GAMA 1.6.1, some optimizations have become obsolete because they have been
included in the compiler. They have, then, been removed from this page. For instance, writ-
ing ‘rgb(0,0,0)’ is now compiled directly as ‘°black’.

Table of contents

• machine_time
• Scheduling
• Grid

– Optimization Facets

* use_regular_agents
* use_individual_shapes

• Operators

– List operators

* first_with
* where / count

– Spatial operators

* container of agents in closest_to, at_distance, overlapping, inside

387

GAMAdocumentation Chapter 44. Optimizing Models

* Accelerate with a first spatial filtering

• Displays

– shape
– circle vs square / sphere vs cube
– OpenGL refresh facets

machine_time

In order to optimize a model, it is important to exactly know which part of the model take
times. The simplest to do that is to use the machine_time built-in global variable that
gives the current time in milliseconds. Then to compute the time taken by a statement, a
possible way is to write:� �
float t <- machine_time;
// here a block of instructions that you consider as "critical"
// ...
write "duration of the last instructions: " + (machine_time - t);� �
Scheduling

If you have a species of agents that, once created, are not supposed to do anything more
(i.e. no behavior, no reflex, their actions triggered by other agents, their attributes being
simply read and written by other agents), such as a “data” grid, or agents representing a
“background” (from a shape file, etc.), consider using the schedules: [] facet on the defi-
nition of their species. This trick allows to tell GAMA to not schedule any of these agents.� �
grid my_grid height: 100 width: 100 schedules: []
{

...
}� �
The schedules: facet is dynamically computed (even if the agents are not scheduled), so, if
you happen to define agents that only need to be scheduled every x cycles, or depending on
a condition, you can also write schedules: to implement this. For instance, the following
species will see its instances scheduled every 10 steps and only if a certain condition is met:

v 1.7 388

GAMAdocumentation Chapter 44. Optimizing Models

� �
species my_species schedules: (every 10) ? (condition ?

my_species : []) : []
{

…
}� �
In the same way, modelers can use the frequency facet to define when the agents of a species
are going to be activated. By setting this facet to 0, the agents are never activated.� �
species my_species frequency: 0
{

...
}� �
Grid

Optimization Facets

In this section, we present some facets that allow to optimize the use of grid (in particular in
terms of memories). Note that all these facet can be combined (see the Life model from the
Models library).

use_regular_agents

If false, then a special class of agents is used. This special class of agents used less memories
but has some limitation: the agents cannot inherit from a “normal” species, they cannot have
sub-populations, their name cannot be modified, etc.� �
grid cell width: 50 height: 50 use_regular_agents: false ;� �
use_individual_shapes

If false, then only one geometry is used for all agents. This facet allows to gain a lot of mem-
ory, but should not be used if the geometries of the agents are often activated (for instance,
by an aspect).

v 1.7 389

GAMAdocumentation Chapter 44. Optimizing Models

� �
grid cell width: 50 height: 50 use_individual_shapes: false ;� �

Operators

List operators

first_with

It is sometimes necessary to randomly select an element of a list that verifies a certain con-
dition. Many modelers use the one_of and thewhere operators to do this:� �
bug one_big_bug <- one_of (bug where (each.size > 10));� �
Whereas it is often more optimized to use the shuffle operator to shuffle the list, then the
first_with operator to select the first element that verifies the condition:� �
bug one_big_bug <- shuffle(bug) first_with (each.size > 10);� �

where / count

It is quite common to want to count the number of elements of a list or a container that verify
a condition. The obvious to do it is :� �
int n <- length(my_container where (each.size > 10));� �
This will however create an intermediary list before counting it, and this operation can be
time consuming if the number of elements is important. To alleviate this problem, GAMA
includes an operator called count that will count the elements that verify the condition by
iterating directly on the container (no useless list created) :� �
int n <- my_container count (each.size > 10);� �
v 1.7 390

GAMAdocumentation Chapter 44. Optimizing Models

Spatial operators

container of agents in closest_to, at_distance, overlapping, inside

Several spatial query operators (such as closest_to, at_distance, overlapping or in-
side) allow to restrict the agents being queried to a container of agents. For instance, one
can write:� �
agent closest_agent <- a_container_containing_agents closest_to

self;� �
This expression is formally equivalent to :� �
agent closest_agent <- a_container_containing_agent with_min_of (

each distance_to self);� �
But it is much faster if your container is large, as it will query the agents using a spatial
index (instead of browsing through the whole container). Note that in some cases, when you
have a small number of agents, the first syntax will be faster. The same applies for the other
operators.

Now consider a very common case: you need to restrict the agents being queried, not to a
container, but to a species (which, actually, acts as a container in most cases). For instance,
you want to know which predator is the closest to the current agent. If we apply the pattern
above, we would write:� �
predator closest_predator <- predator with_min_of (each

distance_to self);� �
or� �
predator closest_predator <- list(predator) closest_to self;� �
But these two operators can be painfully slow if your species has many instances (even in
the second form). In that case, always prefer using directly the species as the left member:� �
predator closest_ predator <- predator closest_to self;� �
Not only is the syntax clearer, but the speed gain can be phenomenal because, in that case,
the list of instances is not used (we just check if the agent is an instance of the left species).

However, what happens if one wants to query instances belonging to 2 or more species ? If
we follow our reasoning, the immediate way to write it would be (if predator 1 and predator
2 are two species):

v 1.7 391

GAMAdocumentation Chapter 44. Optimizing Models

� �
agent closest_agent <- (list(predator1) + list(predator2))

closest_to self;� �
or, more simply:� �
agent closest_agent <- (predator1 + predator2) closest_to self;� �
The first syntax suffers from the same problem than the previous syntax: GAMA has to
browse through the list (created by the concatenation of the species populations) to filter
agents. The solution, then, is again to use directly the species, as GAMA is clever enough to
create a temporary “fake” population out of the concatenation of several species, which can
be used exactly like a list of agents, but provides the advantages of a species population (no
iteration made during filtering).

Accelerate closest_to with a first spatial filtering

The closest_to operator can sometimes be slow if numerous agents are concerned by this
query. If the modeler is just interested by a small subset of agents, it is possible to apply a
first spatial filtering on the agent list by using the at_distance operator. For example, if
the modeler wants first to do a spatial filtering of 10m:� �
agent closest_agent <- (predator1 at_distance 10) closest_to self

;� �
To be sure to find an agent, the modeler can use a test statement:� �
agent closest_agent <- (predator1 at_distance 10) closest_to self

;
if (closest_agent = nil) {closest_agent <- predator1 closest_to

self;}� �
Displays

shape

It is quite common to want to display an agent as a circle or a square. A common mistake is
to mix up the shape to draw and the geometry of the agent in the model. If the modeler just

v 1.7 392

GAMAdocumentation Chapter 44. Optimizing Models

wants to display a particular shape, he/she should not modify the agent geometry (which is
a point by default), but just specify the shape to draw in the agent aspect.� �
species bug {

int size <- rnd(100);

aspect circle {
draw circle(2) color: °blue;

}
}� �
circle vs square / sphere vs cube

Note that in OpenGL and Java2D (the two rendering subsystems used in GAMA), creating
and drawing a circle geometry is more time consuming than creating and drawing a square
(or a rectangle). In the same way, drawing a sphere is more time consuming than drawing
a cube. Hence, if you want to optimize your model displays and if the rendering does not
explicitly need “rounded” agents, try to use squares/cubes rather than circles/spheres.

OpenGL refresh facets

In OpenGL display, it is possible to specify that it is not necessary to refresh a layer with the
facet refresh. If a species of agents is never modified in terms of visualization (location,
shape or color), you can set refresh to false. Example:� �
display city_display_opengl type: opengl{

species building aspect: base refresh: false;
species road aspect: base refresh: false;
species people aspect: base;

}� �

v 1.7 393

GAMAdocumentation Chapter 44. Optimizing Models

Multi-ParadigmModeling

Multi-paradigmmodeling is a research field focused on how to define a model semantically.
From the beginning of this step by step tutorial, our approach is based on behavior (or reflex),
for each agents. In this part, we will see that GAMA provides other ways to implement your

v 1.7 394

GAMAdocumentation Chapter 44. Optimizing Models

model, using several control architectures. Sometime, it will be easier to implement your
models choosing other paradigms.

In a first part, we will see how to use some control architectures which already exist
in GAML, such as finite state machine architecture, task based architecture or user control
architecture. In a second part, we will see an other approach, a math approach, through
equations.

v 1.7 395

GAMAdocumentation Chapter 44. Optimizing Models

v 1.7 396

Chapter 45

Control Architectures

GAMA allows to attach built-in control architecture to agents.

These control architectures will give the possibility to the modeler to use for a species a spe-
cific control architecture in addition to the common behavior structure. Note that only one
control architecture can be used per species.

The attachment of a control architecture to a species is done through the facets control.

For example, the given code allows to attach the fsm control architecture to the dummy
species.� �
species dummy control: fsm {
}� �
GAMA integrates several agent control architectures that can be used in addition to the com-
mon behavior structure:

• fsm: finite state machine based behavior model. During its life cycle, the agent can be
in several states. At any given time step, it is in one single state. Such an agent needs
to have one initial state (the state in which it will be at its initialization)

• weighted_tasks: task-based control architecture. At any given time, only the task only
the task with the maximal weight is executed.

• sorted_tasks: task-based control architecture. At any given time, the tasks are all
executed in the order specified by their weights (highest first).

• probabilistic_tasks: task-based control architecture. This architecture uses the
weights as a support for making a weighted probabilistic choice among the different
tasks. If all tasks have the same weight, one is randomly chosen at each step.

397

GAMAdocumentation Chapter 45. Control Architectures

• user_only: allows users to take control over an agent during the course of the simula-
tion. With this architecture, only the user control the agents (no reflexes).

• user_first: allows users to take control over an agent during the course of the simula-
tion. With this architecture, the user actions are executed before the agent reflexes.

• user_last: allows users to take control over an agent during the course of the simula-
tion. With this architecture, the user actions are executed after the agent reflexes.

Index

• Finite State Machine
• Declaration
• State
• Task Based
• Declaration
• Task
• User Control Architecture
• user_only, user_first, user_last
• user_panel
• user_controlled
• Other Control Architectures

Finite State Machine

FSM (Finite State Machine) is a finite state machine based behavior model. During its
life cycle, the agent can be in several states. At any given time step, it is in one single state.
Such an agent needs to have one initial state (the state in which it will be at its initialization).

At each time step, the agent will:

• first (only if he just entered in its current state) execute statement embedded in the
enter statement,

• then all the statements in the state statement
• it will evaluate the condition of each embedded transition statements. If one condition
is fulfilled, the agent execute the embedded statements

Note that an agent executes only one state at each step.

v 1.7 398

GAMAdocumentation Chapter 45. Control Architectures

Declaration

Using the FSM architecture for a species require to use the control facet:� �
species dummy control: fsm {

...
}� �
State

Attributes

• initial: a boolean expression, indicates the initial state of agent.
• final: a boolean expression, indicates the final state of agent.

Sub Statements

• enter: a sequence of statements to execute upon entering the state.
• exit: a sequence of statements to execute right before exiting the state. Note that the
exit statement will be executed even if the fired transition points to the same state
(the FSMarchitecture inGAMAdoes not implement ‘internal transitions’ like the ones
found in UML state charts: all transitions, even “self-transitions”, follow the same
rules).

• transition: allows to define a condition that, when evaluated to true, will designate the
next state of the life cycle. Note that the evaluation of transitions is short-circuited: the
first one that evaluates to true, in the order in which they have been defined, will be
followed. I.e., if two transitions evaluate to true during the same time step, only the
first one will be triggered.

Things worth to be mentioned regarding these sub-statements:

• Obviously, only one definition of exit and enter is accepted in a given state
• Transition statements written in the middle of the state statements will only be evalu-
ated at the end, so, even if it evaluates to true, the remaining of the statements found
after the definition of the transition will be nevertheless executed. So, despite the ap-
pearance, a transition written somewhere in the sequence will “not stop” the state at
that point (but only at the end).

v 1.7 399

GAMAdocumentation Chapter 45. Control Architectures

Definition

A state can contain several statements that will be executed, at each time step, by the agent.
There are three exceptions to this rule:

1. statements enclosed in enter will only be executed when the state is entered (after a
transition, or because it is the initial state).

2. Those enclosed in exitwill be executed when leaving the state as a result of a success-
ful transition (and before the statements enclosed in the transition).

3. Those enclosed in a transition will be executed when performing this transition (but
after the exit sequence has been executed).

For example, consider the following example:� �
species dummy control: fsm {

state state1 initial: true {
write string(cycle) + ":" + name + "->" + "state1";
transition to: state2 when: flip(0.5) {

write string(cycle) + ":" + name + "->" + "transition
to state1";

}
transition to: state3 when: flip(0.2) ;

}

state state2 {
write string(cycle) + ":" + name + "->" + "state2";
transition to: state1 when: flip(0.5) {

write string(cycle) + ":" + name + "->" + "transition
to state1";

}
exit {

write string(cycle) + ":" + name + "->" + "leave
state2";

}
}

state state3 {
write string(cycle) + ":" + name + "->" + "state3";
transition to: state1 when: flip(0.5) {

write string(cycle) + ":" + name + "->" + "transition
to state1";

v 1.7 400

GAMAdocumentation Chapter 45. Control Architectures

}
transition to: state2 when: flip(0.2) ;

}
}� �
the dummy agents start at state1. At each simulation step they have a probability of 0.5 to
change their state to state2. If they do not change their state to state2, they have a proba-
bility of 0.2 to change their state to state3. In state2, at each simulation step, they have a
probability of 0.5 to change their state to state1. At last, in step3, at each simulation step
they have a probability of 0.5 to change their state to state1. If they do not change their state
to state1, they have a probability of 0.2 to change their state to state2.

Here a possible result that can be obtained with one dummy agent:� �
0:dummy0->state1
0:dummy0->transition to state1
1:dummy0->state2
2:dummy0->state2
2:dummy0->leave state2
2:dummy0->transition to state1
3:dummy0->state1
3:dummy0->transition to state1
4:dummy0->state2
5:dummy0->state2
5:dummy0->leave state2
5:dummy0->transition to state1
6:dummy0->state1
7:dummy0->state3
8:dummy0->state2� �
Task Based

GAMA integrated several task-based control architectures. Species can define any number
of taskswithin their body. At any given time, only one or several tasks are executed according
to the architecture chosen:

• weighted_tasks : in this architecture, only the task with the maximal weight is exe-
cuted.

v 1.7 401

GAMAdocumentation Chapter 45. Control Architectures

• sorted_tasks : in this architecture, the tasks are all executed in the order specified
by their weights (biggest first)

• probabilistic_tasks: this architecture uses the weights as a support for making a
weighted probabilistic choice among the different tasks. If all tasks have the same
weight, one is randomly chosen each step.

Declaration

Using the Task architectures for a species require to use the control facet:� �
species dummy control: weighted_tasks {

...
}� �� �
species dummy control: sorted_tasks {

...
}� �� �
species dummy control: probabilistic_tasks {

...
}� �
Task

Sub elements

Besides a sequence of statements like reflex, a task contains the following sub elements: *
weight: Mandatory. The priority level of the task.

Definition

As reflex, a task is a sequence of statements that can be executed, at each time step, by the
agent. If an agent owns several tasks, the scheduler chooses a task to execute based on its
current priority weight value.

For example, consider the following example:

v 1.7 402

GAMAdocumentation Chapter 45. Control Architectures

� �
species dummy control: weighted_tasks {

task task1 weight: cycle mod 3 {
write string(cycle) + ":" + name + "->" + "task1";

}
task task2 weight: 2 {

write string(cycle) + ":" + name + "->" + "task2";
}

}� �
As the weighted_tasks control architecture was chosen, at each simulation step, the
dummy agents execute only the task with the highest behavior. Thus, when cycle modulo
3 is higher to 2, task1 is executed; when cycle modulo 3 is lower than 2, task2 is executed. In
case when cycle modulo 3 is equal 2 (at cycle 2, 5, …), the only the first task defined (here
task1) is executed.

Here the result obtained with one dummy agent:� �
0:dummy0->task2
1:dummy0->task2
2:dummy0->task1
3:dummy0->task2
4:dummy0->task2
5:dummy0->task1
6:dummy0->task2� �

User Control Architecture

user_only, user_first, user_last

A specific type of control architecture has been introduced to allow users to take control
over an agent during the course of the simulation. It can be invoked using three different
keywords: user_only, user_first, user_last.� �
species user control: user_only {

...
}� �
v 1.7 403

GAMAdocumentation Chapter 45. Control Architectures

If the control chosen is user_first, it means that the user controlled panel is opened first,
and then the agent has a chance to run its “own” behaviors (reflexes, essentially, or “init” in
the case of a “user_init” panel). If the control chosen is user_last, it is the contrary.

user_panel

This control architecture is a specialization of the Finite State Machine Architecture where
the “behaviors” of agents can be defined by using new constructs called user_panel (and one
user_init), mixed with “states” or “reflexes”. This user_panel translates, in the interface,
in a semi-modal view that awaits the user to choose action buttons, change attributes of
the controlled agent, etc. Each user_panel, like a state in FSM, can have a enter and exit
sections, but it is only defined in terms of a set of user_commandswhich describe the different
action buttons present in the panel.

user_commands can also accept inputs, in order to create more interesting commands for
the user. This uses the user_input statement (and not operator), which is basically the same
as a temporary variable declaration whose value is asked to the user. Example:

As user_panel is a specialization of state, themodeler has the possibility to describe several
panels and choose the one to open depending on some condition, using the same syntax than
for finite state machines : * either adding transitions to the user_panels, * or setting the
state attribute to a new value, from inside or from another agent.

This ensures a great flexibility for the design of the user interface proposed to the user, as it
can be adapted to the different stages of the simulation, etc…

Follows a simple example, where, every 10 steps, and depending on the value of an attribute
called “advanced”, either the basic or the advanced panel is proposed.� �
species user control:user_only {

user_panel default initial: true {
transition to: "Basic Control" when: every (10) and !

advanced_user_control;
transition to: "Advanced Control" when: every(10) and

advanced_user_control;
}

user_panel "Basic Control" {
user_command "Kill one cell" {

ask (one_of(cell)){
do die;

v 1.7 404

GAMAdocumentation Chapter 45. Control Architectures

}
}
user_command "Create one cell" {

create cell ;
}
transition to: default when: true;

}
user_panel "Advanced Control" {

user_command "Kill cells" {
user_input "Number" returns: number type: int <- 10;
ask (number among cell){

do die;
}

}
user_command "Create cells" {

user_input "Number" returns: number type: int <- 10;
create cell number: number ;

}
transition to: default when: true;

}
}� �
The panel marked with the “initial: true” facet will be the one run first when the agent is
supposed to run. If none is marked, the first panel (in their definition order) is chosen.

A special panel called user_init will be invoked only once when initializing the agent if it
is defined. If no panel is described or if all panels are empty (i.e. no user_commands), the
control view is never invoked. If the control is said to be “user_only”, the agent will then not
run any of its behaviors.

user_controlled

Finally, each agent provided with this architecture inherits a boolean attribute called
user_controlled. If this attribute becomes false, no panels will be displayed and the agent
will run “normally” unless its species is defined with a user_only control. //: # (endCon-
cept|user_control_architecture)

v 1.7 405

GAMAdocumentation Chapter 45. Control Architectures

Other Control Architectures

Some other control architectures are available in additional plugins. For instance, BDI (Be-
lief, desire, intention) architecture is available. Feel free to read about it if you want to learn
more.

You need some other control architectures for your model ? Feel free to make your sug-
gestion to the team of developer through the mailing list. Remember also that GAMA is an
open-source platform, you can design your own control architecture easily. Go to the section
Community/contribute if you want to jump into coding !

v 1.7 406

https://groups.google.com/forum/#!forum/gama-platform

Chapter 46

Using Equations

Introduction

ODEs (Ordinary Differential Equations) are often used in ecology or in epidemiology to de-
scribe the macroscopic evolution over time of a population. Generally the whole population
is split into several compartments. The state of the population is described by the number
of individuals in each compartment. Each equation of the ODE system describes the evo-
lution of the number of individual in a compartment. In such an approach individuals are
not taken into account individually, with own features and behaviors. In contrary they are
aggregated in a compartment and reduced to a number.

A classical example is the SIR epidemic model representing the spreading of a disease in a
population. The population is split into 3 compartments: S (Susceptible), I (Infected), R
(Recovered). (see below for the equation)

In general the ODE systems cannot be analytically solved, i.e. it is not possible to find the
equation describing the evolution of the number of S, I or R. But these systems can be numer-
ically integrated in order to get the evolution. A numerical integration computes step after
step the value of S, I and R. Several integration methods exist (e.g. Euler, Runge-Kutta…),
each of them being a compromise between accuracy and computation time. The length of
the integration step has also a huge impact on precision. These models are deterministic.

This approachmakes a lot of strong hypotheses. Themodel does not take into account space.
The population is considered has infinite and homogeneously mixed, so that any agent can
interact with any other one.

407

GAMAdocumentation Chapter 46. Using Equations

Example of a SIR model

In the SIRmodel, the population is split into 3 compartments: S (Susceptible), I (Infected), R
(Recovered). This can be represented by the following Forrester diagram: boxes represent
stocks (i.e. compartments) and arrows are flows. Arrows hold the rate of a compartment
population flowing to another compartment.

Figure 46.1: SIR-compartment.png

The corresponding ODE system contains one equation per stock. For example, the I com-
partment evolution is influenced by an inner (so positive) flow from the S compartment and
an outer (so negative) flow to the R compartment.

Figure 46.2: SIR-equations.png

Integrating this system using the Runge-Kutta 4 method provides the evolution of S, I and
R over time. The initial values are: * S = 499 * I = 1 * R = 0 * beta = 0.4 * gamma = 0.1 * h
= 0.1

v 1.7 408

GAMAdocumentation Chapter 46. Using Equations

Figure 46.3: SIR-result.png

Why and when can we use ODE in agent-based models
?

These hypotheses are very strong and cannot be fulfilled in agent-based models.

But in some multi-scale models, some entities can be close. For example if we want to im-
plement a model describing the worldwide epidemic spread and the impact of air traffic on
it, we cannot simulate the 7 billions people. But we can represent only cities with airports
and airplanes as agents. In this case, cities are entities with a population of millions inhab-
itants, that will not been spatially located. As we are only interested in the disease spread,
we are only interested in the number of infected people in the cities (and susceptibles and
recovered too). As a consequence, it appears particularly relevant to describe the evolution
of the disease in the city using a ODE system.

In addition these models have the advantage to not be sensible to population size in the
integration process. Dozens or billions people does not bring a computation time increase,
contrarily to agent-based models.

Use of ODE in a GAMLmodel

A stereotypical use of ODE in a GAMA agent-based model is to describe species where some
agents attributes evolution is described using an ODE system.

As a consequence, the GAML language has been increased by two main concepts (as two
statements): * equations can be written with the equation statement. An equation block

v 1.7 409

GAMAdocumentation Chapter 46. Using Equations

is composed of a set of diff statement describing the evolution of species attributes. * an
equation can be numerically integrated using the solve statement

equation

Defining an ODE system

Defining a new ODE system needs to define a new equation block in a species. As example,
the following eqSI system describes the evolution of a population with 2 compartments (S
and I) and the flow from S to I compartment:� �
species userSI {

float t ;
float I ;
float S ;
int N ;
float beta<-0.4 ;
float h ;

equation eqSI {
diff(S,t) = -beta * S * I / N ;
diff(I,t) = beta * S * I / N ;

}
}� �
This equation has to be defined in a specieswith t, S and I attributes. beta (and other similar
parameters) can be defined either in the specific species (if it is specific to each agents) or in
the global if it is a constant.

Note: the t attribute will be automatically updated using the solve statement ; it contains
the time elapsed in the equation integration.

Using a built-in ODE system

In order to ease the use of very classical ODE system, some built-in systems have been im-
plemented in GAMA. For example, the previous SI system can be written as follows. Three
additional facets are used to define the system: * type: the identifier of the built-in system
(here SI) (the list of all built-in systems are described below), * vars: this facet is expecting a

v 1.7 410

GAMAdocumentation Chapter 46. Using Equations

list of variables of the species, that will bematchedwith the variables of the system, * params:
this facet is expecting a list of variables of the species (of of the global), that will be matched
with the parameters of the system.� �
equation eqBuiltInSI type: SI vars: [S,I,t] params: [N,beta] ;� �
Split a system into several agents

An equation system can be split into several species and each part of the system are synchro-
nized using the simultaneously facet of equation. The system split into several agents
can be integrated using a single call to the solve statement. Notice that all the equation
definition must have the same name.

For example the SI system presented above can be defined in two different species S_agt
(containing the equation defining the evolution of the S value) and I_agt (containing the
equation defining the evolution of the I value). These two equations are linked using the
simultaneously facet of the equation statement. This facet expects a set of agents. The
integration is called only once in a simulation step, e.g. in the S_agt agent.� �
species S_agt {

float t ;
float Ssize ;

equation evol simultaneously: [I_agt] {
diff(Ssize, t) = (- sum(I_agt accumulate [each.beta *

each.Isize]) * self.Ssize / N);
}

reflex solving {solve evol method : rk4 step : hKR4 ;}
}

species I_agt {
float t ;
float Isize ; // number of infected
float beta ;

equation evol simultaneously : [S_agt] {
diff(Isize, t) = (beta * first(S_agt).Ssize * Isize / N);

}
}� �
v 1.7 411

GAMAdocumentation Chapter 46. Using Equations

The interest is that the modeler can create several agents for each compartment, which dif-
ferent values. For example in the SI model, the modeler can choose to create 1 agent S_agt
and 2 agents I_agt. The beta attribute will have different values in the two agents, in order
to represent 2 different strains.� �
global {

int number_S <- 495 ; // The number of susceptible
int number_I <- 5 ; // The number of infected
int nb_I <- 2;
float gbeta <- 0.3 ; // The parameter Beta

int N <- number_S + nb_I * number_I ;
float hKR4 <- 0.1 ;

init {
create S_agt {

Ssize <- float(number_S) ;
}
create I_agt number: nb_I {

Isize <- float(number_I) ;
self.beta <- myself.gbeta + rnd(0.5) ;

}
}

}� �
The results are computed using the RK4 method with: * number_S = 495 * number_I = 5
* nb_I = 2 * gbeta = 0.3 * hKR4 = 0.1

Figure 46.4: SI-split-results.png

v 1.7 412

GAMAdocumentation Chapter 46. Using Equations

solve an equation

The solve statement has been added in order to integrate numerically the equation system.
It should be add into a reflex. At each simulation step, a step of the integration is executed,
the length of the integration step is defined in the step facet. The solve statement will
update the variables used in the equation system. The chosen integration method (defined
in method) is Runge-Kutta 4 (which is very often a good choice of integration method in
terms of accuracy).� �
reflex solving {

solve eqSI method:rk4 step:h;
}� �
With a smaller integration step, the integration will be faster but less accurate.

More details

Details about the solve statement

The solve statement can have a huge set of facets (see [S_Statements#solve] for more de-
tails). The basic use of the solve statement requiers only the equation identifier. By default,
the integration method is Runge-Kutta 4 with an integration step of 1, which means that at
each simulation step the equation integration is made over 1 unit of time (which is implicitly
defined by the system parameter value).� �
solve eqSI ;� �
2 integration methods can be used: * method: rk4 will use the Runge-Kutta 4 integration
method * method: dp853 will use the Dorman-Prince 8(5,3) integration method. The ad-
vantage of this method compared to Runge-Kutta is that it has an evaluation of the error
and can use it to adapt the integration step size.

In order to synchronize the simulation step and the equation integration step, 2 facets can
be used: * step: number * cycle_length: number

cycle_length (int): length of simulation cycle which will be synchronize with step of integra-
tor (default value: 1) step (float): integration step, usewithmost integratormethods (default
value: 1)

v 1.7 413

https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Dormand%E2%80%93Prince_method

GAMAdocumentation Chapter 46. Using Equations

time_final (float): target time for the integration (can be set to a value smaller than t0 for
backward integration) time_initial (float): initial time discretizing_step (int): number of
discret beside 2 step of simulation (default value: 0) integrated_times (list): time interval
inside integration process integrated_values (list): list of variables’s value inside integration
process

Some facets are specific to the DP853 integration methods: max_step, min_step,
scalAbsoluteTolerance and scalRelativeTolerance.

Example of the influence of the integration step

The step and cycle_length facets of the integration method may have a huge influence
on the results. step has an impact on the result accuracy. In addition, it is possible to
synchronize the step of the (agent-based) simulation and the (equation) integration step
in various ways (depending on the modeler purpose) using the cycle_length facet: e.g.
cycle_length: 10 means that 10 simulation steps are equivalent to 1 unit of time of the
integration method.

• solve SIR method: "rk4" step: 1.0 cycle_length: 1.0 ;

• solve SIR method: "rk4" step: 0.1 cycle_length: 10.0 ;

v 1.7 414

GAMAdocumentation Chapter 46. Using Equations

• solve SIR method: "rk4" step: 0.01 cycle_length: 100.0 ;

List of built-in ODE systems

Several built-in equations have been defined. #### equation eqBuiltInSI type: SI
vars: [S,I,t] params: [N,beta];

This system is equivalent to:� �
equation eqSI {

diff(S,t) = -beta * S * I / N ;
diff(I,t) = beta * S * I / N ;

}� �
The results are provided using the Runge-Kutta 4 method using following initial values: * S
= 499 * I = 1 * beta = 0.4 * h = 0.1

v 1.7 415

GAMAdocumentation Chapter 46. Using Equations

Figure 46.5: SI-compartment.png

Figure 46.6: SI-equations.png

Figure 46.7: SI-result.png

v 1.7 416

GAMAdocumentation Chapter 46. Using Equations

equation eqSIS type: SIS vars: [S,I,t] params: [N,beta,gamma];

This system is equivalent to:� �
equation eqSIS {

diff(S,t) = -beta * S * I / N + gamma * I;
diff(I,t) = beta * S * I / N - gamma * I;

}� �

Figure 46.8: SIS-compartment.png

Figure 46.9: SIS-equations.png

The results are provided using the Runge-Kutta 4 method using following initial values: * S
= 499 * I = 1 * beta = 0.4 * gamma = 0.1 * h = 0.1

equation eqSIR type:SIR vars:[S,I,R,t] params:[N,beta,gamma] ;

This system is equivalent to:� �
equation eqSIR {

diff(S,t) = (- beta * S * I / N);
diff(I,t) = (beta * S * I / N) - (gamma * I);

v 1.7 417

GAMAdocumentation Chapter 46. Using Equations

Figure 46.10: SIS-result.png

diff(R,t) = (gamma * I);
}� �

Figure 46.11: SIR-compartment.png

The results are provided using the Runge-Kutta 4 method using following initial values: * S
= 499 * I = 1 * R = 0 * beta = 0.4 * gamma = 0.1 * h = 0.1

equation eqSIRS type: SIRS vars: [S,I,R,t] params:
[N,beta,gamma,omega,mu] ;

This system is equivalent to:� �
equation eqSIRS {

diff(S,t) = mu * N + omega * R + - beta * S * I / N - mu * S
;
diff(I,t) = beta * S * I / N - gamma * I - mu * I ;

v 1.7 418

GAMAdocumentation Chapter 46. Using Equations

Figure 46.12: SIR-equations.png

Figure 46.13: SIR-result.png

v 1.7 419

GAMAdocumentation Chapter 46. Using Equations

diff(R,t) = gamma * I - omega * R - mu * R ;
}� �

Figure 46.14: SIRS-compartment.png

Figure 46.15: SIRS-equations.png

The results are provided using the Runge-Kutta 4 method using following initial values: * S
= 499 * I = 1 * R = 0 * beta = 0.4 * gamma = 0.01 * omega = 0.05 * mu = 0.01 * h = 0.1

equation eqSEIR type: SEIR vars: [S,E,I,R,t] params:
[N,beta,gamma,sigma,mu] ;

This system is equivalent to:� �
equation eqSEIR {

diff(S,t) = mu * N - beta * S * I / N - mu * S ;
diff(E,t) = beta * S * I / N - mu * E - sigma * E ;

v 1.7 420

GAMAdocumentation Chapter 46. Using Equations

Figure 46.16: SIRS-result.png

diff(I,t) = sigma * E - mu * I - gamma * I;
diff(R,t) = gamma * I - mu * R ;

}� �

Figure 46.17: SEIR-compartment.png

The results are provided using the Runge-Kutta 4 method using following initial values: * S
= 499 * E = 0 * I = 1 * R = 0 * beta = 0.4 * gamma = 0.01 * sigma = 0.05 * mu = 0.01 * h =
0.1

equation eqLV type: LV vars: [x,y,t] params: [alpha,beta,delta,gamma]
;

This system is equivalent to:� �
equation eqLV {

diff(x,t) = x * (alpha - beta * y);

v 1.7 421

GAMAdocumentation Chapter 46. Using Equations

Figure 46.18: SEIR-equations.png

Figure 46.19: SEIR-result.png

v 1.7 422

GAMAdocumentation Chapter 46. Using Equations

diff(y,t) = - y * (delta - gamma * x);
}� �

Figure 46.20: LV-equations.png

The results are provided using the Runge-Kutta 4 method using following initial values: * x
= 2 * y = 2 * alpha = 0.8 * beta = 0.3 * gamma = 0.2 * delta = 0.85 * h = 0.1

//: # (endConcept|equation)

v 1.7 423

GAMAdocumentation Chapter 46. Using Equations

Recipes

Understanding the structure of models in GAML and gaining some insight of the language
is required, but is usually not sufficient to build correct models or models that need to deal
with specific approaches (like equation-based modeling). This section is intended to pro-
vide readers with practical “how to”s on various subjects, ranging from the use of database
access to the design of agent communication languages. It is by no means exhaustive, and
will progressively be extended with more “recipes” in the future, depending on the concrete
questions asked by users.

v 1.7 424

Chapter 47

Manipulate OSM Datas

This section will be presented as a quick tutorial, showing how to proceed to manipulate
OSM (Open street map) datas, and load them into GAMA. We will use the software QGIS to
change the attributes of the OSM file.

From the website openstreetmap.org, we will chose a place (in this example, we will take a
neighborhood in New York City). Directly from the website, you can export the chosen area
in the osm format.

We have now tomanipulate the attributes for the exported osm file. Several software are pos-
sible to use, but we will focus on QGIS, which is totally free and provides a lot of possibilities
in term of manipulation of data.

Once you have installed correctly QGIS, launch QGIS Desktop, and start to import the topol-
ogy from the osm file.

A message indicates that the import was successful. An output file .osm.db is created. You
have now to export the topology to SpatiaLite.

Specify the path for your DataBase file, then choose the export type (in your case, we will
choose the type “Polygons (closed ways)”), choose an output layer name. If you want to use
the open street maps attributes values, click on “Load from DB”, and select the attributes
you want to keep. Click OK then.

A message indicates that the export was successful, and you have now a new layer created.

We will now manipulate the attributes of your datafile. Right click on the layer, and select
“Open Attribute Table”.

The table of attribute appears. Select the little pencil on the top-left corner of the window to
modify the table.

425

http://www.qgis.org/en/site/
https://www.openstreetmap.org/
http://www.qgis.org/en/site/

GAMAdocumentation Chapter 47. Manipulate OSM Datas

Figure 47.1: images/manipulate_OSM_file_1.png

We will add an attribute manually. Click on the button “new column”, choose a name and a
type (we will choose the type “text”).

A new column appears at the end of the table. Let’s fill some values (for instance blue / red).
Once you finishes, click on the “save edit” button.

Our file is now ready to be exported. Right click on the layer, and click on “Save As”.

Choose “shapefile” as format, choose a save path and click ok.

Copy passed all the .shp created in the include folder of your GAMA project. You are now
ready to write the model.� �
model HowToUseOpenStreetMap

global {
// Global variables related to the Management units
file shapeFile <- file('../includes/new_york.shp');

//definition of the environment size from the shapefile.
//Note that is possible to define it from several files by

using: geometry shape <- envelope(envelope(file1) + envelope(
file2) + ...);

v 1.7 426

GAMAdocumentation Chapter 47. Manipulate OSM Datas

Figure 47.2: images/manipulate_OSM_file_2.png

v 1.7 427

GAMAdocumentation Chapter 47. Manipulate OSM Datas

Figure 47.3: images/manipulate_OSM_file_3.png

v 1.7 428

GAMAdocumentation Chapter 47. Manipulate OSM Datas

Figure 47.4: images/manipulate_OSM_file_4.png

v 1.7 429

GAMAdocumentation Chapter 47. Manipulate OSM Datas

Figure 47.5: images/manipulate_OSM_file_5.png

v 1.7 430

GAMAdocumentation Chapter 47. Manipulate OSM Datas

Figure 47.6: images/manipulate_OSM_file_6.png

v 1.7 431

GAMAdocumentation Chapter 47. Manipulate OSM Datas

Figure 47.7: images/manipulate_OSM_file_7.png

v 1.7 432

GAMAdocumentation Chapter 47. Manipulate OSM Datas

Figure 47.8: images/manipulate_OSM_file_8.png

v 1.7 433

GAMAdocumentation Chapter 47. Manipulate OSM Datas

Figure 47.9: images/manipulate_OSM_file_9.png

v 1.7 434

GAMAdocumentation Chapter 47. Manipulate OSM Datas

Figure 47.10: images/manipulate_OSM_file_10.png

v 1.7 435

GAMAdocumentation Chapter 47. Manipulate OSM Datas

Figure 47.11: images/manipulate_OSM_file_11.png

v 1.7 436

GAMAdocumentation Chapter 47. Manipulate OSM Datas

Figure 47.12: images/manipulate_OSM_file_12.png

v 1.7 437

GAMAdocumentation Chapter 47. Manipulate OSM Datas

geometry shape <- envelope(shapeFile);

init {
//Creation of elementOfNewYork agents from the shapefile

(and reading some of the shapefile attributes)
create elementOfNewYork from: shapeFile

with: [elementId::int(read('id')), elementHeight::int
(read('height ')), elementColor::string(read('attrForGama '))] ;
}

}

species elementOfNewYork{
int elementId;
int elementHeight;
string elementColor;

aspect basic{
draw shape color: (elementColor = "blue") ? #blue : ((

elementColor = "red") ? #red : #yellow) depth: elementHeight;
}

}

experiment main type: gui {
output {

display HowToUseOpenStreetMap type:opengl {
species elementOfNewYork aspect: basic;

}
}

}� �

Here is the result, with a special colorization of the different elements regarding to the
value of the attribute “attrForGama”, and an elevation regarding to the value of the attribute
“height”.

v 1.7 438

GAMAdocumentation Chapter 47. Manipulate OSM Datas

//: # (endConcept|use_osm_datas)

v 1.7 439

GAMAdocumentation Chapter 47. Manipulate OSM Datas

v 1.7 440

Chapter 48

Implementing diffusion

GAMA provides you the possibility to represent and simulate the diffusion of a variable
through a grid topology.

Index

• Diffuse statement
• Diffusion with matrix
• Diffusion matrix
• Gradient matrix
• Compute multiple propagations at the same step
• Executing several diffusion matrix
• Diffusion with parameters
• Computation methods
• Convolution
• Dot Product
• Use mask
• Generalities
• Tips
• Pseudo code

441

GAMAdocumentation Chapter 48. Implementing diffusion

Diffuse statement

The statement to use for the diffusion is diffuse. It has to be used in a grid species. The
diffuse uses the following facets:

• var (an identifier), (omissible) : the variable to be diffused

• on (any type in [container, species]): the list of agents (in general cells of a grid), on
which the diffusion will occur

• avoid_mask (boolean): if true, the value will not be diffused in the masked cells, but
will be restitute to the neighboring cells, multiplied by the variation value (no signal
lost). If false, the value will be diffused in the masked cells, but masked cells won’t
diffuse the value afterward (lost of signal). (default value : false)

• cycle_length (int): the number of diffusion operation applied in one simulation step
• mask (matrix): a matrix masking the diffusion (matrix created from a image for exam-
ple). The cells corresponding to the values smaller than “-1” in the mask matrix will
not diffuse, and the other will diffuse.

• matrix (matrix): the diffusion matrix (“kernel” or “filter” in image processing). Can
have any size, as long as dimensions are odd values.

• method (an identifier), takes values in: {convolution, dot_product}: the diffusion
method

• min_value (float): if a value is smaller than this value, it will not be diffused. By
default, this value is equal to 0.0. This value cannot be smaller than 0.

• propagation (a label), takes values in: {diffusion, gradient}: represents both the way
the signal is propagated and the way to treat multiple propagation of the same signal
occurring at once from different places. If propagation equals ‘diffusion’, the intensity
of a signal is shared between its neighbors with respect to ‘proportion’, ‘variation’ and
the number of neighbours of the environment places (4, 6 or 8). I.e., for a given signal
S propagated from place P, the value transmitted to its N neighbors is : S’ = (S / N
/ proportion) - variation. The intensity of S is then diminished by S * proportion on
P. In a diffusion, the different signals of the same name see their intensities added to
each other on each place. If propagation equals ‘gradient’, the original intensity is not
modified, and each neighbors receives the intensity : S / proportion - variation. If
multiple propagation occur at once, only the maximum intensity is kept on each place.
If ‘propagation’ is not defined, it is assumed that it is equal to ‘diffusion’.

• proportion (float): a diffusion rate
• radius (int): a diffusion radius (in number of cells from the center)
• variation (float): an absolute value to decrease at each neighbors

v 1.7 442

GAMAdocumentation Chapter 48. Implementing diffusion

To write a diffusion, you first have to declare a grid, and declare a special attribute for the
diffusion. You will then have to write the diffuse statement in an other scope (such as the
global scope for instance), which will permit the values to be diffused at each step. There,
you will specify which variable you want to diffuse (through the var facet), on which species
or list of agents you want the diffusion (through the on facet), and how you want this value
to be diffused (through all the other facets, we will see how it works with matrix and with
special parameters just after).

Here is the template of code we will use for the next following part of this page:� �
global {

int size <- 64; // the size has to be a power of 2.
cells selected_cells;

// Initialize the emiter cell as the cell at the center of
the word
init {

selected_cells <- location as cells;
}
// Affecting "1" to each step
reflex new_Value {

ask(selected_cells){
phero <- 1.0;

}
}

reflex diff {
// Declare a diffusion on the grid "cells" and on "

quick_cells". The diffusion declared on "quick_cells" will
make 10 computations at each step to accelerate the process.

// The value of the diffusion will be store in the new
variable "phero" of the cell.

diffuse var: phero on: cells /*HERE WRITE DOWN THE
DIFFUSION PROPERTIES*/;
}

}

grid cells height: size width: size {
// "phero" is the variable storing the value of the diffusion
float phero <- 0.0;

v 1.7 443

GAMAdocumentation Chapter 48. Implementing diffusion

// The color of the cell is linked to the value of "phero".
rgb color <- hsb(phero ,1.0,1.0) update: hsb(phero ,1.0,1.0);

}

experiment diffusion type: gui {
output {

display a type: opengl {
// Display the grid with elevation
grid cells elevation: phero * 10 triangulation: true;

}
}

}� �
This model will simulate a diffusion through a grid at each step, affecting 1 to the center cell
diffusing variable value. The diffusion will be seen during the simulation through a color
code, and through the elevation of the cell.

Diffusion with matrix

A first way of specifying the behavior of your diffusion is using diffusion matrix. A diffusion
matrix is a 2 dimension matrix [n][m] with float values, where both n and m have to be
pair values. The most often, diffusion matrix are square matrix, but you can also declare
rectangular matrix.

Example of matrix:� �
matrix<float> mat_diff <- matrix([

[1/9,1/9,1/9],
[1/9,1/9,1/9],
[1/9,1/9,1/9]]);� �

In the diffuse statement, you than have to specify the matrix of diffusion you want in the
facet matrix.� �
diffuse var: phero on: cells matrix:mat_diff;� �
Using the facet propagation, you can specify if you want the value to be propagated as a
diffusion or as a gratient.

v 1.7 444

GAMAdocumentation Chapter 48. Implementing diffusion

Diffusion matrix

A diffusion (the default value of the facet propagation) will spread the values to the neigh-
bors cells according to the diffusion matrix, and all those values will be added together, as it
is the case in the following example :

Figure 48.1: resources/images/recipes/diffusion_computation.png

Note that the sum of all the values diffused at the next step is equal to the sum of the values
that will be diffused multiply by the sum of the values of the diffusion matrix. That means
that if the sum of the values of your diffusion matrix is larger than 1, the values will increase
exponentially at each step. The sum of the value of a diffusion matrix is usually equal to 1.

Here are some example of matrix you can use, played with the template model:

Gradient matrix

A gradient (use facet : propagation:gradient) is an other type of propagation. This time,
only the larger value diffused will be chosen as the new one.

Note that unlike the diffusion propagation, the sum of yourmatrix can be greater than 1 (and
it is the case, most often !).

Here are some example of matrix with gradient propagation:

v 1.7 445

GAMAdocumentation Chapter 48. Implementing diffusion

Figure 48.2: resources/images/recipes/uniform_diffusion.png

Figure 48.3: resources/images/recipes/anisotropic_diffusion.png

v 1.7 446

GAMAdocumentation Chapter 48. Implementing diffusion

Figure 48.4: resources/images/recipes/gradient_computation.png

Figure 48.5: resources/images/recipes/uniform_gradient.png

v 1.7 447

GAMAdocumentation Chapter 48. Implementing diffusion

Figure 48.6: resources/images/recipes/irregular_gradient.png

Compute multiple propagations at the same step

You can compute several times the propagation you want by using the facet cycle_length.
GAMA will compute for you the corresponding new matrix, and will apply it.

Figure 48.7: resources/images/recipes/cycle_length.png

Writing those two thinks are exactly equivalent (for diffusion):� �
matrix<float> mat_diff <- matrix([

[1/81,2/81,3/81,2/81,1/81],
[2/81,4/81,6/81,4/81,2/81],
[3/81,6/81,1/9,6/81,3/81],
[2/81,4/81,6/81,4/81,2/81],

v 1.7 448

GAMAdocumentation Chapter 48. Implementing diffusion

[1/81,2/81,3/81,2/81,1/81]]);
reflex diff {

diffuse var: phero on: cells matrix:mat_diff;� �� �
matrix<float> mat_diff <- matrix([

[1/9,1/9,1/9],
[1/9,1/9,1/9],
[1/9,1/9,1/9]]);

reflex diff {
diffuse var: phero on: cells matrix:mat_diff cycle_length

:2;� �

Executing several diffusion matrix

If you execute several times the statement diffuse with different matrix on the same vari-
able, their values will be added (and centered if their dimension is not equal).

Thus, the following 3 matrix will be combined to create one unique matrix:

Figure 48.8: resources/images/recipes/addition_matrix.png

v 1.7 449

GAMAdocumentation Chapter 48. Implementing diffusion

Diffusion with parameters

Sometimes writing diffusion matrix is not exactly what you want, and youmay prefer to just
give some parameters to compute the correct diffusion matrix. You can use the following
facets in order to do that : propagation, variation and radius.

Depending on which propagation you choose, and howmany neighbors your grid have, the
propagation matrix will be compute differently. The propagation matrix will have the size :
range*2+1.

Let’s note P for the propagation value, V for the variation, R for the range and N for the
number of neighbors.

• With diffusion propagation

For diffusion propagation, we compute following the following steps:

(1) We determine the “minimale” matrix according to N (if N = 8, the matrix will be
[[P/9,P/9,P/9][P/9,1/9,P/9][P/9,P/9,P/9]]. if N = 4, the matrix will be [[0,
P/5,0][P/5,1/5,P/5][0,P/5,0]]).

(2) If R != 1, we propagate the matrix R times to obtain a [2*R+1][2*R+1]matrix (same
computation as for cycle_length).

(3) If V != 0, we substract each value by V*DistanceFromCenter (DistanceFromCenter
depends on N).

Ex with the default values (P=1, R=1, V=0, N=8):

• With gradient propagation

The value of each cell will be equal to **P/POW(N,DistanceFromCenter)-
DistanceFromCenter*V**. (DistanceFromCenter depends on N).

Ex with R=2, other parameters default values (R=2, P=1, V=0, N=8):

Note that if you declared a diffusion matrix, you cannot use those 3 facets (it will raise a
warning). Note also that if you use parameters, you will only have uniform matrix.

v 1.7 450

GAMAdocumentation Chapter 48. Implementing diffusion

Figure 48.9: resources/images/recipes/gradient_computation_from_parameters.png

v 1.7 451

GAMAdocumentation Chapter 48. Implementing diffusion

Computation methods

You can compute the output matrix using two computation methods by using the facet
method : the dot product and the convolution. Note that the result of those two methods
is exactly the same (except if you use the avoid_mask facet, the results can be slightly differ-
ents between the two computations).

Convolution

convolution is the default computation method for the diffusion. For every output cells,
we will multiply the input values and the flipped kernel together, as shown in the following
image :

Figure 48.10: resources/images/recipes/convolution.png

Pseudo-code (k the kernel, x the input matrix, y the output matrix) :� �
for (i = 0 ; i < y.nbRows ; i++)

for (j = 0 ; j < y.nbCols ; j++)
for (m = 0 ; m < k.nbRows ; m++)

for (n = 0 ; n < k.nbCols ; n++)
y[i,j] += k[k.nbRows - m - 1, k.nbCols - n - 1]

* x[i - k.nbRows/2 + m, j - k.nbCols/2 + n]� �
v 1.7 452

GAMAdocumentation Chapter 48. Implementing diffusion

Dot Product

dot_product method will compute the matrix using a simple dot product between the ma-
trix. For every input cells, wemultiply the cell by the kernelmatrix, as shown in the following
image :

Figure 48.11: resources/images/recipes/dot_product.png

Pseudo-code (k the kernel, x the input matrix, y the output matrix) :� �
for (i = 0 ; i < y.nbRows ; i++)

for (j = 0 ; j < y.nbCols ; j++)
for (m = 0 ; m < k.nbRows ; m++)

for (n = 0 ; n < k.nbCols ; n++)
y[i - k.nbRows/2 + m, j - k.nbCols/2 + n] += k[m, n] * x[

i, j]� �
Using mask

Generalities

If you want to propagate some values in an heterogeneous grid, you can use some mask to
forbid some cells to propagate their values.

You can pass a matrix to the facet mask. All the values smaller than -1 will not propagate,
and all the values greater or equal to -1 will propagate.

v 1.7 453

GAMAdocumentation Chapter 48. Implementing diffusion

A simple way to use mask is by loading an image :

Figure 48.12: resources/images/recipes/simple_mask.png

Note that when you use the on facet for the diffuse statement, you can choose only some
cells, and not every cells. In fact, when you restrain the values to be diffuse, it is exactly the
same process as if you were defining a mask.

Figure 48.13: resources/images/recipes/mask_with_on_facet.png

When your diffusion is combined with a mask, the default behavior is that the non-masked
cells will diffuse their values in all existing cells (that means, even the masked cells !). To
change this behavior, you can use the facet avoid_mask. In that case, the value which was
supposed to be affected to the masked cell will be redistributed to the neighboring non-
masked cells.

v 1.7 454

GAMAdocumentation Chapter 48. Implementing diffusion

Tips

Masks can be used to simulate a lot of environments. Here are some ideas for your models:

Wall blocking the diffusion

If you want to simulate a wall blocking a uniform diffusion, you can declare a second dif-
fusion matrix that will be applied only on the cells where your wall will be. This diffusion
matrix will “push” the values outside from himself, but conserving the values (the sum of the
values of the diffusion still have to be equal to 1) :� �
matrix<float> mat_diff <- matrix([

[1/9,1/9,1/9],
[1/9,1/9,1/9],
[1/9,1/9,1/9]]);

matrix<float> mat_diff_left_wall <- matrix([
[0.0,0.0,2/9],
[0.0,0.0,4/9],
[0.0,0.0,2/9]]);

reflex diff {
diffuse var: phero on: (cells where(each.grid_x >30)) matrix:

mat_diff;
diffuse var: phero on: (cells where(each.grid_x=30)) matrix:

mat_diff_left_wall;
}� �
Note that almost the same result can be obtained by using the facet avoid_mask : the value
of all masked cells will remain at 0, and the value which was supposed to be affected to the
masked cell will be distributed to the neighboring cells. Notice that the results can be slightly
different if you are using the convolution or the dot_product method : the algorithm of
redistribution of the value to the neighboring cells is a bit different. We advise you to use
the dot_product with the avoid_mask facet, the results are more accurates.

Wind pushing the diffusion

Let’s simulate a uniform diffusion that is pushed by a wind from “north” everywhere in the
grid. A wind from “west” as blowing at the top side of the grid. We will here have to build 2

v 1.7 455

GAMAdocumentation Chapter 48. Implementing diffusion

Figure 48.14: resources/images/recipes/wall_simulation.png

matrix : one for the uniform diffusion, one for the “north” wind and one for the “west” wind.
The sum of the values for the 2 matrix meant to simulate the wind will be equal to 0 (as it
will be add to the diffusion matrix).� �
matrix<float> mat_diff <- matrix([

[1/9,1/9,1/9],
[1/9,1/9,1/9],
[1/9,1/9,1/9]]);

matrix<float> mat_wind_from_west <- matrix([
[-1/9,0.0,1/9],
[-1/9,0.0,1/9],
[-1/9,0.0,1/9]]);

matrix<float> mat_wind_from_north <- matrix([
[-1/9,-1/9,-1/9],
[0.0,0.0,0.0],
[1/9,1/9,1/9]]);

reflex diff {
diffuse var: phero on: cells matrix:mat_diff;

v 1.7 456

GAMAdocumentation Chapter 48. Implementing diffusion

diffuse var: phero on: cells matrix:mat_wind_from_north;
diffuse var: phero on: (cells where (each.grid_y >=32)) matrix

:mat_wind_from_west;
}� �

Figure 48.15: resources/images/recipes/diffusion_with_wind.png

Endless world

Note that when your world is not a torus, it has the same effect as amask, since all the values
outside from the world cannot diffuse some values back :

You can “fake” the fact that your world is endless by adding a different diffusion for the cells
with grid_x=0 to have almost the same result :� �
matrix<float> mat_diff <- matrix([

[1/9,1/9,1/9],
[1/9,1/9,1/9],
[1/9,1/9,1/9]]);

v 1.7 457

GAMAdocumentation Chapter 48. Implementing diffusion

Figure 48.16: resources/images/recipes/uniform_diffusion_near_edge.png

Figure 48.17: resources/images/recipes/uniform_diffusion_near_edge_with_mask.png

v 1.7 458

GAMAdocumentation Chapter 48. Implementing diffusion

matrix<float> mat_diff_upper_edge <- matrix([
[0.0,0.0,0.0],
[1/9+7/81,2/9+1/81,1/9+7/81],
[1/9,1/9,1/9]]);

reflex diff {
diffuse var: phero on: (cells where(each.grid_y >0)) matrix:

mat_diff;
diffuse var: phero on: (cells where(each.grid_y=0)) matrix:

mat_diff_upper_edge;
}� �
Pseudo code

This section is more for a better understanding of the source code.

Here is the pseudo code for the computation of diffusion :

1) : Execute the statement diffuse, store the diffusions in a map (from class Diffusion-
Statement to class GridDiffuser) :� �

- Get all the facet values
- Compute the "real" mask, from the facet "mask:" and the facet "

on:".
- If no value for "mask:" and "on:" all the grid, the mask is
equal to null.

- Compute the matrix of diffusion
- If no value for "matrix:", compute with "nb_neighbors", "
is_gradient", "proportion", "propagation", "variation", "range
".

- Then, compute the matrix of diffusion with "cycle_length".
- Store the diffusion properties in a map

- Map : ["method_diffu", "is_gradient", "matrix", "mask", "
min_value"] is value, ["var_diffu", "grid_name"] is key.

- If the key exists in the map, try to "mix" the diffusions
- If "method_diffu", "mask" and "is_gradient" equal for the 2
diffusions , mix the diffusion matrix.� �

v 1.7 459

GAMAdocumentation Chapter 48. Implementing diffusion

2) : At the end of the step, execute the diffusions (class GridDiffuser) :

� �
- For each key of the map,

- Load the couple "var_diffu" / "grid_name"
- Build the "output" and "input" array with the dimension of
the grid.

- Initialize the "output" array with -Double.MAX_VALUE.
- For each value of the map for that key,

- Load all the properties : "method_diffu", "is_gradient", "
matrix", "mask", "min_value"
- Compute :

- If the cell is not masked, if the value of input is >
min_value , diffuse to the neighbors.

- If the value of the cell is equal to -Double.MAX_VALUE ,
remplace it by input[idx] * matDiffu[i][j].

- Else, do the computation (gradient or diffusion).
- Finish the diffusion :

- If output[idx] > -Double.MAX_VALUE , write the new value
in the cell.� �

v 1.7 460

Chapter 49

Using Database Access

Database features of GAMA provide a set of actions on Database Management Systems
(DBMS) and Multi-Dimensional Database for agents in GAMA. Database features are im-
plemented in the irit.gaml.exxtensions.database plug-in with these features: * Agents can
execute SQL queries (create, Insert, select, update, drop, delete) to various kinds of DBMS.
* Agents can execute MDX (Multidimensional Expressions) queries to select multidimen-
sional objects, such as cubes, and return multidimensional cellsets that contain the cube’s
data . These features are implemented in two kinds of component: skills (SQLSKILL,
MDXSKILL) and agent (AgentDB)

SQLSKILL and AgentDB provide almost the same features (a same set of actions on DBMS)
but with certain slight differences:

• An agent of species AgentDBwillmaintain a unique connection to the database during
the whole simulation. The connection is thus initialized when the agent is created.

• In contrast, an agent of a species with the SQLSKILL skill will open a connection each
time he wants to execute a query. This means that each action will be composed of
three running steps:

– Make a database connection.
– Execute SQL statement.
– Close database connection. > An agent with the SQLSKILL spends lot of time
to create/close the connection each time it needs to send a query; it saves the
database connection (DBMS often limit the number of simultaneous connec-
tions). In contrast, an AgentDB agent only needs to establish one database con-
nection and it can be used for any actions. Because it does not need to create and

461

GAMAdocumentation Chapter 49. Using Database Access

close database connection for each action: therefore, actions of AgentDB agents
are executed faster than actions of SQLSKILL ones but wemust pay a connection
for each agent.

• With an inheritance agent of species AgentDB or an agent of a species using SQL-
SKILL, we can query data from relational database for creating species, defining envi-
ronment or analyzing or storing simulation results into RDBMS. On the other hand,
an agent of species with MDXKILL supports the OLAP technology to query data from
data marts (multidimensional database). The database features help us to have more
flexibility in management of simulation models and analysis of simulation results.

Description

• Plug-in: irit.gaml.extensions.database
• Author: TRUONG Minh Thai, Frederic AMBLARD, Benoit GAUDOU, Christophe
SIBERTIN-BLANC

Supported DBMS

The followingDBMS are currently supported: * SQLite *MySQL Server * PostgreSQL Server
* SQL Server * Mondrian OLAP Server * SQL Server Analysis Services

Note that, other DBMSs require a dedicated server to work while SQLite on only needs a file
to be accessed. All the actions can be used independently from the chosen DBMS. Only the
connection parameters are DBMS-dependent.

SQLSKILL

Define a species that uses the SQLSKILL skill

Example of declaration:� �
entities {

species toto skills: [SQLSKILL]
{

//insert your descriptions here

v 1.7 462

GAMAdocumentation Chapter 49. Using Database Access

}
...

}� �
Agents with such a skill can use additional actions (defined in the skill)

Map of connection parameters for SQL

In the actions defined in the SQLSkill, a parameter containing the connection parameters is
required. It is a map with the following key::value pairs:

Key Optional Description

dbtype No DBMS type value. Its value is a string. We must use “mysql”
when we want to connect to a MySQL. That is the same for
“postgres”, “sqlite” or “sqlserver” (ignore case sensitive)

host Yes Host name or IP address of data server. It is absent when we
work with SQlite.

port Yes Port of connection. It is not required when we work with
SQLite.

database No Name of database. It is the file name including the path when
we work with SQLite.

user Yes Username. It is not required when we work with SQLite.
passwd Yes Password. It is not required when we work with SQLite.
srid Yes srid (Spatial Reference Identifier) corresponds to a spatial

reference system. This value is specified when GAMA connects
to spatial database. If it is absent then GAMA uses spatial
reference system defined in Preferences->External
configuration.

Table 1: Connection parameter description

Example: Definitions of connection parameter� �
// POSTGRES connection parameter
map <string, string> POSTGRES <- [

'host'::'localhost ',
'dbtype '::'postgres',
'database '::'BPH',

v 1.7 463

GAMAdocumentation Chapter 49. Using Database Access

'port'::'5433',
'user'::'postgres ',
'passwd '::'abc'];

//SQLite
map <string, string> SQLITE <- [

'dbtype '::'sqlite',
'database '::'../includes/meteo.db'];

// SQLSERVER connection parameter
map <string, string> SQLSERVER <- [

'host'::'localhost ',
'dbtype '::'sqlserver ',
'database '::'BPH',
'port'::'1433',
'user'::'sa',
'passwd '::'abc'];

// MySQL connection parameter
map <string, string> MySQL <- [

'host'::'localhost ',
'dbtype '::'MySQL',
'database '::'', // it may be a null string
'port'::'3306',
'user'::'root',
'passwd '::'abc'];� �

Test a connection to database

Syntax: > testConnection (params: connection_parameter) The action tests the connec-
tion to a given database. * Return: boolean. It is: * true: the agent can connect to the
DBMS (to the given Database with given name and password) * false: the agent cannot con-
nect * Arguments: * params: (type = map) map of connection parameters * Exceptions:
GamaRuntimeException

Example: Check a connection to MySQL� �
if (self testConnection(params:MySQL)){

write "Connection is OK" ;
}else{

v 1.7 464

GAMAdocumentation Chapter 49. Using Database Access

write "Connection is false" ;
}� �
Select data from database

Syntax: > select (param: connection_parameter, select: selection_string,values: value_
list) The action creates a connection to a DBMS and executes the select statement. If the
connection or selection fails then it throws a GamaRuntimeException. * Return: list < list
>. If the selection succeeds, it returns a list with three elements: * The first element is a list
of column name. * The second element is a list of column type. * The third element is a data
set. * Arguments: * params: (type = map) map containing the connection parameters
* select: (type = string) select string. The selection string can contain question marks. *
values: List of values that are used to replace question marks in appropriate. This is an
optional parameter. * Exceptions: GamaRuntimeException

Example: select data from table points� �
map <string, string> PARAMS <- ['dbtype '::'sqlite', 'database

'::'../includes/meteo.db'];
list<list> t <- list<list> (self select(params:PARAMS,

select:"SELECT * FROM points ;"));� �
Example: select data from table point with question marks from table points� �
map <string, string> PARAMS <- ['dbtype '::'sqlite', 'database

'::'../includes/meteo.db'];
list<list> t <- list<list> (self select(params: PARAMS,

select: "SELECT
temp_min FROM points where (day>? and day<?);"

values: [10,20]));� �
Insert data into database

Syntax: > _insert (param: connection_parameter, into: table_name, columns: column_
list, values: value‘_list)The action creates a connection to a DBMS and executes the insert
statement. If the connection or insertion fails then it throws a_GamaRuntimeException.
* Return: int > If the insertion succeeds, it returns a number of records inserted by the
insert. * Arguments: params: (type = map) map containing the connection parameters.

v 1.7 465

GAMAdocumentation Chapter 49. Using Database Access

into: (type = string) table name. columns: (type=list) list of column names of table. It is
an optional argument. If it is not applicable then all columns of table are selected. values:
(type=list) list of values that are used to insert into table corresponding to columns. Hence
the columns and values must have same size. * Exceptions:_GamaRuntimeException

Example: Insert data into table registration� �
map<string, string> PARAMS <- ['dbtype '::'sqlite', 'database

'::'../../includes/Student.db'];

do insert (params: PARAMS,
into: "registration",
values: [102, 'Mahnaz', 'Fatma', 25]);

do insert (params: PARAMS,
into: "registration",
columns: ["id", "first", "last"],
values: [103, 'Zaid tim', 'Kha']);

int n <- insert (params: PARAMS,
into: "registration",

columns: ["id", "first", "last"],
values: [104, 'Bill', 'Clark ']);� �

Execution update commands

Syntax: > executeUpdate (param: connection_parameter, updateComm: table_name,
values: value_list) The action executeUpdate executes an update command (create/in-
sert/delete/drop) by using the current database connection of the agent. If the database
connection does not exist or the update command fails then it throws a GamaRuntimeEx-
ception. Otherwise it returns an integer value. * Return: int. If the insertion succeeds,
it returns a number of records inserted by the insert. * Arguments: * params: (type =
map) map containing the connection parameters * updateComm: (type = string) SQL com-
mand string. It may be commands: create, update, delete and dropwith or without question
marks. * columns: (type=list) list of column names of table. * values: (type=list) list of val-
ues that are used to replace question marks if appropriate. This is an optional parameter. *
Exceptions: GamaRuntimeException

Examples: Using action executeUpdate do sql commands (create, insert, update, delete
and drop).

v 1.7 466

GAMAdocumentation Chapter 49. Using Database Access

� �
map<string, string> PARAMS <- ['dbtype '::'sqlite', 'database

'::'../../includes/Student.db'];
// Create table
do executeUpdate (params: PARAMS,

updateComm: "CREATE TABLE
registration"

+ "(id INTEGER
PRIMARY KEY, "

+ " first TEXT NOT
NULL, " + " last TEXT NOT NULL, "

+ " age INTEGER);");

// Insert into
do executeUpdate (params: PARAMS ,

updateComm: "INSERT INTO
registration " + "VALUES(100, 'Zara', 'Ali', 18);");

do insert (params: PARAMS, into: "registration",
columns: ["id", "first", "last"],
values: [103, 'Zaid tim', 'Kha']);

// executeUpdate with question marks
do executeUpdate (params: PARAMS,

updateComm: "INSERT INTO
registration " + "VALUES(?, ?, ?, ?);" ,

values: [101, 'Mr', 'Mme', 45]);

//update
int n <- executeUpdate (params: PARAMS,

updateComm: "UPDATE
registration SET age = 30 WHERE id IN (100, 101)");

// delete
int n <- executeUpdate (params: PARAMS,

updateComm: "DELETE FROM
registration where id=? ",

values: [101]);

// Drop table
do executeUpdate (params: PARAMS, updateComm: "DROP TABLE

registration");� �
v 1.7 467

GAMAdocumentation Chapter 49. Using Database Access

MDXSKILL

MDXSKILL plays the role of an OLAP tool using select to query data from OLAP server to
GAMA environment and then species can use the queried data for any analysis purposes.
Define a species that uses the MDXSKILL skill Example of declaration:� �
entities {

species olap skills: [MDXSKILL]
{

//insert your descriptions here

}
...� �

Agents with such a skill can use additional actions (defined in the skill)

Map of connection parameters for MDX

In the actions defined in the SQLSkill, a parameter containing the connection parameters is
required. It is a map with following key::value pairs:

Key Optional Description

olaptype No OLAP Server type value. Its value is a string. We must use
“SSAS/XMLA” when we want to connect to an SQL Server
Analysis Services by using XML for Analysis. That is the same
for “MONDRIAN/XML” or “MONDRIAN” (ignore case
sensitive)

dbtype No DBMS type value. Its value is a string. We must use “mysql”
when we want to connect to a MySQL. That is the same for
“postgres” or “sqlserver” (ignore case sensitive)

host No Host name or IP address of data server.
port No Port of connection. It is no required when we work with

SQLite.
database No Name of database. It is file name include path when we work

with SQLite.
catalog Yes Name of catalog. It is an optional parameter. We do not need

to use it when we connect to SSAS via XMLA and its file name
includes the path when we connect a ROLAP database directly
by using Mondrian API (see Example as below)

v 1.7 468

GAMAdocumentation Chapter 49. Using Database Access

Key Optional Description

user No Username.
passwd No Password.

Table 2: OLAP Connection parameter description

Example: Definitions of OLAP connection parameter� �
//Connect SQL Server Analysis Services via XMLA

map<string,string> SSAS <- [
'olaptype '::'SSAS/XMLA',
'dbtype '::'sqlserver ',
'host '::'172.17.88.166',
'port'::'80',
'database '::'olap',
'user'::'test',
'passwd '::'abc'];

//Connect Mondriam server via XMLA
map<string,string> MONDRIANXMLA <- [

'olaptype '::"MONDRIAN/XMLA",
'dbtype '::'postgres ',
'host'::'localhost ',
'port'::'8080',
'database '::'MondrianFoodMart ',
'catalog '::'FoodMart ',
'user'::'test',
'passwd '::'abc'];

//Connect a ROLAP server using Mondriam API
map<string,string> MONDRIAN <- [

'olaptype '::'MONDRIAN ',
'dbtype '::'postgres ',
'host'::'localhost ',
'port'::'5433',
'database '::'foodmart ',
'catalog '::'../includes/FoodMart.xml',
'user'::'test',

'passwd '::'abc'];� �
v 1.7 469

GAMAdocumentation Chapter 49. Using Database Access

Test a connection to OLAP database

Syntax: > testConnection (params: connection_parameter) The action tests the connec-
tion to a givenOLAP database. *Return: boolean. It is: * true: the agent can connect to the
DBMS (to the given Database with given name and password) * false: the agent cannot con-
nect * Arguments: * params: (type = map) map of connection parameters * Exceptions:
GamaRuntimeException

Example: Check a connection to MySQL� �
if (self testConnection(params:MONDIRANXMLA)){

write "Connection is OK";
}else{

write "Connection is false";
}� �
Select data from OLAP database

Syntax: > select (param: connection_parameter, onColumns: column_string, onRows:
row_string from: cube_string, where: condition_string, values: value_list) The action cre-
ates a connection to an OLAP database and executes the select statement. If the connection
or selection fails then it throws a GamaRuntimeException. * Return: list < list >. If the
selection succeeds, it returns a list with three elements: * The first element is a list of col-
umn name. * The second element is a list of column type. * The third element is a data
set. * Arguments: * params: (type = map) map containing the connection parameters *
onColumns: (type = string) declare the select string on columns. The selection string can
contain question marks. * onRows: (type = string) declare the selection string on rows. The
selection string can contain question marks. * from: (type = string) specify cube where data
is selected. The cube_string can contain question marks. * where_: (type = string) spec-
ify the selection conditions. The condiction_string can contains question marks. This is an
optional parameter. values: List of values that are used to replace question marks if appro-
priate. This is an optional parameter. Exceptions:_GamaRuntimeException

Example: select data from SQL Server Analysis Service via XMLA� �
if (self testConnection[params::SSAS]){

list l1 <- list(self select (params: SSAS ,
onColumns: " { [Measures].[Quantity], [Measures].[Price]

}",
onRows:" { { { [Time].[Year].[All].CHILDREN } * "

v 1.7 470

GAMAdocumentation Chapter 49. Using Database Access

+ " { [Product].[Product Category].[All].CHILDREN } * "
+"{ [Customer].[Company Name].&[Alfreds Futterkiste], "
+"[Customer].[Company Name].&[Ana Trujillo Emparedadosy

helados], "
+ "[Customer].[Company Name].&[Antonio Moreno Taquería] }

} } " ,
from : "FROM [Northwind Star] "));

write "result1:"+ l1;
}else {

write "Connect error";
}� �

Example: select data from Mondrian via XMLA with question marks in selection

� �
if (self testConnection(params:MONDRIANXMLA)){

list<list> l2 <- list<list> (self select(params:
MONDRIANXMLA ,
onColumns:" {[Measures].[Unit Sales], [Measures].[Store Cost

], [Measures].[Store Sales]} ",
onRows:" Hierarchize(Union(Union(Union({([Promotion Media].[

All Media],"
+" [Product].[All Products])}, "
+" Crossjoin([Promotion Media].[All Media].Children , "
+" {[Product].[All Products]})), "
+" Crossjoin({[Promotion Media].[Daily Paper, Radio, TV]}, "
+" [Product].[All Products].Children)), "
+" Crossjoin({[Promotion Media].[Street Handout]}, "
+" [Product].[All Products].Children))) ",
from:" from [?] " ,
where :" where [Time].[?] " ,
values:["Sales",1997]));
write "result2:"+ l2;

}else {
write "Connect error";

}� �

v 1.7 471

GAMAdocumentation Chapter 49. Using Database Access

AgentDB

AgentBD is a built-in species, which supports behaviors that look like actions in SQLSKILL
but differs slightly with SQLSKILL in that it uses only one connection for several actions. It
means that AgentDB makes a connection to DBMS and keeps that connection for its later
operations with DBMS. ### Define a species that is an inheritance of agentDB Example of
declaration:� �
entities {

species agentDB parent: AgentDB {
{

//insert your descriptions here
}

...
}� �
Connect to database

Syntax:

Connect (param: connection_parameter) This action makes a connection to
DBMS. If a connection is established then it will assign the connection object
into a built-in attribute of species (conn) otherwise it throws a GamaRuntime-
Exception. *Return: connection *Arguments: * params: (type =map) map
containing the connection parameters *Exceptions: GamaRuntimeException
Example: Connect to PostgreSQL� �

// POSTGRES connection parameter
map <string, string> POSTGRES <- [

'host'::'localhost ',
'dbtype '::'postgres ',
'database '::'BPH',
'port'::'5433',
'user'::'postgres ',
'passwd '::'abc'];

ask agentDB {
do connect (params: POSTGRES);

}� �
v 1.7 472

GAMAdocumentation Chapter 49. Using Database Access

Check agent connected a database or not

Syntax:

isConnected (param: connection_parameter) This action checks if an agent
is connecting to database or not. * Return: Boolean. If agent is connecting to
a database then isConnected returns true; otherwise it returns false. * Argu-
ments: * params: (type = map) map containing the connection parameters

Example: Using action executeUpdate do sql commands (create, insert, update, delete and
drop).� �
ask agentDB {

if (self isConnected){
write "It already has a connection";

}else{
do connect (params: POSTGRES);

}
}� �
Close the current connection

Syntax:

close This action closes the current database connection of species. If species
does not has a database connection then it throws a GamaRuntimeException. *
Return: null If the current connection of species is close then the action return
null value; otherwise it throws a GamaRuntimeException.

Example:� �
ask agentDB {

if (self isConnected){
do close;

}
}� �
v 1.7 473

GAMAdocumentation Chapter 49. Using Database Access

Get connection parameter

Syntax:

getParameter This action returns the connection parameter of species. *Re-
turn: map < string, string >

Example:� �
ask agentDB {

if (self isConnected){
write “the connection parameter: ” +(self getParameter);
}

}� �
Set connection parameter

Syntax:

setParameter (param: connection_parameter) This action sets the new val-
ues for connection parameter and closes the current connection of species. If it
can not close the current connection then it will throwGamaRuntimeException.
If the specieswants tomake the connection to databasewith the newvalues then
action connect must be called. *Return: null * Arguments: * params: (type
= map) map containing the connection parameters * Exceptions: GamaRun-
timeException

Example:� �
ask agentDB {

if (self isConnected){
do setParameter(params: MySQL);
do connect(params: (self getParameter));

}
}� �
v 1.7 474

GAMAdocumentation Chapter 49. Using Database Access

Retrieve data from database by using AgentDB

Because of the connection to database of AgentDB is kept alive then AgentDB can execute
several SQLquerieswith only one connection. HenceAgentDB cando actions such as select,
insert, executeUpdate with the same parameters of those actions of SQLSKILL except
params parameter is always absent.

Examples:� �
map<string, string> PARAMS <- ['dbtype '::'sqlite', 'database

'::'../../includes/Student.db'];
ask agentDB {

do connect (params: PARAMS);
// Create table
do executeUpdate (updateComm: "CREATE TABLE registration"
+ "(id INTEGER PRIMARY KEY, "

+ " first TEXT NOT NULL, " + " last TEXT NOT NULL, "
+ " age INTEGER);");

// Insert into
do executeUpdate (updateComm: "INSERT INTO registration "

+ "VALUES(100, 'Zara', 'Ali', 18);");
do insert (into: "registration",

columns: ["id", "first", "last"],
values: [103, 'Zaid tim', 'Kha']);

// executeUpdate with question marks
do executeUpdate (updateComm: "INSERT INTO registration VALUES
(?, ?, ?, ?);",

values: [101, 'Mr', 'Mme', 45]);
//select
list<list> t <- list<list> (self select(
select:"SELECT * FROM registration;"));

//update
int n <- executeUpdate (updateComm: "UPDATE registration SET
age = 30 WHERE id IN (100, 101)");
// delete
int n <- executeUpdate (updateComm: "DELETE FROM

registration where id=? ", values: [101]);
// Drop table
do executeUpdate (updateComm: "DROP TABLE registration");

}� �
v 1.7 475

GAMAdocumentation Chapter 49. Using Database Access

Using database features to define environment or cre-
ate species

In Gama, we can use results of select action of SQLSKILL or AgentDB to create species or
define boundary of environment in the same way we do with shape files. Further more, we
can also save simulation data that are generated by simulation including geometry data to
database.

Define the boundary of the environment from database

• Step 1: specify select query by declaration a map object with keys as below:

Key Optional Description

dbtype No DBMS type value. Its value is a string. We must use “mysql”
when we want to connect to a MySQL. That is the same for
“postgres”, “sqlite” or “sqlserver” (ignore case sensitive)

host Yes Host name or IP address of data server. It is absent when we
work with SQlite.

port Yes Port of connection. It is not required when we work with
SQLite.

database No Name of database. It is the file name including the path when
we work with SQLite.

user Yes Username. It is not required when we work with SQLite.
passwd Yes Password. It is not required when we work with SQLite.
srid Yes srid (Spatial Reference Identifier) corresponds to a spatial

reference system. This value is specified when GAMA connects
to spatial database. If it is absent then GAMA uses spatial
reference system defined in Preferences->External
configuration.

select No Selection string

Table 3: Select boundary parameter description

Example:� �
map<string,string> BOUNDS <- [

v 1.7 476

GAMAdocumentation Chapter 49. Using Database Access

//'srid'::'32648',
'host'::'localhost ',

'dbtype '::'postgres',
'database '::'spatial_DB ',
'port'::'5433',

'user'::'postgres',
'passwd '::'tmt',
'select '::'SELECT ST_AsBinary(geom) as geom FROM bounds;'];� �

• Step 2: define boundary of environment by using the map object in first step.

� �
geometry shape <- envelope(BOUNDS);� �
Note: We can do the same way if we work with MySQL, SQLite, or SQLServer and we must
convert Geometry format in GIS database to binary format.

Create agents from the result of a select action

If we are familiar with how to create agents from a shapefile then it becomes very simple to
create agents from select result. We can do as below:

• Step 1: Define a species with SQLSKILL or AgentDB

� �
entities {

species toto skills: SQLSKILL {
{

//insert your descriptions here
}

...
}� �

• Step 2: Define a connection and selection parameters

v 1.7 477

GAMAdocumentation Chapter 49. Using Database Access

� �
global {

map<string,string> PARAMS <- ['dbtype '::'sqlite','database
'::'../includes/bph.sqlite '];
string location <- 'select ID_4, Name_4, ST_AsBinary(geometry

) as geom from vnm_adm4
where id_2=38253 or id_2

=38254;';
...

}� �
• Step 3: Create species by using selected results� �

init {
create toto {

create locations from: list(self select (params: PARAMS,
select

: LOCATIONS))
with:[id:: "id_4",

custom_name:: "name_4", shape::"geom"];
}

...
}� �
Save Geometry data to database

If we are familiar with how to create agents from a shapefile then it becomes very simple to
create agents from select result. We can do as below:

• Step 1: Define a species with SQLSKILL or AgentDB� �
entities {

species toto skills: SQLSKILL {
{

//insert your descriptions here

}
...

}� �
v 1.7 478

GAMAdocumentation Chapter 49. Using Database Access

• Step 2: Define a connection and create GIS database and tables

� �
global {

map<string,string> PARAMS <- ['host'::'localhost ', 'dbtype
'::'Postgres', 'database '::'',

'port
'::'5433', 'user'::'postgres ', 'passwd '::'tmt'];

init {
create toto ;
ask toto {

if (self testConnection[params::PARAMS]){
// create GIS database
do executeUpdate(params:PARAMS,

updateComm: "CREATE DATABASE spatial_db
with TEMPLATE = template_postgis;");

remove key: "database" from: PARAMS;
put "spatial_db" key:"database" in: PARAMS;
//create table

do executeUpdate params: PARAMS
updateComm : "CREATE TABLE buildings "+
"(" +

" name character varying(255),
" +

" type character varying
(255), " +

" geom GEOMETRY " +
")";

}else {
write "Connection to MySQL can not be established

";
}

}
}

}� �
• Step 3: Insert geometry data to GIS database

v 1.7 479

GAMAdocumentation Chapter 49. Using Database Access

� �
ask building {

ask DB_Accessor {
do insert(params: PARAMS,

into: "buildings",
columns: ["name", "type","geom"],
values: [myself.name,myself.type,myself.shape];

}
}� �

v 1.7 480

Chapter 50

Calling R

Introduction

R language is one of powerful data mining tools, and its community is very large in the
world (See the website: http://www.r-project.org/). Adding the R language into GAMA is
our strong endeavors to accelerate many statistical, data mining tools into GAMA.

RCaller 2.0 package (Website: http://code.google.com/p/rcaller/) is used for GAMA 1.6.1.

Table of contents

• Introduction

– Configuration in GAMA
– Calling R from GAML

* Calling the built-in operators

· Example 1

* Calling R codes from a text file (.txt) WITHOUT the parameters

· Example 2
· Correlation.R file

* Output

· Example 3
· RandomForest.R file

481

GAMAdocumentation Chapter 50. Calling R

• Load the package:
• Read data from iris:
• Build the decision tree:
• Build the random forest of 50 decision trees:
• Predict the acceptance of test set:
• Calculate the accuracy: * Output * Calling R codes from a text file (.R, .txt) WITH
the parameters * Example 4 * Mean.R file * Output * Example 5 * AddParam.R file *
Output

Configuration in GAMA

1) Install R language into your computer.

2) In GAMA, select menu option: Edit/Preferences.

3) In “Config RScript’s path”, browse to your “Rscript” file (R language installed in
your system).

Notes: Ensure that install.packages(“Runiversal”) is already applied in R environment.

Calling R from GAML

Calling the built-in operators

Example 1� �
model CallingR

global {
list X <- [2, 3, 1];
list Y <- [2, 12, 4];

list result;

init{
write corR(X, Y); // -> 0.755928946018454

v 1.7 482

GAMAdocumentation Chapter 50. Calling R

write meanR(X); // -> 2.0
}

}� �
Calling R codes from a text file (.R,.txt)WITHOUT the parameters

Using R_compute(String RFile) operator. This operator DOESN’T ALLOW to add any
parameters form the GAML code. All inputs is directly added into the R codes. Remarks:
Don’t let any white lines at the end of R codes. R_computewill return the last variable of R
file, this parameter can be a basic type or a list. Please ensure that the called packages must
be installed before using.

Example 2� �
model CallingR

global
{

list result;

init{
result <- R_compute("C:/YourPath/Correlation.R");
write result at 0;

}
}� �
Above syntax is deprecated, use following syntax with R_file instead of R_compute:� �
model CallingR

global
{

file result;

init{
result <- R_file("C:/YourPath/Correlation.R");
write result.contents;

}

v 1.7 483

GAMAdocumentation Chapter 50. Calling R

}� �
Correlation.R file� �
x <- c(1, 2, 3)

y <- c(1, 2, 4)

result <- cor(x, y, method = "pearson")� �
Output

result::[0.981980506061966]

Example 3� �
model CallingR

global
{

list result;

init{
result <- R_compute("C:/YourPath/RandomForest.R");

write result at 0;
}

}� �
RandomForest.R file� �
Load the package:

library(randomForest)

v 1.7 484

GAMAdocumentation Chapter 50. Calling R

Read data from iris:

data(iris)

nrow<-length(iris[,1])

ncol<-length(iris[1,])

idx<-sample(nrow,replace=FALSE)

trainrow <-round(2*nrow/3)

trainset <-iris[idx[1:trainrow],]

Build the decision tree:

trainset <-iris[idx[1:trainrow],]

testset<-iris[idx[(trainrow+1):nrow],]

Build the random forest of 50 decision trees:

model<-randomForest(x= trainset[,-ncol], y= trainset[,ncol], mtry
=3, ntree=50)

Predict the acceptance of test set:

pred<-predict(model, testset[,-ncol], type="class")

Calculate the accuracy:

acc<-sum(pred==testset[, ncol])/(nrow-trainrow)� �

Output

acc::[0.98]

v 1.7 485

GAMAdocumentation Chapter 50. Calling R

Calling R codes from a text file (.R, .txt) WITH the parameters

Using R_compute_param(String RFile, List vectorParam) operator. This operator
ALLOWS to add the parameters from the GAML code.

Remarks: Don’t let anywhite lines at the end of R codes. R_compute_paramwill return
the last variable of R file, this parameter can be a basic type or a list. Please ensure that the
called packages must be installed before using.

Example 4� �
model CallingR

global
{

list X <- [2, 3, 1];
list result;

init{
result <- R_compute_param("C:/YourPath/Mean.R", X);
write result at 0;

}
}� �
Mean.R file

result <- mean(vectorParam)

Output

result::[3.33333333333333]

Example 5� �
model CallingR

global {

v 1.7 486

GAMAdocumentation Chapter 50. Calling R

list X <- [2, 3, 1];
list result;

init{
result <- R_compute_param("C:/YourPath/AddParam.R", X);
write result at 0;

}
}� �
AddParam.R file

v1 <- vectorParam[1]

v2<-vectorParam[2]

v3<-vectorParam[3]

result<-v1+v2+v3

Output

result::[10] //: # (endConcept|call_r)

v 1.7 487

GAMAdocumentation Chapter 50. Calling R

v 1.7 488

Chapter 51

Using FIPA ACL

The communicating skill offers some actions and built-in variables which enable agents to
communicate with each other using the FIPA interaction protocol. This document describes
the built-in variables and actions of this skill. Examples are found in the models library
bundled with GAMA.

Variables

• accept_proposals (list): A list of ‘accept_proposal’ performative messages of the
agent’s mailbox having .

• agrees (list): A list of ‘accept_proposal’ performative messages.
• cancels (list): A list of ‘cancel’ performative messages.
• cfps (list): A list of ‘cfp’ (call for proposal) performative messages.
• conversations (list): A list containing the current conversations of agent. Ended
conversations are automatically removed from this list.

• failures (list): A list of ‘failure’ performative messages.
• informs (list): A list of ‘inform’ performative messages.
• messages (list): The mailbox of the agent, a list of messages of all types of perfor-
matives.

• proposes (list): A list of ‘propose’ performative messages .
• queries (list): A list of ‘query’ performative messages.
• refuses (list): A list of ‘propose’ performative messages.
• reject_proposals (list): A list of ‘reject_proposals’ performative messages.
• requests (list): A list of ‘request’ performative messages.

489

GAMAdocumentation Chapter 51. Using FIPA ACL

• requestWhens (list): A list of ‘request-when’ performative messages.
• subscribes (list): A list of ‘subscribe’ performative messages.

Actions

accept_proposal

Replies a message with an ‘accept_proposal’ performative message * returns: unknown *
message (message): The message to be replied * content (list): The content of the replying
message

agree

Replies a message with an ‘agree’ performative message. * returns: unknown * message
(message): The message to be replied * content (list): The content of the replying message

cancel

Replies amessage with a ‘cancel’ peformativemessage. * returns: unknown *message (mes-
sage): The message to be replied * content (list): The content of the replying message

cfp

Replies a message with a ‘cfp’ performative message. * returns: unknown * message (mes-
sage): The message to be replied * content (list): The content of the replying message

end_conversation

Replies a message with an ‘end_conversation’ peprformative message. This message marks
the end of a conversation. In a ‘no-protocol’ conversation, it is the responsible of themodeler
to explicitly send this message to mark the end of a conversation/interaction protocol. *
returns: unknown * message (message): The message to be replied * content (list): The
content of the replying message

v 1.7 490

GAMAdocumentation Chapter 51. Using FIPA ACL

failure

Replies a message with a ‘failure’ performative message. * returns: unknown * message
(message): The message to be replied * content (list): The content of the replying message

inform

Replies a message with an ‘inform’ performative message. * returns: unknown * message
(message): The message to be replied * content (list): The content of the replying message

propose

Replies a message with a ‘propose’ performative message. * returns: unknown * message
(message): The message to be replied * content (list): The content of the replying message

query

Replies amessage with a ‘query’ performativemessage. * returns: unknown *message (mes-
sage): The message to be replied * content (list): The content of the replying message

refuse

Replies a message with a ‘refuse’ performative message. * returns: unknown * message
(message): The message to be replied * content (list): The content of the replying message

reject_proposal

Replies a message with a ‘reject_proposal’ performative message. * returns: unknown *
message (message): The message to be replied * content (list): The content of the replying
message

reply

Replies a message. This action should be only used to reply a message in a ‘no-protocol’ con-
versation and with a ‘user defined performative’. For performatives supported by GAMA

v 1.7 491

GAMAdocumentation Chapter 51. Using FIPA ACL

(i.e., standard FIPA performatives), please use the ‘action’ with the same name of ‘performa-
tive’. For example, to reply a message with a ‘request’ performative message, the modeller
should use the ‘request’ action. * returns: unknown * message (message): The message to
be replied * performative (string): The performative of the replying message * content (list):
The content of the replying message

request

Replies a message with a ‘request’ performative message. * returns: unknown * message
(message): The message to be replied * content (list): The content of the replying message

send

Starts a conversation/interaction protocol. * returns: msi.gaml.extensions.fipa.Message *
receivers (list): A list of receiver agents * content (list): The content of the message. A list
of any GAML type * performative (string): A string, representing the message performative
* protocol (string): A string representing the name of interaction protocol

start_conversation

Starts a conversation/interaction protocol. * returns: msi.gaml.extensions.fipa.Message *
receivers (list): A list of receiver agents * content (list): The content of the message. A list
of any GAML type * performative (string): A string, representing the message performative
* protocol (string): A string representing the name of interaction protocol

subscribe

Replies a message with a ‘subscribe’ performative message. * returns: unknown * message
(message): The message to be replied * content (list): The content of the replying message

v 1.7 492

Chapter 52

Using GAMAnalyzer

Install

Go to Git View -> Click on Import Projects Add the dependencies in um-
misco.gama.feature.dependencies

GamAnalyzer is a tool to monitor several multi-agents simulation

The “agent_group_follower” goal is to monitor and analyze a group of agent during several
simulation. This group of agent can be chosen by the user according to criteria chosen by the
user. Themonitoring process and analysis of these agents involves the extraction, processing
and visualization of their data at every step of the simulation. The data for each simulation
are pooled and treated commonly for their graphic representation or clusters.

Built-in Variable

• varmap: All variable that can be analyzed or displayed in a graph.

• numvarmap: Numerical variable (on this variable all the aggregator numeric are
computed).

• qualivarmap: All non numerical variable. Could be used for BDI to analyze beliefs.

• metadatahistory: See updateMetaDataHistory. This matrice store all the metadata
like getSimulationScope(), getClock().getCycle(), getUniqueSimName(scope), rule,

493

GAMAdocumentation Chapter 52. Using GAMAnalyzer

scope.getAgentScope().getName(), this.getName(), this.agentsCourants.copy(scope),
this.agentsCourants.size(), this.getGeometry().

• lastdetailedvarvalues: store all the value (in varmap) for all the followed agent for
the last iteration.

• averagehistory: Average value for each of the numvar

• stdevhistory: Std deviation value for each of the numvar

• minhistory: Min deviation value for each of the numvar

• maxhistory: Max deviation value for each of the numvar

• distribhistoryparams: Gives the interval of the distribution described in distrib-
history

• distribhistory: Distribution of numvarmap

• multi_metadatahistory: Aggregate each metadatahistory for each experiment

Example

This example is based on a toy model which is only composed of wandering people. In this
example we will use GamAnalyzer to follow the agent people.

� �
agent_group_follower peoplefollower;� �� �
create agentfollower
{

do analyse_cluster species_to_analyse:"people";
peoplefollower <-self;

}� �
v 1.7 494

GAMAdocumentation Chapter 52. Using GAMAnalyzer

expGlobalNone

No clustering only the current agent follower is displayed� �
aspect base {

display_mode <-"global";
clustering_mode <-"none";
draw shape color: #red;

}� �
expSimGlobalNone

The agent_group_follower corresponding to the current iteration and all the already launch
experiments are displayed.� �
aspect simglobal{

display_mode <-"simglobal";
clustering_mode <-"none";
draw shape color: #red;
int curColor <-0;
loop geom over: allSimShape{

draw geom color:SequentialColors[curColor] at:{location.x,
location.y,curColor*10};
curColor <- curColor+1;

}
}� �
expCluster

The agent group follower is divided in cluster computed thanks to a dbscan algorithm. Only
the current agent_group_follower is displayed� �
aspect cluster {

display_mode <-"global";
clustering_mode <-"dbscan";
draw shape color: #red;

}� �
v 1.7 495

GAMAdocumentation Chapter 52. Using GAMAnalyzer

expClusterSimGlobal

The agent_group_follower (made of different cluster) corresponding to the current iteration
and all the already launch experiments are displayed.� �
aspect clusterSimGlobal {

display_mode <-"simglobal";
clustering_mode <-"dbscan";
draw shape color: #red;
int curColor <-0;
loop geom over: allSimShape{

draw geom color:SequentialColors[curColor] at:{location.x,
location.y,curColor*10};
curColor <- curColor+1;

}
}� �

v 1.7 496

Chapter 53

Using BDI

Install

You need to run the Git version.

The plugin need to be add with Eclipse doing the following:

• In ummisco.gama.feature.core open the feature.xml file.
• In plug-ins click add the msi.gaml.architecture.simplebdi

Acteur Projet

A website (still in construction) of the ACTEUR project can be found here http://acteur-
anr.fr/

An introduction to cognitive agent

The belief-desire-intention software model (usually referred to simply, but ambiguously, as
BDI) is a software model developed for programming intelligent agents.

• Belief : State of the agent.
• Desire: Objectives that the agent would like to accomplish.

497

GAMAdocumentation Chapter 53. Using BDI

• Intention: What the agent has chosen to do.

– Plan: Sequences of actions that an agent can perform to achieve one or more of
its intensions.

Basic Example: A fire rescue model using cognitive
agent

We introduce a simple example to illustrate the use of the BDI architecture.

This simplemodel consists in creating “cognitive” agent whose goal is to extinguish a fire. In
a first approximation we consider only one static water area and fire area. The aim is not to
have a realistic model but to illustrate how to give a “cognitive” behavior to an agent using
the BDI architecture.

First let’s create a BDI agent using the key control simple_bdi (A description of all existing
control architectures is available here.)

Species Helicopter creation� �
species helicopter skills:[moving] control: simple_bdi{
...
}� �
Attributes

The species helicopter needs 2 attributes to represent the water value and its speed.� �
float waterValue;
float speed <- 10.0;� �
Predicates

The predicate are the structure that are used to define a belief, a desire or an intention. In
this model we choose to declare 3 different predicates.

v 1.7 498

GAMAdocumentation Chapter 53. Using BDI

� �
predicate patrol_desire <- new_predicate("patrol") with_priority

1;
predicate water_predicate <- new_predicate("has water", true)

with_priority 3;
predicate no_water_predicate <- new_predicate("has water", false)

;� �
The new_predicate() tool creates a predicate. It needs a name (string type) and it can
contain amap of values, a priority (double type) or a truth value (boolean type). Thewith_-
priority tool add a priority to a predicate. The priority is used as an argument when the
agent has to choose between two predicates (to choose an intention for example).

Initialization

The initialization consists in setting the attribute waterValue to 1 and to add one desire.
Three optional parameters are also set. The first desire added in the desire base is the pa-
trol_desire saying that the helicopter wants to patrol. The optional parameters are specific
to the BDI plug-in. You can specify the commitment of an agent to his intentions and his
plans with the variables intention_persistence and plan_persistence that are floats between
0.0 (no commitment) and 1.0. The variable probabilistic_choice is a boolean that enables
the agent to use a probabilistic choice (when true) or a deterministic choice (when false)
when trying to find a plan or an intention.� �
waterValue <-1.0;
do add_desire(patrol_desire);
intention_persistence <- 1.0;
plan_persistence <- 1.0;
probabilistic_choice <- false;� �
Perception

At each iteration, the helicopter has two perceptions to do. The first one is about itself. The
helicopter needs to perceive if it has water or not. If it has water, it adds the belief corre-
sponding belief and removes the belief that it does not have water. And if it does not have
water, that is the contrary.� �
perceive target:self{

if(waterValue >0){

v 1.7 499

GAMAdocumentation Chapter 53. Using BDI

do add_belief(water_predicate);
do remove_belief(no_water_predicate);

}
if(waterValue <=0){

do add_belief(no_water_predicate);
do remove_belief(water_predicate);

}
}� �
The second perception is about the fires. Here, the fires are represented with the species
fireArea. The helicopter has a radius of perception of 10 meters. If it perceives a fire, it
will focus on the location of this fire. The focus tool create a belief with the same name
as the focus (here, “fireLocation”) and will store the value of the focused variable (here, the
variable location from the specie fireArea) with a priority of 10 in this example. Once the fire
is perceived, the helicopter removes its intention of patrolling.� �
perceive target:fireArea in: 10{

focus fireLocation var:location priority:10;
ask myself{

do remove_intention(patrol_desire , true);
}

}� �
Rules

The agent can use rules to create desires from beliefs. In this example, the agent has two
rules. The first rule is to have a desire corresponding to the belief of a location of a fire. It
means that when the agent has the belief that there is a fire in a particular location, it will
have the desire to extinguish it. This permits to have the location value in the desire base.
The second rule is to create the desire to have water when the agent has the belief that it not
has water.� �
rule belief: new_predicate("fireLocation") new_desire:

get_belief_with_name("fireLocation");
rule belief: no_water_predicate new_desire: water_predicate;� �
Plan

Patrolling

v 1.7 500

GAMAdocumentation Chapter 53. Using BDI

This plan will be used when the agent has the intention to patrol.� �
plan patrolling intention: patrol_desire{

do wander;
}� �
stopFire

This plan is executed when the agent has the intention to extinguish a fire.� �
plan stopFire intention: new_predicate("fireLocation") {

point target_fire <- point(get_current_intention().values["
location_value"]);
if(waterValue >0){

if (self distance_to target_fire <= 1) {
fireArea current_fire <- fireArea first_with (each.

location = target_fire);
if (current_fire != nil) {

waterValue <- waterValue - 1.0;
current_fire.size <- current_fire.size - 1;
if (current_fire.size <= 0) {

ask current_fire {do die;}
do remove_belief(get_current_intention());
do remove_intention(get_current_intention(),

true);
do add_desire(patrol_desire);

}
} else {

do remove_belief(get_current_intention());
do remove_intention(get_current_intention(), true

);
do add_desire(patrol_desire);

}
} else {

do goto target: target_fire;
}

} else {
do add_subintention(get_current_intention(),

water_predicate ,true);
do current_intention_on_hold();

}

v 1.7 501

GAMAdocumentation Chapter 53. Using BDI

}� �
gotoTakeWater

This plan is executed when the agent has the intention to have water.� �
plan gotoTakeWater intention: water_predicate {

waterArea wa <- first(waterArea);
do goto target: wa);
if (self distance_to wa <= 1) {

waterValue <- waterValue + 2.0;
}

}� �
Plans can have other options. They can have a priority (with the facet priority), a boolean
condition to start (with the facet when) or a boolean condition to stop (with the facet fin-
ished_when).

Rest of the code

Aspect of the helicopter� �
aspect base {

draw circle(1) color: #black;
}� �
FireArea Species� �
species fireArea{

float size <-1.0;

aspect base {
draw circle(size) color: #red;

}
}� �
v 1.7 502

GAMAdocumentation Chapter 53. Using BDI

WaterArea Species� �
species waterArea{

float size <-10.0;

aspect base {
draw circle(size) color: #blue;

}
}� �

v 1.7 503

GAMAdocumentation Chapter 53. Using BDI

v 1.7 504

Chapter 54

Advanced Driving Skill

This page aims at presenting how to use the advanced driving skill in models.

The use of the advanced driving skill requires to use 3 skills: * Advanced driving skill:
dedicated to the definition of the driver species. It provides the driver agents with variables
and actions allowing to move an agent on a graph network and to tune its behavior. *Road
skill: dedicated to the definition of roads. It provides the road agents with variables and
actions allowing to registers agents on the road. * RoadNode skill: dedicated to the defi-
nition of node. It provides the node agents with variables allowing to take into account the
intersection of roads and the traffic signals.

Table of contents

• Advanced Driving Skill

– Structure of the network: road and roadNode skills
– Advanced driving skill
– Application example

Structure of the network: road and roadNode skills

The advanced driving skill is versatile enough to be usable with most of classic road GIS
data, in particular OSM data. We use a classic format for the roads and nodes. Each road is
a polyline composed of road sections (segments). Each road has a target node and a source

505

GAMAdocumentation Chapter 54. Advanced Driving Skill

node. Each node knows all its input and output roads. A road is considered as directed. For
bidirectional roads, 2 roads have to be defined corresponding to both directions. Each road
will be the linked_road of the other. Note that for some GIS data, only one road is defined
for bidirectional roads, and the nodes are not explicitly defined. In this case, it is very easy,
using the GAML language, to create the reverse roads and the corresponding nodes (it only
requires few lines of GAML).

images/roads_structure.PNG

A lane can be composed of several lanes and the vehicles will be able to change at any time its
lane. Another property of the road that will be taken into account is the maximal authorized
speed on it. Note that even if the user of the plug-in has no information about these values
for some of the roads (the OSM data are often incomplete), it is very easy using the GAML
language to fill the missing value by a default value. It is also possible to change these values
dynamically during the simulation (for example, to take into account that after an accident,
a lane of a road is closed or that the speed of a road is decreased by the authorities).

images/roads.PNG

The road skill provides the road agents with several variables that will define the road prop-
erties: * lanes: integer, number of lanes. *maxspeed: float; maximal authorized speed
on the road. * linked_road: road agent; reverse road (if there is one). * source_node:
node agent; source node of the road. * target_node: node agent; target node of the road.

It provides as well the road agents with one read only variable: * agents_on: list of list (of
driver agents); for each lane, the list of driver agents on the road.

The*roadNode skillprovides the road agents with several variables that will define
the road properties: roads_in: list of road agents; the list of road agents that
have this node for target node. roads_out: list of road agents; the list of road
agents that have this node for source node. *stop: list of list of road agents; list
of stop signals, and for each stop signal, the list of concerned roads.

It provides as well the road agents with one read only variable:

• block: map: key: driver agent, value: list of road agents; the list of driver agents
blocking the node, and for each agent, the list of concerned roads.

Advanced driving skill

Each driver agent has a planned trajectory that consists in a succession of edges. When the
driver agent enters a new edge, it first chooses its lane according to the traffic density, with

v 1.7 506

resources/images/recipes/roads_structure.PNG
resources/images/recipes/roads.PNG

GAMAdocumentation Chapter 54. Advanced Driving Skill

a bias for the rightmost lane. The movement on an edge is inspired by the Intelligent Driver
Model. The drivers have the possibility to change their lane at any time (and not only when
entering a new edge).

The advanced driving skill provides the driver agents with several variables that will de-
fine the car properties and the personality of the driver: * final_target: point; final loca-
tion that the agent wants to reach (its goal). * vehicle_length: float; length of the vehicle. *
max_acceleration: float; maximal acceleration of the vehicle. *max_speed: float; max-
imal speed of the vehicle. * right_side_driving: boolean; do drivers drive on the right
side of the road? * speed_coef : float; coefficient that defines if the driver will try to drive
above or below the speed limits. * security_distance_coeff : float; coefficient for the se-
curity distance. The security distance will depend on the driver speed and on this coefficient.
* proba_lane_change_up: float; probability to change lane to a upper lane if necessary
(and if possible). * proba_lane_change_down: float; probability to change lane to a
lower lane if necessary (and if possible). * proba_use_linked_road: float; probability to
take the reverse road if necessary (if there is a reverse road). *proba_respect_priorities:
float; probability to respect left/right (according to the driving side) priority at intersections.
* proba_respect_stops: list of float; probabilities to respect each type of stop signals
(traffic light, stop sign…). * proba_block_node: float; probability to accept to block the
intersecting roads to enter a new road.

It provides as well the driver agents with several read only variables:

• speed: float; speed expected according to the roadmax_value, the car properties,
the personality of the driver and its real_speed.

• real_speed: float; real speed of the car (that takes into account the other drivers and
the traffic signals).

• current_path: path (list of roads to follow); the path that the agent is currently
following.

• current_target: point; the next target to reach (sub-goal). It corresponds to a node.
• targets: list of points; list of locations (sub-goals) to reach the final target.
• current_index: integer; the index of the current goal the agent has to reach.
• on_linked_road: boolean; is the agent on the linked road?

Of course, the values of these variables can be modified at any time during the simulation.
For example, the probability to take a reverse road (proba_use_linked_road) can be
increased if the driver is stucked for several minutes behind a slow vehicle.

In addition, the advanced driving skill provides the driver agents with several actions: *
compute_path: arguments: a graph and a target node. This action computes from a graph

v 1.7 507

GAMAdocumentation Chapter 54. Advanced Driving Skill

the shortest path to reach a given node. * drive: no argument. This action moves the driver
on its current path according to the traffic condition and the driver properties (vehicle prop-
erties and driver personality).

the drive action works as follow: while the agent has the time to move (remaining_time
> 0), it first defines the speed expected. This speed is computed from the max_speed
of the road, the current real_speed, the max_speed, the max_acceleration and the
speed_coef of the driver (see Equation 1).� �
speed_driver = Min(max_speed_driver , Min(real_speed_driver +

max_acceleration_driver ,max_speed_road * speed_coef_driver))� �
Then, the agent moves toward the current target and compute the remaining time. During
the movement, the agents can change lanes (see below). If the agent reaches its final target,
it stops; if it reaches its current target (that is not the final target), it tests if it can cross the
intersection to reach the next road of the current path. If it is possible, it defines its new
target (target node of the next road) and continues to move.

images/drive_action.png

The function that defines if the agent crosses or not the intersection to continue to move
works as follow: first, it tests if the road is blocked by a driver at the intersection (if the
road is blocked, the agent does not cross the intersection). Then, if there is at least one stop
signal at the intersection (traffic signal, stop sign…), for each of these signals, the agent tests
its probability to respect or not the signal (note that the agent has a specific probability to
respect each type of signals). If there is no stopping signal or if the agent does not respect
it, the agent checks if there is at least one vehicle coming from a right (or left if the agent
drives on the left side) road at a distance lower than its security distance. If there is one, it
tests its probability to respect this priority. If there is no vehicle from the right roads or if it
chooses to do not respect the right priority, it tests if it is possible to cross the intersection
to its target road without blocking the intersection (i.e. if there is enough space in the target
road). If it can cross the intersection, it crosses it; otherwise, it tests its probability to block
the node: if the agent decides nevertheless to cross the intersection, then the perpendicular
roads will be blocked at the intersection level (these roads will be unblocked when the agent
is going to move).

images/stop_at_intersection.png

Concerning the movement of the driver agents on the current road, the agent moves from
a section of the road (i.e. segment composing the polyline) to another section according to
the maximal distance that the agent can moves (that will depend on the remaining time).

v 1.7 508

resources/images/recipes/drive_action.png
resources/images/recipes/stop_at_intersection.png

GAMAdocumentation Chapter 54. Advanced Driving Skill

For each road section, the agent first computes the maximal distance it can travel according
the remaining time and its speed. Then, the agent computes its security distance according
to its speed and its security_distance_coeff. While its remaining distance is not null,
the agent computes the maximal distance it can travel (and the corresponding lane), then
it moves according to this distance (and update its current lane if necessary). If the agent
is not blocked by another vehicle and can reach the end of the road section, it updates its
current road section and continues to move.

images/follow_driving.png

The computation of the maximal distance an agent can move on a road section consists in
computing for each possible lane the maximal distance the agent can move. First, if there
is a lower lane, the agent tests the probability to change its lane to a lower one. If it decides
to test the lower lane, the agent computes the distance to the next vehicle on this lane and
memorizes it. If this distance corresponds to the maximal distance it can travel, it chooses
this lane; otherwise it computes the distance to the next vehicle on its current lane andmem-
orizes it if it is higher than the current memorizedmaximal distance. Then if the memorized
distance is lower than themaximal distance the agent can travel and if there is an upper lane,
the agents tests the probability to change its lane to a upper one. If it decides to test the upper
lane, the agent computes the distance to the next vehicle on this lane and memorizes it if it
is higher than the current memorized maximal distance. At last, if the memorized distance
is still lower than the maximal distance it can travel, if the agent is on the highest lane and if
there is a reverse road, the agent tests the probability to use the reverse road (linked road).
If it decides to use the reverse road, the agent computes the distance to the next vehicle on
the lane 0 of this road andmemorizes the distance if it is higher than the current memorized
maximal distance.

images/define_max_dist.png

Application example

We propose a simple model to illustrate the driving skill. We define a driver species. When
a driver agent reaches its destination, it just chooses a new random final target. In the same
way, we did not define any specific behavior to avoid traffic jam for the driver agents: once
they compute their path (all the driver agents use for that the same road graphwith the same
weights), they never re-compute it even if they are stucked in a traffic jam. Concerning the
traffic signals, we just consider the traffic lights (without any pre-processing: we consider
the rawOSMdata). One step of the simulation represents 1 second. At last, in order to clarify

v 1.7 509

resources/images/recipes/follow_driving.png
resources/images/recipes/define_max_dist.png

GAMAdocumentation Chapter 54. Advanced Driving Skill

the explanation of the model, we chose to do not present the parts of the GAML code that
concern the simulation visualization.

images//sim_snapshot.png

The following code shows the definition of species to represent the road infrastructure:� �
species road skills: [skill_road] {

string oneway;
}

species node skills: [skill_road_node] {
bool is_traffic_signal;
int time_to_change <- 100;
int counter <- rnd (time_to_change) ;

reflex dynamic when: is_traffic_signal {
counter <- counter + 1;
if (counter >= time_to_change) {

counter <- 0;
stop[0] <-empty(stop[0])? roads_in : [];

}
}

}� �
In order to use our driving skill, we just have to add the skill_road_node to the node
species and the skill_road to the road species. In addition, we added to the road species
a variable called oneway that will be initialized from the OSM data and that represents
the traffic direction (see the OSM map features for more details). Concerning the node, we
defined 3 new attributes:

• is_traffic_signal: boolean; is the node a traffic light?
• time_to_change: integer; represents for the traffic lights the time to pass from the
red light to the green light (and vice versa).

• counter: integer; number of simulation steps since the last change of light color (used
by the traffic light nodes).

In addition, we defined for the node species a reflex (behavior) called dynamic that will
be activated only for traffic light nodes and that will increment the counter value. If this
counter is higher than time_to_change, this variable is set to 0, and the node change the
value of the stop variable: if the traffic light was green (i.e. there is no road concerns by this

v 1.7 510

resources/images/recipes/sim_snapshot.png

GAMAdocumentation Chapter 54. Advanced Driving Skill

stop sign), the list of block roads is set by all the roads that enter the node; if the traffic light
was red (i.e. there is at least one road concerns by this stop sign), the list of block roads is
set to an empty list.

The following code shows the definition of driver species:� �
species driver skills: [advanced_driving] {

reflex time_to_go when: final_target = nil {
current_path <- compute_path(

graph: road_network , target: one_of(node));
}
reflex move when: final_target != nil {

do drive;
}

}� �
In order to use our driving plug-in, we just have to add the advanced_driving to the
driver species. For this species, we defined two reflexes: * time_to_go: activated when
the agent has no final target. In this reflex, the agent will randomly choose one of the nodes
as its final target, and computed the path to reach this target using the * road_network
graph. Note that it will have been possible to take into account the knowledge that each
agent has concerning the road network by defining a new variable of type map (dictionary)
containing for each road a given weight that will reflect the driver knowledge concerning the
network (for example, the known traffic jams, its favorite roads….) and to use this map for
the path computation. *move: activated when the agent has a final target. In this reflex,
the agent will drive in direction of its final target.

We describe in the following code how we initialize the simulation:� �
init {

create node from: file("nodes.shp") with:[
is_traffic_signal::read("type")="traffic_signals"];

create road from: file("roads.shp")
with:[lanes::int(read("lanes")),
maxspeed::float(read("maxspeed")),
oneway::string(read("oneway"))]
{

switch oneway {
match "no" {

create road {

v 1.7 511

GAMAdocumentation Chapter 54. Advanced Driving Skill

lanes <- myself.lanes;
shape <- polyline(reverse

(myself.shape.points));
maxspeed <- myself.maxspeed;
linked_road <- myself;
myself.linked_road <- self;

}
}
match "-1" {

shape <- polyline(reverse(shape.points));
}

}
}

}
map general_speed_map <- road as_map

(each::(each.shape.perimeter/(each.maxspeed)));

road_network <- (as_driving_graph(road, node))
with_weights general_speed_map;

create driver number: 10000 {
location <- one_of(node).location;
vehicle_length <- 3.0;
max_acceleration <- 0.5 + rnd(500) / 1000;
speed_coeff <- 1.2 - (rnd(400) / 1000);
right_side_driving <- true;
proba_lane_change_up <- rnd(500) / 500;
proba_lane_change_down <- 0.5+ (rnd(250) / 500);
security_distance_coeff <- 3 - rnd(2000) / 1000);
proba_respect_priorities <- 1.0 - rnd(200/1000);
proba_respect_stops <- [1.0 - rnd(2) / 1000];
proba_block_node <- rnd(3) / 1000;
proba_use_linked_road <- rnd(10) / 1000;

}
}� �
In this code, we create the node agents from the node shapefile (while reading the attributes
contained in the shapefile), then we create in the same way the road agents. However, for
the road agents, we use the oneway variable to define if we should or not reverse their
geometry (oneway = “-1”) or create a reverse road (oneway = “no”). Then, from the road

v 1.7 512

GAMAdocumentation Chapter 54. Advanced Driving Skill

and node agents, we create a graph (while taking into account themaxspeed of the road
for the weights of the edges). This graph is the one that will be used by all agents to compute
their path to their final target. Finally, we create 1000 driver agents. At initialization, they
are randomly placed on the nodes; their vehicle has a length of 3m; themaximal acceleration
of their vehicle is randomly drawn between 0.5 and 1; the speed coefficient of the driver is
randomly drawn between 0.8 and 1.2; they are driving on the right side of the road; their
probability of changing lane for a upper lane is randomly drawn between 0 and 1.0; their
probability of changing lane for a lower lane is randomly drawn between 0.5 and 1.0; the
security distance coefficient is randomly drawn between 1 and 3; their probability to respect
priorities is randomly drawn between 0.8 and 1; their probability to respect light signal is
randomly drawn between 0.998 and 1; their probability to block a node is randomly drawn
between 0 and 0.003; their probability to use the reverse road is randomly drawn between
0 and 0.01;

The complete code of the model with the data can be found here

v 1.7 513

resources/images/recipes/Rouentrafffic.zip

GAMAdocumentation Chapter 54. Advanced Driving Skill

v 1.7 514

Chapter 55

Manipulate Dates

Managing Time in Models

If somemodels are based on a abstract time - only the number of cycles is important - others
are based on a real time. In order tomanage the time, GAMA provides some tools tomanage
time.

First, GAMAallows to define the duration of a simulation step. It provides access to different
time variables. At last, since GAMA 1.7, it provides a date variable type and some global
variables allowing to use a real calendar to manage time.

Definition of the step and use of temporal unity values

GAMA provides three important global variables to manage time:

• cycle (int - notmodifiable): the current simulation step - this variable is incremented
by 1 at each simulation step

• step (float - can be modified): the duration of a simulation step (in seconds). By
default the duration is one second.

• time (float - not modifiable): the current time spent since the beginning of the simu-
lation - this variable is computed at each simulation step by: time = cycle * step.

The value of the cycle and time variables are shown in the top left (green rectangle) of the
simulation interface. Clicking on the green rectangle allows to display either the number

515

GAMAdocumentation Chapter 55. Manipulate Dates

cycles or the time variable. Concerning this variable, it is presented following a years -month
- days - hours - minutes - seconds format. In this presentation, every months are considered
as being composed of 30 days (the different number of days of months are not taken into
account).

Concerning the step facet, the variable can be modified by the modeler. A classic way of
doing it consists in reediting the variable in the global section:� �
global {

float step <- 1 #hour;
}� �
In this example, each simulation step will represent 1 hour. This time will be taken into
account for all actions based on time (e.g. moving actions).

Note that the value of the step variable should be given in seconds. To facilitate the definition
of the step value and of all expressions based on time, GAMA provides different built-in
constant variables accessible with the “#” symbol:

• #s : second - 1 second
• #mn : minute - 60 seconds
• #hour : hour - 60 minutes - 3600 seconds
• #day : day - 24 hours - 86400 seconds
• #month : month - 30 days - 2592000 seconds
• #year : year - 12 month - 3.1104E7

The date variable type and the use of a real calendar

SinceGAMA1.7, it is possible to use a real calendar tomanage the time. For that, themodeler
have just to define the starting date of the simulation. This variable is of type date which
allow to represent a date and time. A date variable has several attributes:

• year (int): the year component of the date
• month (int): the month component of the date
• day (int): the day component of the date
• hour (int): the hour component of the date
• minute (int): the minute component of the date
• second (int): the second component of the date

v 1.7 516

GAMAdocumentation Chapter 55. Manipulate Dates

• day_of_week (int): the day of the week
• week_of_year (int): the week of the year

Several ways can be used to define a date. The simplest consists in using a list of int values:
[year,month of the year,day of the month, hour of the day, minute of the hour, second of the
minute]� �
date my_date <- date([2010,3,23,17,30,10]); // the 23th of March

2010, at 17:30:10� �
Another way consists in using a string with the good format:� �
date my_date <- date("2010-3-23T17:30:10+07:00");� �
Note that the current date can be access through the #now built-in variable (variable of type
date).

In addition, GAMA provides different useful operators working on dates. For instance, it is
possible to compute the duration in seconds between 2 dates using the “-” operator. The
result is given in seconds:� �
float d <- starting_date - my_date;� �
It is also possible to add or subtract a duration (in seconds) to a date:� �
write "my_date + 10: " + (my_date + 10);
write "my_date - 10: " + (my_date - 10);� �
At last, it is possible to add or subtract a duration (in years, months, weeks, days, hours,
minutes, seconds) to a date:� �
write "my_date add_years 1: " + (my_date add_years 1);
write "my_date add_months 1: " + (my_date add_months 1);
write "my_date add_weeks 1: " + (my_date add_weeks 1);
write "my_date add_days 1: " + (my_date add_days 1);
write "my_date add_hours 1: " + (my_date add_hours 1);
write "my_date add_minutes 1: " + (my_date add_minutes 1);
write "my_date add_seconds 1: " + (my_date add_seconds 1);

write "my_date subtract_years 1: " + (my_date subtract_years 1);
write "my_date subtract_months 1: " + (my_date subtract_months 1)

;

v 1.7 517

GAMAdocumentation Chapter 55. Manipulate Dates

write "my_date subtract_weeks 1: " + (my_date subtract_weeks 1);
write "my_date subtract_days 1: " + (my_date subtract_days 1);
write "my_date subtract_hours 1: " + (my_date subtract_hours 1);
write "my_date subtract_minutes 1: " + (my_date subtract_minutes

1);
write "my_date subtract_seconds 1: " + (my_date subtract_seconds

1);� �
For the modelers, two global date variable are available: * starting_date: date considered
as the beginning of the simulation * current_date: current date of the simulation

By default, these variables are nil. Defining a value of the starting_date allows to change the
normal time management of the simulation by a more realistic one (using calendar):� �
global {

date starting_date <- date([1979,12,17,19,45,10]);
}� �
When a variable is set to this variable, the current_date variable is automatically initialized
with the same value. However, at each simulation step, the current_date variable is incre-
mented by the step variable. The value of the current_date will replace the value of the time
variable in the top left green panel.

Note that you have to be careful, when a real calendar is used, the built-in constants #month
and #year should not be used as there are not consistent with the calendar (where month
can be composed of 28, 29, 30 or 31 days).

v 1.7 518

Chapter 56

Implementing light

When using opengl display, GAMA provides you the possibility to manipulate one or several
lights, making your display more realistic. Most of the following screenshots will be taken
with the following short example gaml :� �
model test_light

grid cells {
aspect base {

draw square(1) at:{grid_x,grid_y} color:#white;
}

}
experiment my_experiment type:gui{

output {
display my_display type:opengl background:#darkblue {

species cells aspect:base;
graphics "my_layer" {

draw square(100) color:#white at:{50,50};
draw cube(5) color:#lightgrey at:{50,30};
draw cube(5) color:#lightgrey at:{30,35};
draw cube(5) color:#lightgrey at:{60,35};
draw sphere(5) color:#lightgrey at:{10,10,2.5};
draw sphere(5) color:#lightgrey at:{20,30,2.5};
draw sphere(5) color:#lightgrey at:{40,30,2.5};
draw sphere(5) color:#lightgrey at:{40,60,2.5};
draw cone3D(5,5) color:#lightgrey at:{55,10,0};
draw cylinder(5,5) color:#lightgrey at:{10,60,0};

519

GAMAdocumentation Chapter 56. Implementing light

}
}

}
}� �

Index

• Light generalities
• Default light
• Custom lights

Light generalities

Before going deep into the code, here is a quick explanation about how light works in opengl.
First of all, you need to know that there are 3 types of lights you can manipulate : the am-
bient light, the diffuse light and the specular light. Each “light” in opengl is in fact
composed of those 3 types of lights.

Ambient light

The ambient light is the light of your world without any lighting. If a face of a cube is not
stricken by the light rays for instance, this face will appear totally black if there is no ambient
light. To make your world more realistic, it is better to have an ambient light. An ambient
light has then no position or direction. It is equally distributed to all the objects of your
scene.

Here is an example of our GAML scene using only ambient light (color red) :

Diffuse light

The diffuse light can be seen as the light rays : if a face of a cube is stricken by the diffuse
light, it will take the color of this diffuse light. You have to know that themore perpendicular
the face of your object will be to the light ray, the more lightened the face will be.

v 1.7 520

GAMAdocumentation Chapter 56. Implementing light

Figure 56.1: resources/images/lightRecipes/ambient_light.png

A diffuse light has then a direction. It can have also a position. Your have 2 categories of
diffuse light : the positional lights, and the directional lights.

Positional lights

Those lights have a position in your world. It is the case of point lights and spot lights.

• Point lights

Points lights can be seen as a candle in your world, diffusing the light equally in all the direc-
tion.

Here is an example of our GAML scene using only diffuse light, with a point light (color red,
the light source is displayed as a red sphere) :

• Spot lights

Spot lights can be seen as a torch light in your world. It needs a position, and also a direction
and an angle.

Here is an example of our GAML scene using only diffusion light, with a spot light (color red,
the light source is displayed as a red cone) :

v 1.7 521

GAMAdocumentation Chapter 56. Implementing light

Figure 56.2: resources/images/lightRecipes/point_light.png

Figure 56.3: resources/images/lightRecipes/spot_light.png

v 1.7 522

GAMAdocumentation Chapter 56. Implementing light

Positional lights, as they have a position, can also have an attenuation according to the
distance between the light source and the object. The value of positional lights are com-
puted with the following formula : diffuse_light = diffuse_light * (1 / (1 + constante_at-
tenuation + linear_attenuation * d + quadratic_attenuation * d)) By changing those 3 val-
ues (constante_attenuation, linear_attenuation and quadratic_attenuation), you can con-
trol the way light is diffused over your world (if your world is “foggy” for instance, you may
turn your linear and quadratic attenuation on). Note that by default, all those attenuation
are equal to 0.

Here is an example of our GAML scene using only diffusion light, with a point light with
linear attenuation (color red, the light source is displayed as a red sphere) :

Figure 56.4: resources/images/lightRecipes/point_light_with_attenuation.png

Directional lights

Directional lights have no real “position” : they only have a direction. A directional light will
strike all the objects of your world with the same direction. An example of directional light
you have in the real world would be the light of the sun : the sun is so far away from us that
you can consider that the rays have the same direction and the same intensity wherever they
strike. Since there is no position for directional lights, there is no attenuation either.

Here is an example of our GAML scene using only diffusion light, with a directional light
(color red) :

v 1.7 523

GAMAdocumentation Chapter 56. Implementing light

Figure 56.5: resources/images/lightRecipes/direction_light.png

Specular light

This is a more advanced concept, giving an aspect a little bit “shinny” to the objects stricken
by the specular light. It is used to simulate the interaction between the light and a special
material (ex : wood, steel, rubber…). This specular light is not implemented yet in gama,
only the two others are.

Default light

In your opengl display, without specifying any light, you will have only one light, with those
following properties :

Those values have been chosen in order to have the same visual effect in both opengl and
java2D displays, when you display 2D objects, and also to have a nice “3D effect” when using
the opengl displays. We chose the following setting by default : * The ambient light value :
rgb(127,127,127,255) * diffuse light value : rgb(127,127,127,255) * type of light : direction *
direction of the light : (0.5,0.5,-1);

Here is an example of our GAML scene using the default light :

Custom lights

In your opengl display, you can create up to 8 lights, giving them the properties you want.

v 1.7 524

GAMAdocumentation Chapter 56. Implementing light

Figure 56.6: resources/images/lightRecipes/default_light.png

Ambient light

In order to keep it simple, the ambient light can be set directly when you are declaring your
display, through the facet ambient_light. You will have one only ambient light.� �
experiment my_experiment type:gui {

output {
display "my_display" type:opengl ambient_light:100 {
}

}
}� �
Note for developers : Note that this ambient light is set to the GL_LIGHT0. This GL_-
LIGHT0 only contains an ambient light, and no either diffuse nor specular light.

Diffuse light

In order to add lights, or modifying the existing lights, you can use the statement light,
inside your display scope :� �
experiment my_experiment type:gui {

output {
display "my_display" type:opengl {

light id:0;

v 1.7 525

GAMAdocumentation Chapter 56. Implementing light

}
}

}� �
This statement has just one non-optional facet : the facet “id”. Through this facet, you can
specify which light you want. You can control 7 lights, through an integer value between 1
and 7. Once you are manipulating a light through the light statement, the light is turned
on. To switch off the light, you have to add the facet active, and turn it to false. The light
you are declaring through the light statement is in fact a “diffuse” light. You can specify the
color of the diffuse light through the facet color (by default, the color will be turn to white).
An other very important facet is the type facet. This facet accepts a value among direction,
point and spot.

Declaring direction light

A direction light, as explained in the first part, is a light without any position. Instead of the
facet position, you will use the facet direction, giving a 3D vector.

Example of implementation :� �
light id:1 type:direction direction:{1,1,1} color:rgb(255,0,0);� �
Declaring point light

A point light will need a facet position, in order to give the position of the light source.

Example of implementation of a basic point light :� �
light id:1 type:point position:{10,20,10} color:rgb(255,0,0);� �
You can add, if you want, a custom attenuation of the light, through the facets
linear_attenuation or quadratic_attenuation.

Example of implementation of a point light with attenuation :� �
light id:1 type:point position:{10,20,10} color:rgb(255,0,0)

linear_attenuation:0.1;� �
v 1.7 526

GAMAdocumentation Chapter 56. Implementing light

Declaring spot light

A spot light will need the facet position (a spot light is a positionnal light) and the facet
direction. A spot light will also need a special facet spot_angle to determine the angle of
the spot (by default, this value is set to 45 degree).

Example of implementation of a basic spot light :� �
light id:1 type:spot position:{0,0,10} direction:{1,1,1} color:

rgb(255,0,0) spot_angle:20;� �
Same as for point light, you can specify an attenuation for a spot light.

Example of implementation of a spot light with attenuation :� �
light id:1 type:spot position:{0,0,10} direction:{1,1,1} color:

rgb(255,0,0) spot_angle:20;� �
Note that when you are working with lights, you can display your lights through the facet
draw light to help you implementing your model. The three types of lights are displayed
differently : - The point light is represented by a sphere with the color of the diffuse light
you specified, in the position of your light source. - The spot light is represented by a cone
with the color of the diffuse light you specified, in the position of your light source, the ori-
entation of your light source. The size of the base of the cone will depend of the angle you
specified. - The direction light, as it has no real position, is represented with arrows a bit
above the world, with the direction of your direction light, and the color of the diffuse light
you specified.

Note for developers : Note that, since the GL_LIGHT0 is already reserved for the ambient
light (only !), all the other lights (from 1 to 7) are the lights fromGL_LIGHT1 to GL_LIGHT7.

v 1.7 527

GAMAdocumentation Chapter 56. Implementing light

Figure 56.7: resources/images/lightRecipes/draw_light.png

v 1.7 528

Chapter 57

Using Comodel

Introduction

In the trend of developing complex system of multi-disciplinary, composing and coupling
models are days by days become the most attractive research objectives. GAMA is support-
ing the co-modelling and co-simulation which are suppose to be the common coupling in-
frastructure.

Example of a Comodel

A Comodel is a model, especially an multi-agent-based, compose several sub-model, called
micro-model. A comodel itself could be also a micro-model of an other comodel. From the
view of a micro-model, comodel is called a macro-model.

A micro-model must be import, instantiate, and life-control by macro-model.

Why and when can we use Comodel ?

to be completed…

529

GAMAdocumentation Chapter 57. Using Comodel

Figure 57.1:

Use of Comodel in a GAMLmodel

The GAML language has been evolve by extend the import section. The old importation
tell the compiler to merge all imported elements into as one model, but the new one allows
modellers to keep the elements come from importedmodels separately with the callermodel.

Defining a micro-model

Defining a micro-model of comodel is to import an existing model with an alias name. The
syntax is:� �
import <path to the GAML model> as <identifier >� �
The identifier is then become the new name of the micro-model.

Instantiate a micro-model

After the importation and giving an identifier, micro-model must be explicitly instantiated.
It could be done by create statement.� �
create <micro-model identifier > . <experiment name> [optional

parameter];� �
v 1.7 530

GAMAdocumentation Chapter 57. Using Comodel

THe is an expriment insidemicro-model. This syntax will generate an experiment agent and
attach an implicitly simulation.

Note: Creation of multi-instant is not create multi-simulation, but multi-experiment. Mod-
ellers could create a experiment with multi-simulation by explicitly do the init inside the
experiment scope.

Control micro-model life-cycle

A micro-model can be control as the normal agent by asking the correspond identifier, and
also be destroy by the ‘o die’ statement. As fact, it can be recreate any time we need.� �
ask (<micro-model identifier > . <experiment name> at <number>)

. simulation {
...

}� �
Visualize micro-model

The micro-model species could display in comodel with the support of agent layer� �
agents "name of layer" value: (<micro-model> . <experiment name>

at <number >).<get List of agents >;� �
More details

Example of the comodel

Urbanization model with Traffic model

Flood model with Evacuation model

Reusing of two existing models:Flood Simulation and Evacuation.

Toy Models/Evacuation/models/continuous_move.gaml

v 1.7 531

GAMAdocumentation Chapter 57. Using Comodel

Figure 57.2:

Figure 57.3:

v 1.7 532

GAMAdocumentation Chapter 57. Using Comodel

Figure 57.4:

v 1.7 533

GAMAdocumentation Chapter 57. Using Comodel

Toy Models/Flood Simulation/models/Hydrological Model.gaml

The comodel explore the effect of flood on evacuation plan:

Figure 57.5:

Simulation results:

Figure 57.6:

v 1.7 534

Part III

GAML References (Documentation)

535

GAMAdocumentation

Built-in Species

This file is automatically generated from java files. Do Not Edit It.

It is possible to use in the models a set of built-in agents. These agents allow to directly
use some advance features like clustering, multi-criteria analysis, etc. The creation of these
agents are similar as for other kinds of agents:� �
create species: my_built_in_agent returns: the_agent;� �
So, for instance, to be able to use clustering techniques in the model:� �
create cluster_builder returns: clusterer;� �
Table of Contents

agent, AgentDB, base_edge, experiment, graph_edge, graph_node, model, physical_world,

agent

Actions

init

• returns: unknown

v 1.7 537

GAMAdocumentation

step

• returns: unknown

AgentDB

Actions

close

• returns: unknown

connect

• returns: unknown

• � params (map): Connection parameters

executeUpdate

• returns: int

• � updateComm (string): SQL commands such as Create, Update, Delete, Drop with
question mark

• � values (list): List of values that are used to replace question mark

getParameter

• returns: unknown

v 1.7 538

GAMAdocumentation

insert

• returns: int

• � into (string): Table name

• � columns (list): List of column name of table

• � values (list): List of values that are used to insert into table. Columns and values
must have same size

isConnected

• returns: bool

select

• returns: container

• � select (string): select string

• � values (list): List of values that are used to replace question marks

setParameter

• returns: unknown

• � params (map): Connection parameters

testConnection

• returns: bool

• � params (map): Connection parameters

v 1.7 539

GAMAdocumentation

timeStamp

• returns: float

base_edge

Actions

experiment

Actions

graph_edge

Actions

graph_node

Actions

related_to

• returns: bool

v 1.7 540

GAMAdocumentation

• � other (agent):

model

Actions

halt

Allows to stop the current simulation so that cannot be continued after. All the behaviors
and updates are stopped. * returns: unknown

pause

Allows to pause the current simulation ACTUALLY EXPERIMENT FOR THE MO-
MENT. It can be set to continue with the manual intervention of the user. * returns:
unknown

physical_world

Actions

compute_forces

• returns: unknown

v 1.7 541

GAMAdocumentation

v 1.7 542

Chapter 58

The ‘agent’ built-in species (Under
Construction)

Asdescribed in the presentation ofGAML, the hierarchy of species derives froma single built-
in species called agent. All its components (attributes, actions) will then be inherited by all
direct or indirect children species (including model and experiment), with the exception of
species that explicitly mention use_minimal_agents: true as a facet, which inherit from a
stripped-down version of agent (see below).

agent attributes

agent defines several attributes, which form the minimal set of knowledge any agent will
have in a model. *

agent actions

543

GAMAdocumentation Chapter 58. The ‘agent’ built-in species (Under Construction)

v 1.7 544

Chapter 59

The ‘model’ built-in species (Under
Construction)

As described in the presentation of GAML, any model in GAMA is a species (introduced by
the keyword global) which directly inherits from an abstract species called model. This
abstract species (sub-species of agent) defines several attributes and actions that can then
be used in any global section of any model.

model attributes

model defines several attributes, which, in addition to the attributes inherited from agent,
form the minimal set of knowledge a model can manipulate. *

model actions

545

GAMAdocumentation Chapter 59. The ‘model’ built-in species (Under Construction)

v 1.7 546

Chapter 60

The ‘experiment’ built-in species
(Under Construction)

As described in the presentation of GAML, any experiment attached to a model is a species
(introduced by the keyword experiment which directly or indirectly inherits from an ab-
stract species called experiment itself. This abstract species (sub-species of agent) defines
several attributes and actions that can then be used in any experiment.

experiment attributes

experiment defines several attributes, which, in addition to the attributes inherited from
agent, form the minimal set of knowledge any experiment will have access to.

experiment actions

547

GAMAdocumentation Chapter 60. The ‘experiment’ built-in species (Under Construction)

v 1.7 548

Chapter 61

Built-in Skills

This file is automatically generated from java files. Do Not Edit It.

Introduction

Skills are built-inmodules, written in Java, that provide a set of related built-in variables and
built-in actions (in addition to those already provided by GAMA) to the species that declare
them. A declaration of skill is done by filling the skills attribute in the species definition:� �
species my_species skills: [skill1, skill2] {

...
}� �
Skills have been designed to be mutually compatible so that any combination of them will
result in a functional species. An example of skill is the moving skill.

So, for instance, if a species is declared as:� �
species foo skills: [moving]{
...
}� �

549

GAMAdocumentation Chapter 61. Built-in Skills

Its agents will automatically be provided with the following variables : speed, heading,
destination and the following actions: move, goto, wander, follow in addition to those
built-in in species and declared by the modeller. Most of these variables, except the ones
marked read-only, can be customized and modified like normal variables by the modeller.
For instance, one couldwant to set amaximum for the speed; this would be done by redeclar-
ing it like this:� �
float speed max:100 min:0;� �
Or, to obtain a speed increasing at each simulation step:� �
float speed max:100 min:0 <- 1 update: speed * 1.01;� �
Or, to change the speed in a behavior:� �
if speed = 5 {

speed <- 10;
}� �

Table of Contents

advanced_driving, driving, fipa, GAMASQL, grid, MDXSKILL, messaging, moving, mov-
ing3D, physics, skill_road, skill_road_node, SQLSKILL,

advanced_driving

Variables

• current_index (int): the current index of the agent target (according to the targets
list)

v 1.7 550

GAMAdocumentation Chapter 61. Built-in Skills

• current_lane (int): the current lane on which the agent is

• current_path (path): the current path that tha agent follow

• current_road (agent): current road on which the agent is

• current_target (point): the current target of the agent

• distance_to_goal (float): euclidean distance to the next point of the current
segment

• final_target (point): the final target of the agent

• max_acceleration (float): maximum acceleration of the car for a cycle

• max_speed (float): maximal speed of the vehicle

• on_linked_road (boolean): is the agent on the linked road?

• proba_block_node (float): probability to block a node (do not let other driver cross
the crossroad)

• proba_lane_change_down (float): probability to change lane to a lower lane (right
lane if right side driving) if necessary

• proba_lane_change_up (float): probability to change lane to a upper lane (left lane
if right side driving) if necessary

• proba_respect_priorities (float): probability to respect priority (right or left)
laws

• proba_respect_stops (list): probability to respect stop laws - one value for each
type of stop

• proba_use_linked_road (float): probability to change lane to a linked road lane if
necessary

• real_speed (float): real speed of the agent (in meter/second)

v 1.7 551

GAMAdocumentation Chapter 61. Built-in Skills

• right_side_driving (boolean): are drivers driving on the right size of the road?

• security_distance_coeff (float): the coefficient for the computation of the the
min distance between two drivers (according to the vehicle speed - security_distance
= 1#m + security_distance_coeff * real_speed)

• segment_index_on_road (int): current segment index of the agent on the current
road

• speed (float): the speed of the agent (in meter/second)

• speed_coeff (float): speed coefficient for the speed that the driver want to reach
(according to the max speed of the road)

• targets (list): the current list of points that the agent has to reach (path)

• vehicle_length (float): the length of the vehicle (in meters)

Actions

advanced_follow_driving

moves the agent towards along the path passed in the arguments while considering the other
agents in the network (only for graph topology)

• returns: float

• path (path): a path to be followed.

• target (point): the target to reach

• speed (float): the speed to use for this move (replaces the current value of speed)

• time (float): time to travel

v 1.7 552

GAMAdocumentation Chapter 61. Built-in Skills

compute_path

action to compute a path to a target location according to a given graph

• returns: path

• graph (graph): the graph on wich compute the path

• target (agent): the target node to reach

• source (agent): the source node (optional, if not defined, closest node to the agent
location)

• on_road (agent): the road on which the agent is located (optional)

drive

action to drive toward the final target

• returns: void

external_factor_impact

action that allows to define how the remaining time is impacted by external factor

• returns: float

• new_road (agent): the road on which to the driver wants to go

• remaining_time (float): the remaining time

is_ready_next_road

action to test if the driver can take the given road at the given lane

• returns: bool

v 1.7 553

GAMAdocumentation Chapter 61. Built-in Skills

• new_road (agent): the road to test

• lane (int): the lane to test

lane_choice

action to choose a lane

• returns: int

• new_road (agent): the road on which to choose the lane

path_from_nodes

action to compute a path from a list of nodes according to a given graph

• returns: path

• graph (graph): the graph on wich compute the path

• nodes (list): the list of nodes composing the path

speed_choice

action to choose a speed

• returns: float

• new_road (agent): the road on which to choose the speed

test_next_road

action to test if the driver can take the given road

• returns: bool

v 1.7 554

GAMAdocumentation Chapter 61. Built-in Skills

• new_road (agent): the road to test

driving

Variables

• lanes_attribute (string): the name of the attribut of the road agent that determine
the number of road lanes

• living_space (float): themin distance between the agent and an obstacle (inmeter)

• obstacle_species (list): the list of species that are considered as obstacles

• speed (float): the speed of the agent (in meter/second)

• tolerance (float): the tolerance distance used for the computation (in meter)

Actions

follow_driving

moves the agent along a given path passed in the arguments while considering the other
agents in the network.

• returns: path

• speed (float): the speed to use for this move (replaces the current value of speed)

• path (path): a path to be followed.

• return_path (boolean): if true, return the path followed (by default: false)

• move_weights (map): Weigths used for the moving.

v 1.7 555

GAMAdocumentation Chapter 61. Built-in Skills

• living_space (float): min distance between the agent and an obstacle (replaces the
current value of living_space)

• tolerance (float): tolerance distance used for the computation (replaces the current
value of tolerance)

• lanes_attribute (string): the name of the attribut of the road agent that determine
the number of road lanes (replaces the current value of lanes_attribute)

goto_driving

moves the agent towards the target passed in the arguments while considering the other
agents in the network (only for graph topology)

• returns: path

• target (point,geometry,agent): the location or entity towards which to move.

• speed (float): the speed to use for this move (replaces the current value of speed)

• on (list,agent,graph,geometry): list, agent, graph, geometry that restrains this move
(the agent moves inside this geometry)

• return_path (boolean): if true, return the path followed (by default: false)

• move_weights (map): Weigths used for the moving.

• living_space (float): min distance between the agent and an obstacle (replaces the
current value of living_space)

• tolerance (float): tolerance distance used for the computation (replaces the current
value of tolerance)

• lanes_attribute (string): the name of the attribut of the road agent that determine
the number of road lanes (replaces the current value of lanes_attribute)

v 1.7 556

GAMAdocumentation Chapter 61. Built-in Skills

fipa

The fipa skill offers some primitives and built-in variables which enable agent to communi-
cate with each other using the FIPA interaction protocol.

Variables

• accept_proposals (list): A list of ‘accept_proposal’ performative messages of the
agent’s mailbox having .

• agrees (list): A list of ‘accept_proposal’ performative messages.

• cancels (list): A list of ‘cancel’ performative messages.

• cfps (list): A list of ‘cfp’ (call for proposal) performative messages.

• conversations (list): A list containing the current conversations of agent. Ended
conversations are automatically removed from this list.

• failures (list): A list of ‘failure’ performative messages.

• informs (list): A list of ‘inform’ performative messages.

• proposes (list): A list of ‘propose’ performative messages .

• queries (list): A list of ‘query’ performative messages.

• refuses (list): A list of ‘propose’ performative messages.

• reject_proposals (list): A list of ‘reject_proposals’ performative messages.

• requests (list): A list of ‘request’ performative messages.

• requestWhens (list): A list of ‘request-when’ performative messages.

• subscribes (list): A list of ‘subscribe’ performative messages.

v 1.7 557

GAMAdocumentation Chapter 61. Built-in Skills

Actions

accept_proposal

Replies a message with an ‘accept_proposal’ performative message.

• returns: unknown

• message (24): The message to be replied

• contents (list): The content of the replying message

agree

Replies a message with an ‘agree’ performative message.

• returns: unknown

• message (24): The message to be replied

• contents (list): The content of the replying message

cancel

Replies a message with a ‘cancel’ peformative message.

• returns: unknown

• message (24): The message to be replied

• contents (list): The content of the replying message

cfp

Replies a message with a ‘cfp’ performative message.

v 1.7 558

GAMAdocumentation Chapter 61. Built-in Skills

• returns: unknown

• message (24): The message to be replied

• contents (list): The content of the replying message

end_conversation

Reply a message with an ‘end_conversation’ peprformative message. This message marks
the end of a conversation. In a ‘no-protocol’ conversation, it is the responsible of themodeler
to explicitly send this message to mark the end of a conversation/interaction protocol.

• returns: unknown

• message (24): The message to be replied

• contents (list): The content of the replying message

failure

Replies a message with a ‘failure’ performative message.

• returns: unknown

• message (24): The message to be replied

• contents (list): The content of the replying message

inform

Replies a message with an ‘inform’ performative message.

• returns: unknown

• message (24): The message to be replied

• contents (list): The content of the replying message

v 1.7 559

GAMAdocumentation Chapter 61. Built-in Skills

propose

Replies a message with a ‘propose’ performative message.

• returns: unknown

• message (24): The message to be replied

• contents (list): The content of the replying message

query

Replies a message with a ‘query’ performative message.

• returns: unknown

• message (24): The message to be replied

• contents (list): The content of the replying message

refuse

Replies a message with a ‘refuse’ performative message.

• returns: unknown

• message (24): The message to be replied

• contents (list): The contents of the replying message

reject_proposal

Replies a message with a ‘reject_proposal’ performative message.

• returns: unknown

v 1.7 560

GAMAdocumentation Chapter 61. Built-in Skills

• message (24): The message to be replied

• contents (list): The content of the replying message

reply

Replies a message. This action should be only used to reply a message in a ‘no-protocol’ con-
versation and with a ‘user defined performative’. For performatives supported by GAMA
(i.e., standard FIPA performatives), please use the ‘action’ with the same name of ‘performa-
tive’. For example, to reply a message with a ‘request’ performative message, the modeller
should use the ‘request’ action.

• returns: unknown

• message (24): The message to be replied

• performative (string): The performative of the replying message

• contents (list): The content of the replying message

request

Replies a message with a ‘request’ performative message.

• returns: unknown

• message (24): The message to be replied

• contents (list): The content of the replying message

send

Starts a conversation/interaction protocol.

• returns: msi.gaml.extensions.fipa.FIPAMessage

v 1.7 561

GAMAdocumentation Chapter 61. Built-in Skills

• to (list): A list of receiver agents

• contents (list): The content of the message. A list of any GAML type

• performative (string): A string, representing the message performative

• protocol (string): A string representing the name of interaction protocol

start_conversation

Starts a conversation/interaction protocol.

• returns: msi.gaml.extensions.fipa.FIPAMessage

• to (list): A list of receiver agents

• contents (list): The content of the message. A list of any GAML type

• performative (string): A string, representing the message performative

• protocol (string): A string representing the name of interaction protocol

subscribe

Replies a message with a ‘subscribe’ performative message.

• returns: unknown

• message (24): The message to be replied

• contents (list): The content of the replying message

v 1.7 562

GAMAdocumentation Chapter 61. Built-in Skills

GAMASQL

Variables

Actions

read

• returns: void

• params (map): Connection parameters

• table (string): select string with question marks

• filter (list): List of values that are used to replace question marks

SqlObject

• returns: msi.gama.database.geosql.GamaSqlConnection

• params (map): Connection parameters

• table (string): select string with question marks

• filter (string): Filter for select

testConnection

• returns: bool

• params (map): Connection parameters

v 1.7 563

GAMAdocumentation Chapter 61. Built-in Skills

grid

Variables

• bands (list): Represents the values of the different bands of the cell (list of floating
point value automatically set when the grid is initialized from a grid file)

• color (rgb): Represents the color of the cell, used by default to represent the grid on
displays

• grid_value (float): Represents a floating point value (automatically set when the
grid is initialized from a grid file, and used by default to represent the elevation of the
cell when displaying it on a display)

• grid_x (int): Returns the 0-based index of the column of the cell in the grid

• grid_y (int): Returns the 0-based index of the row of the cell in the grid

• neighbors (list): Represents the neighbor at distance 1 of the cell

Actions

MDXSKILL

Variables

Actions

select

• returns: list

• params (map): Connection parameters

v 1.7 564

GAMAdocumentation Chapter 61. Built-in Skills

• onColumns (string): select string with question marks

• onRows (list): List of values that are used to replace question marks

• from (list): List of values that are used to replace question marks

• where (list): List of values that are used to replace question marks

• values (list): List of values that are used to replace question marks

testConnection

• returns: bool

• params (map): Connection parameters

timeStamp

• returns: float

messaging

A simple skill that provides agents with a mailbox than can be filled with messages

Variables

• mailbox (list): The list of messages that can be consulted by the agent

Actions

send

• returns: msi.gama.extensions.messaging.GamaMessage

v 1.7 565

GAMAdocumentation Chapter 61. Built-in Skills

• to (any type): The agent, or server, to which this message will be sent to

• contents (any type): The contents of the message, an arbitrary object

moving

Themoving skill is intended to define the minimal set of behaviours required for agents that
are able to move on different topologies

Variables

• destination (point): Represents the next location of the agent if it keeps its current
speed and heading (read-only)

• heading (int): Represents the absolute heading of the agent in degrees.

• location (point): Represents the current position of the agent

• speed (float): Represents the speed of the agent (in meter/second)

Actions

follow

moves the agent along a given path passed in the arguments.

• returns: path

• speed (float): the speed to use for this move (replaces the current value of speed)

• path (path): a path to be followed.

v 1.7 566

GAMAdocumentation Chapter 61. Built-in Skills

• move_weights (map): Weights used for the moving.

• return_path (boolean): if true, return the path followed (by default: false)

goto

moves the agent towards the target passed in the arguments.

• returns: path

• target (agent,point,geometry): the location or entity towards which to move.

• speed (float): the speed to use for this move (replaces the current value of speed)

• on (graph): graph that restrains this move

• recompute_path (boolean): if false, the path is not recompute even if the graph is
modified (by default: true)

• return_path (boolean): if true, return the path followed (by default: false)

• move_weights (map): Weights used for the moving.

move

moves the agent forward, the distance being computed with respect to its speed and heading.
The value of the corresponding variables are used unless arguments are passed.

• returns: path

• speed (float): the speed to use for this move (replaces the current value of speed)

• heading (int): the angle (in degree) of the target direction.

• bounds (geometry,agent): the geometry (the localized entity geometry) that restrains
this move (the agent moves inside this geometry

v 1.7 567

GAMAdocumentation Chapter 61. Built-in Skills

wander

Moves the agent towards a random location at the maximum distance (with respect to its
speed). The heading of the agent is chosen randomly if no amplitude is specified. This action
changes the value of heading.

• returns: void

• speed (float): the speed to use for this move (replaces the current value of speed)

• amplitude (int): a restriction placed on the randomheading choice. The new heading
is chosen in the range (heading - amplitude/2, heading+amplitude/2)

• bounds (agent,geometry): the geometry (the localized entity geometry) that restrains
this move (the agent moves inside this geometry

moving3D

The moving skill 3D is intended to define the minimal set of behaviours required for agents
that are able to move on different topologies

Variables

• destination (point): continuously updated destination of the agent with respect to
its speed and heading (read-only)

• heading (int): the absolute heading of the agent in degrees (in the range 0-359)

• pitch (int): the absolute pitch of the agent in degrees (in the range 0-359)

• roll (int): the absolute roll of the agent in degrees (in the range 0-359)

• speed (float): the speed of the agent (in meter/second)

v 1.7 568

GAMAdocumentation Chapter 61. Built-in Skills

Actions

move

moves the agent forward, the distance being computed with respect to its speed and heading.
The value of the corresponding variables are used unless arguments are passed.

• returns: path

• speed (float): the speed to use for this move (replaces the current value of speed)

• heading (int): int, optional, the direction to take for this move (replaces the current
value of heading)

• pitch (int): int, optional, the direction to take for this move (replaces the current
value of pitch)

• heading (int): int, optional, the direction to take for this move (replaces the current
value of roll)

• bounds (geometry,agent): the geometry (the localized entity geometry) that restrains
this move (the agent moves inside this geometry

physics

Variables

• collisionBound (map):

• density (float):

• mass (float):

• motor (point):

v 1.7 569

GAMAdocumentation Chapter 61. Built-in Skills

• space (agent):

• velocity (list):

Actions

skill_road

Variables

• agents_on (list): for each lane of the road, the list of agents for each segment

• all_agents (list): the list of agents on the road

• lanes (int): the number of lanes

• linked_road (-18): the linked road: the lanes of this linked road will be usable by
drivers on the road

• maxspeed (float): the maximal speed on the road

• source_node (agent): the source node of the road

• target_node (agent): the target node of the road

Actions

register

register the agent on the road at the given lane

• returns: void

v 1.7 570

GAMAdocumentation Chapter 61. Built-in Skills

• agent (agent): the agent to register on the road.

• lane (int): the lane index on which to register; if lane index >= number of lanes, then
register on the linked road

unregister

unregister the agent on the road

• returns: void

• agent (agent): the agent to unregister on the road.

skill_road_node

Variables

• block (map): define the list of agents blocking the node, and for each agent, the list of
concerned roads

• priority_roads (list): the list of priority roads

• roads_in (list): the list of input roads

• roads_out (list): the list of output roads

• stop (list): define for each type of stop, the list of concerned roads

Actions

v 1.7 571

GAMAdocumentation Chapter 61. Built-in Skills

SQLSKILL

Variables

Actions

executeUpdate

• returns: int

• params (map): Connection parameters

• updateComm (string): SQL commands such as Create, Update, Delete, Drop with
question mark

• values (list): List of values that are used to replace question mark

getCurrentDateTime

• returns: string

• dateFormat (string): date format examples: ‘yyyy-MM-dd’ , ‘yyyy-MM-dd
HH:mm:ss’

getDateOffset

• returns: string

• dateFormat (string): date format examples: ‘yyyy-MM-dd’ , ‘yyyy-MM-dd
HH:mm:ss’

• dateStr (string): Start date

• offset (string): number on day to increase or decrease

v 1.7 572

GAMAdocumentation Chapter 61. Built-in Skills

insert

• returns: int

• params (map): Connection parameters

• into (string): Table name

• columns (list): List of column name of table

• values (list): List of values that are used to insert into table. Columns and values
must have same size

list2Matrix

• returns: matrix

• param (list): Param: a list of records and metadata

• getName (boolean): getType: a boolean value, optional parameter

• getType (boolean): getType: a boolean value, optional parameter

select

• returns: container

• params (map): Connection parameters

• select (string): select string with question marks

• values (list): List of values that are used to replace question marks

testConnection

• returns: bool

v 1.7 573

GAMAdocumentation Chapter 61. Built-in Skills

• params (map): Connection parameters

timeStamp

• returns: float

v 1.7 574

Chapter 62

Built-in Architectures

This file is automatically generated from java files. Do Not Edit It.

INTRODUCTION

Table of Contents

fsm, probabilistic_tasks, reflex, simple_bdi, sorted_tasks, user_first, user_last, user_only,
weighted_tasks,

575

GAMAdocumentation Chapter 62. Built-in Architectures

fsm

Variables

• state (string): Returns the current state in which the agent is

• states (list): Returns the list of all possible states the agents can be in

Actions

probabilistic_tasks

Variables

Actions

reflex

Variables

Actions

v 1.7 576

GAMAdocumentation Chapter 62. Built-in Architectures

simple_bdi

Variables

• belief_base (list):

• charisma (float):

• current_plan (any type):

• desire_base (list):

• emotion_base (list):

• intention_base (list):

• intention_persistence (float): intention persistence

• plan_base (list):

• plan_persistence (float): plan persistence

• probabilistic_choice (boolean):

• receptivity (float):

• thinking (list):

• uncertainty_base (list):

• use_emotions_architecture (boolean):

v 1.7 577

GAMAdocumentation Chapter 62. Built-in Architectures

Actions

add_belief

add the predicate in the belief base. * returns: bool
* predicate (map): predicate to add as a belief

add_desire

adds the predicates is in the desire base. * returns: bool
* predicate (546704): predicate to add
* todo (546704): add the desire as a subintention of this parameter

add_emotion

add the emotion to the emotion base. * returns: bool
* emotion (546706): emotion to add to the base

add_intention

check if the predicates is in the desire base. * returns: bool
* predicate (map): predicate to check

add_subintention

adds the predicates is in the desire base. * returns: bool
* predicate (546704): predicate name
* subintentions (546704): the subintention to add to the predicate
* add_as_desire (boolean): add the subintention as a desire as well (by default, false)

add_uncertainty

add a predicate in the uncertainty base. * returns: bool
* predicate (map): predicate to check

v 1.7 578

GAMAdocumentation Chapter 62. Built-in Architectures

clear_beliefs

clear the belief base * returns: bool

clear_desires

clear the desire base * returns: bool

clear_intentions

clear the intention base * returns: bool

current_intention_on_hold

puts the current intention on hold until the specified condition is reached or all subinten-
tions are reached (not in desire base anymore). * returns: bool
* until (any type): the current intention is put on hold (fited plan are not considered) until
specific condition is reached. Can be an expression (which will be tested), a list (of subinten-
tions), or nil (by default the condition will be the current list of subintentions of the inten-
tion)

get_belief

get the predicate in the belief base (if several, returns the first one). * returns: predicate
* predicate (546704): predicate to get

get_belief_with_name

get the predicates is in the belief base (if several, returns the first one). * returns: predicate
* name (string): name of the predicate to check

get_beliefs

get the list of predicates is in the belief base * returns: msi.gama.util.IList
* predicate (546704): name of the predicates to check

v 1.7 579

GAMAdocumentation Chapter 62. Built-in Architectures

get_beliefs_with_name

get the list of predicates is in the belief base with the given name. * returns: java.util.List
* name (string): name of the predicates to check

get_current_intention

returns the current intention (last entry of intention base). * returns: predicate

get_desire

get the predicates is in the desire base (if several, returns the first one). * returns: predicate
* predicate (546704): predicate to check

get_desire_with_name

get the predicates is in the belief base (if several, returns the first one). * returns: predicate
* name (string): name of the predicate to check

get_desires

get the list of predicates is in the belief base * returns: msi.gama.util.IList
* predicate (546704): name of the predicates to check

get_desires_with_name

get the list of predicates is in the belief base with the given name. * returns: java.util.List
* name (string): name of the predicates to check

get_emotion

get the emotion in the emotion base (if several, returns the first one). * returns: emotion
* emotion (546706): emotion to get

v 1.7 580

GAMAdocumentation Chapter 62. Built-in Architectures

get_intention

get the predicates is in the belief base (if several, returns the first one). * returns: predicate
* predicate (546704): predicate to check

get_intention_with_name

get the predicates is in the belief base (if several, returns the first one). * returns: predicate
* name (string): name of the predicate to check

get_intentions

get the list of predicates is in the belief base * returns: msi.gama.util.IList
* predicate (546704): name of the predicates to check

get_intentions_with_name

get the list of predicates is in the belief base with the given name. * returns: java.util.List
* name (string): name of the predicates to check

get_plans

get the list of plans. * returns: java.util.List

get_uncertainty

get the predicates is in the uncertainty base (if several, returns the first one). * returns:
predicate
* predicate (546704): predicate to check

has_belief

check if the predicates is in the belief base. * returns: bool
* predicate (546704): predicate to check

v 1.7 581

GAMAdocumentation Chapter 62. Built-in Architectures

has_desire

check if the predicates is in the desire base. * returns: bool
* predicate (546704): predicate to check

has_emotion

check if the emotion is in the belief base. * returns: bool
* emotion (546706): emotion to check

has_uncertainty

check if the predicates is in the uncertainty base. * returns: bool
* predicate (546704): predicate to check

is_current_intention

check if the predicates is the current intention (last entry of intention base). * returns: bool
* predicate (546704): predicate to check

remove_all_beliefs

removes the predicates from the belief base. * returns: bool
* predicate (546704): predicate to remove

remove_belief

removes the predicate from the belief base. * returns: bool
* predicate (546704): predicate to remove

remove_desire

removes the predicates from the desire base. * returns: bool
* predicate (546704): predicate to add

v 1.7 582

GAMAdocumentation Chapter 62. Built-in Architectures

remove_emotion

removes the emotion from the emotion base. * returns: bool
* emotion (546706): emotion to remove

remove_intention

removes the predicates from the desire base. * returns: bool
* predicate (546704): predicate to add
* desire_also (boolean): removes also desire

remove_uncertainty

removes the predicates from the desire base. * returns: bool
* predicate (546704): predicate to add

replace_belief

replace the old predicate by the new one. * returns: bool
* old_predicate (546704): predicate to remove
* predicate (546704): predicate to add

sorted_tasks

Variables

Actions

v 1.7 583

GAMAdocumentation Chapter 62. Built-in Architectures

user_first

Variables

Actions

user_last

Variables

Actions

user_only

Variables

Actions

weighted_tasks

Variables

Actions

v 1.7 584

Chapter 63

Statements

This file is automatically generated from java files. Do Not Edit It.

Table of Contents

=, action, add, agents, annealing, ask, aspect, assert, break, camera, capture, chart, con-
scious_contagion, create, data, datalist, default, diffuse, display, display_grid, display_pop-
ulation, do, draw, else, emotional_contagion, enter, equation, error, event, exhaustive, exit,
experiment, export, focus, focus_on, genetic, graphics, highlight, hill_climbing, if, image, in-
spect, let, light, loop, match, migrate, monitor, output, output_file, overlay, parameter, per-
ceive, permanent, plan, put, reactive_tabu, reflex, release, remove, return, rule, run, save,
save_batch, set, setup, simulate, solve, species, state, status, switch, tabu, task, test, trace,
transition, unconscious_contagion, user_command, user_init, user_input, user_panel, us-
ing, Variable_container, Variable_number, Variable_regular, warn, write,

Statements by kinds

• Batch method

585

GAMAdocumentation Chapter 63. Statements

– annealing, exhaustive, genetic, hill_climbing, reactive_tabu, save_batch, tabu,

• Behavior

– aspect, plan, reflex, state, task, test, user_init, user_panel,

• Experiment

– experiment,

• Layer

– agents, camera, chart, display_grid, display_population, event, graphics, image,
light, overlay,

• Output

– display, inspect, monitor, output, output_file, permanent,

• Parameter

– parameter,

• Sequence of statements or action

– action, ask, capture, create, default, else, enter, equation, exit, if, loop, match,
migrate, perceive, release, run, setup, switch, trace, transition, user_command,
using,

• Single statement

– =, add, assert, break, conscious_contagion, data, datalist, diffuse, do, draw,
emotional_contagion, error, export, focus, focus_on, highlight, let, put, remove,
return, rule, save, set, simulate, solve, status, unconscious_contagion, user_in-
put, warn, write,

• Species

v 1.7 586

GAMAdocumentation Chapter 63. Statements

– species,

• Variable (container)

– Variable_container,

• Variable (number)

– Variable_number,

• Variable (regular)

– Variable_regular,

Statements by embedment

• Behavior

– add, ask, capture, conscious_contagion, create, diffuse, do, emotional_conta-
gion, error, focus, focus_on, highlight, if, inspect, let, loop, migrate, put, release,
remove, return, run, save, set, simulate, solve, status, switch, trace, transition,
unconscious_contagion, using, warn, write,

• Environment

– species,

• Experiment

– action, annealing, exhaustive, export, genetic, hill_climbing, output, parame-
ter, permanent, reactive_tabu, reflex, save_batch, setup, simulate, state, tabu,
task, test, user_command, user_init, user_panel, Variable_container, Vari-
able_number, Variable_regular,

• Layer

– draw, error, focus_on, highlight, if, let, loop, status, switch, trace, warn, write,

• Model

v 1.7 587

GAMAdocumentation Chapter 63. Statements

– action, aspect, equation, experiment, output, perceive, plan, reflex, rule, run,
setup, species, state, task, test, user_command, user_init, user_panel, Vari-
able_container, Variable_number, Variable_regular,

• Sequence of statements or action

– add, ask, break, capture, conscious_contagion, create, data, datalist, diffuse, do,
draw, emotional_contagion, error, focus, focus_on, highlight, if, inspect, let,
loop, migrate, put, release, remove, return, save, set, simulate, solve, status,
switch, trace, transition, unconscious_contagion, using, warn, write,

• Single statement

– run,

• Species

– action, aspect, equation, perceive, plan, reflex, rule, run, setup, simulate, species,
state, task, test, user_command, user_init, user_panel, Variable_container,
Variable_number, Variable_regular,

• action

– return,

• aspect

– draw,

• chart

– add, ask, data, datalist, do, put, remove, set, simulate, using,

• display

– agents, camera, chart, display_grid, display_population, event, graphics, image,
light, overlay,

• display_population

– display_population,

• equation

– =,

• fsm

v 1.7 588

GAMAdocumentation Chapter 63. Statements

– state, user_panel,

• if

– else,

• output

– display, inspect, monitor, output_file,

• permanent

– display, inspect, monitor, output_file,

• probabilistic_tasks

– task,

• sorted_tasks

– task,

• state

– enter, exit,

• switch

– default, match,

• test

– assert,

• user_command

– user_input,

• user_first

– user_panel,

• user_init

– user_panel,

• user_last

– user_panel,

v 1.7 589

GAMAdocumentation Chapter 63. Statements

• user_only

– user_panel,

• user_panel

– user_command,

• weighted_tasks

– task,

General syntax

A statement represents either a declaration or an imperative command. It consists in a key-
word, followed by specific facets, some of themmandatory (in bold), some of them optional.
One of the facet names can be omitted (the one denoted as omissible). It has to be the first
one.� �
statement_keyword expression1 facet2: expression2 ... ;
or
statement_keyword facet1: expression1 facet2: expression2 ...;� �
If the statement encloses other statements, it is called a sequence statement, and its sub-
statements (either sequence statements or single statements) are declared between curly
brackets, as in:� �
statement_keyword1 expression1 facet2: expression2... { // a

sequence statement
statement_keyword2 expression1 facet2: expression2...; // a

single statement
statement_keyword3 expression1 facet2: expression2...;

}� �

v 1.7 590

GAMAdocumentation Chapter 63. Statements

=

Facets

• right (float), (omissible) : the right part of the equation (it is mandatory that it can
be evaluated as a float

• left (any type): the left part of the equation (it should be a variable or a call to the
diff() or diff2() operators)

Definition

Allows to implement an equation in the form function(n, t) = expression. The left function
is only here as a placeholder for enabling a simpler syntax and grabbing the variable as its
left member.

Usages

• The syntax of the = statement is a bit different from the other statements. It has to be
used as follows (in an equation):� �

float t;
float S;
float I;
equation SI {

diff(S,t) = (- 0.3 * S * I / 100);
diff(I,t) = (0.3 * S * I / 100);

}� �
• See also: equation, solve,

Embedments

• The = statement is of type: Single statement
• The = statement can be embedded into: equation,
• The = statement embeds statements:

v 1.7 591

GAMAdocumentation Chapter 63. Statements

action

Facets

• name (an identifier), (omissible) : identifier of the action
• index (a datatype identifier): if the action returns a map, the type of its keys
• of (a datatype identifier): if the action returns a container, the type of its elements
• type (a datatype identifier): the action returned type
• virtual (boolean): whether the action is virtual (definedwithout a set of instructions)
(false by default)

Definition

Allows to define in a species, model or experiment a new action that can be called elsewhere.

Usages

• The simplest syntax to define an action that does not take any parameter and does not
return anything is:

� �
action simple_action {

// [set of statements]
}� �

• If the action needs some parameters, they can be specified betwee, braquets after the
identifier of the action:

� �
action action_parameters(int i, string s){

// [set of statements using i and s]
}� �

• If the action returns any value, the returned type should be used instead of the “action”
keyword. A return statement inside the body of the action statement is mandatory.

v 1.7 592

GAMAdocumentation Chapter 63. Statements

� �
int action_return_val(int i, string s){

// [set of statements using i and s]
return i + i;

}� �
• If virtual: is true, then the action is abstract, which means that the action is defined
without body. A species containing at least one abstract action is abstract. Agents of
this species cannot be created. The common use of an abstract action is to define an
action that can be used by all its sub-species, which should redefine all abstract actions
and implements its body.� �

species parent_species {
int virtual_action(int i, string s);

}

species children parent: parent_species {
int virtual_action(int i, string s) {

return i + i;
}

}� �
• See also: do,

Embedments

• The action statement is of type: Sequence of statements or action
• The action statement can be embedded into: Species, Experiment, Model,
• The action statement embeds statements: return,

add

Facets

• to (any type in [container, species, agent, geometry]): an expression that evaluates to
a container

v 1.7 593

GAMAdocumentation Chapter 63. Statements

• item (any type), (omissible) : any expression to add in the container
• all (any type): Allows to either pass a container so as to add all its element, or ‘true’,
if the item to add is already a container.

• at (any type): position in the container of added element
• edge (any type): a pair that will be added to a graph as an edge (if nodes do not exist,
they are also added)

• node (any type): an expression that will be added to a graph as a node.
• vertex (any type):
• weight (float):

Definition

Allows to add, i.e. to insert, a new element in a container (a list, matrix, map, …).Incorrect
use: The addition of a new element at a position out of the bounds of the container will
produce a warning and let the container unmodified. If all: is specified, it has no effect if its
argument is not a container, or if its argument is ‘true’ and the item to add is not a container.
In that latter case

Usages

• The new element can be added either at the end of the container or at a particular
position.

� �
add expr to: expr_container; // Add at the end
add expr at: expr to: expr_container; // Add at position expr� �

• Case of a list, the expression in the facet at: should be an integer.

� �
list<int> workingList <- [];
add 0 at: 0 to: workingList ; // workingList equals [0]
add 10 at: 0 to: workingList ; // workingList equals [10,0]
add 20 at: 2 to: workingList ; // workingList equals [10,0,20]
add 50 to: workingList; // workingList equals [10,0,20,50]
add [60,70] all: true to: workingList; // workingList equals

[10,0,20,50,60,70]� �
v 1.7 594

GAMAdocumentation Chapter 63. Statements

• Case of a map: As a map is basically a list of pairs key::value, we can also use the add
statement on it. It is important to note that the behavior of the statement is slightly
different, in particular in the use of the at facet, which denotes the key of the pair.� �

map<string,string> workingMap <- [];
add "val1" at: "x" to: workingMap; // workingMap equals ["x"::"

val1"]� �
• If the at facet is omitted, a pair expr_item::expr_item will be added to the map. An
important exception is the case where the expr_item is a pair: in this case the pair is
added.� �

add "val2" to: workingMap; // workingMap equals ["x"::"val1", "
val2"::"val2"]

add "5"::"val4" to: workingMap; // workingMap equals ["x"::"
val1", "val2"::"val2", "5"::"val4"]� �
• Notice that, as the key should be unique, the addition of an item at an existing position
(i.e. existing key) will only modify the value associated with the given key.� �

add "val3" at: "x" to: workingMap; // workingMap equals ["x"::"
val3", "val2"::"val2", "5"::"val4"]� �
• On a map, the all facet will add all value of a container in the map (so as pair val_-
cont::val_cont)� �

add ["val4","val5"] all: true at: "x" to: workingMap; //
workingMap equals ["x"::"val3", "val2"::"val2", "5"::"val4","
val4"::"val4","val5"::"val5"]� �
• In case of a graph, we can use the facets node, edge and weight to add a node, an edge
or weights to the graph. However, these facets are now considered as deprecated, and
it is advised to use the various edge(), node(), edges(), nodes() operators, which can
build the correct objects to add to the graph

v 1.7 595

GAMAdocumentation Chapter 63. Statements

� �
graph g <- as_edge_graph([{1,5}::{12,45}]);
add edge: {1,5}::{2,3} to: g;
list var <- g.vertices; // var equals [{1,5},{12,45},{2,3}]
list var <- g.edges; // var equals [polyline

({1.0,5.0}::{12.0,45.0}),polyline({1.0,5.0}::{2.0,3.0})]
add node: {5,5} to: g;
list var <- g.vertices; // var equals

[{1.0,5.0},{12.0,45.0},{2.0,3.0},{5.0,5.0}]
list var <- g.edges; // var equals [polyline

({1.0,5.0}::{12.0,45.0}),polyline({1.0,5.0}::{2.0,3.0})]� �
• Case of a matrix: this statement can not be used on matrix. Please refer to the
statement put.

• See also: put, remove,

Embedments

• The add statement is of type: Single statement
• The add statement can be embedded into: chart, Behavior, Sequence of statements or
action,

• The add statement embeds statements:

agents

Facets

• value (container): the set of agents to display
• name (a label), (omissible) : Human readable title of the layer
• aspect (an identifier): the name of the aspect that should be used to display the
species

• fading (boolean): Used in conjunction with ‘trace:’, allows to apply a fading effect to
the previous traces. Default is false

v 1.7 596

GAMAdocumentation Chapter 63. Statements

• focus (agent): the agent on which the camera will be focused (it is dynamically com-
puted)

• position (point): position of the upper-left corner of the layer. Note that if coordi-
nates are in [0,1[, the position is relative to the size of the environment (e.g. {0.5,0.5}
refers to the middle of the display) whereas it is absolute when coordinates are greter
than 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the last coordinate specify-
ing the elevation of the layer.

• refresh (boolean): (openGL only) specify whether the display of the species is re-
freshed. (true by default, useful in case of agents that do not move)

• selectable (boolean): Indicates whether the agents present on this layer are se-
lectable by the user. Default is true

• size (point): extent of the layer in the screen from its position. Coordinates in [0,1[
are treated as percentages of the total surface, while coordinates > 1 are treated as
absolute sizes in model units (i.e. considering the model occupies the entire view).
Like in ‘position’, an elevation can be provided with the z coordinate, allowing to scale
the layer in the 3 directions

• trace (any type in [boolean, int]): Allows to aggregate the visualization of agents at
each timestep on the display. Default is false. If set to an int value, only the last n-th
steps will be visualized. If set to true, no limit of timesteps is applied.

• transparency (float): the transparency rate of the agents (between 0 and 1, 1 means
no transparency)

Definition

agents allows the modeler to display only the agents that fulfill a given condition.

Usages

• The general syntax is:

� �
display my_display {

agents layer_name value: expression [additional options];
}� �

• For instance, in a segregation model, agents will only display unhappy agents:

v 1.7 597

GAMAdocumentation Chapter 63. Statements

� �
display Segregation {

agents agentDisappear value: people as list where (each.
is_happy = false) aspect: with_group_color;

}� �
• See also: display, chart, event, graphics, display_grid, image, overlay, display_popu-
lation,

Embedments

• The agents statement is of type: Layer
• The agents statement can be embedded into: display,
• The agents statement embeds statements:

annealing

Facets

• name (an identifier), (omissible) :
• aggregation (a label), takes values in: {min, max}: the agregation method
• maximize (float): the value the algorithm tries to maximize
• minimize (float): the value the algorithm tries to minimize
• nb_iter_cst_temp (int): number of iterations per level of temperature
• temp_decrease (float): temperature decrease coefficient
• temp_end (float): final temperature
• temp_init (float): initial temperature

Definition

This algorithm is an implementation of the Simulated Annealing algorithm. See the
wikipedia article and [batch161 the batch dedicated page].

v 1.7 598

GAMAdocumentation Chapter 63. Statements

Usages

• As other batch methods, the basic syntax of the annealing statement uses method
annealing instead of the expected annealing name: id :

� �
method annealing [facet: value];� �

• For example:

� �
method annealing temp_init: 100 temp_end: 1 temp_decrease: 0.5

nb_iter_cst_temp: 5 maximize: food_gathered;� �
Embedments

• The annealing statement is of type: Batch method
• The annealing statement can be embedded into: Experiment,
• The annealing statement embeds statements:

ask

Facets

• target (any type in [container, agent]), (omissible) : an expression that evaluates to
an agent or a list of agents

• as (species): an expression that evaluates to a species

Definition

Allows an agent, the sender agent (that can be the [Sections161#global world agent]), to ask
another (or other) agent(s) to perform a set of statements. If the value of the target facet is
nil or empty, the statement is ignored.

v 1.7 599

GAMAdocumentation Chapter 63. Statements

Usages

• Ask a set of receiver agents, stored in a container, to perform a block of statements.
The block is evaluated in the context of the agents’ species� �

ask ${receiver_agents} {
${cursor}

}� �
• Ask one agent to perform a block of statements. The block is evaluated in the context
of the agent’s species� �

ask ${one_agent} {
${cursor}

}� �
• If the species of the receiver agent(s) cannot be determined, it is possible to force it
using the as facet. An error is thrown if an agent is not a direct or undirect instance
of this species� �

ask${receiver_agent(s)} as: ${a_species_expression} {
${cursor}

}� �
• To ask a set of agents to do something only if they belong to a given species, the
of_species operator can be used. If none of the agents belong to the species, nothing
happens� �

ask ${receiver_agents} of_species ${species_name} {
${cursor}

}� �
• Any statement can be declared in the block statements. All the statements will be
evaluated in the context of the receiver agent(s), as if theywere defined in their species,
whichmeans that an expression like selfwill represent the receiver agent and not the
sender. If the sender needs to refer to itself, some of its own attributes (or temporary
variables) within the block statements, it has to use the keyword myself.

v 1.7 600

GAMAdocumentation Chapter 63. Statements

� �
species animal {

float energy <- rnd (1000) min: 0.0 {
reflex when: energy > 500 { // executed when the energy is

above the given threshold
list<animal> others <- (animal at_distance 5); // find

all the neighboring animals in a radius of 5 meters
float shared_energy <- (energy - 500) / length (others)

; // compute the amount of energy to share with each of them
ask others { // no need to cast, since others has

already been filtered to only include animals
if (energy < 500) { // refers to the energy of each

animal in others
energy <- energy + myself.shared_energy; //

increases the energy of each animal
myself.energy <- myself.energy - myself.

shared_energy; // decreases the energy of the sender
}

}
}

}� �

• If the species of the receiver agent cannot be determined, it is possible to force it by
casting the agent. Nothing happens if the agent cannot be casted to this species

Embedments

• The ask statement is of type: Sequence of statements or action
• The ask statement can be embedded into: chart, Behavior, Sequence of statements or
action,

• The ask statement embeds statements:

v 1.7 601

GAMAdocumentation Chapter 63. Statements

aspect

Facets

• name (an identifier), (omissible) : identifier of the aspect (it can be used in a display
to identify which aspect should be used for the given species). Two special names can
also be used: ‘default’ will allow this aspect to be used as a replacement for the default
aspect defined in preferences; ‘highlighted’ will allow the aspect to be used when the
agent is highlighted as a replacement for the default (application of a color)

Definition

Aspect statement is used to define a way to draw the current agent. Several aspects can be
defined in one species. It can use attributes to customize each agent’s aspect. The aspect is
evaluate for each agent each time it has to be displayed.

Usages

• An example of use of the aspect statement:

� �
species one_species {

int a <- rnd(10);
aspect aspect1 {

if(a mod 2 = 0) { draw circle(a);}
else {draw square(a);}
draw text: "a= " + a color: #black size: 5;

}
}� �
Embedments

• The aspect statement is of type: Behavior
• The aspect statement can be embedded into: Species, Model,
• The aspect statement embeds statements: draw,

v 1.7 602

GAMAdocumentation Chapter 63. Statements

assert

Facets

• value (any type), (omissible) : the value that is evaluated and compared to other facets
• equals (any type): an expression, assert tests whether the value is equals to this ex-
pression

• is_not (any type): an expression, assert tests whether the value is not equals to this
expression

• raises (an identifier): “error” or “warning”, used in testing what raises the evaluation
of the value: expression

Definition

Allows to check whether the evaluation of a given expression fulfills a given condition. If it
is not fulfilled, an exception is raised.

Usages

• if the equals: facet is used, the equality between the evaluation of expressions in the
value: and in the equals: facets is tested� �

assert (2+2) equals: 4;� �
• if the is_not: facet is used, the inequality between the evaluation of expressions in the
value: and in the equals: facets is tested� �

assert self is_not: nil;� �
• if the raises: facet is usedwith either “warning” or “error”, the statement tests whether
the evaluation of the value: expression raises an error (resp. a warning)� �

int z <- 0;
assert (3/z) raises: "error";� �

• See also: test, setup,

v 1.7 603

GAMAdocumentation Chapter 63. Statements

Embedments

• The assert statement is of type: Single statement
• The assert statement can be embedded into: test,
• The assert statement embeds statements:

break

Facets

Definition

break allows to interrupt the current sequence of statements.

Usages

Embedments

• The break statement is of type: Single statement
• The break statement can be embedded into: Sequence of statements or action,
• The break statement embeds statements:

camera

Facets

• name (string), (omissible) : The name of the camera
• location (point): The location of the camera in the world
• look_at (point): The location that the camera is looking
• up_vector (point): The up-vector of the camera.

v 1.7 604

GAMAdocumentation Chapter 63. Statements

Definition

camera allows themodeler to define a camera. The display will then be able to choose among
the camera defined (either within this statement or globally in GAMA) in a dynamic way.

Usages

• See also: display, agents, chart, event, graphics, display_grid, image, display_popula-
tion,

Embedments

• The camera statement is of type: Layer
• The camera statement can be embedded into: display,
• The camera statement embeds statements:

capture

Facets

• target (any type in [agent, container]), (omissible) : an expression that is evaluated
as an agent or a list of the agent to be captured

• as (species): the species that the captured agent(s) will become, this is amicro-species
of the calling agent’s species

• returns (a new identifier): a list of the newly captured agent(s)

Definition

Allows an agent to capture other agent(s) as its micro-agent(s).

v 1.7 605

GAMAdocumentation Chapter 63. Statements

Usages

• The preliminary for an agent A to capture an agent B as its micro-agent is that the
A’s species must defined a micro-species which is a sub-species of B’s species (cf.
[Species161#Nesting_species Nesting species]).� �

species A {
...
}
species B {
...

species C parent: A {
...
}

...
}� �

• To capture all “A” agents as “C” agents, we can ask an “B” agent to execute the following
statement:� �

capture list(B) as: C;� �
• Deprecated writing:� �

capture target: list (B) as: C;� �
• See also: release,

Embedments

• The capture statement is of type: Sequence of statements or action
• The capture statement can be embedded into: Behavior, Sequence of statements or
action,

• The capture statement embeds statements:

v 1.7 606

GAMAdocumentation Chapter 63. Statements

chart

Facets

• name (a label), (omissible) : the identifier of the chart layer
• axes (rgb): the axis color
• background (rgb): the background color
• color (rgb): Text color
• gap (float): minimum gap between bars (in proportion)
• label_font (string): Label font face
• label_font_size (int): Label font size
• label_font_style (an identifier), takes values in: {plain, bold, italic}: the style used
to display labels

• legend_font (string): Legend font face
• legend_font_size (int): Legend font size
• legend_font_style (an identifier), takes values in: {plain, bold, italic}: the style used
to display legend

• position (point): position of the upper-left corner of the layer. Note that if coordi-
nates are in [0,1[, the position is relative to the size of the environment (e.g. {0.5,0.5}
refers to the middle of the display) whereas it is absolute when coordinates are greter
than 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the last coordinate specify-
ing the elevation of the layer.

• reverse_axes (boolean): reverse X and Y axis (for example to get horizental bar
charts

• series_label_position (an identifier), takes values in: {default, none, legend, on-
chart, yaxis, xaxis}: Position of the Series names: default (best guess), none, legend,
onchart, xaxis (for category plots) or yaxis (uses the first serie name).

• size (point): the layer resize factor: {1,1} refers to the original size whereas {0.5,0.5}
divides by 2 the height and the width of the layer. In case of a 3D layer, a 3D point
can be used (note that {1,1} is equivalent to {1,1,0}, so a resize of a layer containing 3D
objects with a 2D points will remove the elevation)

• style (an identifier), takes values in: {line, whisker, area, bar, dot, step, spline, stack,
3d, ring, exploded, default}: The sub-style style, also default style for the series.

• tick_font (string): Tick font face
• tick_font_size (int): Tick font size
• tick_font_style (an identifier), takes values in: {plain, bold, italic}: the style used
to display ticks

• title_font (string): Title font face

v 1.7 607

GAMAdocumentation Chapter 63. Statements

• title_font_size (int): Title font size
• title_font_style (an identifier), takes values in: {plain, bold, italic}: the style used
to display titles

• type (an identifier), takes values in: {xy, scatter, histogram, series, pie, radar,
heatmap, box_whisker}: the type of chart. It could be histogram, series, xy, pie, radar,
heatmap or box whisker. The difference between series and xy is that the former adds
an implicit x-axis that refers to the numbers of cycles, while the latter considers the
first declaration of data to be its x-axis.

• x_label (a label): the title for the X axis
• x_range (any type in [float, int, point, list]): range of the x-axis. Can be a number
(which will set the axis total range) or a point (which will set the min and max of the
axis).

• x_serie (any type in [list, float, int]): for series charts, change the default common x
serie (simulation cycle) for an other value (list or numerical).

• x_serie_labels (any type in [list, float, int, a label]): change the default common x
series labels (replace x value or categories) for an other value (string or numerical).

• x_tick_unit (float): the tick unit for the y-axis (distance between horyzontal lines
and values on the left of the axis).

• y_label (a label): the title for the Y axis
• y_range (any type in [float, int, point, list]): range of the y-axis. Can be a number
(which will set the axis total range) or a point (which will set the min and max of the
axis).

• y_serie_labels (any type in [list, float, int, a label]): for heatmaps/3d charts, change
the default y serie for an other value (string or numerical in a list or cumulative).

• y_tick_unit (float): the tick unit for the x-axis (distance between vertical lines and
values bellow the axis).

Definition

chart allows modeler to display a chart: this enables to display specific values of the model
at each iteration. GAMA can display various chart types: time series (series), pie charts (pie)
and histograms (histogram).

Usages

• The general syntax is:

v 1.7 608

GAMAdocumentation Chapter 63. Statements

� �
display chart_display {

chart "chart name" type: series [additional options] {
[Set of data, datalists statements]

}
}� �

• See also: display, agents, event, graphics, display_grid, image, overlay, quadtree, dis-
play_population, text,

Embedments

• The chart statement is of type: Layer
• The chart statement can be embedded into: display,
• The chart statement embeds statements: add, ask, data, datalist, do, put, remove, set,
simulate, using,

conscious_contagion

Facets

• emotion_created (546706): the emotion that will be created with the contagion

• emotion_detected (546706): the emotion that will start the contagion
• name (an identifier), (omissible) : the identifier of the unconscious contagion
• charisma (float): The charisma value of the perceived agent (between 0 and 1)
• receptivity (float): The receptivity value of the current agent (between 0 and 1)
• threshold (float): The threshold value to make the contagion
• when (boolean): A boolean value to get the emotion only with a certain condition

Definition

enables to directly add an emotion of a perceived specie if the perceived agent ges a patricular
emotion.

v 1.7 609

GAMAdocumentation Chapter 63. Statements

Usages

• Other examples of use:� �
conscious_contagion emotion_detected:fear emotion_created:

fearConfirmed;
conscious_contagion emotion_detected:fear emotion_created:

fearConfirmed charisma: 0.5 receptivity: 0.5;� �
Embedments

• The conscious_contagion statement is of type: Single statement
• The conscious_contagion statement can be embedded into: Behavior, Sequence of
statements or action,

• The conscious_contagion statement embeds statements:

create

Facets

• species (any type in [species, agent]), (omissible) : an expression that evaluates to a
species, the species of the agents to be created. In the case of simulations, the name
‘simulation’, which represents the current instance of simulation, can also be used as
a proxy to their species

• as (species):
• from (any type): an expression that evaluates to a localized entity, a list of localized
entities, a string (the path of a file), a file (shapefile, a .csv, a .asc or a OSM file) or a
container returned by a request to a database

• header (boolean): an expression that evaluates to a boolean, when creating agents
from csv file, specify whether the file header is loaded

• number (int): an expression that evaluates to an int, the number of created agents
• returns (a new identifier): a new temporary variable name containing the list of cre-
ated agents (a list, even if only one agent has been created)

• with (map): an expression that evaluates to a map, for each pair the key is a species
attribute and the value the assigned value

v 1.7 610

GAMAdocumentation Chapter 63. Statements

Definition

Allows an agent to create number agents of species species, to create agents of species
species from a shapefile or to create agents of species species from one or several localized
entities (discretization of the localized entity geometries).

Usages

• Its simple syntax to create an_int agents of species a_species is:� �
create a_species number: an_int;
create species_of(self) number: 5 returns: list5Agents;
5� �

• In GAMLmodelers can create agents of species a_species (with two attributes
typeandnaturewith types corresponding to the types of the shapefile
attributes) from a shapefilethe_shapefile‘ while reading attributes ‘TYPE_-
OCC’ and ‘NATURE’ of the shapefile. One agent will be created by object contained
in the shapefile:� �

create a_species from: the_shapefile with: [type:: 'TYPE_OCC',
nature::'NATURE '];� �
• In order to create agents from a .csv file, facet header can be used to specified whether
we can use columns header:� �

create toto from: "toto.csv" header: true with:[att1::read("NAME"
), att2::read("TYPE")];

or
create toto from: "toto.csv" with:[att1::read(0), att2::read(1)];

//with read(int), the index of the column� �
• Similarly to the creation from shapefile, modelers can create agents from a set of ge-
ometries. In this case, one agent per geometry will be created (with the geometry as
shape)

v 1.7 611

GAMAdocumentation Chapter 63. Statements

� �
create species_of(self) from: [square(4),circle(4)]; // 2

agents have been created, with shapes respectively square(4)
and circle(4)� �
• Created agents are initialized following the rules of their species. If one wants to refer
to them after the statement is executed, the returns keyword has to be defined: the
agents created will then be referred to by the temporary variable it declares. For in-
stance, the following statement creates 0 to 4 agents of the same species as the sender,
and puts them in the temporary variable children for later use.� �

create species (self) number: rnd (4) returns: children;
ask children {

// ...
}� �

• If one wants to specify a special initialization sequence for the agents created, create
provides the same possibilities as ask. This extended syntax is:� �

create a_species number: an_int {
[statements]

}� �
• The same rules as in ask apply. The only difference is that, for the agents created, the
assignments of variables will bypass the initialization defined in species. For instance:� �

create species(self) number: rnd (4) returns: children {
set location <- myself.location + {rnd (2), rnd (2)}; //

tells the children to be initially located close to me
set parent <- myself; // tells the children that their

parent is me (provided the variable parent is declared in this
species)

}� �
• Desprecated uses:

v 1.7 612

GAMAdocumentation Chapter 63. Statements

� �
// Simple syntax
create species: a_species number: an_int;� �

• If number equals 0 or species is not a species, the statement is ignored.

Embedments

• The create statement is of type: Sequence of statements or action
• The create statement can be embedded into: Behavior, Sequence of statements or
action,

• The create statement embeds statements:

data

Facets

• legend (string), (omissible) :

• value (any type in [float, point, list]):
• accumulate_values (boolean): Force to replace values at each step (false) or accumu-
late with previous steps (true)

• color (any type in [rgb, list]): color of the serie, for heatmap can be a list to specify
[minColor,maxColor] or [minColor,medColor,maxColor]

• fill (boolean): Marker filled (true) or not (false)
• line_visible (boolean): Line visible or not
• marker (boolean): marker visible or not
• marker_shape (an identifier), takes values in: {marker_empty, marker_square,
marker_circle, marker_up_triangle, marker_diamond, marker_hor_rectangle,
marker_down_triangle, marker_hor_ellipse, marker_right_triangle, marker_vert_-
rectangle, marker_left_triangle}: Shape of the marker

• marker_size (list): Size of the marker. Can be a double (same size for every marker)
or a list (different sizes for each marker.

v 1.7 613

GAMAdocumentation Chapter 63. Statements

• style (an identifier), takes values in: {line, whisker, area, bar, dot, step, spline, stack,
3d, ring, exploded}: Style for the serie (if not the default one sepecified on chart state-
ment)

• x_err_values (any type in [float, list]): the X Error bar values to display. Has to be a
List. Each element can be a number or a list with two values (low and high value)

• y_err_values (any type in [float, list]): the Y Error bar values to display. Has to be a
List. Each element can be a number or a list with two values (low and high value)

• y_minmax_values (list): the Y MinMax bar values to display (BW charts). Has to be
a List. Each element can be a number or a list with two values (low and high value)

Embedments

• The data statement is of type: Single statement
• The data statement can be embedded into: chart, Sequence of statements or action,
• The data statement embeds statements:

datalist

Facets

• value (list): the values to display. Has to be a matrix, a list or a List of List. Each
element can be a number (series/histogram) or a list with two values (XY chart)

• legend (list), (omissible) : the name of the series: a list of strings (can be a variable
with dynamic names)

• accumulate_values (boolean): Force to replace values at each step (false) or accumu-
late with previous steps (true)

• color (list): list of colors, for heatmaps can be a list of [minColor,maxColor] or [min-
Color,medColor,maxColor]

• fill (boolean): Marker filled (true) or not (false), same for all series.
• line_visible (boolean): Line visible or not (same for all series)
• marker (boolean): marker visible or not
• marker_shape (an identifier), takes values in: {marker_empty, marker_square,
marker_circle, marker_up_triangle, marker_diamond, marker_hor_rectangle,
marker_down_triangle, marker_hor_ellipse, marker_right_triangle, marker_vert_-
rectangle, marker_left_triangle}: Shape of the marker. Same one for all series.

v 1.7 614

GAMAdocumentation Chapter 63. Statements

• marker_size (list): the marker sizes to display. Can be a list of numbers (same size
for each marker of the series) or a list of list (different sizes by point)

• style (an identifier), takes values in: {line, whisker, area, bar, dot, step, spline, stack,
3d, ring, exploded}: Style for the serie (if not the default one sepecified on chart state-
ment)

• x_err_values (list): the X Error bar values to display. Has to be a List. Each element
can be a number or a list with two values (low and high value)

• y_err_values (list): the Y Error bar values to display. Has to be a List. Each element
can be a number or a list with two values (low and high value)

• y_minmax_values (list): the Y MinMax bar values to display (BW charts). Has to be
a List. Each element can be a number or a list with two values (low and high value)

Embedments

• The datalist statement is of type: Single statement
• The datalist statement can be embedded into: chart, Sequence of statements or ac-
tion,

• The datalist statement embeds statements:

default

Facets

• value (any type), (omissible) :

Definition

Used in a switch match structure, the block prefixed by default is executed only if no other
block has matched (otherwise it is not).

Usages

• See also: switch, match,

v 1.7 615

GAMAdocumentation Chapter 63. Statements

Embedments

• The default statement is of type: Sequence of statements or action
• The default statement can be embedded into: switch,
• The default statement embeds statements:

diffuse

Facets

• var (an identifier), (omissible) : the variable to be diffused

• on (any type in [container, species]): the list of agents (in general cells of a grid), on
which the diffusion will occur

• avoid_mask (boolean): if true, the value will not be diffused in the masked cells, but
will be restitute to the neighboring cells, multiplied by the proportion value (no signal
lost). If false, the value will be diffused in the masked cells, but masked cells won’t
diffuse the value afterward (lost of signal). (default value : false)

• cycle_length (int): the number of diffusion operation applied in one simulation step
• mask (matrix): a matrix masking the diffusion (matrix created from a image for exam-
ple). The cells corresponding to the values smaller than “-1” in the mask matrix will
not diffuse, and the other will diffuse.

• mat_diffu (matrix): the diffusion matrix (can have any size)
• matrix (matrix): the diffusion matrix (“kernel” or “filter” in image processing). Can
have any size, as long as dimensions are odd values.

• method (an identifier), takes values in: {convolution, dot_product}: the diffusion
method

• min_value (float): if a value is smaller than this value, it will not be diffused. By
default, this value is equal to 0.0. This value cannot be smaller than 0.

• propagation (a label), takes values in: {diffusion, gradient}: represents both the way
the signal is propagated and the way to treat multiple propagation of the same signal
occurring at once from different places. If propagation equals ‘diffusion’, the intensity
of a signal is shared between its neighbors with respect to ‘proportion’, ‘variation’ and
the number of neighbors of the environment places (4, 6 or 8). I.e., for a given signal
S propagated from place P, the value transmitted to its N neighbors is : S’ = (S / N

v 1.7 616

GAMAdocumentation Chapter 63. Statements

/ proportion) - variation. The intensity of S is then diminished by S * proportion on
P. In a diffusion, the different signals of the same name see their intensities added to
each other on each place. If propagation equals ‘gradient’, the original intensity is not
modified, and each neighbors receives the intensity : S / proportion - variation. If
multiple propagation occur at once, only the maximum intensity is kept on each place.
If ‘propagation’ is not defined, it is assumed that it is equal to ‘diffusion’.

• proportion (float): a diffusion rate
• radius (int): a diffusion radius (in number of cells from the center)
• variation (float): an absolute value to decrease at each neighbors

Definition

This statements allows a value to diffuse among a species on agents (generally on a grid)
depending on a given diffusion matrix.

Usages

• A basic example of diffusion of the variable phero defined in the species cells, given a
diffusion matrix math_diff is:

� �
matrix<float> math_diff <- matrix

([[1/9,1/9,1/9],[1/9,1/9,1/9],[1/9,1/9,1/9]]);
diffuse var: phero on: cells mat_diffu: math_diff;� �

• The diffusion can be masked by obstacles, created from a bitmap image:

� �
diffuse var: phero on: cells mat_diffu: math_diff mask: mymask;� �

• A convenient way to have an uniform diffusion in a given radius is (which is equivalent
to the above diffusion):

� �
diffuse var: phero on: cells proportion: 1/9 radius: 1;� �
v 1.7 617

GAMAdocumentation Chapter 63. Statements

Embedments

• The diffuse statement is of type: Single statement
• The diffuse statement can be embedded into: Behavior, Sequence of statements or
action,

• The diffuse statement embeds statements:

display

Facets

• name (a label), (omissible) : the identifier of the display
• ambient_light (any type in [int, rgb]): Allows to define the value of the am-
bient light either using an int (ambient_light:(125)) or a rgb color ((ambient_-
light:rgb(255,255,255)). default is rgb(127,127,127,255)

• autosave (any type in [boolean, point]): Allows to save this display on disk. A value of
true/false will save it at a resolution of 500x500. A point can be passed to personalize
these dimensions

• background (rgb): Allows to fill the background of the display with a specific color
• camera_interaction (boolean): If false, the user will not be able to modify the posi-
tion and the orientation of the camera, and neither using the ROI. Default is true.

• camera_lens (int): Allows to define the lens of the camera
• camera_look_pos (point): Allows to define the direction of the camera
• camera_pos (any type in [point, agent]): Allows to define the position of the camera
• camera_up_vector (point): Allows to define the orientation of the camera
• diffuse_light (any type in [int, rgb]): Allows to define the value of the diffuse light ei-
ther using an int (diffuse_light:(125)) or a rgb color ((diffuse_light:rgb(255,255,255)).
default is (127,127,127,255)

• diffuse_light_pos (point): Allows to define the position of the dif-
fuse light either using an point (diffuse_light_pos:{x,y,z}). default is
{world.shape.width/2,world.shape.height/2,world.shape.width*2}

• draw_diffuse_light (boolean): Allows to show/hide a representation of the lights.
Default is false.

• draw_env (boolean): Allows to enable/disable the drawing of the world shape and the
ordinate axes. Default can be configured in Preferences

v 1.7 618

GAMAdocumentation Chapter 63. Statements

• focus (geometry): the geometry (or agent) on which the display will (dynamically)
focus

• fullscreen (boolean): Indicates whether or not the display should cover the whole
screen (default is false

• light (boolean): Allows to enable/disable the light. Default is true
• orthographic_projection (boolean): Allows to enable/disable the orthographic
projection. Default can be configured in Preferences

• output3D (any type in [boolean, point]):
• polygonmode (boolean):
• refresh (boolean): Indicates the condition under which this output should be re-
freshed (default is true)

• refresh_every (int): Allows to refresh the display every n time steps (default is 1)
• scale (any type in [boolean, float]): Allows to display a scale bar in the overlay. Ac-
cepts true/false or an unit name

• show_fps (boolean): Allows to enable/disable the drawing of the number of frames
per second

• tesselation (boolean):
• trace (any type in [boolean, int]): Allows to aggregate the visualization of agents at
each timestep on the display. Default is false. If set to an int value, only the last n-th
steps will be visualized. If set to true, no limit of timesteps is applied. This facet can
also be applied to individual layers

• type (a label): Allows to use either Java2D (for planar models) or OpenGL (for 3D
models) as the rendering subsystem

• use_shader (boolean): Under construction…
• z_fighting (boolean): Allows to alleviate a problemwhere agents at the same zwould
overlap each other in random ways

Definition

A display refers to a independent and mobile part of the interface that can display species,
images, texts or charts.

Usages

• The general syntax is:� �
display my_display [additional options] { ... }� �
v 1.7 619

GAMAdocumentation Chapter 63. Statements

• Each display can include different layers (like in a GIS).

� �
display gridWithElevationTriangulated type: opengl ambient_light:

100 {
grid cell elevation: true triangulation: true;
species people aspect: base;

}� �
Embedments

• The display statement is of type: Output
• The display statement can be embedded into: output, permanent,
• The display statement embeds statements: agents, camera, chart, display_grid, dis-
play_population, event, graphics, image, light, overlay,

display_grid

Facets

• species (species), (omissible) : the species of the agents in the grid
• dem (matrix):
• draw_as_dem (boolean):
• elevation (any type in [matrix, float, int, boolean]): Allows to specify the elevation of
each cell, if any. Can be a matrix of float (provided it has the same size than the grid),
an int or float variable of the grid species, or simply true (in which case, the variable
called ‘grid_value’ is used to compute the elevation of each cell)

• grayscale (boolean): if true, givse a grey value to each polygon depending on its ele-
vation (false by default)

• lines (rgb): the color to draw lines (borders of cells)
• position (point): position of the upper-left corner of the layer. Note that if coordi-
nates are in [0,1[, the position is relative to the size of the environment (e.g. {0.5,0.5}
refers to themiddle of the display) whereas it is absolute when coordinates are greater
than 1. The position can also be a 3D point {0.5, 0.5, 0.5}, the last coordinate specify-
ing the elevation of the layer.

v 1.7 620

GAMAdocumentation Chapter 63. Statements

• refresh (boolean): (openGL only) specify whether the display of the species is re-
freshed. (true by default, usefull in case of agents that do not move)

• selectable (boolean): Indicates whether the agents present on this layer are se-
lectable by the user. Default is true

• size (point): extent of the layer in the screen from its position. Coordinates in [0,1[
are treated as percentages of the total surface, while coordinates > 1 are treated as
absolute sizes in model units (i.e. considering the model occupies the entire view).
Like in ‘position’, an elevation can be provided with the z coordinate, allowing to scale
the layer in the 3 directions

• text (boolean): specify whether the attribute used to compute the elevation is dis-
played on each cells (false by default)

• texture (any type in [boolean, file]): Either file containing the texture image to be
applied on the grid or, if true, the use of the image composed by the colors of the cells.
If false, no texture is applied

• transparency (float): the transparency rate of the agents (between 0 and 1, 1 means
no transparency)

• triangulation (boolean): specifies whther the cells will be triangulated: if it is false,
they will be displayed as horizontal squares at a given elevation, whereas if it is true,
cells will be triangulated and linked to neighbors in order to have a continuous surface
(false by default)

Definition

display_grid is used using the grid keyword. It allows the modeler to display in an opti-
mized way all cell agents of a grid (i.e. all agents of a species having a grid topology).

Usages

• The general syntax is:

� �
display my_display {

grid ant_grid lines: #black position: { 0.5, 0 } size:
{0.5,0.5};

}� �
• To display a grid as a DEM:

v 1.7 621

GAMAdocumentation Chapter 63. Statements

� �
display my_display {

grid cell texture: texture_file text: false triangulation:
true elevation: true;

}� �
• See also: display, agents, chart, event, graphics, image, overlay, display_population,

Embedments

• The display_grid statement is of type: Layer
• The display_grid statement can be embedded into: display,
• The display_grid statement embeds statements:

display_population

Facets

• species (species), (omissible) : the species to be displayed
• aspect (an identifier): the name of the aspect that should be used to display the
species

• fading (boolean): Used in conjunction with ‘trace:’, allows to apply a fading effect to
the previous traces. Default is false

• position (point): position of the upper-left corner of the layer. Note that if coordi-
nates are in [0,1[, the position is relative to the size of the environment (e.g. {0.5,0.5}
refers to the middle of the display) whereas it is absolute when coordinates are greter
than 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the last coordinate specify-
ing the elevation of the layer.

• refresh (boolean): (openGL only) specify whether the display of the species is re-
freshed. (true by default, usefull in case of agents that do not move)

• selectable (boolean): Indicates whether the agents present on this layer are se-
lectable by the user. Default is true

• size (point): extent of the layer in the screen from its position. Coordinates in [0,1[
are treated as percentages of the total surface, while coordinates > 1 are treated as

v 1.7 622

GAMAdocumentation Chapter 63. Statements

absolute sizes in model units (i.e. considering the model occupies the entire view).
Like in ‘position’, an elevation can be provided with the z coordinate, allowing to scale
the layer in the 3 directions

• trace (any type in [boolean, int]): Allows to aggregate the visualization of agents at
each timestep on the display. Default is false. If set to an int value, only the last n-th
steps will be visualized. If set to true, no limit of timesteps is applied.

• transparency (float): the transparency rate of the agents (between 0 and 1, 1 means
no transparency)

Definition

The display_population statement is used using the species keyword. It allows modeler
to display all the agent of a given species in the current display. In particular, modeler can
choose the aspect used to display them.

Usages

• The general syntax is:

� �
display my_display {

species species_name [additional options];
}� �

• Species can be superposed on the same plan (be careful with the order, the last one
will be above all the others):

� �
display my_display {

species agent1 aspect: base;
species agent2 aspect: base;
species agent3 aspect: base;

}� �
• Each species layer can be placed at a different z value using the opengl display. posi-
tion:{0,0,0} means the layer will be placed on the ground and position:{0,0,1} means
it will be placed at an height equal to the maximum size of the environment.

v 1.7 623

GAMAdocumentation Chapter 63. Statements

� �
display my_display type: opengl{

species agent1 aspect: base ;
species agent2 aspect: base position:{0,0,0.5};
species agent3 aspect: base position:{0,0,1};

}� �
• See also: display, agents, chart, event, graphics, display_grid, image, overlay,

Embedments

• The display_population statement is of type: Layer
• The display_population statement can be embedded into: display, display_popula-
tion,

• The display_population statement embeds statements: display_population,

do

Facets

• action (an identifier), (omissible) : the name of an action or a primitive
• internal_function (any type):
• returns (a new identifier): create a new variable and assign to it the result of the
action

• with (map): a map expression containing the parameters of the action

Definition

Allows the agent to execute an action or a primitive. For a list of primitives available in every
species, see this [BuiltIn161 page]; for the list of primitives defined by the different skills,
see this [Skills161 page]. Finally, see this [Species161 page] to know how to declare custom
actions.

v 1.7 624

GAMAdocumentation Chapter 63. Statements

Usages

• The simple syntax (when the action does not expect any argument and the result is
not to be kept) is:

� �
do name_of_action_or_primitive;� �

• In case the action expects one or more arguments to be passed, they are defined by
using facets (enclosed tags or a map are now deprecated):

� �
do name_of_action_or_primitive arg1: expression1 arg2:

expression2;� �
• In case the result of the action needs to be made available to the agent, the action can
be called with the agent calling the action (self when the agent itself calls the action)
instead of do; the result should be assigned to a temporary variable:

� �
type_returned_by_action result <- self

name_of_action_or_primitive [];� �
• In case of an action expecting arguments and returning a value, the following syntax
is used:

� �
type_returned_by_action result <- self

name_of_action_or_primitive [arg1::expression1 , arg2::
expression2];� �
• Deprecated uses: following uses of the do statement (still accepted) are now depre-
cated:

v 1.7 625

GAMAdocumentation Chapter 63. Statements

� �
// Simple syntax:
do action: name_of_action_or_primitive;

// In case the result of the action needs to be made available to
the agent, the `returns` keyword can be defined; the result

will then be referred to by the temporary variable declared in
this attribute:

do name_of_action_or_primitive returns: result;
do name_of_action_or_primitive arg1: expression1 arg2:

expression2 returns: result;
type_returned_by_action result <- name_of_action_or_primitive(

self, [arg1::expression1 , arg2::expression2]);

// In case the result of the action needs to be made available to
the agent

let result <- name_of_action_or_primitive(self, []);

// In case the action expects one or more arguments to be passed,
they can also be defined by using enclosed `arg` statements ,

or the `with` facet with a map of parameters:
do name_of_action_or_primitive with: [arg1::expression1 , arg2::

expression2];

or

do name_of_action_or_primitive {
arg arg1 value: expression1;
arg arg2 value: expression2;
...

}� �
Embedments

• The do statement is of type: Single statement
• The do statement can be embedded into: chart, Behavior, Sequence of statements or
action,

• The do statement embeds statements:

v 1.7 626

GAMAdocumentation Chapter 63. Statements

draw

Facets

• geometry (any type), (omissible) : any type of data (it can be geometry, image, text)
• at (point): location where the shape/text/icon is drawn
• begin_arrow (any type in [int, float]): the size of the arrow, located at the beginning
of the drawn geometry

• bitmap (boolean): Whether to render the text in 3D or not
• border (any type in [rgb, boolean]): if used with a color, represents the color of the
geometry border. If set to false, expresses that no border should be drawn. If not set,
the borders will be drawn using the color of the geometry.

• color (rgb): the color to use to display the object. In case of images, will try to colorize
it

• depth (float): (only if the display type is opengl) Add an artificial depth to the geom-
etry previously defined (a line becomes a plan, a circle becomes a cylinder, a square
becomes a cube, a polygon becomes a polyhedronwith height equal to the depth value).
Note: This only works if the geometry is not a point

• empty (boolean): a condition specifying whether the geometry is empty or full
• end_arrow (any type in [int, float]): the size of the arrow, located at the end of the
drawn geometry

• font (any type in [19, string]): the font used to draw the text, if any. Applying this
facet to geometries or images has no effect. You can construct here your font with the
operator “font”. ex : font:font(“Helvetica”, 20 , #plain)

• material (25): Set a particular material to the object (only if you are in the “use_-
shader” mode).

• perspective (boolean): Whether to render the text in perspective or facing the user.
Default is true.

• rotate (any type in [float, int, pair]): orientation of the shape/text/icon; can be either
an int/float (angle) or a pair float::point (angle::rotation axis). The rotation axis, when
expressed as an angle, is by defaut {0,0,1}

• rounded (boolean): specifywhether the geometry have to be rounded (e.g. for squares)
• size (any type in [float, point]): size of the object to draw, expressed as a bounding
box (width, height, depth). If expressed as a float, represents the size in the three
directions.

• texture (any type in [string, list]): the texture(s) that should be applied to the geom-
etry. Either a path to a file or a list of paths

v 1.7 627

GAMAdocumentation Chapter 63. Statements

Definition

draw is used in an aspect block to expresse how agents of the species will be drawn. It is
evaluated each time the agent has to be drawn. It can also be used in the graphics block.

Usages

• Any kind of geometry as any location can be drawn when displaying an agent (inde-
pendently of his shape)

� �
aspect geometryAspect {

draw circle(1.0) empty: !hasFood color: #orange ;
}� �

• Image or text can also be drawn

� �
aspect arrowAspect {

draw "Current state= "+state at: location + {-3,1.5} color: #
white font: font('Default', 12, #bold) ;
draw file(ant_shape_full) rotate: heading at: location size:

5
}� �

• Arrows can be drawn with any kind of geometry, using begin_arrow and end_arrow
facets, combined with the empty: facet to specify whether it is plain or empty

� �
aspect arrowAspect {

draw line([{20, 20}, {40, 40}]) color: #black begin_arrow:5;
draw line([{10, 10},{20, 50}, {40, 70}]) color: #green

end_arrow: 2 begin_arrow: 2 empty: true;
draw square(10) at: {80,20} color: #purple begin_arrow: 2

empty: true;
}� �
v 1.7 628

GAMAdocumentation Chapter 63. Statements

Embedments

• The draw statement is of type: Single statement
• The draw statement can be embedded into: aspect, Sequence of statements or action,
Layer,

• The draw statement embeds statements:

else

Facets

Definition

This statement cannot be used alone

Usages

• See also: if,

Embedments

• The else statement is of type: Sequence of statements or action
• The else statement can be embedded into: if,
• The else statement embeds statements:

emotional_contagion

Facets

• emotion_detected (546706): the emotion that will start the contagion
• name (an identifier), (omissible) : the identifier of the emotional contagion

v 1.7 629

GAMAdocumentation Chapter 63. Statements

• charisma (float): The charisma value of the perceived agent (between 0 and 1)
• emotion_created (546706): the emotion that will be created with the contagion
• receptivity (float): The receptivity value of the current agent (between 0 and 1)
• threshold (float): The threshold value to make the contagion
• when (boolean): A boolean value to get the emotion only with a certain condition

Definition

enables to make conscious or unconscious emotional contagion

Usages

• Other examples of use:� �
emotional_contagion emotion_detected:fearConfirmed;
emotional_contagion emotion_detected:fear emotion_created:

fearConfirmed;
emotional_contagion emotion_detected:fear emotion_created:

fearConfirmed charisma: 0.5 receptivity: 0.5;� �
Embedments

• The emotional_contagion statement is of type: Single statement
• The emotional_contagion statement can be embedded into: Behavior, Sequence of
statements or action,

• The emotional_contagion statement embeds statements:

enter

Facets

Definition

In an FSMarchitecture, enter introduces a sequence of statements to execute upon entering
a state.

v 1.7 630

GAMAdocumentation Chapter 63. Statements

Usages

• In the following example, at the step it enters into the state s_init, the message ‘Enter
in s_init’ is displayed followed by the display of the state name:� �
state s_init {

enter { write "Enter in" + state; }
write "Enter in" + state;

}
write state;

}� �
• See also: state, exit, transition,

Embedments

• The enter statement is of type: Sequence of statements or action
• The enter statement can be embedded into: state,
• The enter statement embeds statements:

equation

Facets

• name (an identifier), (omissible) : the equation identifier
• params (list): the list of parameters used in predefined equation systems
• simultaneously (list): a list of species containing a system of equations (all systems
will be solved simultaneously)

• type (an identifier), takes values in: {SI, SIS, SIR, SIRS, SEIR, LV}: the choice of one
among classical models (SI, SIS, SIR, SIRS, SEIR, LV)

• vars (list): the list of variables used in predefined equation systems

Definition

The equation statement is used to create an equation system from several single equations.

v 1.7 631

GAMAdocumentation Chapter 63. Statements

Usages

• The basic syntax to define an equation system is:� �
float t;
float S;
float I;
equation SI {

diff(S,t) = (- 0.3 * S * I / 100);
diff(I,t) = (0.3 * S * I / 100);

}� �
• If the type: facet is used, a predefined equation system is defined using variables vars:
and parameters params: in the right order. All possible predefined equation systems
are the following ones (see [EquationPresentation161 EquationPresentation161] for
precise definition of each classical equation system):� �

equation eqSI type: SI vars: [S,I,t] params: [N,beta];
equation eqSIS type: SIS vars: [S,I,t] params: [N,beta,gamma];
equation eqSIR type:SIR vars:[S,I,R,t] params:[N,beta,gamma];
equation eqSIRS type: SIRS vars: [S,I,R,t] params: [N,beta,gamma,

omega,mu];
equation eqSEIR type: SEIR vars: [S,E,I,R,t] params: [N,beta,

gamma,sigma,mu];
equation eqLV type: LV vars: [x,y,t] params: [alpha,beta,delta,

gamma] ;� �
• If the simultaneously: facet is used, system of all the agents will be solved simultane-
ously.

• See also: =, solve,

Embedments

• The equation statement is of type: Sequence of statements or action
• The equation statement can be embedded into: Species, Model,
• The equation statement embeds statements: =,

v 1.7 632

GAMAdocumentation Chapter 63. Statements

error

Facets

• message (string), (omissible) : the message to display in the error.

Definition

The statement makes the agent output an error dialog (if the simulation contains a user
interface). Otherwise displays the error in the console.

Usages

• Throwing an error

� �
error 'This is an error raised by ' + self;� �
Embedments

• The error statement is of type: Single statement
• The error statement can be embedded into: Behavior, Sequence of statements or
action, Layer,

• The error statement embeds statements:

event

Facets

• name (an identifier), (omissible) : the type of event captured: can be “mouse_up”,
“mouse_down”, “mouse_move”, “mouse_exit”, “mouse_enter” or a character

v 1.7 633

GAMAdocumentation Chapter 63. Statements

• action (any type): Either a block of statements to execute in the context of the simu-
lation or the identifier of the action to be executed. This action needs to be defined in
‘global’ and will receive two possible arguments: the location of the mouse in the en-
vironment and the agents under the mouse. For instance:action myAction (point
location, list selected_agents)

• unused (an identifier), takes values in: {mouse_up, mouse_down, mouse_move,
mouse_enter, mouse_exit}: an unused facet that serves only for the purpose of declar-
ing the string values

Definition

event allows to interact with the simulation by capturing mouse or key events and doing an
action. This action needs to be defined in ‘global’ and will receive two possible arguments:
the location of themouse in the environment and the agents under themouse. The names of
these arguments need not to be fixed: instead, the first argument of type ‘point’ will receive
the location of the mouse, while the first argument whose type is compatible with ‘container’
will receive the list of agents selected.

Usages

• The general syntax is:

� �
event [event_type] action: myAction;� �

• For instance:

� �
global {

// ...
action myAction (point location , list<agent> selected_agents)
{

// location: contains le location of the click in the
environment

// selected_agents: contains agents clicked by the event

// code written by modelers
}

v 1.7 634

GAMAdocumentation Chapter 63. Statements

}

experiment Simple type:gui {
display my_display {

event mouse_up action: myAction;
}

}� �
• See also: display, agents, chart, graphics, display_grid, image, overlay, display_pop-
ulation,

Embedments

• The event statement is of type: Layer
• The event statement can be embedded into: display,
• The event statement embeds statements:

exhaustive

Facets

• name (an identifier), (omissible) :
• aggregation (a label), takes values in: {min, max}: the agregation method
• maximize (float): the value the algorithm tries to maximize
• minimize (float): the value the algorithm tries to minimize

Definition

This is the standard batch method. The exhaustive mode is defined by default when there is
nomethod element present in the batch section. It explores all the combination of parameter
values in a sequential way. See [batch161 the batch dedicated page].

v 1.7 635

GAMAdocumentation Chapter 63. Statements

Usages

• As other batch methods, the basic syntax of the exhaustive statement uses method
exhaustive instead of the expected exhaustive name: id :

� �
method exhaustive [facet: value];� �

• For example:

� �
method exhaustive maximize: food_gathered;� �
Embedments

• The exhaustive statement is of type: Batch method
• The exhaustive statement can be embedded into: Experiment,
• The exhaustive statement embeds statements:

exit

Facets

Definition

In an FSM architecture, exit introduces a sequence of statements to execute right before
exiting the state.

Usages

• In the following example, at the state it leaves the state s_init, he will display the mes-
sage ‘EXIT from s_init’:

v 1.7 636

GAMAdocumentation Chapter 63. Statements

� �
state s_init initial: true {

write state;
transition to: s1 when: (cycle > 2) {

write "transition s_init -> s1";
}
exit {

write "EXIT from "+state;
}

}� �
• See also: enter, state, transition,

Embedments

• The exit statement is of type: Sequence of statements or action
• The exit statement can be embedded into: state,
• The exit statement embeds statements:

experiment

Facets

• name (a label), (omissible) : identifier of the experiment

• title (a label):

• type (a label), takes values in: {batch, memorize, gui, headless}: the type of the ex-
periment (either ‘gui’ or ‘batch’

• control (an identifier):
• frequency (int): the execution frequence of the experiment (default value: 1). If fre-
quency: 10, the experiment is executed only each 10 steps.

• keep_seed (boolean):
• keep_simulations (boolean): In the case of a batch experiment, specifies whether
or not the simulations should be kept in memory for further analysis or immediately
discarded with only their fitness kept in memory

v 1.7 637

GAMAdocumentation Chapter 63. Statements

• multicore (boolean): Allows the experiment, when set to true, to usemultiple threads
to run its simulations

• parent (an identifier): the parent experiment (in case of inheritance between experi-
ments)

• repeat (int): In the case of a batch experiment, expresses hom many times the simu-
lations must be repeated

• schedules (container): an ordered list of agents giving the order of their execution
• skills (list):
• until (boolean): In the case of a batch experiment, an expression that will be evalu-
ated to know when a simulation should be terminated

Embedments

• The experiment statement is of type: Experiment
• The experiment statement can be embedded into: Model,
• The experiment statement embeds statements:

export

Facets

• var (an identifier), (omissible) :
• framerate (int):
• name (string):

Embedments

• The export statement is of type: Single statement
• The export statement can be embedded into: Experiment,
• The export statement embeds statements:

v 1.7 638

GAMAdocumentation Chapter 63. Statements

focus

Facets

• name (an identifier), (omissible) : the identifier of the focus
• expression (any type): an expression that will be the value kept in the belief
• priority (any type in [float, int]): The priority of the created predicate
• var (any type in [any type, list, container]): the variable of the perceived agent you
want to add to your beliefs

• when (boolean): A boolean value to focus only with a certain condition

Definition

enables to directly add a belief from the variable of a perceived specie.

Usages

• Other examples of use:� �
focus var:speed /*where speed is a variable from a species

that is being perceived*/� �
Embedments

• The focus statement is of type: Single statement
• The focus statement can be embedded into: Behavior, Sequence of statements or
action,

• The focus statement embeds statements:

focus_on

Facets

• value (any type), (omissible) : The agent, list of agents, geometry to focus on

v 1.7 639

GAMAdocumentation Chapter 63. Statements

Definition

Allows to focus on the passed parameter in all available displays. Passing ‘nil’ for the param-
eter will make all screens return to their normal zoom

Usages

• Focuses on an agent, a geometry, a set of agents, etc…)

� �
focus_on my_species(0);� �
Embedments

• The focus_on statement is of type: Single statement
• The focus_on statement can be embedded into: Behavior, Sequence of statements or
action, Layer,

• The focus_on statement embeds statements:

genetic

Facets

• name (an identifier), (omissible) :
• aggregation (a label), takes values in: {min, max}: the agregation method
• crossover_prob (float): crossover probability between two individual solutions
• max_gen (int): number of generations
• maximize (float): the value the algorithm tries to maximize
• minimize (float): the value the algorithm tries to minimize
• mutation_prob (float): mutation probability for an individual solution
• nb_prelim_gen (int): number of random populations used to build the initial popula-
tion

• pop_dim (int): size of the population (number of individual solutions)

v 1.7 640

GAMAdocumentation Chapter 63. Statements

Definition

This is a simple implementation of Genetic Algorithms (GA). See the wikipedia article and
[batch161 the batch dedicated page]. The principle of the GA is to search an optimal solution
by applying evolution operators on an initial population of solutions. There are three types of
evolution operators: crossover, mutation and selection. Different techniques can be applied
for this selection. Most of them are based on the solution quality (fitness).

Usages

• As other batch methods, the basic syntax of the genetic statement uses method
genetic instead of the expected genetic name: id :� �

method genetic [facet: value];� �
• For example:� �

method genetic maximize: food_gathered pop_dim: 5 crossover_prob:
0.7 mutation_prob: 0.1 nb_prelim_gen: 1 max_gen: 20;� �

Embedments

• The genetic statement is of type: Batch method
• The genetic statement can be embedded into: Experiment,
• The genetic statement embeds statements:

graphics

Facets

• name (a label), (omissible) : the human readable title of the graphics
• fading (boolean): Used in conjunction with ‘trace:’, allows to apply a fading effect to
the previous traces. Default is false

v 1.7 641

GAMAdocumentation Chapter 63. Statements

• position (point): position of the upper-left corner of the layer. Note that if coordi-
nates are in [0,1[, the position is relative to the size of the environment (e.g. {0.5,0.5}
refers to the middle of the display) whereas it is absolute when coordinates are greter
than 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the last coordinate specify-
ing the elevation of the layer.

• refresh (boolean): (openGL only) specify whether the display of the species is re-
freshed. (true by default, usefull in case of agents that do not move)

• size (point): extent of the layer in the screen from its position. Coordinates in [0,1[
are treated as percentages of the total surface, while coordinates > 1 are treated as
absolute sizes in model units (i.e. considering the model occupies the entire view).
Like in ‘position’, an elevation can be provided with the z coordinate, allowing to scale
the layer in the 3 directions

• trace (any type in [boolean, int]): Allows to aggregate the visualization at each
timestep on the display. Default is false. If set to an int value, only the last n-th steps
will be visualized. If set to true, no limit of timesteps is applied.

• transparency (float): the transparency rate of the agents (between 0 and 1, 1 means
no transparency)

Definition

graphics allows the modeler to freely draw shapes/geometries/texts without having to de-
fine a species. It works exactly like a species [Aspect161 aspect]: the draw statement can be
used in the same way.

Usages

• The general syntax is:� �
display my_display {

graphics "my new layer" {
draw circle(5) at: {10,10} color: #red;
draw "test" at: {10,10} size: 20 color: #black;

}
}� �

• See also: display, agents, chart, event, graphics, display_grid, image, overlay, dis-
play_population,

v 1.7 642

GAMAdocumentation Chapter 63. Statements

Embedments

• The graphics statement is of type: Layer
• The graphics statement can be embedded into: display,
• The graphics statement embeds statements:

highlight

Facets

• value (agent), (omissible) : The agent to hightlight
• color (rgb): An optional color to highlight the agent. Note that this color will become
the default color for further higlight operations

Definition

Allows to highlight the agent passed in parameter in all available displays, optionaly setting
a color. Passing ‘nil’ for the agent will remove the current highlight

Usages

• Highlighting an agent� �
highlight my_species(0) color: #blue;� �
Embedments

• The highlight statement is of type: Single statement
• The highlight statement can be embedded into: Behavior, Sequence of statements
or action, Layer,

• The highlight statement embeds statements:

v 1.7 643

GAMAdocumentation Chapter 63. Statements

hill_climbing

Facets

• name (an identifier), (omissible) :
• aggregation (a label), takes values in: {min, max}: the agregation method
• iter_max (int): number of iterations
• maximize (float): the value the algorithm tries to maximize
• minimize (float): the value the algorithm tries to minimize

Definition

This algorithm is an implementation of theHill Climbing algorithm. See thewikipedia article
and [batch161 the batch dedicated page].

Usages

• As other batchmethods, the basic syntax of the hill_climbing statement uses method
hill_climbing instead of the expected hill_climbing name: id :

� �
method hill_climbing [facet: value];� �

• For example:

� �
method hill_climbing iter_max: 50 maximize : food_gathered;� �
Embedments

• The hill_climbing statement is of type: Batch method
• The hill_climbing statement can be embedded into: Experiment,
• The hill_climbing statement embeds statements:

v 1.7 644

GAMAdocumentation Chapter 63. Statements

if

Facets

• condition (boolean), (omissible) : A boolean expression: the condition that is evalu-
ated.

Definition

Allows the agent to execute a sequence of statements if and only if the condition evaluates
to true.

Usages

• The generic syntax is:� �
if bool_expr {

[statements]
}� �

• Optionally, the statements to execute when the condition evaluates to false can be
defined in a following statement else. The syntax then becomes:� �

if bool_expr {
[statements]

}
else {

[statements]
}
string valTrue <- "";
if true {

valTrue <- "true";
}
else {

valTrue <- "false";
}

// valTrue equals "true"

v 1.7 645

GAMAdocumentation Chapter 63. Statements

string valFalse <- "";
if false {

valFalse <- "true";
}
else {

valFalse <- "false";
}

// valFalse equals "false"� �
• ifs and elses can be imbricated as needed. For instance:

� �
if bool_expr {

[statements]
}
else if bool_expr2 {

[statements]
}
else {

[statements]
}� �
Embedments

• The if statement is of type: Sequence of statements or action
• The if statement can be embedded into: Behavior, Sequence of statements or action,
Layer,

• The if statement embeds statements: else,

image

Facets

• name (string), (omissible) : Human readable title of the image layer

v 1.7 646

GAMAdocumentation Chapter 63. Statements

• color (rgb): in the case of a shapefile, this the color used to fill in geometries of the
shapefile

• file (any type in [string, file]): the name/path of the image (in the case of a raster
image)

• gis (any type in [file, string]): the name/path of the shape file (to display a shapefile
as background, without creating agents from it)

• position (point): position of the upper-left corner of the layer. Note that if coordi-
nates are in [0,1[, the position is relative to the size of the environment (e.g. {0.5,0.5}
refers to the middle of the display) whereas it is absolute when coordinates are greter
than 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the last coordinate specify-
ing the elevation of the layer.

• refresh (boolean): (openGL only) specify whether the image display is refreshed.
(true by default, usefull in case of images that is not modified over the simulation)

• size (point): extent of the layer in the screen from its position. Coordinates in [0,1[
are treated as percentages of the total surface, while coordinates > 1 are treated as
absolute sizes in model units (i.e. considering the model occupies the entire view).
Like in ‘position’, an elevation can be provided with the z coordinate, allowing to scale
the layer in the 3 directions

• transparency (float): the transparency rate of the agents (between 0 and 1, 1 means
no transparency)

Definition

image allows modeler to display an image (e.g. as background of a simulation).

Usages

• The general syntax is:

� �
display my_display {

image layer_name file: image_file [additional options];
}� �

• For instance, in the case of a bitmap image

v 1.7 647

GAMAdocumentation Chapter 63. Statements

� �
display my_display {

image background file:"../images/my_backgound.jpg";
}� �

• Or in the case of a shapefile:

� �
display my_display {

image testGIS gis: "../includes/building.shp" color: rgb('blue
');

}� �
• It is also possible to superpose images on different layers in the sameway as for species
using opengl display:

� �
display my_display {

image image1 file:"../images/image1.jpg";
image image2 file:"../images/image2.jpg";
image image3 file:"../images/image3.jpg" position: {0,0,0.5};

}� �
• See also: display, agents, chart, event, graphics, display_grid, overlay, display_popu-
lation,

Embedments

• The image statement is of type: Layer
• The image statement can be embedded into: display,
• The image statement embeds statements:

v 1.7 648

GAMAdocumentation Chapter 63. Statements

inspect

Facets

• name (any type), (omissible) : the identifier of the inspector
• attributes (list): the list of attributes to inspect
• refresh (boolean): Indicates the condition under which this output should be re-
freshed (default is true)

• refresh_every (int): Allows to refresh the inspector every n time steps (default is 1)
• type (an identifier), takes values in: {agent, table}: the way to inspect agents: in a
table, or a set of inspectors

• value (any type): the set of agents to inspect, could be a species, a list of agents or an
agent

Definition

inspect (and browse) statements allows modeler to inspect a set of agents, in a table with
agents and all their attributes or an agent inspector per agent, depending on the type: chosen.
Modeler can choose which attributes to display. When browse is used, type: default value is
table, whereas wheninspect is used, type: default value is agent.

Usages

• An example of syntax is:� �
inspect "my_inspector" value: ant attributes: ["name", "location"

];� �
Embedments

• The inspect statement is of type: Output
• The inspect statement can be embedded into: output, permanent, Behavior, Se-
quence of statements or action,

• The inspect statement embeds statements:

v 1.7 649

GAMAdocumentation Chapter 63. Statements

let

Facets

• name (a new identifier), (omissible) :
• index (a datatype identifier):
• of (a datatype identifier):
• type (a datatype identifier):
• value (any type):

Embedments

• The let statement is of type: Single statement
• The let statement can be embedded into: Behavior, Sequence of statements or action,
Layer,

• The let statement embeds statements:

light

Facets

• id (int), (omissible) : a number from 1 to 7 to specify which light we are using
• active (boolean): a boolean expression telling if you want this light to be switch on
or not. (default value : true)

• color (any type in [int, rgb]): an int / rgb / rgba value to specify the color and the
intensity of the light. (default value : (127,127,127,255)).

• direction (point): the direction of the light (only for direction and spot light). (de-
fault value : {0.5,0.5,-1})

• draw_light (boolean): draw or not the light. (default value : false).
• linear_attenuation (float): the linear attenuation of the positionnal light. (default
value : 0)

• position (point): the position of the light (only for point and spot light). (default
value : {0,0,1})

• quadratic_attenuation (float): the linear attenuation of the positionnal light. (de-
fault value : 0)

v 1.7 650

GAMAdocumentation Chapter 63. Statements

• spot_angle (float): the angle of the spot light in degree (only for spot light). (default
value : 45)

• type (a label): the type of light to create. A value among {point, direction, spot}. (de-
fault value : direction)

• update (boolean): specify if the light has to be updated. (default value : true).

Definition

light allows to define diffusion lights in your 3D display.

Usages

• The general syntax is:

� �
light 1 type:point position:{20,20,20} color:255,

linear_attenuation:0.01 quadratic_attenuation:0.0001
draw_light:true update:false

light 2 type:spot position:{20,20,20} direction:{0,0,-1} color
:255 spot_angle:25 linear_attenuation:0.01
quadratic_attenuation:0.0001 draw_light:true update:false

light 3 type:point direction:{1,1,-1} color:255 draw_light:true
update:false� �
• See also: display,

Embedments

• The light statement is of type: Layer
• The light statement can be embedded into: display,
• The light statement embeds statements:

v 1.7 651

GAMAdocumentation Chapter 63. Statements

loop

Facets

• name (a new identifier), (omissible) : a temporary variable name
• from (int): an int expression
• over (any type in [container, point]): a list, point, matrix or map expression
• step (int): an int expression
• times (int): an int expression
• to (int): an int expression
• while (boolean): a boolean expression

Definition

Allows the agent to perform the same set of statements either a fixed number of times, or
while a condition is true, or by progressing in a collection of elements or along an interval
of integers. Be aware that there are no prevention of infinite loops. As a consequence, open
loops should be used with caution, as one agent may block the execution of the whole model.

Usages

• The basic syntax for repeating a fixed number of times a set of statements is:

� �
loop times: an_int_expression {

// [statements]
}� �

• The basic syntax for repeating a set of statements while a condition holds is:

� �
loop while: a_bool_expression {

// [statements]
}� �

• The basic syntax for repeating a set of statements by progressing over a container of a
point is:

v 1.7 652

GAMAdocumentation Chapter 63. Statements

� �
loop a_temp_var over: a_collection_expression {

// [statements]
}� �

• The basic syntax for repeating a set of statements while an index iterates over a range
of values with a fixed step of 1 is:� �

loop a_temp_var from: int_expression_1 to: int_expression_2 {
// [statements]

}� �
• The incrementation step of the index can also be chosen:� �

loop a_temp_var from: int_expression_1 to: int_expression_2 step:
int_expression3 {
// [statements]

}� �
• In these latter three cases, the name facet designates the name of a temporary variable,
whose scope is the loop, and that takes, in turn, the value of each of the element of the
list (or each value in the interval). For example, in the first instance of the “loop over”
syntax :� �

int a <- 0;
loop i over: [10, 20, 30] {

a <- a + i;
} // a now equals 60� �

• The second (quite common) case of the loop syntax allows one to use an interval of
integers. The from and to facets take an integer expression as arguments, with the
first (resp. the last) specifying the beginning (resp. end) of the inclusive interval (i.e.
[to, from]). If the step is not defined, it is assumed to be equal to 1 or -1, depending on
the direction of the range. If it is defined, its sign will be respected, so that a positive
step will never allow the loop to enter a loop from i to j where i is greater than j

v 1.7 653

GAMAdocumentation Chapter 63. Statements

� �
list the_list <-list (species_of (self));
loop i from: 0 to: length (the_list) - 1 {

ask the_list at i {
// ...

}
} // every agent of the list is asked to do something� �
Embedments

• The loop statement is of type: Sequence of statements or action
• The loop statement can be embedded into: Behavior, Sequence of statements or ac-
tion, Layer,

• The loop statement embeds statements:

match

Facets

• value (any type), (omissible) :

Definition

In a switch…match structure, the value of each match block is compared to the value in the
switch. If they match, the embedded statement set is executed. Three kinds of match can be
used

Usages

• match block is executed if the switch value is equals to the value of the match:� �
switch 3 {

match 1 {write "Match 1"; }
match 3 {write "Match 2"; }

}� �
v 1.7 654

GAMAdocumentation Chapter 63. Statements

• match_between block is executed if the switch value is in the interval given in value
of the match_between:� �

switch 3 {
match_between [1,2] {write "Match OK between [1,2]"; }
match_between [2,5] {write "Match OK between [2,5]"; }

}� �
• match_one block is executed if the switch value is equals to one of the values of the
match_one:� �

switch 3 {
match_one [0,1,2] {write "Match OK with one of [0,1,2]"; }
match_between [2,3,4,5] {write "Match OK with one of [2,3,4,5]
"; }

}� �
• See also: switch, default,

Embedments

• The match statement is of type: Sequence of statements or action
• The match statement can be embedded into: switch,
• The match statement embeds statements:

migrate

Facets

• source (any type in [agent, species, container, an identifier]), (omissible) : can be an
agent, a list of agents, a agent’s population to be migrated

• target (species): target species/population that source agent(s) migrate to.
• returns (a new identifier): the list of returned agents in a new local variable

v 1.7 655

GAMAdocumentation Chapter 63. Statements

Definition

This command permits agents to migrate from one population/species to another popula-
tion/species and stay in the same host after the migration. Species of source agents and tar-
get species respect the following constraints: (i) they are “peer” species (sharing the same
direct macro-species), (ii) they have sub-species vs. parent-species relationship.

Usages

• It can be used in a 3-levelsmodel, in case where individual agents can be captured into
group meso agents and groups into clouds macro agents. migrate is used to allows
agents captured by groups to migrate into clouds. See the model ‘Balls, Groups and
Clouds.gaml’ in the library.� �

migrate ball_in_group target: ball_in_cloud;� �
• See also: capture, release,

Embedments

• The migrate statement is of type: Sequence of statements or action
• The migrate statement can be embedded into: Behavior, Sequence of statements or
action,

• The migrate statement embeds statements:

monitor

Facets

• name (a label), (omissible) : identifier of the monitor

• value (any type): expression that will be evaluated to be displayed in the monitor
• color (rgb): Indicates the (possibly dynamic) color of this output (default is a light
gray)

v 1.7 656

GAMAdocumentation Chapter 63. Statements

• refresh (boolean): Indicates the condition under which this output should be re-
freshed (default is true)

• refresh_every (int): Allows to refresh the monitor every n time steps (default is 1)

Definition

A monitor allows to follow the value of an arbitrary expression in GAML.

Usages

• An example of use is:

� �
monitor "nb preys" value: length(prey as list) refresh_every: 5;� �
Embedments

• The monitor statement is of type: Output
• The monitor statement can be embedded into: output, permanent,
• The monitor statement embeds statements:

output

Facets

Definition

output blocks define how to visualize a simulation (with one or more display blocks that
define separate windows). It will include a set of displays, monitors and files statements. It
will be taken into account only if the experiment type is gui.

v 1.7 657

GAMAdocumentation Chapter 63. Statements

Usages

• Its basic syntax is:

� �
experiment exp_name type: gui {

// [inputs]
output {

// [display, file, inspect, layout or monitor statements]
}

}� �
• See also: display, monitor, inspect, output_file, layout,

Embedments

• The output statement is of type: Output
• The output statement can be embedded into: Model, Experiment,
• The output statement embeds statements: display, inspect, monitor, output_file,

output_file

Facets

• name (an identifier), (omissible) : The name of the file where you want to export the
data

• data (string): The data you want to export
• footer (string): Define a footer for your export file
• header (string): Define a header for your export file
• refresh (boolean): Indicates the condition under which this file should be saved (de-
fault is true)

• refresh_every (int): Allows to save the file every n time steps (default is 1)
• rewrite (boolean): Rewrite or not the existing file
• type (an identifier), takes values in: {csv, text, xml}: The type of your output data

v 1.7 658

GAMAdocumentation Chapter 63. Statements

Embedments

• The output_file statement is of type: Output
• The output_file statement can be embedded into: output, permanent,
• The output_file statement embeds statements:

overlay

Facets

• background (rgb): the background color of the overlay displayed inside the view (the
bottom overlay remains black)

• border (rgb): Color to apply to the border of the rectangular shape of the overlay. Nil
by default

• center (any type): an expression that will be evaluated and displayed in the center
section of the bottom overlay

• color (any type in [list, rgb]): the color(s) used to display the expressions given in the
‘left’, ‘center’ and ‘right’ facets

• left (any type): an expression that will be evaluated and displayed in the left section
of the bottom overlay

• position (point): position of the upper-left corner of the overlay. Note that if coordi-
nates are in [0,1[, the position is relative to the size of the view (e.g. {0.5,0.5} refers
to the middle of the view) whereas it is absolute when coordinates are greater than
1. When the position is a 3D point {0.5, 0.5, 0.5}, the last coordinate specifies the
elevation of the layer.

• right (any type): an expression that will be evaluated and displayed in the right sec-
tion of the bottom overlay

• rounded (boolean): Whether or not the rectangular shape of the overlay should be
rounded. True by default

• size (point): extent of the layer in the view from its position. Coordinates in [0,1[
are treated as percentages of the total surface of the view, while coordinates > 1 are
treated as absolute sizes in model units (i.e. considering themodel occupies the entire
view). Unlike ‘position’, no elevation can be provided with the z coordinate

• transparency (float): the transparency rate of the overlay (between 0 and 1, 1 means
no transparency) when it is displayed inside the view. The bottom overlay will remain
at 0.75

v 1.7 659

GAMAdocumentation Chapter 63. Statements

Definition

overlay allows the modeler to display a line to the already existing bottom overlay, where
the results of ‘left’, ‘center’ and ‘right’ facets, when they are defined, are displayed with the
corresponding color if defined.

Usages

• To display information in the bottom overlay, the syntax is:

� �
overlay "Cycle: " + (cycle) center: "Duration: " + total_duration

+ "ms" right: "Model time: " + as_date(time,"") color: [#
yellow, #orange, #yellow];� �
• See also: display, agents, chart, event, graphics, display_grid, image, display_popula-
tion,

Embedments

• The overlay statement is of type: Layer
• The overlay statement can be embedded into: display,
• The overlay statement embeds statements:

parameter

Facets

• var (an identifier): the name of the variable (that should be declared in the global)
• name (a label), (omissible) : The message displayed in the interface
• among (list): the list of possible values
• category (a label): a category label, used to group parameters in the interface
• init (any type): the init value
• max (any type): the maximum value

v 1.7 660

GAMAdocumentation Chapter 63. Statements

• min (any type): the minimum value
• step (float): the increment step (mainly used in batch mode to express the variation
step between simulation)

• type (a datatype identifier): the variable type
• unit (a label): the variable unit

Definition

The parameter statement specifies which global attributes (i) will change through the suc-
cessive simulations (in batch experiments), (ii) can be modified by user via the interface (in
gui experiments). In GUI experiments, parameters are displayed depending on their type.

Usages

• In gui experiment, the general syntax is the following:

� �
parameter title var: global_var category: cat;� �

• In batch experiment, the two following syntaxes can be used to describe the possible
values of a parameter:

� �
parameter 'Value of toto:' var: toto among: [1, 3, 7, 15, 100];
parameter 'Value of titi:' var: titi min: 1 max: 100 step: 2;� �
Embedments

• The parameter statement is of type: Parameter
• The parameter statement can be embedded into: Experiment,
• The parameter statement embeds statements:

v 1.7 661

GAMAdocumentation Chapter 63. Statements

perceive

Facets

• target (any type in [container, point, agent]): the list of the agent youwant to perceive
• name (an identifier), (omissible) : the name of the perception
• as (species): an expression that evaluates to a species
• emotion (546706): The emotion needed to do the perception
• in (any type in [float, geometry]): a float or a geometry. If it is a float, it’s a radius of
a detection area. If it is a geometry, it is the area of detection of others species.

• threshold (float): Threshold linked to the emotion.
• when (boolean): a boolean to tell when does the perceive is active

Definition

Allow the agent, with a bdi architecture, to perceive others agents

Usages

• the basic syntax to perceive agents inside a circle of perception� �
perceive name_of-perception target:

the_agents_you_want_to_perceive in: a_distance when:
a_certain_condition {

Here you are in the context of the perceived agents. To refer to
the agent who does the perception , use myself.

If you want to make an action (such as adding a belief for
example), use ask myself{ do the_action}

}� �
Embedments

• The perceive statement is of type: Sequence of statements or action
• The perceive statement can be embedded into: Species, Model,
• The perceive statement embeds statements:

v 1.7 662

GAMAdocumentation Chapter 63. Statements

permanent

Facets

• layout (int), (omissible) : Either #none, to indicate that no layout will be imposed,
or one of the four possible predefined layouts: #stack, #split, #horizontal or #vertical.
This layout will be applied to both experiment and simulation display views

Definition

Represents the outputs of the experiment itself. In a batch experiment, the permanent sec-
tion allows to define an output block that will NOT be re-initialized at the beginning of each
simulation but will be filled at the end of each simulation.

Usages

• For instance, this permanent section will allow to display for each simulation the end
value of the food_gathered variable:

� �
permanent {

display Ants background: rgb('white') refresh_every: 1 {
chart "Food Gathered" type: series {

data "Food" value: food_gathered;
}

}
}� �
Embedments

• The permanent statement is of type: Output
• The permanent statement can be embedded into: Experiment,
• The permanent statement embeds statements: display, inspect, monitor, output_file,

v 1.7 663

GAMAdocumentation Chapter 63. Statements

plan

Facets

• name (an identifier), (omissible) :
• emotion (546706):
• finished_when (boolean):
• instantaneous (boolean):
• intention (546704):
• priority (float):
• threshold (float):
• when (boolean):

Embedments

• The plan statement is of type: Behavior
• The plan statement can be embedded into: Species, Model,
• The plan statement embeds statements:

put

Facets

• in (any type in [container, species, agent, geometry]): an expression that evaluates to
a container

• item (any type), (omissible) : any expression
• all (any type): any expression
• at (any type): any expression
• edge (any type): Indicates that the item to put should be considered as an edge of the
receiving graph. Soon to be deprecated, use ‘put edge(item)…’ instead

• key (any type): any expression
• weight (float): an expression that evaluates to a float

v 1.7 664

GAMAdocumentation Chapter 63. Statements

Definition

Allows the agent to replace a value in a container at a given position (in a list or a map) or
for a given key (in a map). Note that the behavior and the type of the attributes depends on
the specific kind of container.

Usages

• The allowed parameters configurations are the following ones:

� �
put expr at: expr in: expr_container;
put all: expr in: expr_container;� �

• In the case of a list, the position should an integer in the bound of the list. The facet
all: is used to replace all the elements of the list by the given value.

� �
list<int> putList <- [1,2,3,4,5]; // putList equals [1,2,3,4,5]
put -10 at: 1 in: putList; // putList equals [1,-10,3,4,5]
put 10 all: true in: putList; // putList equals

[10,10,10,10,10]� �
• In the case of a matrix, the position should be a point in the bound of the matrix. The
facet all: is used to replace all the elements of the matrix by the given value.

� �
matrix<int> putMatrix <- matrix([[0,1],[2,3]]); // putMatrix

equals matrix([[0,1],[2,3]])
put -10 at: {1,1} in: putMatrix; // putMatrix equals matrix

([[0,1],[2,-10]])
put 10 all: true in: putMatrix; // putMatrix equals matrix

([[10,10],[10,10]])� �
• In the case of a map, the position should be one of the key values of the map. Notice
that if the given key value does not exist in the map, the given pair key::value will be
added to the map. The facet all is used to replace the value of all the pairs of the map.

v 1.7 665

GAMAdocumentation Chapter 63. Statements

� �
map<string,int> putMap <- ["x"::4,"y"::7]; // putMap equals ["x

"::4,"y"::7]
put -10 key: "y" in: putMap; // putMap equals ["x"::4,"y

"::-10]
put -20 key: "z" in: putMap; // putMap equals ["x"::4,"y

"::-10, "z"::-20]
put -30 all: true in: putMap; // putMap equals ["x"::-30,"y

"::-30, "z"::-30]� �
Embedments

• The put statement is of type: Single statement
• The put statement can be embedded into: chart, Behavior, Sequence of statements or
action,

• The put statement embeds statements:

reactive_tabu

Facets

• name (an identifier), (omissible) :
• aggregation (a label), takes values in: {min, max}: the agregation method
• cycle_size_max (int): minimal size of the considered cycles
• cycle_size_min (int): maximal size of the considered cycles
• iter_max (int): number of iterations
• maximize (float): the value the algorithm tries to maximize
• minimize (float): the value the algorithm tries to minimize
• nb_tests_wthout_col_max (int): number of movements without collision before
shortening the tabu list

• tabu_list_size_init (int): initial size of the tabu list
• tabu_list_size_max (int): maximal size of the tabu list
• tabu_list_size_min (int): minimal size of the tabu list

v 1.7 666

GAMAdocumentation Chapter 63. Statements

Definition

This algorithm is a simple implementation of the Reactive Tabu Search algorithm ((Battiti et
al., 1993)). This Reactive Tabu Search is an enhance version of the Tabu search. It adds two
newelements to the classic TabuSearch. The first one concerns the size of the tabu list: in the
Reactive Tabu Search, this one is not constant anymore but it dynamically evolves according
to the context. Thus, when the exploration process visits too often the same solutions, the
tabu list is extended in order to favor the diversification of the search process. On the other
hand, when the process has not visited an already known solution for a high number of
iterations, the tabu list is shortened in order to favor the intensification of the search process.
The second new element concerns the adding of cycle detection capacities. Thus, when a
cycle is detected, the process applies random movements in order to break the cycle. See
[batch161 the batch dedicated page].

Usages

• As other batch methods, the basic syntax of the reactive_tabu statement uses method
reactive_tabu instead of the expected reactive_tabu name: id :

� �
method reactive_tabu [facet: value];� �

• For example:

� �
method reactive_tabu iter_max: 50 tabu_list_size_init: 5

tabu_list_size_min: 2 tabu_list_size_max: 10
nb_tests_wthout_col_max: 20 cycle_size_min: 2 cycle_size_max:
20 maximize: food_gathered;� �

Embedments

• The reactive_tabu statement is of type: Batch method
• The reactive_tabu statement can be embedded into: Experiment,
• The reactive_tabu statement embeds statements:

v 1.7 667

GAMAdocumentation Chapter 63. Statements

reflex

Facets

• name (an identifier), (omissible) : the identifier of the reflex
• when (boolean): an expression that evaluates a boolean, the condition to fulfill in order
to execute the statements embedded in the reflex.

Definition

A reflex is a sequence of statements that can be executed, at each time step, by the agent. If
no facet when: is defined, it will be executed every time step. If there is a when: facet, it is
executed only if the boolean expression evaluates to true.

Usages

• Example:� �
reflex my_reflex when: flip (0.5){ //Only executed when flip

returns true
write "Executing the unconditional reflex";

}� �
Embedments

• The reflex statement is of type: Behavior
• The reflex statement can be embedded into: Species, Experiment, Model,
• The reflex statement embeds statements:

release

Facets

• target (any type in [agent, list]), (omissible) : an expression that is evaluated as an
agent or a list of the agents to be released

v 1.7 668

GAMAdocumentation Chapter 63. Statements

• as (species): an expression that is evaluated as a species in which themicro-agent will
be released

• in (agent): an expression that is evaluated as an agent that will be the macro-agent in
which micro-agent will be released, i.e. their new host

• returns (a new identifier): a new variable containing a list of the newly released
agent(s)

Definition

Allows an agent to release its micro-agent(s). The preliminary for an agent to release
its micro-agents is that species of these micro-agents are sub-species of other species (cf.
[Species161#Nesting_species Nesting species]). The released agents won’t be micro-agents
of the calling agent anymore. Being released from a macro-agent, the micro-agents will
change their species and host (macro-agent).

Usages

• We consider the following species. Agents of “C” species can be released from a “B”
agent to become agents of “A” species. Agents of “D” species cannot be released from
the “A” agent because species “D” has no parent species.� �

species A {
...
}
species B {
...

species C parent: A {
...
}
species D {
...
}

...
}� �

• To release all “C” agents from a “B” agent, agent “C” has to execute the following state-
ment. The “C” agent will change to “A” agent. The won’t consider “B” agent as their

v 1.7 669

GAMAdocumentation Chapter 63. Statements

macro-agent (host) anymore. Their host (macro-agent) will the be the host (macro-
agent) of the “B” agent.

� �
release list(C);� �

• The modeler can specify the new host and the new species of the released agents:

� �
release list (C) as: new_species in: new host;� �

• See also: capture,

Embedments

• The release statement is of type: Sequence of statements or action
• The release statement can be embedded into: Behavior, Sequence of statements or
action,

• The release statement embeds statements:

remove

Facets

• from (any type in [container, species, agent, geometry]): an expression that evaluates
to a container

• item (any type), (omissible) : any expression to remove from the container
• all (any type): an expression that evaluates to a container. If it is true and if the value
a list, it removes the first instance of each element of the list. If it is true and the value
is not a container, it will remove all instances of this value.

• edge (any type): Indicates that the item to remove should be considered as an edge of
the receiving graph

• index (any type): any expression, the key at which to remove the element from the
container

v 1.7 670

GAMAdocumentation Chapter 63. Statements

• key (any type): any expression, the key at which to remove the element from the con-
tainer

• node (any type): Indicates that the item to remove should be considered as a node of
the receiving graph

• vertex (any type):

Definition

Allows the agent to remove an element from a container (a list, matrix, map…).

Usages

• This statement should be used in the following ways, depending on the kind of con-
tainer used and the expected action on it:� �

remove expr from: expr_container;
remove index: expr from: expr_container;
remove key: expr from: expr_container;
remove all: expr from: expr_container;� �

• In the case of list, the facet item: is used to remove the first occurence of a given
expression, whereas all is used to remove all the occurrences of the given expression.� �

list<int> removeList <- [3,2,1,2,3];
remove 2 from: removeList; // removeList equals [3,1,2,3]
remove 3 all: true from: removeList; // removeList equals

[1,2]
remove index: 1 from: removeList; // removeList equals [1]� �

• In the case of map, the facet key: is used to remove the pair identified by the given
key.� �

map<string,int> removeMap <- ["x"::5, "y"::7, "z"::7];
remove key: "x" from: removeMap; // removeMap equals ["y"::7,

"z"::7]
remove 7 all: true from: removeMap; // removeMap equals map

([])� �
v 1.7 671

GAMAdocumentation Chapter 63. Statements

• In addition, a map a be managed as a list with pair key as index. Given that, facets
item:, all: and index: can be used in the same way:� �

map<string,int> removeMapList <- ["x"::5, "y"::7, "z"::7, "t"
::5];

remove 7 from: removeMapList; // removeMapList equals ["x"::5,
"z"::7, "t"::5]

remove [5,7] all: true from: removeMapList; // removeMapList
equals ["t"::5]

remove index: "t" from: removeMapList; // removeMapList equals
map([])� �
• In the case of a graph, both edges and nodes can be removes using node: and edge
facets. If a node is removed, all edges to and from this node are also removed.� �

graph removeGraph <- as_edge_graph([{1,2}::{3,4},{3,4}::{5,6}]);
remove node: {1,2} from: removeGraph;
remove node(1,2) from: removeGraph;
list var <- removeGraph.vertices; // var equals [{3,4},{5,6}]
list var <- removeGraph.edges; // var equals [polyline

({3,4}::{5,6})]
remove edge: {3,4}::{5,6} from: removeGraph;
remove edge({3,4},{5,6}) from: removeGraph;
list var <- removeGraph.vertices; // var equals [{3,4},{5,6}]
list var <- removeGraph.edges; // var equals []� �

• In the case of an agent or a shape, remove allows to remove an attribute from the
attributes map of the receiver. However, for agents, it will only remove attributes that
have been added dynamically, not the ones defined in the species or in its built-in
parent.� �

global {
init {

create speciesRemove;
speciesRemove sR <- speciesRemove(0); // sR.a now

equals 100
remove key:"a" from: sR; // sR.a now equals nil

v 1.7 672

GAMAdocumentation Chapter 63. Statements

}
}

species speciesRemove {
int a <- 100;

}� �
• This statement can not be used onmatrix.

• See also: add, put,

Embedments

• The remove statement is of type: Single statement
• The remove statement can be embedded into: chart, Behavior, Sequence of statements
or action,

• The remove statement embeds statements:

return

Facets

• value (any type), (omissible) : an expression that is returned

Definition

Allows to immediately stop and tell which value to return from the evaluation of the sur-
rounding action or top-level statement (reflex, init, etc.). Usually usedwithin the declaration
of an action. For more details about actions, see the following [Section161 section].

v 1.7 673

GAMAdocumentation Chapter 63. Statements

Usages

• Example:

� �
string foo {

return "foo";
}

reflex {
string foo_result <- foo(); // foos_result is now equals

to "foo"
}� �

• In the specific case one wants an agent to ask another agent to execute a statement
with a return, it can be done similarly to:

� �
// In Species A:
string foo_different {

return "foo_not_same";
}
///
// In Species B:
reflex writing {

string temp <- some_agent_A.foo_different []; // temp is
now equals to "foo_not_same"

}� �
Embedments

• The return statement is of type: Single statement
• The return statement can be embedded into: action, Behavior, Sequence of state-
ments or action,

• The return statement embeds statements:

v 1.7 674

GAMAdocumentation Chapter 63. Statements

rule

Facets

• name (an identifier), (omissible) : The name of the rule
• belief (546704): The mandatory belief
• desire (546704): The mandatory desire
• emotion (546706): The mandatory emotion
• new_belief (546704): The belief that will be added
• new_desire (546704): The desire that will be added
• new_emotion (546706): The emotion that will be added
• new_uncertainty (546704): The uncertainty that will be added
• priority (any type in [float, int]): The priority of the predicate added as a desire
• remove_belief (546704): The belief that will be removed
• remove_desire (546704): The desire that will be removed
• remove_emotion (546706): The emotion that will be removed
• remove_intention (546704): The intention that will be removed
• remove_uncertainty (546704): The uncertainty that will be removed
• threshold (float): Threshold linked to the emotion.
• uncertainty (546704): The mandatory uncertainty
• when (boolean):

Definition

enables to add a desire or a belief or to remove a belief, a desire or an intention if the agent
gets the belief or/and desire or/and condition mentioned.

Usages

• Other examples of use:� �
rule belief: new_predicate("test") when: flip(0.5)

new_desire: new_predicate("test")� �
Embedments

• The rule statement is of type: Single statement

v 1.7 675

GAMAdocumentation Chapter 63. Statements

• The rule statement can be embedded into: Species, Model,
• The rule statement embeds statements:

run

Facets

• name (string), (omissible) :

• of (string):
• core (int):
• end_cycle (int):
• seed (int):
• with_output (map):
• with_param (map):

Embedments

• The run statement is of type: Sequence of statements or action
• The run statement can be embedded into: Behavior, Single statement, Species, Model,
• The run statement embeds statements:

save

Facets

• to (string): an expression that evaluates to an string, the path to the file
• data (any type), (omissible) : any expression, that will be saved in the file
• crs (any type): the name of the projection, e.g. crs:“EPSG:4326” or its EPSG id,
e.g. crs:4326. Here a list of the CRS codes (and EPSG id): http://spatialreference.org

• header (boolean): an expression that evaluates to a boolean, specifying whether the
save will write a header if the file does not exist

v 1.7 676

GAMAdocumentation Chapter 63. Statements

• rewrite (boolean): an expression that evaluates to a boolean, specifying whether the
save will ecrase the file or append data at the end of it

• type (an identifier), takes values in: {shp, text, csv, asc, geotiff, image}: an expres-
sion that evaluates to an string, the type of the output file (it can be only “shp”, “asc”,
“geotiff”, “image”, “text” or “csv”)

• with (map): Not yet used

Definition

Allows to save data in a file. The type of file can be “shp”, “asc”, “geotiff”, “text” or “csv”.

Usages

• Its simple syntax is:

� �
save data to: output_file type: a_type_file;� �

• To save data in a text file:

� �
save (string(cycle) + "->" + name + ":" + location) to: "

save_data.txt" type: "text";� �
• To save the values of some attributes of the current agent in csv file:

� �
save [name, location , host] to: "save_data.csv" type: "csv";� �

• To save the values of all attributes of all the agents of a species into a csv (with optional
attributes):

� �
save species_of(self) to: "save_csvfile.csv" type: "csv" header:

false;� �
v 1.7 677

GAMAdocumentation Chapter 63. Statements

• To save the geometries of all the agents of a species into a shapefile (with optional
attributes):

� �
save species_of(self) to: "save_shapefile.shp" type: "shp" with:

[name::"nameAgent", location::"locationAgent"] crs: "EPSG:4326
";� �
• To save the grid_value attributes of all the cells of a grid into an ESRI ASCII Raster
file:

� �
save grid to: "save_grid.asc" type: "asc";� �

• To save the grid_value attributes of all the cells of a grid into geotiff:

� �
save grid to: "save_grid.tif" type: "geotiff";� �

• To save the grid_value attributes of all the cells of a grid into png (with a worldfile):

� �
save grid to: "save_grid.png" type: "image";� �

• The save statement can be use in an init block, a reflex, an action or in a user command.
Do not use it in experiments.

Embedments

• The save statement is of type: Single statement
• The save statement can be embedded into: Behavior, Sequence of statements or ac-
tion,

• The save statement embeds statements:

v 1.7 678

GAMAdocumentation Chapter 63. Statements

save_batch

Facets

• to (a label):
• data (any type), (omissible) :
• rewrite (boolean):

Embedments

• The save_batch statement is of type: Batch method
• The save_batch statement can be embedded into: Experiment,
• The save_batch statement embeds statements:

set

Facets

• name (any type), (omissible) : the name of an existing variable or attribute to be
modified

• value (any type): the value to affect to the variable or attribute

Definition

Allows to assign a value to the variable or attribute specified

Usages

Embedments

• The set statement is of type: Single statement
• The set statement can be embedded into: chart, Behavior, Sequence of statements or
action,

v 1.7 679

GAMAdocumentation Chapter 63. Statements

• The set statement embeds statements:

setup

Facets

Definition

The setup statement is used to define the set of instructions that will be executed before every
[#test test].

Usages

• As every test should be independent from the others, the setup will mainly contain
initialization of variables that will be used in each test.� �

species Tester {
int val_to_test;

setup {
val_to_test <- 0;

}

test t1 {
// [set of instructions , including asserts]

}
}� �

• See also: test, assert,

Embedments

• The setup statement is of type: Sequence of statements or action
• The setup statement can be embedded into: Species, Experiment, Model,

v 1.7 680

GAMAdocumentation Chapter 63. Statements

• The setup statement embeds statements:

simulate

Facets

• comodel (file), (omissible) :
• repeat (int):
• reset (boolean):
• share (list):
• until (boolean):
• with_experiment (string):
• with_input (map):
• with_output (map):

Definition

Allows an agent, the sender agent (that can be the [Sections161#global world agent]), to ask
another (or other) agent(s) to perform a set of statements. It obeys the following syntax,
where the target attribute denotes the receiver agent(s):

Usages

• Other examples of use:� �
ask receiver_agent(s) {
// [statements]

}� �
Embedments

• The simulate statement is of type: Single statement
• The simulate statement can be embedded into: chart, Experiment, Species, Behavior,
Sequence of statements or action,

v 1.7 681

GAMAdocumentation Chapter 63. Statements

• The simulate statement embeds statements:

solve

Facets

• equation (an identifier), (omissible) : the equation system identifier to benumerically
solved

• cycle_length (int): length of simulation cycle which will be synchronize with step of
integrator (default value: 1)

• discretizing_step (int): number of discrete between 2 steps of simulation (default
value: 0)

• integrated_times (list): time interval inside integration process
• integrated_values (list): list of variables’s value inside integration process
• max_step (float): maximal step, (used with dp853 method only), (sign is irrelevant,
regardless of integration direction, forward or backward), the last step can be smaller
than this value

• method (an identifier), takes values in: {Euler, ThreeEighthes, Midpoint, Gill,
Luther, rk4, dp853, AdamsBashforth, AdamsMoulton, DormandPrince54, GraggBu-
lirschStoer, HighamHall54}: integrate method (can be only “Euler”, “ThreeEighthes”,
“Midpoint”, “Gill”, “Luther”, “rk4” or “dp853”, “AdamsBashforth”, “AdamsMoulton”,
“DormandPrince54”, “GraggBulirschStoer”, “HighamHall54”) (default value: “rk4”)

• min_step (float): minimal step, (used with dp853 method only), (sign is irrelevant,
regardless of integration direction, forward or backward), the last step can be smaller
than this value

• scalAbsoluteTolerance (float): allowed absolute error (used with dp853 method
only)

• scalRelativeTolerance (float): allowed relative error (used with dp853 method
only)

• step (float): integration step, use with most integrator methods (default value: 1)
• time_final (float): target time for the integration (can be set to a value smaller than
t0 for backward integration)

• time_initial (float): initial time

v 1.7 682

GAMAdocumentation Chapter 63. Statements

Definition

Solves all equations which matched the given name, with all systems of agents that should
solved simultaneously.

Usages

• Other examples of use:� �
solve SIR method: "rk4" step:0.001;� �

Embedments

• The solve statement is of type: Single statement
• The solve statement can be embedded into: Behavior, Sequence of statements or
action,

• The solve statement embeds statements:

species

Facets

• name (an identifier), (omissible) : the identifier of the species
• cell_height (float): (grid only), the height of the cells of the grid
• cell_width (float): (grid only), the width of the cells of the grid
• compile (boolean):
• control (22): defines the architecture of the species (e.g. fsm…)
• edge_species (species): In the case of a species defining a graph topology for its in-
stances (nodes of the graph), specifies the species to use for representing the edges

• file (file): (grid only), a bitmap file that will be loaded at runtime so that the value of
each pixel can be assigned to the attribute ‘grid_value’

• frequency (int): The execution frequency of the species (default value: 1). For in-
stance, if frequency is set to 10, the population of agents will be executed only every
10 cycles.

v 1.7 683

GAMAdocumentation Chapter 63. Statements

• height (int): (grid only), the height of the grid (in terms of agent number)
• mirrors (any type in [list, species]): The species this species ismirroring. The popula-
tion of this current specieswill be dependent of that of the speciesmirrored (i.e. agents
creation and death are entirely taken in charge by GAMA with respect to the demo-
graphics of the species mirrored). In addition, this species is provided with an at-
tribute called ‘target’, which allows each agent to know which agent of the mirrored
species it is representing.

• neighbors (int): (grid only), the chosen neighborhood (4, 6 or 8)
• neighbours (int): (grid only), the chosen neighborhood (4, 6 or 8)
• parent (species): the parent class (inheritance)
• schedules (container): A container of agents (a species, a dynamic list, or a com-
bination of species and containers) , which represents which agents will be actually
scheduled when the population is scheduled for execution. For instance, ‘species a
schedules: (10 among a)’ will result in a population that schedules only 10 of its own
agents every cycle. ‘species b schedules: ’ will prevent the agents of ‘b’ to be scheduled.
Note that the scope of agents covered here can be larger than the population, which
allows to build complex scheduling controls; for instance, defining ‘global schedules:
{…} species b schedules: ; species c schedules: b + world;’ allows to simulate a model
where the agents of b are scheduled first, followed by the world, without even having
to create an instance of c.

• skills (list): The list of skills that will be made available to the instances of this
species. Each new skill provides attributes and actions that will be added to the ones
defined in this species

• topology (topology): The topology of the population of agents defined by this species.
In case of nested species, it can for example be the shape of themacro-agent. In case of
grid or graph species, the topology is automatically computed and cannot be redefined

• torus (boolean): is the topology toric (defaut: false). Needs to be defined on the global
species.

• use_individual_shapes (boolean): (grid only),(true by default). Allows to specify
whether or not the agents of the grid will have distinct geometries. If set to false, they
will all have simpler proxy geometries

• use_neighbors_cache (boolean): (grid only),(true by default). Allows to turn on or
off the use of the neighbors cache used for grids. Note that if a diffusion of variable
occurs, GAMA will emit a warning and automatically switch to a caching version

• use_regular_agents (boolean): (grid only),(true by default). Allows to specify if the
agents of the grid are regular agents (like those of any other species) or minimal ones
(which can’t have sub-populations, can’t inherit from a regular species, etc.)

• width (int): (grid only), the width of the grid (in terms of agent number)

v 1.7 684

GAMAdocumentation Chapter 63. Statements

Definition

The species statement allowsmodelers to define new species in the model. global and grid
are speciel cases of species: global being the definition of the global agent (which has auto-
matically one instance, world) and grid being a species with a grid topology.

Usages

• Here is an example of a species definition with a FSM architecture and the additional
skill moving:� �

species ant skills: [moving] control: fsm {� �
• In the case of a species aiming at mirroring another one:� �

species node_agent mirrors: list(bug) parent: graph_node
edge_species: edge_agent {� �
• The definition of the single grid of a model will automatically create gridwidth x grid-
height agents:� �

grid ant_grid width: gridwidth height: gridheight file: grid_file
neighbors: 8 use_regular_agents: false {� �

• Using a file to initialize the grid can replace width/height facets:� �
grid ant_grid file: grid_file neighbors: 8 use_regular_agents:

false {� �
Embedments

• The species statement is of type: Species
• The species statement can be embedded into: Model, Environment, Species,
• The species statement embeds statements:

v 1.7 685

GAMAdocumentation Chapter 63. Statements

state

Facets

• name (an identifier), (omissible) : the identifier of the state
• final (boolean): specifies whether the state is a final one (i.e. there is no transition
from this state to another state) (default value= false)

• initial (boolean): specifies whether the state is the initial one (default value = false)

Definition

A state, like a reflex, can contains several statements that can be executed at each time step
by the agent.

Usages

• Here is an exemple integrating 2 states and the statements in the FSM architecture:

� �
state s_init initial: true {

enter { write "Enter in" + state; }
write "Enter in" + state;

}

write state;

transition to: s1 when: (cycle > 2) {
write "transition s_init -> s1";

}

exit {
write "EXIT from "+state;

}
}
state s1 {

enter {write 'Enter in '+state;}

write state;

v 1.7 686

GAMAdocumentation Chapter 63. Statements

exit {write 'EXIT from '+state;}
}� �

• See also: enter, exit, transition,

Embedments

• The state statement is of type: Behavior
• The state statement can be embedded into: fsm, Species, Experiment, Model,
• The state statement embeds statements: enter, exit,

status

Facets

• message (any type), (omissible) : Allows to display a necessarily short message in the
status box in the upper left corner. No formatting characters (carriage returns, tabs,
or Unicode characters) should be used, but a background color can be specified. The
message will remain in place until it is replaced by another one or by nil, in which case
the standard status (number of cycles) will be displayed again

• color (rgb):

Definition

The statement makes the agent output an arbitrary message in the status box.

Usages

• Outputting a message� �
status ('This is my status ' + self) color: Ã�Â°yellow;� �
v 1.7 687

GAMAdocumentation Chapter 63. Statements

Embedments

• The status statement is of type: Single statement
• The status statement can be embedded into: Behavior, Sequence of statements or
action, Layer,

• The status statement embeds statements:

switch

Facets

• value (any type), (omissible) : an expression

Definition

The “switch… match” statement is a powerful replacement for imbricated “if … else …” con-
structs. All the blocks that match are executed in the order they are defined. The block
prefixed by default is executed only if none have matched (otherwise it is not).

Usages

• The prototypical syntax is as follows:

� �
switch an_expression {

match value1 {...}
match_one [value1, value2, value3] {...}
match_between [value1, value2] {...}
default {...}

}� �
• Example:

v 1.7 688

GAMAdocumentation Chapter 63. Statements

� �
switch 3 {

match 1 {write "Match 1"; }
match 2 {write "Match 2"; }
match 3 {write "Match 3"; }
match_one [4,4,6,3,7] {write "Match one_of"; }
match_between [2, 4] {write "Match between"; }
default {write "Match Default"; }

}� �
• See also: match, default, if,

Embedments

• The switch statement is of type: Sequence of statements or action
• The switch statement can be embedded into: Behavior, Sequence of statements or
action, Layer,

• The switch statement embeds statements: default, match,

tabu

Facets

• name (an identifier), (omissible) :
• aggregation (a label), takes values in: {min, max}: the agregation method
• iter_max (int): number of iterations
• maximize (float): the value the algorithm tries to maximize
• minimize (float): the value the algorithm tries to minimize
• tabu_list_size (int): size of the tabu list

Definition

This algorithm is an implementation of the Tabu Search algorithm. See the wikipedia article
and [batch161 the batch dedicated page].

v 1.7 689

GAMAdocumentation Chapter 63. Statements

Usages

• As other batch methods, the basic syntax of the tabu statement uses method tabu
instead of the expected tabu name: id :

� �
method tabu [facet: value];� �

• For example:

� �
method tabu iter_max: 50 tabu_list_size: 5 maximize:

food_gathered;� �
Embedments

• The tabu statement is of type: Batch method
• The tabu statement can be embedded into: Experiment,
• The tabu statement embeds statements:

task

Facets

• name (an identifier), (omissible) : the identifier of the task

• weight (float): the priority level of the task

Definition

As reflex, a task is a sequence of statements that can be executed, at each time step, by the
agent. If an agent owns several tasks, the scheduler chooses a task to execute based on its
current priority weight value.

v 1.7 690

GAMAdocumentation Chapter 63. Statements

Usages

Embedments

• The task statement is of type: Behavior
• The task statement can be embedded into: weighted_tasks, sorted_tasks, probabilis-
tic_tasks, Species, Experiment, Model,

• The task statement embeds statements:

test

Facets

• name (an identifier), (omissible) : identifier of the test

Definition

The test statement allows modeler to define a set of assertions that will be tested. Before the
execution of the embedded set of instructions, if a setup is defined in the species, model or
experiment, it is executed. In a test, if one assertion fails, the evaluation of other assertions
continue (if GAMA is configured in the preferences that the program does not stop at the
first exception).

Usages

• An example of use:� �
species Tester {

// set of attributes that will be used in test

setup {
// [set of instructions... in particular initializations]

}

test t1 {

v 1.7 691

GAMAdocumentation Chapter 63. Statements

// [set of instructions , including asserts]
}

}� �
• See also: setup, assert,

Embedments

• The test statement is of type: Behavior
• The test statement can be embedded into: Species, Experiment, Model,
• The test statement embeds statements: assert,

trace

Facets

Definition

All the statements executed in the trace statement are displayed in the console.

Usages

Embedments

• The trace statement is of type: Sequence of statements or action
• The trace statement can be embedded into: Behavior, Sequence of statements or
action, Layer,

• The trace statement embeds statements:

v 1.7 692

GAMAdocumentation Chapter 63. Statements

transition

Facets

• to (an identifier): the identifier of the next state
• when (boolean), (omissible) : a condition to be fulfilled to have a transition to another
given state

Definition

In an FSM architecture, transition specifies the next state of the life cycle. The transition
occurs when the condition is fulfilled. The embedded statements are executed when the
transition is triggered.

Usages

• In the following example, the transition is executed when after 2 steps:

� �
state s_init initial: true {

write state;
transition to: s1 when: (cycle > 2) {

write "transition s_init -> s1";
}

}� �
• See also: enter, state, exit,

Embedments

• The transition statement is of type: Sequence of statements or action
• The transition statement can be embedded into: Sequence of statements or action,
Behavior,

• The transition statement embeds statements:

v 1.7 693

GAMAdocumentation Chapter 63. Statements

unconscious_contagion

Facets

• emotion (546706): the emotion that will be copied with the contagion
• name (an identifier), (omissible) : the identifier of the unconscious contagion
• charisma (float): The charisma value of the perceived agent (between 0 and 1)
• receptivity (float): The receptivity value of the current agent (between 0 and 1)
• threshold (float): The threshold value to make the contagion
• when (boolean): A boolean value to get the emotion only with a certain condition

Definition

enables to directly copy an emotion presents in the perceived specie.

Usages

• Other examples of use:� �
unconscious_contagion emotion:fearConfirmed;
unconscious_contagion emotion:fearConfirmed charisma: 0.5

receptivity: 0.5;� �
Embedments

• The unconscious_contagion statement is of type: Single statement
• The unconscious_contagion statement can be embedded into: Behavior, Sequence
of statements or action,

• The unconscious_contagion statement embeds statements:

user_command

Facets

• name (a label), (omissible) : the identifier of the user_command

v 1.7 694

GAMAdocumentation Chapter 63. Statements

• action (an identifier): the identifier of the action to be executed. This action should
be accessible in the context in which it is defined (an experiment, the global section or
a species). A special case is allowed to maintain the compatibility with older versions
of GAMA, when the user_command is declared in an experiment and the action is
declared in ‘global’. In that case, all the simulations managed by the experiment will
run the action in response to the user executing the command

• color (rgb): The color of the button to display
• continue (boolean): Whether or not the button, when clicked, should dismiss the user
panel it is defined in. Has no effect in other contexts (menu, parameters, inspectors)

• when (boolean): the condition that should be fulfilled (in addition to the user clicking
it) in order to execute this action

• with (map): the map of the parameters::values required by the action

Definition

Anywhere in the global block, in a species or in an (GUI) experiment, user_command state-
ments allows to either call directly an existing action (with or without arguments) or to be
followed by a block that describes what to do when this command is run.

Usages

• The general syntax is for example:� �
user_command kill_myself action: some_action with: [arg1::val1,

arg2::val2, ...];� �
• See also: user_init, user_panel, user_input,

Embedments

• The user_command statement is of type: Sequence of statements or action
• The user_command statement can be embedded into: user_panel, Species, Experi-
ment, Model,

• The user_command statement embeds statements: user_input,

v 1.7 695

GAMAdocumentation Chapter 63. Statements

user_init

Facets

• name (an identifier), (omissible) :
• initial (boolean):

Definition

Used in the user control architecture, user_init is executed only once when the agent is cre-
ated. It opens a special panel (if it contains user_commands statements). It is the equivalent
to the init block in the basic agent architecture.

Usages

• See also: user_command, user_init, user_input,

Embedments

• The user_init statement is of type: Behavior
• The user_init statement can be embedded into: Species, Experiment, Model,
• The user_init statement embeds statements: user_panel,

user_input

Facets

• returns (a new identifier): a new local variable containing the value given by the user
• name (a label), (omissible) : the displayed name
• among (list): the set of acceptable values for the variable
• init (any type): the init value
• max (float): the maximum value
• min (float): the minimum value
• type (a datatype identifier): the variable type

v 1.7 696

GAMAdocumentation Chapter 63. Statements

Definition

It allows to let the user define the value of a variable.

Usages

• Other examples of use:� �
user_panel "Advanced Control" {
user_input "Location" returns: loc type: point <- {0,0};
create cells number: 10 with: [location::loc];
}� �

• See also: user_command, user_init, user_panel,

Embedments

• The user_input statement is of type: Single statement
• The user_input statement can be embedded into: user_command,
• The user_input statement embeds statements:

user_panel

Facets

• name (an identifier), (omissible) :
• initial (boolean):

Definition

It is the basic behavior of the user control architecture (it is similar to state for the FSM
architecture). This user_panel translates, in the interface, in a semi-modal view that awaits
the user to choose action buttons, change attributes of the controlled agent, etc. Each user_-
panel, like a state in FSM, can have a enter and exit sections, but it is only defined in terms
of a set of user_commands which describe the different action buttons present in the panel.

v 1.7 697

GAMAdocumentation Chapter 63. Statements

Usages

• The general syntax is for example:� �
user_panel default initial: true {

user_input 'Number' returns: number type: int <- 10;
ask (number among list(cells)){ do die; }
transition to: "Advanced Control" when: every (10);

}

user_panel "Advanced Control" {
user_input "Location" returns: loc type: point <- {0,0};
create cells number: 10 with: [location::loc];

}� �
• See also: user_command, user_init, user_input,

Embedments

• The user_panel statement is of type: Behavior
• The user_panel statement can be embedded into: fsm, user_first, user_last, user_-
init, user_only, Species, Experiment, Model,

• The user_panel statement embeds statements: user_command,

using

Facets

• topology (topology), (omissible) : the topology

Definition

using is a statement that allows to set the topology to use by its sub-statements. They can
gather it by asking the scope to provide it.

v 1.7 698

GAMAdocumentation Chapter 63. Statements

Usages

• All the spatial operations are topology-dependent (e.g. neighbors are not the same in
a continuous and in a grid topology). So using statement allows modelers to specify
the topology in which the spatial operation will be computed.� �

float dist <- 0.0;
using topology(grid_ant) {

d (self.location distance_to target.location);
}� �
Embedments

• The using statement is of type: Sequence of statements or action
• The using statement can be embedded into: chart, Behavior, Sequence of statements
or action,

• The using statement embeds statements:

Variable_container

Facets

• name (a new identifier), (omissible) : The name of the attribute
• category (a label): Soon to be deprecated. Declare the parameter in an experiment
instead

• const (boolean): Indicates whether this attribute can be subsequently modified or
not

• fill_with (any type):
• function (any type): Used to specify an expression that will be evaluated each time
the attribute is accessed. This facet is incompatible with both ‘init:’ and ‘update:’

• index (a datatype identifier):
• init (any type): The initial value of the attribute
• of (a datatype identifier):
• parameter (a label): Soon to be deprecated. Declare the parameter in an experiment
instead

v 1.7 699

GAMAdocumentation Chapter 63. Statements

• size (any type in [int, point]):
• type (a datatype identifier):
• update (any type): An expression that will be evaluated each cycle to compute a new
value for the attribute

• value (any type):

Definition

Allows to declare an attribute of a species or an experiment

Usages

Embedments

• The Variable_container statement is of type: Variable (container)
• The Variable_container statement can be embedded into: Species, Experiment,
Model,

• The Variable_container statement embeds statements:

Variable_number

Facets

• name (a new identifier), (omissible) : The name of the attribute
• among (list): A list of constant values among which the attribute can take its value
• category (a label): Soon to be deprecated. Declare the parameter in an experiment
instead

• const (boolean): Indicates whether this attribute can be subsequently modified or
not

• function (any type in [int, float]): Used to specify an expression that will be evaluated
each time the attribute is accessed. This facet is incompatible with both ‘init:’ and
‘update:’

• init (any type in [int, float]): The initial value of the attribute
• max (any type in [int, float]): The maximum value this attribute can take.

v 1.7 700

GAMAdocumentation Chapter 63. Statements

• min (any type in [int, float]): The minimum value this attribute can take
• parameter (a label): Soon to be deprecated. Declare the parameter in an experiment
instead

• step (int):
• type (a datatype identifier): The type of the attribute, either ‘int’ or ‘float’
• update (any type in [int, float]): An expression that will be evaluated each cycle to
compute a new value for the attribute

• value (any type in [int, float]):

Definition

Allows to declare an attribute of a species or experiment

Usages

Embedments

• The Variable_number statement is of type: Variable (number)
• The Variable_number statement can be embedded into: Species, Experiment, Model,
• The Variable_number statement embeds statements:

Variable_regular

Facets

• name (a new identifier), (omissible) : The name of the attribute
• among (list): A list of constant values among which the attribute can take its value
• category (a label): Soon to be deprecated. Declare the parameter in an experiment
instead

• const (boolean): Indicates whether this attribute can be subsequently modified or
not

• function (any type): Used to specify an expression that will be evaluated each time
the attribute is accessed. This facet is incompatible with both ‘init:’ and ‘update:’

• index (a datatype identifier): The type of the index used to retrieve elements if the
type of the attribute is a container type

v 1.7 701

GAMAdocumentation Chapter 63. Statements

• init (any type): The initial value of the attribute
• of (a datatype identifier): The type of the elements contained in the type of this at-
tribute if it is a container type

• parameter (a label): Soon to be deprecated. Declare the parameter in an experiment
instead

• type (a datatype identifier): The type of this attribute. Can be combined with facets
‘of’ and ‘index’ to describe container types

• update (any type): An expression that will be evaluated each cycle to compute a new
value for the attribute

• value (any type):

Definition

Allows to declare an attribute of a species or an experiment

Usages

Embedments

• The Variable_regular statement is of type: Variable (regular)
• The Variable_regular statement can be embedded into: Species, Experiment,
Model,

• The Variable_regular statement embeds statements:

warn

Facets

• message (string), (omissible) : the message to display as a warning.

Definition

The statement makes the agent output an arbitrary message in the error view as a warning.

v 1.7 702

GAMAdocumentation Chapter 63. Statements

Usages

• Emmitting a warning� �
warn 'This is a warning from ' + self;� �
Embedments

• The warn statement is of type: Single statement
• The warn statement can be embedded into: Behavior, Sequence of statements or ac-
tion, Layer,

• The warn statement embeds statements:

write

Facets

• message (any type), (omissible) : the message to display. Modelers can add some
formatting characters to the message (carriage returns, tabs, or Unicode characters),
which will be used accordingly in the console.

• color (rgb): The color with wich the message will be displayed. Note that different
simulations will have different (default) colors to use for this purpose if this facet is
not specified

Definition

The statement makes the agent output an arbitrary message in the console.

Usages

• Outputting a message� �
write 'This is a message from ' + self;� �
v 1.7 703

GAMAdocumentation Chapter 63. Statements

Embedments

• The write statement is of type: Single statement
• The write statement can be embedded into: Behavior, Sequence of statements or
action, Layer,

• The write statement embeds statements:

v 1.7 704

Chapter 64

Types

A variable’s or expression’s type (or data type) determines the values it can take, plus the
operations that can be performed on or with it. GAML is a statically-typed language, which
means that the type of an expression is always known at compile time, and is even enforced
with casting operations. There are 4 categories of types:

• primitive types, declared as keyword in the language,
• complex types, also declared as keyword in the language,
• parametric types, a refinement of complex types (mainly children of container) that is
dynamically constructed using an enclosing type, a contents type and a key type,

• species types, dynamically constructed from the species declarations made by the
modeler (and the built-in species present).

The hierarchy of types in GAML (only primitive and complex types are displayed here, of
course, as the other ones are model-dependent) is the following:

Table of contents

• Types (Under Construction)

– Primitive built-in types

* bool
* float
* int

705

GAMAdocumentation Chapter 64. Types

Figure 64.1: images/types_hierarchy.png

v 1.7 706

GAMAdocumentation Chapter 64. Types

* string

– Complex built-in types

* agent
* container
* file
* geometry
* graph
* list
* map
* matrix
* pair
* path
* point
* rgb
* species
* Species names as types
* topology

– Defining custom types

Primitive built-in types

bool

• Definition: primitive datatype providing two values: true or false.
• Litteral declaration: both true or false are interpreted as boolean constants.
• Other declarations: expressions that require a boolean operand often directly ap-
ply a casting to bool to their operand. It is a convenient way to directly obtain a bool
value.

� �
bool (0) -> false� �
Top of the page

v 1.7 707

GAMAdocumentation Chapter 64. Types

float

• Definition: primitive datatype holding floating point values, its absolute value is
comprised between 4.9E-324 and 1.8E308.

• Comments: this datatype is internally backed up by the Java double datatype.
• Litteral declaration: decimal notation 123.45 or exponential notation 123e45 are
supported.

• Other declarations: expressions that require an integer operand often directly ap-
ply a casting to float to their operand. Using it is a way to obtain a float constant.

� �
float (12) -> 12.0� �
Top of the page

int

• Definition: primitive datatype holding integer values comprised between -
2147483648 and 2147483647 (i.e. between -2^31 and 2^31 - 1.

• Comments: this datatype is internally backed up by the Java int datatype.
• Litteral declaration: decimal notation like 1, 256790 or hexadecimal notation like
#1209FF are automatically interpreted.

• Other declarations: expressions that require an integer operand often directly ap-
ply a casting to int to their operand. Using it is a way to obtain an integer constant.

� �
int (234.5) -> 234.� �
Top of the page

string

• Definition: a datatype holding a sequence of characters.
• Comments: this datatype is internally backed up by the Java String class. However,
contrary to Java, strings are considered as a primitive type, which means they do not
contain character objects. This can be seen when casting a string to a list using the list
operator: the result is a list of one-character strings, not a list of characters.

v 1.7 708

GAMAdocumentation Chapter 64. Types

• Litteral declaration: a sequence of characters enclosed in quotes, like ‘this is a
string’ . If one wants to literally declare strings that contain quotes, one has to double
these quotes in the declaration. Strings accept escape characters like \n (newline), \r
(carriage return), \t (tabulation), as well as any Unicode character (\uXXXX).

• Other declarations: see string
• Example: see string operators.

Top of the page

Complex built-in types

Contrarily to primitive built-in types, complex types have often various attributes. They can
be accessed in the same way as attributes of agents:� �
complex_type nom_var <- init_var;
ltype_attr attr_var <- nom_var.attr_name;� �
For example:� �
file fileText <- file("../data/cell.Data");
bool fileTextReadable <- fileText.readable;� �
agent

• Definition: a generic datatype that represents an agent whatever its actual species.
• Comments: This datatype is barely used, since species can be directly used as
datatypes themselves.

• Declaration: the agent casting operator can be applied to an int (to get the agent
with this unique index), a string (to get the agent with this name).

Top of the page

container

• Definition: a generic datatype that represents a collection of data.

v 1.7 709

GAMAdocumentation Chapter 64. Types

• Comments: a container variable can be a list, a matrix, a map… Conversely each list,
matrix and map is a kind of container. In consequence every container can be used in
container-related operators.

• See also: Container operators

• Declaration:� �
container c <- [1,2,3];
container c <- matrix [[1,2,3],[4,5,6]];
container c <- map ["x"::5, "y"::12];
container c <- list species1;� �
Top of the page

file

• Definition: a datatype that represents a file.
• Built-in attributes:

– name (type = string): the name of the represented file (with its extension)
– extension(type = string): the extension of the file
– path (type = string): the absolute path of the file
– readable (type = bool, read-only): a flag expressing whether the file is readable
– writable (type = bool, read-only): a flag expressing whether the file is writable
– exists (type = bool, read-only): a flag expressing whether the file exists
– is_folder (type = bool, read-only): a flag expressing whether the file is folder
– contents (type = container): a container storing the content of the file

• Comments: a variable with the file type can handle any kind of file (text, image or
shape files…). The type of the content attribute will depend on the kind of file. Note
that the allowed kinds of file are the followings:

– text files: files with the extensions .txt, .data, .csv, .text, .tsv, .asc. The content
is by default a list of string.

– image files: files with the extensions .pgm, .tif, .tiff, .jpg, .jpeg, .png, .gif, .pict,
.bmp. The content is by default a matrix of int.

– shapefiles: files with the extension .shp. The content is by default a list of ge-
ometry.

– properties files: files with the extension .properties. The content is by default a
map of string::string.

v 1.7 710

GAMAdocumentation Chapter 64. Types

– folders. The content is by default a list of string.

• Remark: Files are also a particular kind of container and can thus be read, written
or iterated using the container operators and commands.

• See also: File operators
• Declaration: a file can be created using the generic file (that opens a file in read
only mode and tries to determine its contents), folder or the new_folder (to open an
existing folder or create a newone) unary operators. But things can be specializedwith
the combination of the read/write and image/text/shapefile/properties unary
operators.� �

folder(a_string) // returns a file managing a existing folder
file(a_string) // returns any kind of file in read-only mode
read(text(a_string)) // returns a text file in read-only mode
read(image(a_string)) // does the same with an image file.
write(properties(a_string)) // returns a property file which is

available for writing
// (if it exists, contents will be

appended unless it is cleared
// using the standard container

operations).� �
Top of the page

geometry

• Definition: a datatype that represents a vector geometry, i.e. a list of georeferenced
points.

• Built-in attributes:

– location (type = point): the centroid of the geometry
– area (type = float): the area of the geometry
– perimeter (type = float): the perimeter of the geometry
– holes (type = list of geometry): the list of the hole inside the given geometry
– contour (type = geometry): the exterior ring of the given geometry and of his
holes

– envelope (type = geometry): the geometry bounding box
– width (type = float): the width of the bounding box
– height (type = float): the height of the bounding box

v 1.7 711

GAMAdocumentation Chapter 64. Types

– points (type = list of point): the set of the points composing the geometry

• Comments: a geometry can be either a point, a polyline or a polygon. Operators
working on geometries handle transparently these three kinds of geometry. The enve-
lope (a.k.a. the bounding box) of the geometry depends on the kind of geometry:

– If this Geometry is the empty geometry, it is an empty point.
– If the Geometry is a point, it is a non-empty point.
– Otherwise, it is a Polygon whose points are (minx, miny), (maxx, miny), (maxx,
maxy), (minx, maxy), (minx, miny).

• See also: Spatial operators
• Declaration: geometries can be built from a point, a list of points or by using specific
operators (circle, square, triangle…).

� �
geometry varGeom <- circle(5);
geometry polygonGeom <- polygon([{3,5}, {5,6},{1,4}]);� �
Top of the page

graph

• Definition: a datatype that represents a graph composed of vertices linked by edges.
• Built-in attributes:

– edges(type = list of agent/geometry): the list of all edges
– vertices(type = list of agent/geometry): the list of all vertices
– circuit (type = path): an approximate minimal traveling salesman tour (hamil-
tonian cycle)

– spanning_tree (type = list of agent/geometry): minimum spanning tree of the
graph, i.e. a sub-graph such as every vertex lies in the tree, and as much edges
lies in it but no cycles (or loops) are formed.

– connected(type = bool): test whether the graph is connected

• Remark:

– graphs are also a particular kind of container and can thus bemanipulated using
the container operators and commands.

v 1.7 712

GAMAdocumentation Chapter 64. Types

– This algorithm used to compute the circuit requires that the graph be complete
and the triangle inequality exists (if x,y,z are vertices then d(x,y)+d(y,z)<d(x,z)
for all x,y,z) then this algorithm will guarantee a hamiltonian cycle such that the
total weight of the cycle is less than or equal to double the total weight of the
optimal hamiltonian cycle.

– The computation of the spanning tree uses an implementation of the Kruskal’s
minimum spanning tree algorithm. If the given graph is connected it computes
the minimum spanning tree, otherwise it computes the minimum spanning for-
est.

• See also: Graph operators
• Declaration: graphs can be built from a list of vertices (agents or geometries) or
from a list of edges (agents or geometries) by using specific operators. They are often
used to deal with a road network and are built from a shapefile.

� �
create road from: shape_file_road;
graph the_graph <- as_edge_graph(road);

graph([1,9,5]) --: ([1: in[] + out[], 5: in[] + out[], 9:
in[] + out[]], [])

graph([node(0), node(1), node(2)] // if node is a species
graph(['a'::345, 'b'::13]) --: ([b: in[] + out[b::13], a: in[]

+ out[a::345], 13: in[b::13] + out[], 345: in[a::345] + out
[]], [a::345=(a,345), b::13=(b,13)])

graph(a_graph) --: a_graph
graph(node1) --: null� �
Top of the page

list

• Definition: a composite datatype holding an ordered collection of values.
• Comments: lists are more or less equivalent to instances of ArrayList in Java (al-
though they are backed up by a specific class). They grow and shrink as needed, can
be accessed via an index (see @ or index_of), support set operations (like union and
difference), and provide the modeller with a number of utilities that make it easy to
deal with collections of agents (see, for instance, shuffle, reverse,where,sort_by,…).

v 1.7 713

GAMAdocumentation Chapter 64. Types

• Remark: lists can contain values of any datatypes, including other lists. Note, how-
ever, that due to limitations in the current parser, lists of lists cannot be declared lit-
teraly; they have to be built using assignments. Lists are also a particular kind of
container and can thus be manipulated using the container operators and commands.

• Litteral declaration: a set of expressions separated by commas, enclosed in square
brackets, like [12, 14, ‘abc’, self]. An empty list is noted .

• Other declarations: lists can be build litteraly from a point, or a string, or any other
element by using the list casting operator.

� �
list (1) -> [1]� �� �
list<int> myList <- [1,2,3,4];
myList[2] => 3� �
Top of the page

map

• Definition: a composite datatype holding an ordered collection of pairs (a key, and
its associated value).

• Built-in attributes:

– keys (type = list): the list of all keys
– values (type = list): the list of all values
– pairs (type = list of pairs): the list of all pairs key::value

• Comments: maps are more or less equivalent to instances of Hashtable in Java (al-
though they are backed up by a specific class).

• Remark: maps can contain values of any datatypes, including other maps or lists.
Maps are also a particular kind of container and can thus be manipulated using the
container operators and commands.

• Litteral declaration: a set of pair expressions separated by commas, enclosed in
square brackets; each pair is represented by a key and a value sperarated by ‘::’. An ex-
ample of map is [agentA::‘big’, agentB::‘small’, agentC::‘big’]. An empty map is noted
.

• Other declarations: lists can be built litteraly from a point, or a string, or any other
element by using the map casting operator.

v 1.7 714

GAMAdocumentation Chapter 64. Types

� �
map (1) -> [1::1]
map ({1,5}) -> [x::1, y::5]
[] // empty map� �
Top of the page

matrix

• Definition: a composite datatype that represents either a two-dimension array (ma-
trix) or a one-dimension array (vector), holding any type of data (including other ma-
trices).

• Comments: Matrices are fixed-size structures that can be accessed by index (point
for two-dimensions matrices, integer for vectors).

• Litteral declaration: Matrices cannot be defined literally. One-dimensions matri-
ces can be built by using thematrix casting operator applied on a list. Two-dimensions
matrices need to to be declared as variables first, before being filled.

� �
//builds a one-dimension matrix, of size 5
matrix mat1 <- matrix ([10, 20, 30, 40, 50]);
// builds a two-dimensions matrix with 10 columns and 5 rows,

where each cell is initialized to 0.0
matrix mat2 <- 0.0 as_matrix({10,5});
// builds a two-dimensions matrix with 2 columns and 3 rows, with

initialized cells
matrix mat3 <- matrix([["c11","c12","c13"],["c21","c22","c23"]]);

-> c11;c21
c12;c22
c13;c23� �

Top of the page

pair

• Definition: a datatype holding a key and its associated value.
• Built-in attributes:

– key (type = string): the key of the pair, i.e. the first element of the pair

v 1.7 715

GAMAdocumentation Chapter 64. Types

– value (type = string): the value of the pair, i.e. the second element of the pair

• Remark: pairs are also a particular kind of container and can thus be manipulated
using the container operators and commands.

• Litteral declaration: a pair is defined by a key and a value sperarated by ‘::’.
• Other declarations: a pair can also be built from:

– a point,
– a map (in this case the first element of the pair is the list of all the keys of the
map and the second element is the list of all the values of the map),

– a list (in this case the two first element of the list are used to built the pair)

� �
pair testPair <- "key"::56;
pair testPairPoint <- {3,5}; // 3::5
pair testPairList2 <- [6,7,8]; // 6::7
pair testPairMap <- [2::6,5::8,12::45]; // [12,5,2]::[45,8,6]� �
Top of the page

path

• Definition: a datatype representing a path linking two agents or geometries in a
graph.

• Built-in attributes:

– source (type = point): the source point, i.e. the first point of the path
– target (type = point): the target point, i.e. the last point of the path
– graph (type = graph): the current topology (in the case it is a spatial graph), null
otherwise

– edges (type = list of agents/geometries) : the edges of the graph composing the
path

– vertices (type = list of agents/geometries) : the vertices of the graph composing
the path

– segments (type = list of geometries): the list of the geometries composing the
path

– shape (type = geometry) : the global geometry of the path (polyline)

• Comments: the path created between two agents/geometries or locations will
strongly depends on the topology in which it is created.

v 1.7 716

GAMAdocumentation Chapter 64. Types

• Remark: a path is immutable, i.e. it can not be modified after it is created.
• Declaration: paths are very barely defined litterally. We can nevertheless use the
path unary operator on a list of points to build a path. Operators dedicated to the
computation of paths (such as path_to or path_between) are often used to build a
path.

� �
path([{1,5},{2,9},{5,8}]) // a path from {1,5} to {5,8} through

{2,9}

geometry rect <- rectangle(5);
geometry poly <- polygon([{10,20},{11,21},{10,21},{11,22}]);
path pa <- rect path_to poly; // built a path between rect and

poly, in the topolopy
// of the current

agent (i.e. a line in a& continuous topology ,
// a path in a graph

in a graph topology)

a_topology path_between a_container_of_geometries // idem with an
explicit topology and the possiblity

// to have more
than 2 geometries

// (the path is
then built incrementally)

path_between (a_graph, a_source , a_target) // idem with a the
given graph as topology� �

Top of the page

point

• Definition: a datatype normally holding two positive float values. Represents the
absolute coordinates of agents in the model.

• Built-in attributes:

– x (type = float): coordinate of the point on the x-axis
– y (type = float): coordinate of the point on the y-axis

v 1.7 717

GAMAdocumentation Chapter 64. Types

• Comments: point coordinates should be positive, if a negative value is used in its
declaration, the point is built with the absolute value.

• Remark: points are particular cases of geometries and containers. Thus they have
also all the built-in attributes of both the geometry and the container datatypes and
can be used with every kind of operator or command admitting geometry and con-
tainer.

• Litteral declaration: two numbers, separated by a comma, enclosed in braces, like
{12.3, 14.5}

• Other declarations: points can be built litteraly from a list, or from an integer or
float value by using the point casting operator.

� �
point ([12,123.45]) -> {12.0, 123.45}
point (2) -> {2.0, 2.0}� �
Top of the page

rgb

• Definition: a datatype that represents a color in the RGB space.
• Built-in attributes:

– red(type = int): the red component of the color
– green(type = int): the green component of the color
– blue(type = int): the blue component of the color
– darker(type = rgb): a new color that is a darker version of this color
– brighter(type = rgb): a new color that is a brighter version of this color

• Remark: rgbs are also a particular kind of container and can thus be manipulated
using the container operators and commands.

• Litteral declaration: there exist lot of ways to declare a color. We use the rgb cast-
ing operator applied to:

– a string. The allowed color names are the constants defined in the Color Java
class, i.e.: black, blue, cyan, darkGray, lightGray, gray, green, magenta, orange,
pink, red, white, yellow.

– a list. The integer value associated to the three first elements of the list are used
to define the three red (element 0 of the list), green (element 1 of the list) and
blue (element 2 of the list) components of the color.

v 1.7 718

GAMAdocumentation Chapter 64. Types

– a map. The red, green, blue compoenents take the value associated to the keys
“r”, “g”, “b” in the map.

– an integer <- the decimal integer is translated into a hexadecimal <-OxRRGGBB.
The red (resp. green, blue) component of the color take the value RR (resp. GG,
BB) translated in decimal.

– Since GAMA 1.6.1, colors can be directly obtained like units, by using the ° or
symbol followed by the name in lowercase of one of the 147 CSS colors (see
http://www.cssportal.com/css3-color-names/).

• Declaration:

� �
rgb cssRed <- #red; // Since 1.6.1
rgb testColor <- rgb('white'); // rgb

[255,255,255]
rgb test <- rgb(3,5,67); // rgb [3,5,67]
rgb te <- rgb(340); // rgb [0,1,84]
rgb tete <- rgb(["r"::34, "g"::56, "b"::345]); // rgb [34,56,255]� �
Top of the page

species

• Definition: a generic datatype that represents a species
• Built-in attributes:

– topology (type=topology): the topology is which lives the population of agents

• Comments: this datatype is actually a “meta-type”. It allows tomanipulate (in a rather
limited fashion, however) the species themselves as any other values.

• Litteral declaration: the name of a declared species is already a litteral declaration of
species.

• Other declarations: the species casting operator, or its variant called species_of can
be applied to an agent in order to get its species.

Top of the page

v 1.7 719

GAMAdocumentation Chapter 64. Types

Species names as types

Once a species has been declared in a model, it automatically becomes a datatype. This
means that : * It can be used to declare variables, parameters or constants, * It can be used
as an operand to commands or operators that require species parameters, * It can be used
as a casting operator (with the same capabilities as the built-in type agent)

In the simple following example, we create a set of “humans” and initialize a random “friend-
ship network” among them. See how the name of the species, human, is used in the create
command, as an argument to the list casting operator, and as the type of the variable named
friend.� �
global {

init {
create human number: 10;
ask human {

friend <- one_of (human - self);
}

}
}
entities {

species human {
human friend <- nil;

}
}� �
Top of the page

topology

• Definition: a topology is basically on neighborhoods, distance,… structures in which
agents evolves. It is the environment or the context in which all these values are com-
puted. It also provides the access to the spatial index shared by all the agents. And it
maintains a (eventually dynamic) link with the ‘environment’ which is a geometrical
border.

• Built-in attributes:

– places(type = container): the collection of places (geometry) defined by this
topology.

v 1.7 720

GAMAdocumentation Chapter 64. Types

– environment(type = geometry): the environment of this topology (i.e. the geom-
etry that defines its boundaries)

• Comments: the attributes places depends on the kind of the considered topolopy.
For continuous topologies, it is a list with their environment. For discrete topologies,
it can be any of the container supporting the inclusion of geometries (list, graph, map,
matrix)

• Remark: There exist various kinds of topology: continuous topology and discrete
topology (e.g. grid, graph…)

• Declaration: To create a topology, we can use the topology unary casting operator
applied to:

– an agent: returns a continuous topology built from the agent’s geometry
– a species name: returns the topology defined for this species population
– a geometry: returns a continuous topology built on this geometry
– a geometry container (list, map, shapefile): returns an half-discrete (with corre-
sponding places), half-continuous topology (to compute distances…)

– a geometry matrix (i.e. a grid): returns a grid topology which computes specifi-
cally neighborhood and distances

– a geometry graph: returns a graph topology which computes specifically neigh-
borhood and distances More complex topologies can also be built using dedi-
cated operators, e.g. to decompose a geometry…

Top of the page

Defining custom types

Sometimes, besides the species of agents that compose the model, it can be necessary to
declare custom datatypes. Species serve this purpose as well, and can be seen as “classes”
that can help to instantiate simple “objects”. In the following example, we declare a new kind
of “object”, bottle, that lacks the skills habitually associated with agents (moving, visible,
etc.), but can nevertheless group together attributes and behaviors within the same closure.
The following example demonstrates how to create the species:� �
species bottle {

float volume <- 0.0 max:1 min:0.0;
bool is_empty -> {volume = 0.0};
action fill {

v 1.7 721

GAMAdocumentation Chapter 64. Types

volume <- 1.0;
}

}� �
How to use this species to declare new bottles :� �
create bottle {

volume <- 0.5;
}� �
And how to use bottles as any other agent in a species (a drinker owns a bottle; when he gets
thirsty, it drinks a random quantity from it; when it is empty, it refills it):� �
species drinker {

...
bottle my_bottle <- nil;
float quantity <- rnd (100) / 100;
bool thirsty <- false update: flip (0.1);
...
action drink {

if condition: ! bottle.is_empty {
bottle.volume <-bottle.volume - quantity;
thirsty <- false;

}
}
...
init {

create bottle return: created_bottle;
volume <- 0.5;

}
my_bottle <- first(created_bottle);

}
...
reflex filling_bottle when: bottle.is_empty {

ask my_bottle {
do fill;

}
}
...
reflex drinking when: thirsty {

do drink;

v 1.7 722

GAMAdocumentation Chapter 64. Types

}
}� �
Top of the page

v 1.7 723

GAMAdocumentation Chapter 64. Types

v 1.7 724

Chapter 65

File Types

GAMA provides modelers with a generic type for files called file. It is possible to load a file
using the file operator:� �
file my_file <- file("../includes/data.csv");� �
However, internally, GAMAmakes the difference between the different types of files. Indeed,
for instance:� �
global {

init {
file my_file <- file("../includes/data.csv");
loop el over: my_file {

write el;
}

}
}� �
will give:� �
sepallength
sepalwidth
petallength
petalwidth
type
5.1
3.5
1.4

725

GAMAdocumentation Chapter 65. File Types

0.2
Iris-setosa
4.9
3.0
1.4
0.2
Iris-setosa
...� �
Indeed, the content of CSV file is a matrix: each row of the matrix is a line of the file; each
column of the matrix is value delimited by the separator (by default “,”).

In contrary:� �
global {

init {
file my_file <- file("../includes/data.shp");
loop el over: my_file {

write el;
}

}
}� �
will give:� �
Polygon
Polygon
Polygon
Polygon
Polygon
Polygon
Polygon� �
The content of a shapefile is a list of geometries corresponding to the objects of the shapefile.

In order to know how to load a file, GAMA analyzes its extension. For instance for a file with
a “.csv” extension, GAMA knows that the file is a csv one and will try to split each line with
the , separator. However, if the modeler wants to split each line with a different separator
(for instance ;) or load it as a text file, he/she will have to use a specific file operator.

Indeed, GAMA integrates specific operators corresponding to different types of files.

v 1.7 726

GAMAdocumentation Chapter 65. File Types

Table of contents

• File Types

– Text File

* Extensions
* Content
* Operators

– CSV File

* Extensions
* Content
* Operators

– Shapefile

* Extensions
* Content
* Operators

– OSM File

* Extensions
* Content
* Operators

– Grid File

* Extensions
* Content
* Operators

– Image File

* Extensions
* Content
* Operators

– SVG File

* Extensions
* Content
* Operators

– Property File

* Extensions
* Content

v 1.7 727

GAMAdocumentation Chapter 65. File Types

* Operators
– R File

* Extensions
* Content
* Operators

– 3DS File
* Extensions
* Content
* Operators

– OBJ File
* Extensions
* Content
* Operators

Text File

Extensions

Here the list of possible extensions for text file: * “txt” * “data” * “csv” * “text” * “tsv” * “xml”

Note that when trying to define the type of a file with the default file loading operator (file),
GAMA will first try to test the other type of file. For example, for files with “.csv” extension,
GAMA will cast them as csv file and not as text file.

Content

The content of a text file is a list of string corresponding to each line of the text file. For
example:� �
global {

init {
file my_file <- text_file("../includes/data.txt");
loop el over: my_file {

write el;
}

}
}� �
v 1.7 728

GAMAdocumentation Chapter 65. File Types

will give:� �
sepallength ,sepalwidth ,petallength ,petalwidth ,type
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa� �
Operators

List of operators related to text files: * text_file(string path): load a file (with an autho-
rized extension) as a text file. * text_file(string path, list content): load a file (with an
authorized extension) as a text file and fill it with the given content. * is_text(op): tests
whether the operand is a text file

CSV File

Extensions

Here the list of possible extensions for csv file: * “csv” * “tsv”

Content

The content of a csv file is a matrix of string: each row of the matrix is a line of the file; each
column of the matrix is value delimited by the separator (by default “,”). For example:� �
global {

init {
file my_file <- csv_file("../includes/data.csv");
loop el over: my_file {

write el;
}

}
}� �
will give:

v 1.7 729

GAMAdocumentation Chapter 65. File Types

� �
sepallength
sepalwidth
petallength
petalwidth
type
5.1
3.5
1.4
0.2
Iris-setosa
4.9
3.0
1.4
0.2
Iris-setosa
...� �
Operators

List of operators related to csv files: * csv_file(string path): load a file (with an autho-
rized extension) as a csv file with default separator (“,”). * csv_file(string path, string
separator): load a file (with an authorized extension) as a csv file with the given separator.� �
file my_file <- csv_file("../includes/data.csv", ";");� �

• csv_file(string path, matrix content): load a file (with an authorized extension)
as a csv file and fill it with the given content.

• is_csv(op): tests whether the operand is a csv file

Shapefile

Shapefiles are classical GIS data files. A shapefile is not simple file, but a set of several files
(source: wikipedia): * Mandatory files : * .shp — shape format; the feature geometry itself
* .shx — shape index format; a positional index of the feature geometry to allow seeking for-
wards and backwards quickly * .dbf — attribute format; columnar attributes for each shape,
in dBase IV format

v 1.7 730

GAMAdocumentation Chapter 65. File Types

• Optional files :

– .prj — projection format; the coordinate system and projection information, a
plain text file describing the projection using well-known text format

– .sbn and .sbx — a spatial index of the features
– .fbn and .fbx — a spatial index of the features for shapefiles that are read-only
– .ain and .aih — an attribute index of the active fields in a table
– .ixs — a geocoding index for read-write shapefiles
– .mxs — a geocoding index for read-write shapefiles (ODB format)
– .atx— an attribute index for the .dbf file in the formof shapefile.columnname.atx
(ArcGIS 8 and later)

– .shp.xml — geospatial metadata in XML format, such as ISO 19115 or other XML
schema

– .cpg — used to specify the code page (only for .dbf) for identifying the character
encoding to be used

More details about shapefiles can be found here.

Extensions

Here the list of possible extension for shapefile: * “shp”

Content

The content of a shapefile is a list of geometries corresponding to the objects of the shapefile.
For example:� �
global {

init {
file my_file <- shape_file("../includes/data.shp");
loop el over: my_file {

write el;
}

}
}� �
will give:

v 1.7 731

http://en.wikipedia.org/wiki/Shapefile

GAMAdocumentation Chapter 65. File Types

� �
Polygon
Polygon
Polygon
Polygon
Polygon
Polygon
Polygon
...� �
Note that the attributes of each object of the shapefile is stored in their correspondingGAMA
geometry. The operator “get” (or “read”) allows to get the value of a corresponding attributes.

For example:� �
file my_file <- shape_file("../includes/data.shp");
write "my_file: " + my_file.contents;
loop el over: my_file {

write (el get "TYPE");
}� �
Operators

List of operators related to shapefiles: * shape_file(string path): load a file (with an
authorized extension) as a shapefile with default projection (if a prj file is defined, use
it, otherwise use the default projection defined in the preference). * shape_file(string
path, string code): load a file (with an authorized extension) as a shapefile with the
given projection (GAMA will automatically decode the code. For a list of the possible pro-
jections see: http://spatialreference.org/ref/) * shape_file(string path, int EPSG_-
ID): load a file (with an authorized extension) as a shapefile with the given projection
(GAMA will automatically decode the epsg code. For a list of the possible projections see:
http://spatialreference.org/ref/)� �
file my_file <- shape_file("../includes/data.shp", "EPSG:32601");� �

• shape_file(string path, list content): load a file (with an authorized extension)
as a shapefile and fill it with the given content.

• is_shape(op): tests whether the operand is a shapefile

v 1.7 732

GAMAdocumentation Chapter 65. File Types

OSM File

OSM (Open Street Map) is a collaborative project to create a free editable map of the world.
The data produced in this project (OSM File) represent physical features on the ground (e.g.,
roads or buildings) using tags attached to its basic data structures (its nodes, ways, and rela-
tions). Each tag describes a geographic attribute of the feature being shown by that specific
node, way or relation (source: openstreetmap.org).

More details about OSM data can be found here.

Extensions

Here the list of possible extension for shapefile: * “osm” * “pbf” * “bz2” * “gz”

Content

The content of a OSM data is a list of geometries corresponding to the objects of the OSM
file. For example:� �
global {

init {
file my_file <- osm_file("../includes/data.gz");
loop el over: my_file {

write el;
}

}
}� �
will give:� �
Point
Point
Point
Point
Point
LineString
LineString
Polygon
Polygon

v 1.7 733

http://wiki.openstreetmap.org/wiki/Map_Features

GAMAdocumentation Chapter 65. File Types

Polygon
...� �
Note that like for shapefiles, the attributes of each object of the osm file is stored in their
corresponding GAMA geometry. The operator “get” (or “read”) allows to get the value of a
corresponding attributes.

Operators

List of operators related to osm file: * osm_file(string path): load a file (with an au-
thorized extension) as a osm file with default projection (if a prj file is defined, use it, oth-
erwise use the default projection defined in the preference). In this case, all the nodes
and ways of the OSM file will becomes a geometry. * osm_file(string path, string
code): load a file (with an authorized extension) as a osm file with the given projec-
tion (GAMA will automatically decode the code. For a list of the possible projections see:
http://spatialreference.org/ref/). In this case, all the nodes and ways of the OSM file will
becomes a geometry. * osm_file(string path, int EPSG_ID): load a file (with an autho-
rized extension) as a osm file with the given projection (GAMA will automatically decode
the epsg code. For a list of the possible projections see: http://spatialreference.org/ref/).
In this case, all the nodes and ways of the OSM file will becomes a geometry.� �
file my_file <- osm_file("../includes/data.gz", "EPSG:32601");� �

• osm_file(string path, map filter): load a file (with an authorized extension) as a
osm file with default projection (if a prj file is defined, use it, otherwise use the default
projection defined in the preference). In this case, only the elements with the defined
values are loaded from the file. “‘ //map used to filter the object to build from the
OSM file according to attributes. map filtering <- map([“highway”::[“primary”, “sec-
ondary”, “tertiary”, “motorway”, “living_street”,“residential”, “unclassified”], “build-
ing”::[“yes”]]);

//OSM file to load file osmfile <- file

v 1.7 734

GAMAdocumentation Chapter 65. File Types

Constants

• #e, value= 2.718281828459045, Comment: The e constant

• #infinity, value= Infinity, Comment: A constant holding the positive infinity of type
(Java Double.POSITIVE_INFINITY)

• #max_float, value= 1.7976931348623157E308, Comment: A constant holding the
largest positive finite value of type float (Java Double.MAX_VALUE)

• #max_int, value= 2.147483647E9, Comment: A constant holding themaximumvalue
an int can have (Java Integer.MAX_VALUE)

• #min_float, value= 4.9E-324, Comment: A constant holding the smallest positive
nonzero value of type float (Java Double.MIN_VALUE)

• #min_int, value= -2.147483648E9, Comment: A constant holding the minimum
value an int can have (Java Integer.MIN_VALUE)

• #nan, value= NaN, Comment: A constant holding a Not-a-Number (NaN) value of
type float (Java Double.POSITIVE_INFINITY)

• #pi, value= 3.141592653589793, Comment: The PI constant

• #to_deg, value= 57.29577951308232, Comment: A constant holding the value to con-
vert radians into degrees

• #to_rad, value= 0.017453292519943295, Comment: A constant holding the value to
convert degrees into radians

v 1.7 735

GAMAdocumentation Chapter 65. File Types

Graphics units

• #bold, value= 1, Comment: This constant allows to build a font with a bold face. Can
be combined with #italic

• #camera_location, value= No Default Value, Comment: This unit, only available
when running aspects or declaring displays, returns the current position of the camera
as a point

• #camera_orientation, value= No Default Value, Comment: This unit, only available
when running aspects or declaring displays, returns the current orientation of the cam-
era as a point

• #camera_target, value= No Default Value, Comment: This unit, only available when
running aspects or declaring displays, returns the current target of the camera as a
point

• #display_height, value= 1.0, Comment: This constant is only accessible in a graph-
ical context: display, graphics…

• #display_width, value= 1.0, Comment: This constant is only accessible in a graphical
context: display, graphics…

• #flat, value= 2, Comment: This constant represents a flat line buffer end cap style

• #horizontal, value= 3, Comment: This constant represents a layout where all display
views are aligned horizontally

• #italic, value= 2, Comment: This constant allows to build a font with an italic face.
Can be combined with #bold

• #none, value= 0, Comment: This constant represents the absence of a predefined lay-
out

• #pixels (#px), value= 1.0, Comment: This unit, only available when running aspects
or declaring displays, returns a dynamic value instead of a fixed one. px (or pixels),
returns the value of one pixel on the current view in terms of model units.

v 1.7 736

GAMAdocumentation Chapter 65. File Types

• #plain, value= 0, Comment: This constant allows to build a font with a plain face

• #round, value= 1, Comment: This constant represents a round line buffer end cap
style

• #split, value= 2, Comment: This constant represents a layout where all display views
are split in a grid-like structure

• #square, value= 3, Comment: This constant represents a square line buffer end cap
style

• #stack, value= 1, Comment: This constant represents a layout where all display views
are stacked

• #user_location, value= No Default Value, Comment: This unit contains in perma-
nence the location of the mouse on the display in which it is situated. The latest loca-
tion is provided when it is out of a display

• #vertical, value= 4, Comment: This constant represents a layout where all display
views are aligned vertically

• #zoom, value= 1.0, Comment: This unit, only availablewhen running aspects or declar-
ing displays, returns the current zoom level of the display as a positive float, where 1.0
represent the neutral zoom (100%)

Length units

• #cm (#centimeter,#centimeters), value= 0.009999999776482582, Comment: cen-
timeter unit

• #dm (#decimeter,#decimeters), value= 0.10000000149011612, Comment: decimeter
unit

v 1.7 737

GAMAdocumentation Chapter 65. File Types

• #foot (#feet,#ft), value= 0.3047999931871891, Comment: foot unit

• #inch (#inches), value= 0.025399999432265757, Comment: inch unit

• #km (#kilometer,#kilometers), value= 1000.0, Comment: kilometer unit

• #m (#meter,#meters), value= 1.0, Comment: meter: the length basic unit

• #mile (#miles), value= 1609.344, Comment: mile unit

• #mm (#milimeter,#milimeters), value= 9.999999776482583E-4, Comment: millime-
ter unit

• #yard (#yards), value= 0.9144, Comment: yard unit

Surface units

• #m2, value= 1.0, Comment: square meter: the basic unit for surfaces

• #sqft (#square_foot,#square_feet), value= 0.09290303584691051, Comment:
square foot unit

• #sqin (#square_inch,#square_inches), value= 6.451599711591008E-4, Comment:
square inch unit

• #sqmi (#square_mile,#square_miles), value= 2589988.110336, Comment: square
mile unit

v 1.7 738

GAMAdocumentation Chapter 65. File Types

Time units

• #day (#days,#day), value= 86400.0, Comment: day time unit

• #h (#hour,#hours), value= 3600.0, Comment: hour time unit

• #minute (#minutes,#mn), value= 60.0, Comment: minute time unit

• #month (#months), value= 2592000.0, Comment: month time unit. Note that 1
month equals 30 days and 1 year 360 days in these units

• #msec (#millisecond,#milliseconds,#ms), value= 0.001, Comment: millisecond time
unit

• #now, value= 1.0, Comment: This constant represents the current date

• #sec (#second,#seconds,#s), value= 1.0, Comment: second: the time basic unit

• #year (#years,#y), value= 3.1104E7, Comment: year time unit. Note that 1 month
equals 30 days and 1 year 360 days in these units

Volume units

• #cl (#centiliter,#centiliters), value= 1.0E-5, Comment: centiliter unit

• #dl (#deciliter,#deciliters), value= 1.0E-4, Comment: deciliter unit

• #hl (#hectoliter,#hectoliters), value= 0.1, Comment: hectoliter unit

• #l (#liter,#liters,#dm3), value= 0.001, Comment: liter unit

• #m3, value= 1.0, Comment: cube meter: the basic unit for volumes

v 1.7 739

GAMAdocumentation Chapter 65. File Types

Weight units

• #gram (#grams), value= 0.001, Comment: gram unit

• #kg (#kilo,#kilogram,#kilos), value= 1.0, Comment: second: the basic unit for
weights

• #longton (#lton), value= 1016.0469088000001, Comment: short ton unit

• #ounce (#oz,#ounces), value= 0.028349523125, Comment: ounce unit

• #pound (#lb,#pounds,#lbm), value= 0.45359237, Comment: pound unit

• #shortton (#ston), value= 907.18474, Comment: short ton unit

• #stone (#st), value= 6.35029318, Comment: stone unit

• #ton (#tons), value= 1000.0, Comment: ton unit

Colors

In addition to the previous units, GAML provides a direct access to the 147 named colors
defined in CSS (see http://www.cssportal.com/css3-color-names/). E.g,� �
rgb my_color <- °teal;� �

• #aliceblue, value= r=240, g=248, b=255, alpha=1

• #antiquewhite, value= r=250, g=235, b=215, alpha=1

• #aqua, value= r=0, g=255, b=255, alpha=1

v 1.7 740

GAMAdocumentation Chapter 65. File Types

• #aquamarine, value= r=127, g=255, b=212, alpha=1

• #azure, value= r=240, g=255, b=255, alpha=1

• #beige, value= r=245, g=245, b=220, alpha=1

• #bisque, value= r=255, g=228, b=196, alpha=1

• #black, value= r=0, g=0, b=0, alpha=1

• #blanchedalmond, value= r=255, g=235, b=205, alpha=1

• #blue, value= r=0, g=0, b=255, alpha=1

• #blueviolet, value= r=138, g=43, b=226, alpha=1

• #brown, value= r=165, g=42, b=42, alpha=1

• #burlywood, value= r=222, g=184, b=135, alpha=1

• #cadetblue, value= r=95, g=158, b=160, alpha=1

• #chartreuse, value= r=127, g=255, b=0, alpha=1

• #chocolate, value= r=210, g=105, b=30, alpha=1

• #coral, value= r=255, g=127, b=80, alpha=1

• #cornflowerblue, value= r=100, g=149, b=237, alpha=1

• #cornsilk, value= r=255, g=248, b=220, alpha=1

• #crimson, value= r=220, g=20, b=60, alpha=1

• #cyan, value= r=0, g=255, b=255, alpha=1

v 1.7 741

GAMAdocumentation Chapter 65. File Types

• #darkblue, value= r=0, g=0, b=139, alpha=1

• #darkcyan, value= r=0, g=139, b=139, alpha=1

• #darkgoldenrod, value= r=184, g=134, b=11, alpha=1

• #darkgray, value= r=169, g=169, b=169, alpha=1

• #darkgreen, value= r=0, g=100, b=0, alpha=1

• #darkgrey, value= r=169, g=169, b=169, alpha=1

• #darkkhaki, value= r=189, g=183, b=107, alpha=1

• #darkmagenta, value= r=139, g=0, b=139, alpha=1

• #darkolivegreen, value= r=85, g=107, b=47, alpha=1

• #darkorange, value= r=255, g=140, b=0, alpha=1

• #darkorchid, value= r=153, g=50, b=204, alpha=1

• #darkred, value= r=139, g=0, b=0, alpha=1

• #darksalmon, value= r=233, g=150, b=122, alpha=1

• #darkseagreen, value= r=143, g=188, b=143, alpha=1

• #darkslateblue, value= r=72, g=61, b=139, alpha=1

• #darkslategray, value= r=47, g=79, b=79, alpha=1

• #darkslategrey, value= r=47, g=79, b=79, alpha=1

• #darkturquoise, value= r=0, g=206, b=209, alpha=1

v 1.7 742

GAMAdocumentation Chapter 65. File Types

• #darkviolet, value= r=148, g=0, b=211, alpha=1

• #deeppink, value= r=255, g=20, b=147, alpha=1

• #deepskyblue, value= r=0, g=191, b=255, alpha=1

• #dimgray, value= r=105, g=105, b=105, alpha=1

• #dimgrey, value= r=105, g=105, b=105, alpha=1

• #dodgerblue, value= r=30, g=144, b=255, alpha=1

• #firebrick, value= r=178, g=34, b=34, alpha=1

• #floralwhite, value= r=255, g=250, b=240, alpha=1

• #forestgreen, value= r=34, g=139, b=34, alpha=1

• #fuchsia, value= r=255, g=0, b=255, alpha=1

• #gainsboro, value= r=220, g=220, b=220, alpha=1

• #ghostwhite, value= r=248, g=248, b=255, alpha=1

• #gold, value= r=255, g=215, b=0, alpha=1

• #goldenrod, value= r=218, g=165, b=32, alpha=1

• #gray, value= r=128, g=128, b=128, alpha=1

• #green, value= r=0, g=128, b=0, alpha=1

• #greenyellow, value= r=173, g=255, b=47, alpha=1

• #grey, value= r=128, g=128, b=128, alpha=1

v 1.7 743

GAMAdocumentation Chapter 65. File Types

• #honeydew, value= r=240, g=255, b=240, alpha=1

• #hotpink, value= r=255, g=105, b=180, alpha=1

• #indianred, value= r=205, g=92, b=92, alpha=1

• #indigo, value= r=75, g=0, b=130, alpha=1

• #ivory, value= r=255, g=255, b=240, alpha=1

• #khaki, value= r=240, g=230, b=140, alpha=1

• #lavender, value= r=230, g=230, b=250, alpha=1

• #lavenderblush, value= r=255, g=240, b=245, alpha=1

• #lawngreen, value= r=124, g=252, b=0, alpha=1

• #lemonchiffon, value= r=255, g=250, b=205, alpha=1

• #lightblue, value= r=173, g=216, b=230, alpha=1

• #lightcoral, value= r=240, g=128, b=128, alpha=1

• #lightcyan, value= r=224, g=255, b=255, alpha=1

• #lightgoldenrodyellow, value= r=250, g=250, b=210, alpha=1

• #lightgray, value= r=211, g=211, b=211, alpha=1

• #lightgreen, value= r=144, g=238, b=144, alpha=1

• #lightgrey, value= r=211, g=211, b=211, alpha=1

• #lightpink, value= r=255, g=182, b=193, alpha=1

v 1.7 744

GAMAdocumentation Chapter 65. File Types

• #lightsalmon, value= r=255, g=160, b=122, alpha=1

• #lightseagreen, value= r=32, g=178, b=170, alpha=1

• #lightskyblue, value= r=135, g=206, b=250, alpha=1

• #lightslategray, value= r=119, g=136, b=153, alpha=1

• #lightslategrey, value= r=119, g=136, b=153, alpha=1

• #lightsteelblue, value= r=176, g=196, b=222, alpha=1

• #lightyellow, value= r=255, g=255, b=224, alpha=1

• #lime, value= r=0, g=255, b=0, alpha=1

• #limegreen, value= r=50, g=205, b=50, alpha=1

• #linen, value= r=250, g=240, b=230, alpha=1

• #magenta, value= r=255, g=0, b=255, alpha=1

• #maroon, value= r=128, g=0, b=0, alpha=1

• #mediumaquamarine, value= r=102, g=205, b=170, alpha=1

• #mediumblue, value= r=0, g=0, b=205, alpha=1

• #mediumorchid, value= r=186, g=85, b=211, alpha=1

• #mediumpurple, value= r=147, g=112, b=219, alpha=1

• #mediumseagreen, value= r=60, g=179, b=113, alpha=1

• #mediumslateblue, value= r=123, g=104, b=238, alpha=1

v 1.7 745

GAMAdocumentation Chapter 65. File Types

• #mediumspringgreen, value= r=0, g=250, b=154, alpha=1

• #mediumturquoise, value= r=72, g=209, b=204, alpha=1

• #mediumvioletred, value= r=199, g=21, b=133, alpha=1

• #midnightblue, value= r=25, g=25, b=112, alpha=1

• #mintcream, value= r=245, g=255, b=250, alpha=1

• #mistyrose, value= r=255, g=228, b=225, alpha=1

• #moccasin, value= r=255, g=228, b=181, alpha=1

• #navajowhite, value= r=255, g=222, b=173, alpha=1

• #navy, value= r=0, g=0, b=128, alpha=1

• #oldlace, value= r=253, g=245, b=230, alpha=1

• #olive, value= r=128, g=128, b=0, alpha=1

• #olivedrab, value= r=107, g=142, b=35, alpha=1

• #orange, value= r=255, g=165, b=0, alpha=1

• #orangered, value= r=255, g=69, b=0, alpha=1

• #orchid, value= r=218, g=112, b=214, alpha=1

• #palegoldenrod, value= r=238, g=232, b=170, alpha=1

• #palegreen, value= r=152, g=251, b=152, alpha=1

• #paleturquoise, value= r=175, g=238, b=238, alpha=1

v 1.7 746

GAMAdocumentation Chapter 65. File Types

• #palevioletred, value= r=219, g=112, b=147, alpha=1

• #papayawhip, value= r=255, g=239, b=213, alpha=1

• #peachpuff, value= r=255, g=218, b=185, alpha=1

• #peru, value= r=205, g=133, b=63, alpha=1

• #pink, value= r=255, g=192, b=203, alpha=1

• #plum, value= r=221, g=160, b=221, alpha=1

• #powderblue, value= r=176, g=224, b=230, alpha=1

• #purple, value= r=128, g=0, b=128, alpha=1

• #red, value= r=255, g=0, b=0, alpha=1

• #rosybrown, value= r=188, g=143, b=143, alpha=1

• #royalblue, value= r=65, g=105, b=225, alpha=1

• #saddlebrown, value= r=139, g=69, b=19, alpha=1

• #salmon, value= r=250, g=128, b=114, alpha=1

• #sandybrown, value= r=244, g=164, b=96, alpha=1

• #seagreen, value= r=46, g=139, b=87, alpha=1

• #seashell, value= r=255, g=245, b=238, alpha=1

• #sienna, value= r=160, g=82, b=45, alpha=1

• #silver, value= r=192, g=192, b=192, alpha=1

v 1.7 747

GAMAdocumentation Chapter 65. File Types

• #skyblue, value= r=135, g=206, b=235, alpha=1

• #slateblue, value= r=106, g=90, b=205, alpha=1

• #slategray, value= r=112, g=128, b=144, alpha=1

• #slategrey, value= r=112, g=128, b=144, alpha=1

• #snow, value= r=255, g=250, b=250, alpha=1

• #springgreen, value= r=0, g=255, b=127, alpha=1

• #steelblue, value= r=70, g=130, b=180, alpha=1

• #tan, value= r=210, g=180, b=140, alpha=1

• #teal, value= r=0, g=128, b=128, alpha=1

• #thistle, value= r=216, g=191, b=216, alpha=1

• #tomato, value= r=255, g=99, b=71, alpha=1

• #transparent, value= r=0, g=0, b=0, alpha=0

• #turquoise, value= r=64, g=224, b=208, alpha=1

• #violet, value= r=238, g=130, b=238, alpha=1

• #wheat, value= r=245, g=222, b=179, alpha=1

• #white, value= r=255, g=255, b=255, alpha=1

• #whitesmoke, value= r=245, g=245, b=245, alpha=1

• #yellow, value= r=255, g=255, b=0, alpha=1

• #yellowgreen, value= r=154, g=205, b=50, alpha=1

v 1.7 748

Chapter 66

Pseudo-variables

The expressions known as pseudo-variables are special read-only variables that are not
declared anywhere (at least not in a species), and which represent a value that changes de-
pending on the context of execution.

Table of contents

• Pseudo-variables

– self
– myself
– each

self

The pseudo-variable self always holds a reference to the agent executing the current state-
ment.

• Example (sets the friend attribute of another random agent of the same species to
self and conversely):

749

GAMAdocumentation Chapter 66. Pseudo-variables

� �
friend potential_friend <- one_of (species(self) - self);
if potential_friend != nil {

potential_friend.friend <- self;
friend <- potential_friend;

}� �
myself

myself plays the same role as self but in remotely-executed code (ask, create, capture
and release statements), where it represents the calling agent when the code is executed
by the remote agent.

• Example (asks the first agent of my species to set its color to my color):� �
ask first (species (self)){

color <- myself.color;
}� �

• Example (create 10 new agents of the species of my species, share the energy between
them, turn them towards me, and make them move 4 times to get closer to me):� �

create species (self) number: 10 {
energy <- myself.energy / 10.0;
loop times: 4 {

heading <- towards (myself);
do move;

}
}� �
each

each is available only in the right-hand argument of iterators. It is a pseudo-variable that
represents, in turn, each of the elements of the left-hand container. It can then take any type
depending on the context.

v 1.7 750

GAMAdocumentation Chapter 66. Pseudo-variables

• Example:

� �
list<string> names <- my_species collect each.name; // each

is of type my_species
int max <- max(['aa', 'bbb', 'cccc'] collect length(each));

// each is of type string� �

v 1.7 751

GAMAdocumentation Chapter 66. Pseudo-variables

v 1.7 752

Chapter 67

Variables and Attributes

Variables and attributes represent named data that can be used in an expression. They can
be accessed depending on their scope: * the scope of attributes declared in a species is itself,
its child species and its micro-species. * the scope of temporary variables is the one in which
they have been declared, and all its sub-scopes. Outside its scope of validity, an expression
cannot use a variable or an attribute directly. However, attributes can be used in a remote
fashion by using a dotted notation on a given agent (see here).

Table of contents

• Variables and Attributes

– Direct Access
– Remote Access

Direct Access

When an agent wants to use either one of the variables declared locally, one of the attributes
declared in its species (or parent species), one of the attributes declared in themacro-species
of its species, it can directly invoke its name and the compiler will do the rest (i.e. finding
the variable or attribute in the right scope). For instance, we can have a look at the following
example:

753

GAMAdocumentation Chapter 67. Variables and Attributes

� �
species animal {

float energy <- 1000 min: 0 max: 2000 update: energy - 0.001;
int age_in_years <- 1 update: age_in_years + int (time / 365);

action eat (float amount <- 0) {
float gain <- amount / age_in_years;
energy <- energy + gain;

}

reflex feed {
int food_found <- rnd(100);
do eat (amount: food_found);

}

}� �
• Species declaration > Everywhere in the species declaration, we are able to directly
name and use:

– time, a global built-in variable,
– energy and age_in_years, the two species attributes. > Nevertheless, in the
species declaration, but outside of the action eat and the reflex feed, we cannot
name the variables:

– amount, the argument of eat action,
– gain, a local variable defined into the eat action,
– food_found, the local variable defined into the feed reflex.

• Eat action declaration > In the eat action declaration, we can directly name and
use:

– time, a global built-in variable,
– energy and age_in_years, the two species attributes,
– amount, which is an argument to the action eat,
– gain, a temporary variable within the action. > We cannot name and use the
variables:

– food_found, the local variable defined into the feed reflex.

• feed reflex declaration > Similarly, in the feed reflex declaration, we can directly
name and use:

v 1.7 754

GAMAdocumentation Chapter 67. Variables and Attributes

– time, a global built-in variable,
– energy and age_in_years, the two species variables,
– food_found, the local variable defined into the reflex. > But we cannot access
to variables:

– amount, the argument of eat action,
– gain, a local variable defined into the eat action.

Remote Access

When an expression needs to get access to the attribute of an agent which does not belong
to its scope of execution, a special notation (similar to that used in Java) has to be used:� �
remote_agent.variable� �
where remote_agent can be the name of an agent, an expression returning an agent, self,
myself or each. For instance, if we modify the previous species by giving its agents the pos-
sibility to feed another agent found in its neighbourhood, the result would be:� �
species animal {

float energy <- 1000 min: 0 max: 2000 update: energy - 0.001;
int age_in_years <- 1 update: age_in_years + int (time / 365);
action eat (float amount <- 0.0) {

float gain <- amount / age_in_years;
energy <- energy + gain;

}
action feed (animal target){

if (agent_to_feed != nil) and (agent_to_feed.energy <
energy { // verifies that the agent exists and that it need to
be fed

ask agent_to_feed {
do eat amount: myself.energy / 10; // asks the

agent to eat 10% of our own energy
}
energy <- energy - (energy / 10); // reduces the

energy by 10%
}

}
reflex {

animal candidates <- agents_overlapping (10 around agent.
shape); gathers all the neighbours

v 1.7 755

GAMAdocumentation Chapter 67. Variables and Attributes

agent_to_feed value: candidates with_min_of (each.energy);
//grabs one agent with the lowest energy

do feed target: agent_to_feed; // tries to feed it
}

}� �
In this example, agent_to_feed.energy, myself.energy and each.energy show different re-
mote accesses to the attribute energy. The dotted notation used here can be employed in
assignments as well. For instance, an action allowing two agents to exchange their energy
could be defined as:� �
action random_exchange {//exchanges our energy with that of the

closest agent
animal one_agent <- agent_closest_to (self)/>
float temp <-one_agent.energy; // temporary storage of the

agent's energy
one_agent.energy <- energy; // assignment of the agent's

energy with our energy
energy <- temp;

}� �

v 1.7 756

Chapter 68

Operators

This file is automatically generated from java files. Do Not Edit It.

Definition

Operators in the GAML language are used to compose complex expressions. An operator
performs a function on one, two, or n operands (which are other expressions and thus may
be themselves composed of operators) and returns the result of this function.

Most of them use a classical prefixed functional syntax (i.e. operator_name(operand1,
operand2, operand3), see below), with the exception of arithmetic (e.g. +, /), logical (and,
or), comparison (e.g. >, <), access (., [..]) and pair (::) operators, which require an infixed
notation (i.e. operand1 operator_symbol operand1).

The ternary functional if-else operator, ? :, uses a special infixed syntax composed with
two symbols (e.g. operand1 ? operand2 : operand3). Two unary operators (- and !) use
a traditional prefixed syntax that does not require parentheses unless the operand is itself a
complex expression (e.g. - 10, ! (operand1 or operand2)).

Finally, special constructor operators ({...} for constructing points, [...] for construct-
ing lists and maps) will require their operands to be placed between their two sym-
bols (e.g. {1,2,3}, [operand1, operand2, ..., operandn] or [key1::value1, key2::
value2... keyn::valuen]).

757

GAMAdocumentation Chapter 68. Operators

With the exception of these special cases above, the following rules apply to the syntax of
operators: * if they only have one operand, the functional prefixed syntax is mandatory (e.g.
operator_name(operand1)) * if they have two arguments, either the functional prefixed
syntax (e.g. operator_name(operand1, operand2)) or the infixed syntax (e.g. operand1
operator_name operand2) can be used. * if they have more than two arguments, either the
functional prefixed syntax (e.g. operator_name(operand1, operand2, ..., operand))
or a special infixed syntax with the first operand on the left-hand side of the operator name
(e.g. operand1 operator_name(operand2, ..., operand)) can be used.

All of these alternative syntaxes are completely equivalent.

Operators inGAMLare purely functional, i.e. they are guaranteed to not have any side effects
on their operands. For instance, the shuffle operator, which randomizes the positions of
elements in a list, does not modify its list operand but returns a new shuffled list.

Priority between operators

The priority of operators determines, in the case of complex expressions composed of several
operators, which one(s) will be evaluated first.

GAML follows in general the traditional priorities attributed to arithmetic, boolean, com-
parison operators, with some twists. Namely: * the constructor operators, like ::, used to
compose pairs of operands, have the lowest priority of all operators (e.g. a > b :: b > c
will return a pair of boolean values, which means that the two comparisons are evaluated
before the operator applies. Similarly, [a > 10, b > 5] will return a list of boolean values.
* it is followed by the ?: operator, the functional if-else (e.g. a > b ? a + 10 : a - 10
will return the result of the if-else). * next are the logical operators, and and or (e.g. a >
b or b > c will return the value of the test) * next are the comparison operators (i.e. >, <,
<=, >=, =, !=) * next the arithmetic operators in their logical order (multiplicative operators
have a higher priority than additive operators) * next the unary operators - and ! * next
the access operators . and [] (e.g. {1,2,3}.x > 20 + {4,5,6}.y will return the result of
the comparison between the x and y ordinates of the two points) * and finally the functional
operators, which have the highest priority of all.

v 1.7 758

GAMAdocumentation Chapter 68. Operators

Using actions as operators

Actions defined in species can be used as operators, provided they are called on the correct
agent. The syntax is that of normal functional operators, but the agent that will perform the
action must be added as the first operand.

For instance, if the following species is defined:� �
species spec1 {

int min(int x, int y) {
return x > y ? x : y;

}
}� �
Any agent instance of spec1 can use min as an operator (if the action conflicts with an existing
operator, a warning will be emitted). For instance, in the same model, the following line is
perfectly acceptable:� �
global {

init {
create spec1;
spec1 my_agent <- spec1[0];
int the_min <- my_agent min(10,20); // or min(

my_agent , 10, 20);
}

}� �
If the action doesn’t have any operands, the syntax to use is my_agent the_action(). Fi-
nally, if it does not return a value, it might still be used but is considering as returning a
value of type unknown (e.g. unknown result <- my_agent the_action(op1, op2);).

Note that due to the fact that actions are written bymodelers, the general functional contract
is not respected in that case: actions might perfectly have side effects on their operands
(including the agent).

Table of Contents

v 1.7 759

GAMAdocumentation Chapter 68. Operators

Operators by categories

3D

box, change_clockwise, cone3D, cube, cylinder, dem, hexagon, is_clockwise, pyramid, rgb_-
to_xyz, set_z, sphere, teapot,

Arithmetic operators

-, /, [](#), *, +, abs, acos, asin, atan, atan2, ceil, cos, cos_rad, div, even, exp, fact, floor,
hypot, is_finite, is_number, ln, log, mod, round, signum, sin, sin_rad, sqrt, tan, tan_rad,
tanh, with_precision,

BDI

and, eval_when, get_about, get_decay, get_intensity, get_lifetime, get_priority, get_su-
per_intention, new_emotion, new_predicate, or, set_about, set_decay, set_intensity, set_-
truth, with_lifetime, with_priority, with_values,

Casting operators

as, as_int, as_matrix, font, is, is_skill, list_with, matrix_with, species, to_gaml, topology,

v 1.7 760

GAMAdocumentation Chapter 68. Operators

Color-related operators

-, /, *, +, blend, brewer_colors, brewer_palettes, grayscale, hsb, mean, median, rgb, rnd_-
color, sum,

Comparison operators

!=, <, <=, =, >, >=, between,

Containers-related operators

-, ::, +, accumulate, among, at, collect, contains, contains_all, contains_any, count, empty,
every, first, first_with, get, group_by, in, index_by, inter, interleave, internal_at, inter-
nal_integrated_value, last, last_with, length, max, max_of, mean, mean_of, median, min,
min_of, mul, one_of, product_of, range, remove_duplicates, reverse, shuffle, sort_by, sum,
sum_of, union, variance_of, where, with_max_of, with_min_of,

Date-related operators

-, +, add_days, add_hours, add_minutes, add_months, add_weeks, add_years, subtract_-
days, subtract_hours, subtract_minutes, subtract_months, subtract_weeks, subtract_-
years,

Driving operators

as_driving_graph,

v 1.7 761

GAMAdocumentation Chapter 68. Operators

edge

edge_between,

EDP-related operators

diff, diff2, internal_zero_order_equation,

Files-related operators

crs, file, file_exists, folder, get, new_folder, osm_file, read, writable,

FIPA-related operators

conversation, message,

Graphs-related operators

add_edge, add_node, adjacency, agent_from_geometry, all_pairs_shortest_path, alpha_-
index, as_distance_graph, as_edge_graph, as_intersection_graph, as_path, beta_index,
betweenness_centrality, biggest_cliques_of, connected_components_of, connectivity_in-
dex, contains_edge, contains_vertex, degree_of, directed, edge, edge_between, edges,
gamma_index, generate_barabasi_albert, generate_complete_graph, generate_watts_-
strogatz, grid_cells_to_graph, in_degree_of, in_edges_of, layout, load_graph_from_file,
load_shortest_paths, maximal_cliques_of, nb_cycles, neighbors_of, node, nodes, out_de-
gree_of, out_edges_of, path_between, paths_between, predecessors_of, remove_node_-
from, rewire_n, source_of, spatial_graph, successors_of, sum, target_of, undirected, use_-
cache, weight_of, with_optimizer_type, with_weights,

v 1.7 762

GAMAdocumentation Chapter 68. Operators

Grid-related operators

as_4_grid, as_grid, as_hexagonal_grid, grid_at, path_between,

Iterator operators

accumulate, as_map, collect, count, distribution_of, distribution_of, distribution_of, dis-
tribution2d_of, distribution2d_of, distribution2d_of, first_with, frequency_of, group_by,
index_by, last_with, max_of, mean_of, min_of, product_of, sort_by, sum_of, variance_of,
where, with_max_of, with_min_of,

List-related operators

copy_between, index_of, last_index_of,

Logical operators

:, !, ?, and, or,

Map comparaison operators

fuzzy_kappa, fuzzy_kappa_sim, kappa, kappa_sim, percent_absolute_deviation,

v 1.7 763

GAMAdocumentation Chapter 68. Operators

Map-related operators

as_map, index_of, last_index_of,

Material

material,

Matrix-related operators

-, /, ., *, +, append_horizontally, append_vertically, column_at, columns_list, determinant,
eigenvalues, index_of, inverse, last_index_of, row_at, rows_list, shuffle, trace, transpose,

multicriteria operators

electre_DM, evidence_theory_DM, promethee_DM, weighted_means_DM,

Path-related operators

agent_from_geometry, all_pairs_shortest_path, as_path, load_shortest_paths, path_be-
tween, path_to, paths_between, use_cache,

v 1.7 764

GAMAdocumentation Chapter 68. Operators

Points-related operators

-, /, *, +, <, <=, >, >=, add_point, angle_between, any_location_in, closest_points_with,
farthest_point_to, grid_at, norm, point, points_at, points_on,

Random operators

binomial, flip, gauss, poisson, rnd, rnd_choice, sample, shuffle, truncated_gauss,

Shape

arc, box, circle, cone, cone3D, cross, cube, curve, cylinder, ellipse, envelope, geometry_col-
lection, hexagon, line, link, plan, polygon, polyhedron, pyramid, rectangle, sphere, square,
squircle, teapot, triangle,

Spatial operators

-, *, +, add_point, agent_closest_to, agent_farthest_to, agents_at_distance, agents_inside,
agents_overlapping, angle_between, any_location_in, arc, around, as_4_grid, as_grid,
as_hexagonal_grid, at_distance, at_location, box, change_clockwise, circle, clean, closest_-
points_with, closest_to, cone, cone3D, convex_hull, covers, cross, crosses, crs, CRS_trans-
form, cube, curve, cylinder, dem, direction_between, disjoint_from, distance_between, dis-
tance_to, ellipse, envelope, farthest_point_to, farthest_to, geometry_collection, hexagon,
hierarchical_clustering, IDW, inside, inter, intersects, is_clockwise, line, link, masked_-
by, neighbors_at, neighbors_of, overlapping, overlaps, partially_overlaps, path_between,
path_to, plan, points_at, points_on, polygon, polyhedron, pyramid, rectangle, rgb_to_xyz,
rotated_by, round, scaled_to, set_z, simple_clustering_by_distance, simplification, skele-
tonize, smooth, sphere, split_at, split_geometry, split_lines, square, squircle, teapot, to_-
GAMA_CRS, to_rectangles, to_squares, touches, towards, transformed_by, translated_by,
triangle, triangulate, union, using, voronoi, with_precision, without_holes,

v 1.7 765

GAMAdocumentation Chapter 68. Operators

Spatial properties operators

covers, crosses, intersects, partially_overlaps, touches,

Spatial queries operators

agent_closest_to, agent_farthest_to, agents_at_distance, agents_inside, agents_overlap-
ping, at_distance, closest_to, farthest_to, inside, neighbors_at, neighbors_of, overlapping,

Spatial relations operators

direction_between, distance_between, distance_to, path_between, path_to, towards,

Spatial statistical operators

hierarchical_clustering, simple_clustering_by_distance,

Spatial transformations operators

-, *, +, as_4_grid, as_grid, as_hexagonal_grid, at_location, clean, convex_hull, CRS_trans-
form, rotated_by, scaled_to, simplification, skeletonize, smooth, split_geometry, split_-
lines, to_GAMA_CRS, to_rectangles, to_squares, transformed_by, translated_by, triangu-
late, voronoi, without_holes,

v 1.7 766

GAMAdocumentation Chapter 68. Operators

Species-related operators

index_of, last_index_of, of_generic_species, of_species,

Statistical operators

build, corR, dbscan, distribution_of, distribution2d_of, frequency_of, geometric_mean,
harmonic_mean, hierarchical_clustering, kmeans, kurtosis, max, mean, mean_deviation,
meanR, median, min, mul, predict, simple_clustering_by_distance, skewness, standard_-
deviation, sum, variance,

Strings-related operators

+, <, <=, >, >=, as_date, as_system_date, as_system_time, as_time, at, char, contains, con-
tains_all, contains_any, copy_between, empty, first, in, indented_by, index_of, is_num-
ber, last, last_index_of, length, lower_case, replace, replace_regex, reverse, sample, shuffle,
split_with, upper_case,

System

., command, copy, dead, eval_gaml, every, user_input,

Time-related operators

as_date, as_system_date, as_system_time, as_time,

v 1.7 767

GAMAdocumentation Chapter 68. Operators

Types-related operators

User control operators

user_input,

Operators

-

Possible use:

• - (float) —> float
• - (int) —> int
• point - float—> point
• - (point , float) —> point
• map - map—> map
• - (map , map) —> map
• date - float—> date
• - (date , float) —> date
• container - container—> container
• - (container , container) —> container
• point - point—> point
• - (point , point) —> point
• point - int—> point
• - (point , int) —> point
• date - date—> float
• - (date , date) —> float
• date - int—> date

v 1.7 768

GAMAdocumentation Chapter 68. Operators

• - (date , int) —> date
• map - pair—> map
• - (map , pair) —> map
• int - matrix—> matrix
• - (int , matrix) —> matrix
• container - unknown—> container
• - (container , unknown) —> container
• matrix - int—> matrix
• - (matrix , int) —> matrix
• rgb - rgb—> rgb
• - (rgb , rgb) —> rgb
• matrix - float—> matrix
• - (matrix , float) —> matrix
• matrix - matrix—> matrix
• - (matrix , matrix) —> matrix
• int - float—> float
• - (int , float) —> float
• geometry - container<geometry>—> geometry
• - (geometry , container<geometry>) —> geometry
• rgb - int—> rgb
• - (rgb , int) —> rgb
• geometry - geometry—> geometry
• - (geometry , geometry) —> geometry
• int - int—> int
• - (int , int) —> int
• species - agent—> container
• - (species , agent) —> container
• geometry - float—> geometry
• - (geometry , float) —> geometry
• float - int—> float
• - (float , int) —> float
• float - float—> float
• - (float , float) —> float
• float - matrix—> matrix
• - (float , matrix) —> matrix

v 1.7 769

GAMAdocumentation Chapter 68. Operators

Result:

If it is used as an unary operator, it returns the opposite of the operand. Returns the differ-
ence of the two operands.

Comment:

The behavior of the operator depends on the type of the operands.

Special cases:

• if both operands are containers and the right operand is empty, - returns the left
operand

• if the left operand is a species and the right operand is an agent of the species, -
returns a list containing all the agents of the species minus this agent

• if left-hand operand is a point and the right-hand a number, returns a new point with
each coordinate as the difference of the operand coordinate with this number.� �

point var5 <- {1, 2} - 4.5; // var5 equals {-3.5, -2.5, -4.5}
point var6 <- {1, 2} - 4; // var6 equals {-3.0,-2.0,-4.0}� �

• if both operands are containers, returns a new list in which all the elements of the right
operand have been removed from the left one� �

list<int> var7 <- [1,2,3,4,5,6] - [2,4,9]; // var7 equals
[1,3,5,6]

list<int> var8 <- [1,2,3,4,5,6] - [0,8]; // var8 equals
[1,2,3,4,5,6]� �
• if both operands are points, returns their difference (coordinates per coordinates).� �

point var9 <- {1, 2} - {4, 5}; // var9 equals {-3.0, -3.0}� �
v 1.7 770

GAMAdocumentation Chapter 68. Operators

• if both operands are dates, returns the duration in second between fromdate2 to date1� �
float var10 <- date1 - date2; // var10 equals 598� �

• if one of the operands is a date and the other a number, returns a date corresponding
to the date minus the given number as duration (in seconds)� �

date1 - 200� �
• if one operand is a matrix and the other a number (float or int), performs a normal
arithmetic difference of the number with each element of the matrix (results are float
if the number is a float.� �

matrix var12 <- 3.5 - matrix([[2,5],[3,4]]); // var12 equals
matrix([[1.5,-1.5],[0.5,-0.5]])� �
• if the left operand is a list and the right operand is an object of any type (except list), -
returns a list containing the elements of the left operand minus all the occurrences of
this object� �

list<int> var13 <- [1,2,3,4,5,6] - 2; // var13 equals
[1,3,4,5,6]

list<int> var14 <- [1,2,3,4,5,6] - 0; // var14 equals
[1,2,3,4,5,6]� �
• if both operands are colors, returns a new color resulting from the subtraction of the
two operands, component by component� �

rgb var15 <- rgb([255, 128, 32]) - rgb('red'); // var15 equals
rgb([0,128,32])� �
• if the right-operand is a list of points, geometries or agents, returns the geometry re-
sulting from the difference between the left-geometry and all of the right-geometries

v 1.7 771

GAMAdocumentation Chapter 68. Operators

� �
geometry var16 <- rectangle(10,10) - [circle(2), square(2)];

// var16 equals rectangle(10,10) - (circle(2) + square(2))� �
• if one operand is a color and the other an integer, returns a new color resulting from
the subtraction of each component of the color with the right operand

� �
rgb var17 <- rgb([255, 128, 32]) - 3; // var17 equals rgb

([252,125,29])� �
• if both operands are a point, a geometry or an agent, returns the geometry resulting
from the difference between both geometries

� �
geometry var18 <- geom1 - geom2; // var18 equals a geometry

corresponding to difference between geom1 and geom2� �
• if both operands are numbers, performs a normal arithmetic difference and returns a
float if one of them is a float.

� �
int var19 <- 1 - 1; // var19 equals 0
int var20 <- 1.0 - 1; // var20 equals 0.0
int var21 <- 3.7 - 1.2; // var21 equals 2.5
int var22 <- 3 - 1.2; // var22 equals 1.8� �

• if the left-hand operand is a geometry and the right-hand operand a float, returns a
geometry corresponding to the left-hand operand (geometry, agent, point) reduced by
the right-hand operand distance

� �
geometry var23 <- shape - 5; // var23 equals a geometry

corresponding to the geometry of the agent applying the
operator reduced by a distance of 5� �

v 1.7 772

GAMAdocumentation Chapter 68. Operators

Examples:� �
map var0 <- ['a'::1,'b'::2] - ['b'::2]; // var0 equals ['a

'::1]
map var1 <- ['a'::1,'b'::2] - ['b'::2,'c'::3]; // var1 equals ['

a'::1]
map var2 <- ['a'::1,'b'::2] - ('b'::2); // var2 equals ['a

'::1]
map var3 <- ['a'::1,'b'::2] - ('c'::3); // var3 equals ['a

'::1,'b'::2]
int var4 <- - (-56); // var4 equals 56� �
See also:

-, +, *, /,

:

Possible use:

• unknown : unknown—> unknown
• : (unknown , unknown) —> unknown

See also:

?,

::

Possible use:

• any expression :: any expression—> pair
• :: (any expression , any expression) —> pair

v 1.7 773

GAMAdocumentation Chapter 68. Operators

Result:

produces a new pair combining the left and the right operands

Special cases:

• nil is not acceptable as a key (although it is as a value). If such a case happens, :: will
throw an appropriate error

!

Possible use:

• ! (bool) —> bool

Result:

opposite boolean value.

Special cases:

• if the parameter is not boolean, it is casted to a boolean value.

Examples:� �
bool var0 <- ! (true); // var0 equals false� �
See also:

bool, and, or,

v 1.7 774

GAMAdocumentation Chapter 68. Operators

!=

Possible use:

• unknown != unknown—> bool
• != (unknown , unknown) —> bool
• float != int—> bool
• != (float , int) —> bool
• int != float—> bool
• != (int , float) —> bool
• float != float—> bool
• != (float , float) —> bool

Result:

true if both operands are different, false otherwise

Examples:� �
bool var0 <- [2,3] != [2,3]; // var0 equals false
bool var1 <- [2,4] != [2,3]; // var1 equals true
bool var2 <- 3.0 != 3; // var2 equals false
bool var3 <- 4.7 != 4; // var3 equals true
bool var4 <- 3 != 3.0; // var4 equals false
bool var5 <- 4 != 4.7; // var5 equals true
bool var6 <- 3.0 != 3.0; // var6 equals false
bool var7 <- 4.0 != 4.7; // var7 equals true� �
See also:

=, >, <, >=, <=,

v 1.7 775

GAMAdocumentation Chapter 68. Operators

?

Possible use:

• bool ? any expression—> unknown
• ? (bool , any expression) —> unknown

Result:

It is used in combination with the : operator: if the left-hand operand evaluates to true,
returns the value of the left-hand operand of the :, otherwise that of the right-hand operand
of the :

Comment:

These functional tests can be combined together.

Examples:� �
list<string> var0 <- [10, 19, 43, 12, 7, 22] collect ((each > 20)

? 'above' : 'below'); // var0 equals ['below', 'below', '
above', 'below', 'below', 'above ']

rgb color <- (flip(0.3) ? #red : (flip(0.9) ? #blue : #green));� �
See also:

:,

/

Possible use:

• matrix / matrix—> matrix

v 1.7 776

GAMAdocumentation Chapter 68. Operators

• / (matrix , matrix) —> matrix
• int / int—> float
• / (int , int) —> float
• rgb / int—> rgb
• / (rgb , int) —> rgb
• point / float—> point
• / (point , float) —> point
• float / float—> float
• / (float , float) —> float
• point / int—> point
• / (point , int) —> point
• matrix / float—> matrix
• / (matrix , float) —> matrix
• matrix / int—> matrix
• / (matrix , int) —> matrix
• float / int—> float
• / (float , int) —> float
• rgb / float—> rgb
• / (rgb , float) —> rgb
• int / float—> float
• / (int , float) —> float

Result:

Returns the division of the two operands.

Special cases:

• if the right-hand operand is equal to zero, raises a “Division by zero” exception

• if both operands are numbers (float or int), performs a normal arithmetic division and
returns a float.� �

float var0 <- 3 / 5.0; // var0 equals 0.6� �
• if one operand is a color and the other an integer, returns a new color resulting from
the division of each component of the color by the right operand

v 1.7 777

GAMAdocumentation Chapter 68. Operators

� �
rgb var1 <- rgb([255, 128, 32]) / 2; // var1 equals rgb

([127,64,16])� �
• if the left operand is a point, returns a new point with coordinates divided by the right
operand� �

point var2 <- {5, 7.5} / 2.5; // var2 equals {2, 3}
point var3 <- {2,5} / 4; // var3 equals {0.5,1.25}� �

• if one operand is a color and the other a double, returns a new color resulting from
the division of each component of the color by the right operand. The result on each
component is then truncated.� �

rgb var4 <- rgb([255, 128, 32]) / 2.5; // var4 equals rgb
([102,51,13])� �

See also:

+, -, *,

.

Possible use:

• agent . any expression—> unknown
• . (agent , any expression) —> unknown
• matrix . matrix—> matrix
• . (matrix , matrix) —> matrix

Result:

It has two different uses: it can be the dot product between 2matrices or return an evaluation
of the expression (right-hand operand) in the scope the given agent.

v 1.7 778

GAMAdocumentation Chapter 68. Operators

Special cases:

• if the agent is nil or dead, throws an exception

• if the left operand is an agent, it evaluates of the expression (right-hand operand) in
the scope the given agent

� �
unknown var0 <- agent1.location; // var0 equals the location

of the agent agent1
map(nil).keys� �

• if both operands are matrix, returns the dot product of them

� �
matrix var2 <- matrix([[1,1],[1,2]]) . matrix([[1,1],[1,2]]);

// var2 equals matrix([[2,3],[3,5]])� �

ˆ

Possible use:

• int ^ int—> float
• ^ (int , int) —> float
• int ^ float—> float
• ^ (int , float) —> float
• float ^ float—> float
• ^ (float , float) —> float
• float ^ int—> float
• ^ (float , int) —> float

Result:

Returns the value (always a float) of the left operand raised to the power of the right operand.

v 1.7 779

GAMAdocumentation Chapter 68. Operators

Special cases:

• if the right-hand operand is equal to 0, returns 1

• if it is equal to 1, returns the left-hand operand.

• Various examples of power� �
float var0 <- 2 ^ 3; // var0 equals 8.0� �
Examples:� �
float var12 <- 4.84 ^ 0.5; // var12 equals 2.2� �
See also:

*, sqrt,

@

Same signification as at

*

Possible use:

• matrix * float—> matrix
• * (matrix , float) —> matrix
• point * float—> point
• * (point , float) —> point

v 1.7 780

GAMAdocumentation Chapter 68. Operators

• float * float—> float
• * (float , float) —> float
• int * matrix—> matrix
• * (int , matrix) —> matrix
• float * matrix—> matrix
• * (float , matrix) —> matrix
• int * int—> int
• * (int , int) —> int
• geometry * float—> geometry
• * (geometry , float) —> geometry
• int * float—> float
• * (int , float) —> float
• matrix * matrix—> matrix
• * (matrix , matrix) —> matrix
• matrix * int—> matrix
• * (matrix , int) —> matrix
• geometry * point—> geometry
• * (geometry , point) —> geometry
• rgb * int—> rgb
• * (rgb , int) —> rgb
• point * int—> point
• * (point , int) —> point
• point * point—> float
• * (point , point) —> float
• float * int—> float
• * (float , int) —> float

Result:

Returns the product of the two operands.

Special cases:

• if one operand is a matrix and the other a number (float or int), performs a normal
arithmetic product of the number with each element of the matrix (results are float if
the number is a float.

v 1.7 781

GAMAdocumentation Chapter 68. Operators

� �
matrix<float> m <- (3.5 * matrix([[2,5],[3,4]])); //m equals

matrix([[7.0,17.5],[10.5,14]])� �
• if both operands are numbers (float or int), performs a normal arithmetic product and
returns a float if one of them is a float.

� �
int var1 <- 1 * 1; // var1 equals 1� �

• if the left-hand operand is a geometry and the right-hand operand a float, returns a
geometry corresponding to the left-hand operand (geometry, agent, point) scaled by
the right-hand operand coefficient

� �
geometry var2 <- circle(10) * 2; // var2 equals circle(20)� �

• if the left-hand operand is a geometry and the right-hand operand a point, returns a
geometry corresponding to the left-hand operand (geometry, agent, point) scaled by
the right-hand operand coefficients in the 3 dimensions

� �
geometry var3 <- shape * {0.5,0.5,2}; // var3 equals a geometry

corresponding to the geometry of the agent applying the
operator scaled by a coefficient of 0.5 in x, 0.5 in y and 2
in z� �
• if one operand is a color and the other an integer, returns a new color resulting from
the product of each component of the color with the right operand (with a maximum
value at 255)

� �
rgb var4 <- rgb([255, 128, 32]) * 2; // var4 equals rgb

([255,255,64])� �
• if the left-hand operator is a point and the right-hand a number, returns a point with
coordinates multiplied by the number

v 1.7 782

GAMAdocumentation Chapter 68. Operators

� �
point var5 <- {2,5} * 4; // var5 equals {8.0, 20.0}
point var6 <- {2, 4} * 2.5; // var6 equals {5.0, 10.0}� �

• if both operands are points, returns their scalar product

� �
float var7 <- {2,5} * {4.5, 5}; // var7 equals 34.0� �
Examples:� �
float var8 <- 2.5 * 2; // var8 equals 5.0� �
See also:

/, +, -,

+

Possible use:

• rgb + rgb—> rgb
• + (rgb , rgb) —> rgb
• geometry + geometry—> geometry
• + (geometry , geometry) —> geometry
• container + unknown—> container
• + (container , unknown) —> container
• float + int—> float
• + (float , int) —> float
• string + string—> string
• + (string , string) —> string
• int + matrix—> matrix
• + (int , matrix) —> matrix

v 1.7 783

GAMAdocumentation Chapter 68. Operators

• date + float—> date
• + (date , float) —> date
• rgb + int—> rgb
• + (rgb , int) —> rgb
• point + int—> point
• + (point , int) —> point
• float + date—> date
• + (float , date) —> date
• map + map—> map
• + (map , map) —> map
• map + pair—> map
• + (map , pair) —> map
• geometry + float—> geometry
• + (geometry , float) —> geometry
• float + matrix—> matrix
• + (float , matrix) —> matrix
• date + int—> date
• + (date , int) —> date
• matrix + matrix—> matrix
• + (matrix , matrix) —> matrix
• container + container—> container
• + (container , container) —> container
• string + unknown—> string
• + (string , unknown) —> string
• point + float—> point
• + (point , float) —> point
• int + int—> int
• + (int , int) —> int
• point + point—> point
• + (point , point) —> point
• matrix + float—> matrix
• + (matrix , float) —> matrix
• int + date—> date
• + (int , date) —> date
• int + float—> float
• + (int , float) —> float
• date + string—> string
• + (date , string) —> string

v 1.7 784

GAMAdocumentation Chapter 68. Operators

• matrix + int—> matrix
• + (matrix , int) —> matrix
• float + float—> float
• + (float , float) —> float
• + (geometry, float, int) —> geometry
• + (geometry, float, int, int) —> geometry

Result:

Returns the sum, union or concatenation of the two operands.

Special cases:

• if one of the operands is nil, + throws an error

• if both operands are species, returns a special type of list called meta-population

• if both operands are colors, returns a new color resulting from the sum of the two
operands, component by component� �

rgb var4 <- rgb([255, 128, 32]) + rgb('red'); // var4 equals
rgb([255,128,32])� �
• if the right-operand is a point, a geometry or an agent, returns the geometry resulting
from the union between both geometries� �

geometry var5 <- geom1 + geom2; // var5 equals a geometry
corresponding to union between geom1 and geom2� �
• if the right operand is an object of any type (except a container), + returns a list of the
elements of the left operand, to which this object has been added� �

list<int> var6 <- [1,2,3,4,5,6] + 2; // var6 equals
[1,2,3,4,5,6,2]

list<int> var7 <- [1,2,3,4,5,6] + 0; // var7 equals
[1,2,3,4,5,6,0]� �

v 1.7 785

GAMAdocumentation Chapter 68. Operators

• if one operand is a matrix and the other a number (float or int), performs a normal
arithmetic sum of the number with each element of the matrix (results are float if the
number is a float.

� �
matrix var8 <- 3.5 + matrix([[2,5],[3,4]]); // var8 equals

matrix([[5.5,8.5],[6.5,7.5]])� �
• if one operand is a color and the other an integer, returns a new color resulting from
the sum of each component of the color with the right operand

� �
rgb var9 <- rgb([255, 128, 32]) + 3; // var9 equals rgb

([255,131,35])� �
• if the left-hand operand is a geometry and the right-hand operand a float, returns a
geometry corresponding to the left-hand operand (geometry, agent, point) enlarged
by the right-hand operand distance. The number of segments used by default is 8 and
the end cap style is #round

� �
geometry var10 <- circle(5) + 5; // var10 equals circle(10)� �

• if one of the operands is a date and the other a number, returns a date corresponding
to the date plus the given number as duration (in seconds)

� �
date1 + 200� �

• if both operands are list, +returns the concatenation of both lists.

� �
list<int> var12 <- [1,2,3,4,5,6] + [2,4,9]; // var12 equals

[1,2,3,4,5,6,2,4,9]
list<int> var13 <- [1,2,3,4,5,6] + [0,8]; // var13 equals

[1,2,3,4,5,6,0,8]� �
v 1.7 786

GAMAdocumentation Chapter 68. Operators

• if the left-hand operand is a geometry and the right-hand operands a float and an in-
teger, returns a geometry corresponding to the left-hand operand (geometry, agent,
point) enlarged by the first right-hand operand (distance), using a number of seg-
ments equal to the second right-hand operand� �

geometry var14 <- circle(5) + (5,32); // var14 equals circle
(10)� �
• if the left-hand operand is a string, returns the concatenation of the two operands (the
left-hand one beind casted into a string)� �

string var15 <- "hello " + 12; // var15 equals "hello 12"� �
• if the left-hand operand is a geometry and the right-hand operands a float, an inte-
ger and one of #round, #square or #flat, returns a geometry corresponding to the
left-hand operand (geometry, agent, point) enlarged by the first right-hand operand
(distance), using a number of segments equal to the second right-hand operand and
a flat, square or round end cap style� �

geometry var16 <- circle(5) + (5,32,#round); // var16 equals
circle(10)� �
• if the left-hand operand is a point and the right-hand a number, returns a new point
with each coordinate as the sum of the operand coordinate with this number.� �

point var17 <- {1, 2} + 4; // var17 equals {5.0, 6.0,4.0}
point var18 <- {1, 2} + 4.5; // var18 equals {5.5, 6.5,4.5}� �

• if both operands are numbers (float or int), performs a normal arithmetic sum and
returns a float if one of them is a float.� �

int var19 <- 1 + 1; // var19 equals 2
int var20 <- 1.0 + 1; // var20 equals 2.0
int var21 <- 1.0 + 2.5; // var21 equals 3.5� �

• if both operands are points, returns their sum.� �
point var22 <- {1, 2} + {4, 5}; // var22 equals {5.0, 7.0}� �
v 1.7 787

GAMAdocumentation Chapter 68. Operators

Examples:� �
map var0 <- ['a'::1,'b'::2] + ['c'::3]; // var0 equals ['a

'::1,'b'::2,'c'::3]
map var1 <- ['a'::1,'b'::2] + [5::3.0]; // var1 equals ['a

'::1.0,'b'::2.0,5::3.0]
map var2 <- ['a'::1,'b'::2] + ('c'::3); // var2 equals ['a

'::1,'b'::2,'c'::3]
map var3 <- ['a'::1,'b'::2] + ('c'::3); // var3 equals ['a

'::1,'b'::2,'c'::3]� �
See also:

-, /, *,

<

Possible use:

• string < string—> bool
• < (string , string) —> bool
• float < float—> bool
• < (float , float) —> bool
• int < float—> bool
• < (int , float) —> bool
• int < int—> bool
• < (int , int) —> bool
• float < int—> bool
• < (float , int) —> bool
• point < point—> bool
• < (point , point) —> bool

Result:

true if the left-hand operand is less than the right-hand operand, false otherwise.

v 1.7 788

GAMAdocumentation Chapter 68. Operators

Special cases:

• if one of the operands is nil, returns false

• if both operands are String, uses a lexicographic comparison of two strings� �
bool var4 <- 'abc' < 'aeb'; // var4 equals true� �

• if both operands are points, returns true if and only if the left component (x) of the left
operand if less than or equal to x of the right one and if the right component (y) of the
left operand is greater than or equal to y of the right one.� �

bool var5 <- {5,7} < {4,6}; // var5 equals false
bool var6 <- {5,7} < {4,8}; // var6 equals false� �
Examples:� �
bool var0 <- 3.5 < 7.6; // var0 equals true
bool var1 <- 3 < 2.5; // var1 equals false
bool var2 <- 3 < 7; // var2 equals true
bool var3 <- 3.5 < 7; // var3 equals true� �
See also:

>, >=, <=, =, !=,

<=

Possible use:

• float <= float—> bool
• <= (float , float) —> bool

v 1.7 789

GAMAdocumentation Chapter 68. Operators

• int <= int—> bool
• <= (int , int) —> bool
• string <= string—> bool
• <= (string , string) —> bool
• float <= int—> bool
• <= (float , int) —> bool
• point <= point—> bool
• <= (point , point) —> bool
• int <= float—> bool
• <= (int , float) —> bool

Result:

true if the left-hand operand is less or equal than the right-hand operand, false otherwise.

Special cases:

• if one of the operands is nil, returns false

• if both operands are String, uses a lexicographic comparison of two strings� �
bool var0 <- 'abc' <= 'aeb'; // var0 equals true� �

• if both operands are points, returns true if and only if the left component (x) of the left
operand if less than or equal to x of the right one and if the right component (y) of the
left operand is greater than or equal to y of the right one.� �

bool var1 <- {5,7} <= {4,6}; // var1 equals false
bool var2 <- {5,7} <= {4,8}; // var2 equals false� �
Examples:� �
bool var3 <- 3.5 <= 3.5; // var3 equals true
bool var4 <- 3 <= 7; // var4 equals true
bool var5 <- 7.0 <= 7; // var5 equals true
bool var6 <- 3 <= 2.5; // var6 equals false� �
v 1.7 790

GAMAdocumentation Chapter 68. Operators

See also:

>, <, >=, =, !=,

<>

Same signification as !=

=

Possible use:

• float = float—> bool
• = (float , float) —> bool
• unknown = unknown—> bool
• = (unknown , unknown) —> bool
• int = float—> bool
• = (int , float) —> bool
• int = int—> bool
• = (int , int) —> bool
• float = int—> bool
• = (float , int) —> bool

Result:

returns true if both operands are equal, false otherwise returns true if both operands are
equal, false otherwise

Special cases:

• if both operands are any kind of objects, returns true if they are identical (i.e., the same
object) or equal (comparisons between nil values are permitted)

v 1.7 791

GAMAdocumentation Chapter 68. Operators

� �
bool var0 <- [2,3] = [2,3]; // var0 equals true� �
Examples:� �
bool var1 <- 4.5 = 4.7; // var1 equals false
bool var2 <- 3 = 3.0; // var2 equals true
bool var3 <- 4 = 4.7; // var3 equals false
bool var4 <- 4 = 5; // var4 equals false
bool var5 <- 4.7 = 4; // var5 equals false� �
See also:

>, <, >=, <=, !=,

>

Possible use:

• point > point—> bool
• > (point , point) —> bool
• float > int—> bool
• > (float , int) —> bool
• int > float—> bool
• > (int , float) —> bool
• string > string—> bool
• > (string , string) —> bool
• float > float—> bool
• > (float , float) —> bool
• int > int—> bool
• > (int , int) —> bool

v 1.7 792

GAMAdocumentation Chapter 68. Operators

Result:

true if the left-hand operand is greater than the right-hand operand, false otherwise.

Special cases:

• if one of the operands is nil, returns false

• if both operands are points, returns true if and only if the left component (x) of the
left operand if greater than x of the right one and if the right component (y) of the left
operand is greater than y of the right one.

� �
bool var0 <- {5,7} > {4,6}; // var0 equals true
bool var1 <- {5,7} > {4,8}; // var1 equals false� �

• if both operands are String, uses a lexicographic comparison of two strings

� �
bool var2 <- 'abc' > 'aeb'; // var2 equals false� �
Examples:� �
bool var3 <- 3.5 > 7; // var3 equals false
bool var4 <- 3 > 2.5; // var4 equals true
bool var5 <- 3.5 > 7.6; // var5 equals false
bool var6 <- 3 > 7; // var6 equals false� �
See also:

<, >=, <=, =, !=,

v 1.7 793

GAMAdocumentation Chapter 68. Operators

>=

Possible use:

• int >= float—> bool
• >= (int , float) —> bool
• int >= int—> bool
• >= (int , int) —> bool
• float >= float—> bool
• >= (float , float) —> bool
• point >= point—> bool
• >= (point , point) —> bool
• float >= int—> bool
• >= (float , int) —> bool
• string >= string—> bool
• >= (string , string) —> bool

Result:

true if the left-hand operand is greater or equal than the right-hand operand, false otherwise.

Special cases:

• if one of the operands is nil, returns false

• if both operands are points, returns true if and only if the left component (x) of the
left operand if greater or equal than x of the right one and if the right component (y)
of the left operand is greater than or equal to y of the right one.� �

bool var4 <- {5,7} >= {4,6}; // var4 equals true
bool var5 <- {5,7} >= {4,8}; // var5 equals false� �

• if both operands are string, uses a lexicographic comparison of the two strings� �
bool var6 <- 'abc' >= 'aeb'; // var6 equals false
bool var7 <- 'abc' >= 'abc'; // var7 equals true� �
v 1.7 794

GAMAdocumentation Chapter 68. Operators

Examples:� �
bool var0 <- 3 >= 2.5; // var0 equals true
bool var1 <- 3 >= 7; // var1 equals false
bool var2 <- 3.5 >= 3.5; // var2 equals true
bool var3 <- 3.5 >= 7; // var3 equals false� �
See also:

>, <, <=, =, !=,

abs

Possible use:

• abs (float) —> float
• abs (int) —> int

Result:

Returns the absolute value of the operand (so a positive int or float depending on the type
of the operand).

Examples:� �
float var0 <- abs (200 * -1 + 0.5); // var0 equals 199.5
int var1 <- abs (-10); // var1 equals 10
int var2 <- abs (10); // var2 equals 10� �

v 1.7 795

GAMAdocumentation Chapter 68. Operators

accumulate

Possible use:

• container accumulate any expression—> container
• accumulate (container , any expression) —> container

Result:

returns a new flat list, in which each element is the evaluation of the right-hand operand. If
this evaluation returns a list, the elements of this result are added directly to the list returned

Comment:

accumulate is dedicated to the application of a same computation on each element of a con-
tainer (and returns a list). In the right-hand operand, the keyword each can be used to
represent, in turn, each of the left-hand operand elements.

Examples:� �
container var0 <- [a1,a2,a3] accumulate (each neighbors_at 10);

// var0 equals a flat list of all the neighbors of these
three agents

list<int> var1 <- [1,2,4] accumulate ([2,4]); // var1 equals
[2,4,2,4,2,4]

list<int> var2 <- [1,2,4] accumulate (each * 2); // var2
equals [2,4,8]� �

See also:

collect,

v 1.7 796

GAMAdocumentation Chapter 68. Operators

acos

Possible use:

• acos (float) —> float
• acos (int) —> float

Result:

Returns the value (in the interval [0,180], in decimal degrees) of the arccos of the operand
(which should be in [-1,1]).

Special cases:

• if the right-hand operand is outside of the [-1,1] interval, returns NaN

Examples:� �
float var0 <- acos (0); // var0 equals 90.0� �
See also:

asin, atan, cos,

add_days

Possible use:

• date add_days int—> date
• add_days (date , int) —> date

v 1.7 797

GAMAdocumentation Chapter 68. Operators

Result:

Add a given number of days to a date

Examples:� �
date1 add_days 20� �

add_edge

Possible use:

• graph add_edge pair—> graph
• add_edge (graph , pair) —> graph

Result:

add an edge between a source vertex and a target vertex (resp. the left and the right element
of the pair operand)

Comment:

if the edge already exists, the graph is unchanged

Examples:� �
graph <- graph add_edge (source::target);� �
See also:

add_node, graph,

v 1.7 798

GAMAdocumentation Chapter 68. Operators

add_hours

Possible use:

• date add_hours int—> date
• add_hours (date , int) —> date

Result:

Add a given number of hours to a date

Examples:� �
date1 add_hours 15� �

add_minutes

Possible use:

• date add_minutes int—> date
• add_minutes (date , int) —> date

Result:

Add a given number of minutes to a date

Examples:� �
date1 add_minutes 5� �

v 1.7 799

GAMAdocumentation Chapter 68. Operators

add_months

Possible use:

• date add_months int—> date
• add_months (date , int) —> date

Result:

Add a given number of months to a date

Examples:� �
date1 add_months 5� �

add_node

Possible use:

• graph add_node geometry—> graph
• add_node (graph , geometry) —> graph

Result:

adds a node in a graph.

Examples:� �
graph var0 <- graph add_node node(0) ; // var0 equals the graph

with node(0)� �
v 1.7 800

GAMAdocumentation Chapter 68. Operators

See also:

add_edge, graph,

add_point

Possible use:

• geometry add_point point—> geometry
• add_point (geometry , point) —> geometry

Result:

A new geometry resulting from the addition of the right point (coordinate) to the left-hand
geometry. Note that adding a point to a line or polyline will always return a closed contour.
Also note that the position at which the added point will appear in the geometry is not nec-
essarily the last one, as points are always ordered in a clockwise fashion in geometries

Examples:� �
geometry var0 <- polygon([{10,10},{10,20},{20,20}]) add_point

{20,10}; // var0 equals polygon
([{10,10},{10,20},{20,20},{20,10}])� �

add_seconds

Same signification as +

v 1.7 801

GAMAdocumentation Chapter 68. Operators

add_weeks

Possible use:

• date add_weeks int—> date
• add_weeks (date , int) —> date

Result:

Add a given number of weeks to a date

Examples:� �
date1 add_weeks 15� �

add_years

Possible use:

• date add_years int—> date
• add_years (date , int) —> date

Result:

Add a given number of year to a date

Examples:� �
date1 add_years 3� �

v 1.7 802

GAMAdocumentation Chapter 68. Operators

adjacency

Possible use:

• adjacency (graph) —> matrix<float>

Result:

adjacency matrix of the given graph.

agent

Possible use:

• agent (any) —> agent

Result:

Casts the operand into the type agent

agent_closest_to

Possible use:

• agent_closest_to (unknown) —> agent

Result:

An agent, the closest to the operand (casted as a geometry).

v 1.7 803

GAMAdocumentation Chapter 68. Operators

Comment:

the distance is computed in the topology of the calling agent (the agent inwhich this operator
is used), with the distance algorithm specific to the topology.

Examples:� �
agent var0 <- agent_closest_to(self); // var0 equals the

closest agent to the agent applying the operator.� �
See also:

neighbors_at, neighbors_of, agents_inside, agents_overlapping, closest_to, inside, over-
lapping,

agent_farthest_to

Possible use:

• agent_farthest_to (unknown) —> agent

Result:

An agent, the farthest to the operand (casted as a geometry).

Comment:

the distance is computed in the topology of the calling agent (the agent inwhich this operator
is used), with the distance algorithm specific to the topology.

v 1.7 804

GAMAdocumentation Chapter 68. Operators

Examples:� �
agent var0 <- agent_farthest_to(self); // var0 equals the

farthest agent to the agent applying the operator.� �
See also:

neighbors_at, neighbors_of, agents_inside, agents_overlapping, closest_to, inside, over-
lapping, agent_closest_to, farthest_to,

agent_from_geometry

Possible use:

• path agent_from_geometry geometry—> agent
• agent_from_geometry (path , geometry) —> agent

Result:

returns the agent corresponding to given geometry (right-hand operand) in the given path
(left-hand operand).

Special cases:

• if the left-hand operand is nil, returns nil

Examples:� �
geometry line <- one_of(path_followed.segments);
road ag <- road(path_followed agent_from_geometry line);� �
v 1.7 805

GAMAdocumentation Chapter 68. Operators

See also:

path,

agents_at_distance

Possible use:

• agents_at_distance (float) —> container

Result:

A list of agents situated at a distance lower than the right argument.

Examples:� �
container var0 <- agents_at_distance(20); // var0 equals all

the agents (excluding the caller) which distance to the caller
is lower than 20� �

See also:

neighbors_at, neighbors_of, agent_closest_to, agents_inside, closest_to, inside, overlap-
ping, at_distance,

agents_inside

Possible use:

• agents_inside (unknown) —> list<agent>

v 1.7 806

GAMAdocumentation Chapter 68. Operators

Result:

A list of agents covered by the operand (casted as a geometry).

Examples:� �
list<agent> var0 <- agents_inside(self); // var0 equals the

agents that are covered by the shape of the agent applying the
operator.� �

See also:

agent_closest_to, agents_overlapping, closest_to, inside, overlapping,

agents_overlapping

Possible use:

• agents_overlapping (unknown) —> list<agent>

Result:

A list of agents overlapping the operand (casted as a geometry).

Examples:� �
list<agent> var0 <- agents_overlapping(self); // var0 equals

the agents that overlap the shape of the agent applying the
operator.� �

v 1.7 807

GAMAdocumentation Chapter 68. Operators

See also:

neighbors_at, neighbors_of, agent_closest_to, agents_inside, closest_to, inside, overlap-
ping, at_distance,

all_pairs_shortest_path

Possible use:

• all_pairs_shortest_path (graph) —> matrix<int>

Result:

returns the successormatrix of shortest paths between all node pairs (rows: source, columns:
target): a cell (i,j) will thus contains the next node in the shortest path between i and j.

Examples:� �
matrix<int> var0 <- all_pairs_shortest_paths(my_graph); //

var0 equals shortest_paths_matrix will contain all pairs of
shortest paths� �

alpha_index

Possible use:

• alpha_index (graph) —> float

v 1.7 808

GAMAdocumentation Chapter 68. Operators

Result:

returns the alpha index of the graph (measure of connectivity which evaluates the number of
cycles in a graph in comparison with the maximum number of cycles. The higher the alpha
index, the more a network is connected: alpha = nb_cycles / (2*S-5) - planar graph)

Examples:� �
float var1 <- alpha_index(graphEpidemio); // var1 equals the

alpha index of the graph� �
See also:

beta_index, gamma_index, nb_cycles, connectivity_index,

among

Possible use:

• int among container—> container
• among (int , container) —> container

Result:

Returns a list of length the value of the left-hand operand, containing random elements from
the right-hand operand. As of GAMA 1.6, the order in which the elements are returned can
be different than the order in which they appear in the right-hand container

Special cases:

• if the right-hand operand is empty, among returns a new empty list. If it is nil, it
throws an error.

v 1.7 809

GAMAdocumentation Chapter 68. Operators

• if the left-hand operand is greater than the length of the right-hand operand, among
returns the right-hand operand (converted as a list). If it is smaller or equal to zero, it
returns an empty list

Examples:� �
list<int> var0 <- 3 among [1,2,4,3,5,7,6,8]; // var0 equals

[1,2,8] (for example)
container var1 <- 3 among g2; // var1 equals [node6,node11,

node7]
container var2 <- 3 among list(node); // var2 equals [node1,

node11,node4]
list<int> var3 <- 1 among [1::2,3::4]; // var3 equals 2 or 4� �

and

Possible use:

• bool and any expression—> bool
• and (bool , any expression) —> bool

Result:

a bool value, equal to the logical and between the left-hand operand and the right-hand
operand.

Comment:

both operands are always casted to bool before applying the operator. Thus, an expression
like (1 and 0) is accepted and returns false.

v 1.7 810

GAMAdocumentation Chapter 68. Operators

See also:

bool, or, !,

and

Possible use:

• predicate and predicate—> predicate
• and (predicate , predicate) —> predicate

Result:

create a new predicate from two others by including them as subintentions

Examples:� �
predicate1 and predicate2� �

angle_between

Possible use:

• angle_between (point, point, point) —> int

Result:

the angle between vectors P0P1 and P0P2 (P0, P1, P2 being the three point operands)

v 1.7 811

GAMAdocumentation Chapter 68. Operators

Examples:� �
int var0 <- angle_between({5,5},{10,5},{5,10}); // var0

equals 90� �

any

Same signification as one_of

any_location_in

Possible use:

• any_location_in (geometry) —> point

Result:

A point inside (or touching) the operand-geometry.

Examples:� �
point var0 <- any_location_in(square(5)); // var0 equals a

point in the square, for example : {3,4.6}.� �
See also:

closest_points_with, farthest_point_to, points_at,

v 1.7 812

GAMAdocumentation Chapter 68. Operators

any_point_in

Same signification as any_location_in

append_horizontally

Possible use:

• matrix append_horizontally matrix—> matrix
• append_horizontally (matrix , matrix) —> matrix
• matrix append_horizontally matrix—> matrix
• append_horizontally (matrix , matrix) —> matrix

Result:

Amatrix resulting from the concatenation of the rows of the two given matrices. If not both
numerical or both object matrices, returns the first matrix.

Examples:� �
matrix var0 <- matrix([[1.0,2.0],[3.0,4.0]]) append_horizontally

matrix([[1,2],[3,4]]); // var0 equals matrix
([[1.0,2.0],[3.0,4.0],[1.0,2.0],[3.0,4.0]])� �

append_vertically

Possible use:

• matrix append_vertically matrix—> matrix
• append_vertically (matrix , matrix) —> matrix
• matrix append_vertically matrix—> matrix
• append_vertically (matrix , matrix) —> matrix

v 1.7 813

GAMAdocumentation Chapter 68. Operators

Result:

A matrix resulting from the concatenation of the columns of the two given matrices. If not
both numerical or both object matrices, returns the first matrix.

Examples:� �
matrix var0 <- matrix([[1,2],[3,4]]) append_vertically matrix

([[1,2],[3,4]]); // var0 equals matrix
([[1,2,1,2],[3,4,3,4]])� �

arc

Possible use:

• arc (float, float, float) —> geometry
• arc (float, float, float, bool) —> geometry

Result:

An arc, which radius is equal to the first operand, heading to the second, amplitude to the
third and a boolean indicating whether to return a linestring or a polygon to the fourth An
arc, which radius is equal to the first operand, heading to the second and amplitude the third

Comment:

the center of the arc is by default the location of the current agent in which has been called
this operator.the center of the arc is by default the location of the current agent in which has
been called this operator. This operator returns a polygon by default.

v 1.7 814

GAMAdocumentation Chapter 68. Operators

Special cases:

• returns a point if the radius operand is lower or equal to 0.

• returns a point if the radius operand is lower or equal to 0.

Examples:� �
geometry var0 <- arc(4,45,90, false); // var0 equals a geometry

as an arc of radius 4, in a direction of 45 Ã�Â° and an
amplitude of 90Ã�Â° , which only contains the points on the arc

geometry var1 <- arc(4,45,90); // var1 equals a geometry as an
arc of radius 4, in a direction of 45 Ã�Â° and an amplitude of
90 Ã�Â°� �

See also:

around, cone, line, link, norm, point, polygon, polyline, super_ellipse, rectangle, square,
circle, ellipse, triangle,

around

Possible use:

• float around unknown—> geometry
• around (float , unknown) —> geometry

Result:

A geometry resulting from the difference between a buffer around the right-operand casted
in geometry at a distance left-operand (right-operand buffer left-operand) and the right-
operand casted as geometry.

v 1.7 815

GAMAdocumentation Chapter 68. Operators

Special cases:

• returns a circle geometry of radius right-operand if the left-operand is nil

Examples:� �
geometry var0 <- 10 around circle(5); // var0 equals the ring

geometry between 5 and 10.� �
See also:

circle, cone, line, link, norm, point, polygon, polyline, rectangle, square, triangle,

as

Possible use:

• unknown as any expression—> unknown
• as (unknown , any expression) —> unknown

Result:

casting of the first argument into a given type

Comment:

It is equivalent to the application of the type operator on the left operand.

Examples:� �
int var0 <- 3.5 as int; // var0 equals int(3.5)� �

v 1.7 816

GAMAdocumentation Chapter 68. Operators

as_4_grid

Possible use:

• geometry as_4_grid point—> matrix
• as_4_grid (geometry , point) —> matrix

Result:

Amatrix of square geometries (gridwith 4-neighborhood)with dimension given by the right-
handoperand ({nb_cols, nb_lines}) corresponding to the square tessellation of the left-hand
operand geometry (geometry, agent)

Examples:� �
matrix var0 <- self as_4_grid {10, 5}; // var0 equals the matrix

of square geometries (grid with 4-neighborhood) with 10
columns and 5 lines corresponding to the square tessellation
of the geometry of the agent applying the operator.� �

See also:

as_grid, as_hexagonal_grid,

as_date

Possible use:

• as_date (float) —> string
• float as_date string—> string
• as_date (float , string) —> string

v 1.7 817

GAMAdocumentation Chapter 68. Operators

Result:

converts a number of seconds in themodel (for instance, the ‘time’ variable) into a string that
represents the period elapsed since the beginning of the simulation using year, month, day,
hour, minutes and seconds following a given pattern (right-hand operand). GAMA uses a
special calendar for internal model times, where months have 30 days and years 12 months.

Special cases:

• used as an unary operator, it uses a defined pattern with years, months, days� �
string var0 <- as_date(22324234); // var0 equals "8 months, 18

days"� �
• Pattern should include : “%Y %M%D%h%m%s” for outputting years, months, days,
hours, minutes, seconds� �

string var1 <- 22324234 as_date "%M m %D d %h h %m m %s seconds";
// var1 equals "8 m 18 d 9 h 10 m 34 seconds"� �

See also:

as_time,

as_distance_graph

Possible use:

• container as_distance_graph map—> graph
• as_distance_graph (container , map) —> graph
• container as_distance_graph float—> graph
• as_distance_graph (container , float) —> graph
• as_distance_graph (container, float, species) —> graph

v 1.7 818

GAMAdocumentation Chapter 68. Operators

Result:

creates a graph from a list of vertices (left-hand operand). An edge is created between each
pair of vertices close enough (less than a distance, right-hand operand).

Comment:

as_distance_graph is more efficient for a list of points than as_intersection_graph.

Examples:� �
list(ant) as_distance_graph 3.0� �
See also:

as_intersection_graph, as_edge_graph,

as_driving_graph

Possible use:

• container as_driving_graph container—> graph
• as_driving_graph (container , container) —> graph

Result:

creates a graph from the list/map of edges given as operand and connect the node to the
edge

Examples:� �
as_driving_graph(road,node) --: build a graph while using the

road agents as edges and the node agents as nodes� �
v 1.7 819

GAMAdocumentation Chapter 68. Operators

See also:

as_intersection_graph, as_distance_graph, as_edge_graph,

as_edge_graph

Possible use:

• as_edge_graph (map) —> graph
• as_edge_graph (container) —> graph
• container as_edge_graph float—> graph
• as_edge_graph (container , float) —> graph

Result:

creates a graph from the list/map of edges given as operand

Special cases:

• if the operand is a map, the graph will be built by creating edges from pairs of the map� �
graph var0 <- as_edge_graph([{1,5}::{12,45},{12,45}::{34,56}]);

// var0 equals a graph with these three vertices and two
edges� �
• if the operand is a list and a tolerance (max distance inmeters to consider that 2 points
are the same node) is given, the graph will be built with elements of the list as edges
and two edgeswill be connected by a node if the distance between their extremity (first
or last points) are at distance lower or equal to the tolerance� �

graph var1 <- as_edge_graph([line([{1,5},{12,45}]),line
([{13,45},{34,56}])],1);; // var1 equals a graph with two
edges and three vertices� �

v 1.7 820

GAMAdocumentation Chapter 68. Operators

• if the operand is a list, the graph will be built with elements of the list as edges

� �
graph var2 <- as_edge_graph([line([{1,5},{12,45}]),line

([{12,45},{34,56}])]); // var2 equals a graph with two edges
and three vertices� �

See also:

as_intersection_graph, as_distance_graph,

as_grid

Possible use:

• geometry as_grid point—> matrix
• as_grid (geometry , point) —> matrix

Result:

Amatrix of square geometries (gridwith 8-neighborhood)with dimension given by the right-
handoperand ({nb_cols, nb_lines}) corresponding to the square tessellation of the left-hand
operand geometry (geometry, agent)

Examples:� �
matrix var0 <- self as_grid {10, 5}; // var0 equals a matrix

of square geometries (grid with 8-neighborhood) with 10
columns and 5 lines corresponding to the square tessellation
of the geometry of the agent applying the operator.� �

v 1.7 821

GAMAdocumentation Chapter 68. Operators

See also:

as_4_grid, as_hexagonal_grid,

as_hexagonal_grid

Possible use:

• geometry as_hexagonal_grid point—> list<geometry>
• as_hexagonal_grid (geometry , point) —> list<geometry>

Result:

A list of geometries (hexagonal) corresponding to the hexagonal tesselation of the first
operand geometry

Examples:� �
list<geometry > var0 <- self as_hexagonal_grid {10, 5}; // var0

equals list of geometries (hexagonal) corresponding to the
hexagonal tesselation of the first operand geometry� �

See also:

as_4_grid, as_grid,

as_int

Possible use:

• string as_int int—> int
• as_int (string , int) —> int

v 1.7 822

GAMAdocumentation Chapter 68. Operators

Result:

parses the string argument as a signed integer in the radix specified by the second argument.

Special cases:

• if the left operand is nil or empty, as_int returns 0

• if the left operand does not represent an integer in the specified radix, as_int throws
an exception

Examples:� �
int var0 <- '20' as_int 10; // var0 equals 20
int var1 <- '20' as_int 8; // var1 equals 16
int var2 <- '20' as_int 16; // var2 equals 32
int var3 <- '1F' as_int 16; // var3 equals 31
int var4 <- 'hello' as_int 32; // var4 equals 18306744� �
See also:

int,

as_intersection_graph

Possible use:

• container as_intersection_graph float—> graph
• as_intersection_graph (container , float) —> graph

Result:

creates a graph from a list of vertices (left-hand operand). An edge is created between each
pair of vertices with an intersection (with a given tolerance).

v 1.7 823

GAMAdocumentation Chapter 68. Operators

Comment:

as_intersection_graph is more efficient for a list of geometries (but less accurate) than as_-
distance_graph.

Examples:� �
list(ant) as_intersection_graph 0.5� �
See also:

as_distance_graph, as_edge_graph,

as_map

Possible use:

• container as_map any expression—> map
• as_map (container , any expression) —> map

Result:

produces a new map from the evaluation of the right-hand operand for each element of the
left-hand operand

Comment:

the right-hand operand should be a pair

Special cases:

• if the left-hand operand is nil, as_map throws an error.

v 1.7 824

GAMAdocumentation Chapter 68. Operators

Examples:� �
map<int,int> var0 <- [1,2,3,4,5,6,7,8] as_map (each::(each * 2));

// var0 equals [1::2, 2::4, 3::6, 4::8, 5::10, 6::12,
7::14, 8::16]

map<int,int> var1 <- [1::2,3::4,5::6] as_map (each::(each * 2));
// var1 equals [2::4, 4::8, 6::12]� �

as_matrix

Possible use:

• unknown as_matrix point—> matrix
• as_matrix (unknown , point) —> matrix

Result:

casts the left operand into a matrix with right operand as preferred size

Comment:

This operator is very useful to cast a file containing raster data into a matrix.Note that
both components of the right operand point should be positive, otherwise an exception is
raised.The operator as_matrix creates a matrix of preferred size. It fills in it with elements
of the left operand until thematrix is full If the size is to short, some elements will be omitted.
Matrix remaining elements will be filled in by nil.

Special cases:

• if the right operand is nil, as_matrix is equivalent to the matrix operator

v 1.7 825

GAMAdocumentation Chapter 68. Operators

See also:

matrix,

as_path

Possible use:

• list<geometry> as_path graph—> path
• as_path (list<geometry> , graph) —> path

Result:

create a graph path from the list of shape

Examples:� �
path var0 <- [road1,road2,road3] as_path my_graph; // var0

equals a path road1->road2->road3 of my_graph� �

as_system_date

Possible use:

• as_system_date (float) —> string
• float as_system_date string—> string
• as_system_date (float , string) —> string

v 1.7 826

GAMAdocumentation Chapter 68. Operators

Result:

converts a number of milliseconds in the system (for instance, the ‘machine_time’ variable)
into a string that represents the current date represented by these milliseconds using year,
month, day, hour, minutes, seconds and time-zone offset following a given pattern (right-
hand operand)

Comment:

as_system_date operator is a particular case (using a particular pattern) of the as_system_-
date operator.

Special cases:

• Pattern should include : “%Y %M %N %D %E %h %m %s %z” for outputting years,
months, name of month, days, name of days, hours, minutes, seconds and the time-
zone. A null or empty pattern will return the complete date as defined by the ISO 8601
standard yyyy-MM-ddThh:mm:ss w/o the time-zone offset. Names are defined using
the locale of the system

� �
string var1 <- 2147483647 as_date " %D %Y %M / %h:%m:%s %z";

// var1 equals "06 2015 05 / 23:58:57 +07"� �
Examples:� �
string var0 <- as_system_date(2147483647); // var0 equals

"2015-05-06"� �
See also:

as_system_date, as_system_time,

v 1.7 827

GAMAdocumentation Chapter 68. Operators

as_system_time

Possible use:

• as_system_time (float) —> string

Result:

converts a value of milliseconds in the system (for example, the value of the ‘machine_time’
variable) into a string representing the current hours, minutes and seconds in the current
time zone of the machine and the current Locale. This representation follows the ISO 8601
standard hh:mm:ss

Comment:

as_system_time operator is a particular case (using a particular pattern) of the as_system_-
date operator.

Examples:� �
string var0 <- as_system_time(2147483647); // var0 equals

"23:58:57"� �
See also:

as_system_date,

as_time

Possible use:

• as_time (float) —> string

v 1.7 828

GAMAdocumentation Chapter 68. Operators

Result:

converts a number of seconds in the model (for example, the value of the ‘time’ variable)
into a string that represents the current number of hours, minutes and seconds of the period
elapsed since the beginning of the simulation. As GAMA has no conception of time zones,
the time is expressed as if the model was at GMT+00

Comment:

as_time operator is a particular case (using a particular pattern) of the as_date operator.

Examples:� �
string var0 <- as_time(22324234); // var0 equals "09:10:34"� �
See also:

as_date,

asin

Possible use:

• asin (int) —> float
• asin (float) —> float

Result:

the arcsin of the operand

Special cases:

• if the right-hand operand is outside of the [-1,1] interval, returns NaN

v 1.7 829

GAMAdocumentation Chapter 68. Operators

Examples:� �
float var0 <- asin (90); // var0 equals #nan
float var1 <- asin (0); // var1 equals 0.0� �
See also:

acos, atan, sin,

at

Possible use:

• string at int—> string
• at (string , int) —> string
• container<KeyType,ValueType> at KeyType—> ValueType
• at (container<KeyType,ValueType> , KeyType) —> ValueType

Result:

the element at the right operand index of the container

Comment:

The first element of the container is located at the index 0. In addition, if the user tries to
get the element at an index higher or equals than the length of the container, he will get an
IndexOutOfBoundException.The at operator behavior depends on the nature of the operand

Special cases:

• if it is a file, at returns the element of the file content at the index specified by the
right operand

v 1.7 830

GAMAdocumentation Chapter 68. Operators

• if it is a population, at returns the agent at the index specified by the right operand

• if it is a graph and if the right operand is a node, at returns the in and out edges
corresponding to that node

• if it is a graph and if the right operand is an edge, at returns the pair node_out::node_-
in of the edge

• if it is a graph and if the right operand is a pair node1::node2, at returns the edge
from node1 to node2 in the graph

• if it is a list or a matrix, at returns the element at the index specified by the right
operand

� �
int var1 <- [1, 2, 3] at 2; // var1 equals 3
point var2 <- [{1,2}, {3,4}, {5,6}] at 0; // var2 equals

{1.0,2.0}� �
Examples:� �
string var0 <- 'abcdef' at 0; // var0 equals 'a'� �
See also:

contains_all, contains_any,

at_distance

Possible use:

• container<agent> at_distance float—> list<geometry>
• at_distance (container<agent> , float) —> list<geometry>

v 1.7 831

GAMAdocumentation Chapter 68. Operators

Result:

A list of agents or geometries among the left-operand list that are located at a distance <=
the right operand from the caller agent (in its topology)

Examples:� �
list<geometry > var0 <- [ag1, ag2, ag3] at_distance 20; // var0

equals the agents of the list located at a distance <= 20 from
the caller agent (in the same order).� �

See also:

neighbors_at, neighbors_of, agent_closest_to, agents_inside, closest_to, inside, overlap-
ping,

at_location

Possible use:

• geometry at_location point—> geometry
• at_location (geometry , point) —> geometry

Result:

A geometry resulting from the tran of a translation to the right-hand operand point of the
left-hand operand (geometry, agent, point)

Examples:� �
geometry var0 <- self at_location {10, 20}; // var0 equals

the geometry resulting from a translation to the location {10,
20} of the left-hand geometry (or agent).� �

v 1.7 832

GAMAdocumentation Chapter 68. Operators

atan

Possible use:

• atan (float) —> float
• atan (int) —> float

Result:

Returns the value (in the interval [-90,90], in decimal degrees) of the arctan of the operand
(which can be any real number).

Examples:� �
float var0 <- atan (1); // var0 equals 45.0� �
See also:

acos, asin, tan,

atan2

Possible use:

• float atan2 float—> float
• atan2 (float , float) —> float

Result:

the atan2 value of the two operands.

v 1.7 833

GAMAdocumentation Chapter 68. Operators

Comment:

The function atan2 is the arctangent function with two arguments. The purpose of using
two arguments instead of one is to gather information on the signs of the inputs in order to
return the appropriate quadrant of the computed angle, which is not possible for the single-
argument arctangent function.

Examples:� �
float var0 <- atan2 (0,0); // var0 equals 0.0� �
See also:

atan, acos, asin,

BDIPlan

Possible use:

• BDIPlan (any) —> BDIPlan

Result:

Casts the operand into the type BDIPlan

beta_index

Possible use:

• beta_index (graph) —> float

v 1.7 834

GAMAdocumentation Chapter 68. Operators

Result:

returns the beta index of the graph (Measures the level of connectivity in a graph and is
expressed by the relationship between the number of links (e) over the number of nodes (v)
: beta = e/v.

Examples:� �
graph graphEpidemio <- graph([]);
float var1 <- beta_index(graphEpidemio); // var1 equals the

beta index of the graph� �
See also:

alpha_index, gamma_index, nb_cycles, connectivity_index,

between

Possible use:

• between (float, float, float) —> bool
• between (int, int, int) —> bool

Result:

returns true if the first float operand is bigger than the second float operand and smaller
than the third float operand returns true the first integer operand is bigger than the second
integer operand and smaller than the third integer operand

Examples:� �
bool var0 <- between(5.0, 1.0, 10.0); // var0 equals true
bool var1 <- between(5, 1, 10); // var1 equals true� �
v 1.7 835

GAMAdocumentation Chapter 68. Operators

betweenness_centrality

Possible use:

• betweenness_centrality (graph) —> map

Result:

returns a map containing for each vertex (key), its betweenness centrality (value): number
of shortest paths passing through each vertex

Examples:� �
graph graphEpidemio <- graph([]);
map var1 <- betweenness_centrality(graphEpidemio); // var1

equals the betweenness centrality index of the graph� �

biggest_cliques_of

Possible use:

• biggest_cliques_of (graph) —> list<list>

Result:

returns the biggest cliques of a graph using the Bron-Kerbosch clique detection algorithm

v 1.7 836

GAMAdocumentation Chapter 68. Operators

Examples:� �
graph my_graph <- graph([]);
list<list> var1 <- biggest_cliques_of (my_graph); // var1

equals the list of the biggest cliques as list� �
See also:

maximal_cliques_of,

binomial

Possible use:

• int binomial float—> int
• binomial (int , float) —> int

Result:

A value from a random variable following a binomial distribution. The operands represent
the number of experiments n and the success probability p.

Comment:

The binomial distribution is the discrete probability distribution of the number of successes
in a sequence of n independent yes/no experiments, each of which yields success with prob-
ability p, cf. Binomial distribution on Wikipedia.

Examples:� �
int var0 <- binomial(15,0.6); // var0 equals a random positive

integer� �
v 1.7 837

GAMAdocumentation Chapter 68. Operators

See also:

poisson, gauss,

blend

Possible use:

• rgb blend rgb—> rgb
• blend (rgb , rgb) —> rgb
• blend (rgb, rgb, float) —> rgb

Result:

Blend two colors with an optional ratio (c1 * r + c2 * (1 - r)) between 0 and 1

Special cases:

• If the ratio is omitted, an even blend is done� �
rgb var1 <- blend(#red, #blue); // var1 equals to a color

very close to the purple� �
Examples:� �
rgb var3 <- blend(#red, #blue, 0.3); // var3 equals to a color

between the purple and the blue� �
See also:

rgb, hsb,

v 1.7 838

GAMAdocumentation Chapter 68. Operators

bool

Possible use:

• bool (any) —> bool

Result:

Casts the operand into the type bool

box

Possible use:

• box (point) —> geometry
• box (float, float, float) —> geometry

Result:

A box geometry which side sizes are given by the operands.

Comment:

the center of the box is by default the location of the current agent in which has been called
this operator.the center of the box is by default the location of the current agent in which has
been called this operator.

Special cases:

• returns nil if the operand is nil.

• returns nil if the operand is nil.

v 1.7 839

GAMAdocumentation Chapter 68. Operators

Examples:� �
geometry var0 <- box(10, 5 , 5); // var0 equals a geometry as

a rectangle with width = 10, height = 5 depth= 5.
geometry var1 <- box({10, 5 , 5}); // var1 equals a geometry as

a rectangle with width = 10, height = 5 depth= 5.� �
See also:

around, circle, sphere, cone, line, link, norm, point, polygon, polyline, square, cube, triangle,

brewer_colors

Possible use:

• brewer_colors (string) —> list<rgb>
• string brewer_colors int—> list<rgb>
• brewer_colors (string , int) —> list<rgb>

Result:

Build a list of colors of a given type (see website http://colorbrewer2.org/) with a given num-
ber of classes Build a list of colors of a given type (see website http://colorbrewer2.org/)

Examples:� �
list<rgb> var0 <- list<rgb> colors <- brewer_colors("Pastel1",

10);; // var0 equals a list of 10 sequential colors
list<rgb> var1 <- list<rgb> colors <- brewer_colors("OrRd");;

// var1 equals a list of 6 blue colors� �
v 1.7 840

GAMAdocumentation Chapter 68. Operators

See also:

brewer_palettes,

brewer_palettes

Possible use:

• brewer_palettes (int) —> list<string>
• int brewer_palettes int—> list<string>
• brewer_palettes (int , int) —> list<string>

Result:

returns the list a palette with a given min number of classes and max number of classes)
returns the list a palette with a given min number of classes and max number of classes)

Examples:� �
list<string> var0 <- list<rgb> colors <- brewer_palettes();;

// var0 equals a list of palettes that are composed of a min
of 5 colors

list<string> var1 <- list<rgb> colors <- brewer_palettes(5,10);;
// var1 equals a list of palettes that are composed of a

min of 5 colors and a max of 10 colors� �
See also:

brewer_colors,

v 1.7 841

GAMAdocumentation Chapter 68. Operators

buffer

Same signification as +

build

Possible use:

• build (matrix<float>) —> regression
• matrix<float> build string—> regression
• build (matrix<float> , string) —> regression

Result:

returns the regression build from the matrix data (a row = an instance, the last value
of each line is the y value) while using the given method (“GLS” or “OLS”). Usage:
build(data,method) returns the regression build from the matrix data (a row = an instance,
the last value of each line is the y value) while using the given ordinary least squares method.
Usage: build(data)

Examples:� �
build(matrix([[1,2,3,4],[2,3,4,2]]),"GLS")
matrix([[1,2,3,4],[2,3,4,2]])� �

ceil

Possible use:

• ceil (float) —> float

v 1.7 842

GAMAdocumentation Chapter 68. Operators

Result:

Maps the operand to the smallest following integer, i.e. the smallest integer not less than x.

Examples:� �
float var0 <- ceil(3); // var0 equals 3.0
float var1 <- ceil(3.5); // var1 equals 4.0
float var2 <- ceil(-4.7); // var2 equals -4.0� �
See also:

floor, round,

change_clockwise

Possible use:

• change_clockwise (geometry) —> geometry

Result:

returns true if the geometry is defined clockwise

Examples:� �
geometry var0 <- is_clockwise(circle(10)); // var0 equals true� �
See also:

is_clockwise,

v 1.7 843

GAMAdocumentation Chapter 68. Operators

char

Possible use:

• char (int) —> string

Special cases:

• converts ACSII integer value to character

� �
string var0 <- char (34); // var0 equals '"'� �

circle

Possible use:

• circle (float) —> geometry
• float circle point—> geometry
• circle (float , point) —> geometry

Result:

A circle geometry which radius is equal to the operand. A circle geometry which radius is
equal to the first operand, and the center has the location equal to the second operand.

Comment:

the center of the circle is by default the location of the current agent in which has been called
this operator.

v 1.7 844

GAMAdocumentation Chapter 68. Operators

Special cases:

• returns a point if the operand is lower or equal to 0.

• returns a point if the operand is lower or equal to 0.

Examples:� �
geometry var0 <- circle(10); // var0 equals a geometry as a

circle of radius 10.
geometry var1 <- circle(10,{80,30}); // var1 equals a geometry

as a circle of radius 10, the center will be in the location
{80,30}.� �

See also:

around, cone, line, link, norm, point, polygon, polyline, rectangle, square, triangle,

clean

Possible use:

• clean (geometry) —> geometry

Result:

A geometry corresponding to the cleaning of the operand (geometry, agent, point)

Comment:

The cleaning corresponds to a buffer with a distance of 0.0

v 1.7 845

GAMAdocumentation Chapter 68. Operators

Examples:� �
geometry var0 <- clean(self); // var0 equals returns the

geometry resulting from the cleaning of the geometry of the
agent applying the operator.� �

closest_points_with

Possible use:

• geometry closest_points_with geometry—> list<point>
• closest_points_with (geometry , geometry) —> list<point>

Result:

A list of two closest points between the two geometries.

Examples:� �
list<point> var0 <- geom1 closest_points_with(geom2); // var0

equals [pt1, pt2] with pt1 the closest point of geom1 to geom2
and pt1 the closest point of geom2 to geom1� �

See also:

any_location_in, any_point_in, farthest_point_to, points_at,

v 1.7 846

GAMAdocumentation Chapter 68. Operators

closest_to

Possible use:

• container<agent> closest_to geometry—> geometry
• closest_to (container<agent> , geometry) —> geometry

Result:

An agent or a geometry among the left-operand list of agents, species or meta-population
(addition of species), the closest to the operand (casted as a geometry).

Comment:

the distance is computed in the topology of the calling agent (the agent inwhich this operator
is used), with the distance algorithm specific to the topology.

Examples:� �
geometry var0 <- [ag1, ag2, ag3] closest_to(self); // var0

equals return the closest agent among ag1, ag2 and ag3 to the
agent applying the operator.

(species1 + species2) closest_to self� �
See also:

neighbors_at, neighbors_of, inside, overlapping, agents_overlapping, agents_inside,
agent_closest_to,

collect

Possible use:

• container collect any expression—> container
• collect (container , any expression) —> container

v 1.7 847

GAMAdocumentation Chapter 68. Operators

Result:

returns a new list, in which each element is the evaluation of the right-hand operand.

Comment:

collect is similar to accumulate except that accumulate always produces flat lists if the right-
hand operand returns a list.In addition, collect can be applied to any container.

Special cases:

• if the left-hand operand is nil, collect throws an error

Examples:� �
container var0 <- [1,2,4] collect (each *2); // var0 equals

[2,4,8]
container var1 <- [1,2,4] collect ([2,4]); // var1 equals

[[2,4],[2,4],[2,4]]
container var2 <- [1::2, 3::4, 5::6] collect (each + 2); //

var2 equals [4,6,8]
container var3 <- (list(node) collect (node(each).location.x * 2)

; // var3 equals the list of nodes with their x multiplied by
2� �

See also:

accumulate,

column_at

Possible use:

• matrix column_at int—> list
• column_at (matrix , int) —> list

v 1.7 848

GAMAdocumentation Chapter 68. Operators

Result:

returns the column at a num_col (right-hand operand)

Examples:� �
list var0 <- matrix([["el11","el12","el13"],["el21","el22","el23"

],["el31","el32","el33"]]) column_at 2; // var0 equals ["
el31","el32","el33"]� �

See also:

row_at, rows_list,

columns_list

Possible use:

• columns_list (matrix) —> list<list>

Result:

returns a list of the columns of the matrix, with each column as a list of elements

Examples:� �
list<list> var0 <- columns_list(matrix([["el11","el12","el13"],["

el21","el22","el23"],["el31","el32","el33"]])); // var0
equals [["el11","el12","el13"],["el21","el22","el23"],["el31
","el32","el33"]]� �

v 1.7 849

GAMAdocumentation Chapter 68. Operators

See also:

rows_list,

command

Possible use:

• command (string) —> string

Result:

command allows GAMA to issue a system command using the system terminal or shell and
to receive a string containing the outcome of the command or script executed. By default,
commands are blocking the agent calling them, unless the sequence ‘&’ is used at the end.
In this case, the result of the operator is an empty string

cone

Possible use:

• cone (point) —> geometry
• int cone int—> geometry
• cone (int , int) —> geometry

Result:

A cone geometry which min and max angles are given by the operands. A cone geometry
which min and max angles are given by the operands.

v 1.7 850

GAMAdocumentation Chapter 68. Operators

Comment:

the center of the cone is by default the location of the current agent in which has been called
this operator.the center of the cone is by default the location of the current agent in which
has been called this operator.

Special cases:

• returns nil if the operand is nil.

• returns nil if the operand is nil.

Examples:� �
geometry var0 <- cone({0, 45}); // var0 equals a geometry as

a cone with min angle is 0 and max angle is 45.
geometry var1 <- cone(0, 45); // var1 equals a geometry as a

cone with min angle is 0 and max angle is 45.� �
See also:

around, circle, line, link, norm, point, polygon, polyline, rectangle, square, triangle,

cone3D

Possible use:

• float cone3D float—> geometry
• cone3D (float , float) —> geometry

Result:

A cone geometry which radius is equal to the operand.

v 1.7 851

GAMAdocumentation Chapter 68. Operators

Comment:

the center of the cone is by default the location of the current agent in which has been called
this operator.

Special cases:

• returns a point if the operand is lower or equal to 0.

Examples:� �
geometry var0 <- cone3D(10.0,10.0); // var0 equals a geometry

as a circle of radius 10 but displays a cone.� �
See also:

around, cone, line, link, norm, point, polygon, polyline, rectangle, square, triangle,

connected_components_of

Possible use:

• connected_components_of (graph) —> list<list>

Result:

returns the connected components of of a graph, i.e. the list of all vertices that are in the
maximally connected component together with the specified vertex.

v 1.7 852

GAMAdocumentation Chapter 68. Operators

Examples:� �
graph my_graph <- graph([]);
list<list> var1 <- connected_components_of (my_graph); // var1

equals the list of all the components as list� �
See also:

alpha_index, connectivity_index, nb_cycles,

connectivity_index

Possible use:

• connectivity_index (graph) —> float

Result:

returns a simple connectivity index. This number is estimated through the number of nodes
(v) and of sub-graphs (p) : IC = (v - p) /(v - 1).

Examples:� �
graph graphEpidemio <- graph([]);
float var1 <- connectivity_index(graphEpidemio); // var1

equals the connectivity index of the graph� �
See also:

alpha_index, beta_index, gamma_index, nb_cycles,

v 1.7 853

GAMAdocumentation Chapter 68. Operators

container

Possible use:

• container (any) —> container

Result:

Casts the operand into the type container

contains

Possible use:

• string contains string—> bool
• contains (string , string) —> bool
• container<KeyType,ValueType> contains unknown—> bool
• contains (container<KeyType,ValueType> , unknown) —> bool

Result:

true, if the container contains the right operand, false otherwise

Comment:

the contains operator behavior depends on the nature of the operand

Special cases:

• if both operands are strings, returns true if the right-hand operand contains the
right-hand pattern;

• if it is a map, contains returns true if the operand is a key of the map

v 1.7 854

GAMAdocumentation Chapter 68. Operators

• if it is a file, contains returns true it the operand is contained in the file content

• if it is a population, contains returns true if the operand is an agent of the population,
false otherwise

• if it is a graph, contains returns true if the operand is a node or an edge of the graph,
false otherwise

• if it is a list or a matrix, contains returns true if the list or matrix contains the right
operand

� �
bool var1 <- [1, 2, 3] contains 2; // var1 equals true
bool var2 <- [{1,2}, {3,4}, {5,6}] contains {3,4}; // var2

equals true� �
Examples:� �
bool var0 <- 'abcded' contains 'bc'; // var0 equals true� �
See also:

contains_all, contains_any,

contains_all

Possible use:

• container contains_all container—> bool
• contains_all (container , container) —> bool
• string contains_all list—> bool
• contains_all (string , list) —> bool

v 1.7 855

GAMAdocumentation Chapter 68. Operators

Result:

true if the left operand contains all the elements of the right operand, false otherwise

Comment:

the definition of contains depends on the container

Special cases:

• if the right operand is nil or empty, contains_all returns true

• if the left-operand is a string, test whether the string contains all the element of the
list;

� �
bool var4 <- "abcabcabc" contains_all ["ca","xy"]; // var4

equals false� �
Examples:� �
bool var0 <- [1,2,3,4,5,6] contains_all [2,4]; // var0 equals

true
bool var1 <- [1,2,3,4,5,6] contains_all [2,8]; // var1 equals

false
bool var2 <- [1::2, 3::4, 5::6] contains_all [1,3]; // var2

equals false
bool var3 <- [1::2, 3::4, 5::6] contains_all [2,4]; // var3

equals true� �
See also:

contains, contains_any,

v 1.7 856

GAMAdocumentation Chapter 68. Operators

contains_any

Possible use:

• string contains_any list—> bool
• contains_any (string , list) —> bool
• container contains_any container—> bool
• contains_any (container , container) —> bool

Result:

true if the left operand contains one of the elements of the right operand, false otherwise

Comment:

the definition of contains depends on the container

Special cases:

• if the right operand is nil or empty, contains_any returns false

Examples:� �
bool var0 <- "abcabcabc" contains_any ["ca","xy"]; // var0

equals true
bool var1 <- [1,2,3,4,5,6] contains_any [2,4]; // var1 equals

true
bool var2 <- [1,2,3,4,5,6] contains_any [2,8]; // var2 equals

true
bool var3 <- [1::2, 3::4, 5::6] contains_any [1,3]; // var3

equals false
bool var4 <- [1::2, 3::4, 5::6] contains_any [2,4]; // var4

equals true� �
v 1.7 857

GAMAdocumentation Chapter 68. Operators

See also:

contains, contains_all,

contains_edge

Possible use:

• graph contains_edge unknown—> bool
• contains_edge (graph , unknown) —> bool
• graph contains_edge pair—> bool
• contains_edge (graph , pair) —> bool

Result:

returns true if the graph(left-hand operand) contains the given edge (righ-hand operand),
false otherwise

Special cases:

• if the left-hand operand is nil, returns false

• if the right-hand operand is a pair, returns true if it exists an edge between the two
elements of the pair in the graph� �

bool var2 <- graphEpidemio contains_edge (node(0)::node(3));
// var2 equals true� �

Examples:� �
graph graphFromMap <- as_edge_graph

([{1,5}::{12,45},{12,45}::{34,56}]);
bool var1 <- graphFromMap contains_edge link({1,5}::{12,45});

// var1 equals true� �
v 1.7 858

GAMAdocumentation Chapter 68. Operators

See also:

contains_vertex,

contains_vertex

Possible use:

• graph contains_vertex unknown—> bool
• contains_vertex (graph , unknown) —> bool

Result:

returns true if the graph(left-hand operand) contains the given vertex (righ-hand operand),
false otherwise

Special cases:

• if the left-hand operand is nil, returns false

Examples:� �
graph graphFromMap <- as_edge_graph

([{1,5}::{12,45},{12,45}::{34,56}]);
bool var1 <- graphFromMap contains_vertex {1,5}; // var1

equals true� �
See also:

contains_edge,

v 1.7 859

GAMAdocumentation Chapter 68. Operators

conversation

Possible use:

• conversation (unknown) —> conversation

convex_hull

Possible use:

• convex_hull (geometry) —> geometry

Result:

A geometry corresponding to the convex hull of the operand.

Examples:� �
geometry var0 <- convex_hull(self); // var0 equals the convex

hull of the geometry of the agent applying the operator� �

copy

Possible use:

• copy (unknown) —> unknown

Result:

returns a copy of the operand.

v 1.7 860

GAMAdocumentation Chapter 68. Operators

copy_between

Possible use:

• copy_between (string, int, int) —> string
• copy_between (container, int, int) —> container

Result:

Returns a copy of the first operand between the indexes determined by the second (inclusive)
and third operands (exclusive)

Special cases:

• If the first operand is empty, returns an empty object of the same type

• If the second operand is greater than or equal to the third operand, return an empty
object of the same type

• If the first operand is nil, raises an error

Examples:� �
string var0 <- copy_between("abcabcabc", 2,6); // var0 equals "

cabc"
container var1 <- copy_between ([4, 1, 6, 9 ,7], 1, 3); //

var1 equals [1, 6]� �

corR

Possible use:

• container corR container—> unknown
• corR (container , container) —> unknown

v 1.7 861

GAMAdocumentation Chapter 68. Operators

Result:

returns the Pearson correlation coefficient of two given vectors (right-hand operands) in
given variable (left-hand operand).

Special cases:

• if the lengths of two vectors in the right-hand aren’t equal, returns 0

Examples:� �
list X <- [1, 2, 3];
list Y <- [1, 2, 4];
unknown var2 <- corR(X, Y); // var2 equals 0.981980506061966� �

cos

Possible use:

• cos (float) —> float
• cos (int) —> float

Result:

Returns the value (in [-1,1]) of the cosinus of the operand (in decimal degrees). The argument
is casted to an int before being evaluated.

Special cases:

• Operand values out of the range [0-359] are normalized.

v 1.7 862

GAMAdocumentation Chapter 68. Operators

Examples:� �
float var0 <- cos (0); // var0 equals 1.0
float var1 <- cos(360); // var1 equals 1.0
float var2 <- cos(-720); // var2 equals 1.0� �
See also:

sin, tan,

cos_rad

Possible use:

• cos_rad (float) —> float

Result:

Returns the value (in [-1,1]) of the cosinus of the operand (in decimal degrees). The argument
is casted to an int before being evaluated.

Special cases:

• Operand values out of the range [0-359] are normalized.

See also:

sin, tan,

v 1.7 863

GAMAdocumentation Chapter 68. Operators

count

Possible use:

• container count any expression—> int
• count (container , any expression) —> int

Result:

returns an int, equal to the number of elements of the left-hand operand that make the right-
hand operand evaluate to true.

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the
elements.

Special cases:

• if the left-hand operand is nil, count throws an error

Examples:� �
int var0 <- [1,2,3,4,5,6,7,8] count (each > 3); // var0

equals 5
// Number of nodes of graph g2 without any out edge
graph g2 <- graph([]);
int var3 <- g2 count (length(g2 out_edges_of each) = 0) ;

// var3 equals the total number of out edges
// Number of agents node with x > 32
int n <- (list(node) count (round(node(each).location.x) > 32);
int var6 <- [1::2, 3::4, 5::6] count (each > 4); // var6

equals 1� �
v 1.7 864

GAMAdocumentation Chapter 68. Operators

See also:

group_by,

covers

Possible use:

• geometry covers geometry—> bool
• covers (geometry , geometry) —> bool

Result:

A boolean, equal to true if the left-geometry (or agent/point) covers the right-geometry (or
agent/point).

Special cases:

• if one of the operand is null, returns false.

Examples:� �
bool var0 <- square(5) covers square(2); // var0 equals true� �
See also:

disjoint_from, crosses, overlaps, partially_overlaps, touches,

v 1.7 865

GAMAdocumentation Chapter 68. Operators

cross

Possible use:

• cross (float) —> geometry
• float cross float—> geometry
• cross (float , float) —> geometry

Result:

A cross, which radius is equal to the first operand and the width of the lines for the second
A cross, which radius is equal to the first operand

Examples:� �
geometry var0 <- cross(10,2); // var0 equals a geometry as a

cross of radius 10, and with a width of 2 for the lines
geometry var1 <- cross(10); // var1 equals a geometry as a

cross of radius 10� �
See also:

around, cone, line, link, norm, point, polygon, polyline, super_ellipse, rectangle, square,
circle, ellipse, triangle,

crosses

Possible use:

• geometry crosses geometry—> bool
• crosses (geometry , geometry) —> bool

v 1.7 866

GAMAdocumentation Chapter 68. Operators

Result:

A boolean, equal to true if the left-geometry (or agent/point) crosses the right-geometry (or
agent/point).

Special cases:

• if one of the operand is null, returns false.

• if one operand is a point, returns false.

Examples:� �
bool var0 <- polyline([{10,10},{20,20}]) crosses polyline

([{10,20},{20,10}]); // var0 equals true
bool var1 <- polyline([{10,10},{20,20}]) crosses {15,15}; //

var1 equals true
bool var2 <- polyline([{0,0},{25,25}]) crosses polygon

([{10,10},{10,20},{20,20},{20,10}]); // var2 equals true� �
See also:

disjoint_from, intersects, overlaps, partially_overlaps, touches,

crs

Possible use:

• crs (file) —> string

Result:

the Coordinate Reference System (CRS) of the GIS file

v 1.7 867

GAMAdocumentation Chapter 68. Operators

Examples:� �
string var0 <- crs(my_shapefile); // var0 equals the crs of the

shapefile� �

CRS_transform

Possible use:

• CRS_transform (geometry) —> geometry
• geometry CRS_transform string—> geometry
• CRS_transform (geometry , string) —> geometry

Special cases:

• returns the geometry corresponding to the transformation of the given geometry by
the left operand CRS (Coordinate Reference System)

� �
geometry var0 <- shape CRS_transform("EPSG:4326"); // var0

equals a geometry corresponding to the agent geometry
transformed into the EPSG:4326 CRS� �
• returns the geometry corresponding to the transformation of the given geometry by
the current CRS (Coordinate Reference System), the one corresponding to the world’s
agent one

� �
geometry var1 <- CRS_transform(shape); // var1 equals a geometry

corresponding to the agent geometry transformed into the
current CRS� �

v 1.7 868

GAMAdocumentation Chapter 68. Operators

csv_file

Possible use:

• csv_file (string) —> file

Result:

Constructs a file of type csv. Allowed extensions are limited to csv, tsv

cube

Possible use:

• cube (float) —> geometry

Result:

A cube geometry which side size is equal to the operand.

Comment:

the center of the cube is by default the location of the current agent in which has been called
this operator.

Special cases:

• returns nil if the operand is nil.

Examples:� �
geometry var0 <- cube(10); // var0 equals a geometry as a square

of side size 10.� �
v 1.7 869

GAMAdocumentation Chapter 68. Operators

See also:

around, circle, cone, line, link, norm, point, polygon, polyline, rectangle, triangle,

curve

Possible use:

• curve (point, point, point) —> geometry
• curve (point, point, point, int) —> geometry
• curve (point, point, point, point) —> geometry
• curve (point, point, point, point, int) —> geometry

Result:

A cubic Bezier curve geometry built from the four given points composed of a given number
of points. A quadratic Bezier curve geometry built from the three given points composed of
10 points. A quadratic Bezier curve geometry built from the three given points composed of
a given numnber of points. A cubic Bezier curve geometry built from the four given points
composed of 10 points.

Special cases:

• if the operand is nil, returns nil

• if the last operand (number of points) is inferior to 2, returns nil

• if the operand is nil, returns nil

• if the operand is nil, returns nil

• if the last operand (number of points) is inferior to 2, returns nil

• if the operand is nil, returns nil

v 1.7 870

GAMAdocumentation Chapter 68. Operators

Examples:� �
geometry var0 <- curve({0,0}, {0,10}, {10,10}); // var0

equals a cubic Bezier curve geometry composed of 10 points
from p0 to p3.

geometry var1 <- curve({0,0}, {0,10}, {10,10}); // var1
equals a quadratic Bezier curve geometry composed of 10 points
from p0 to p2.

geometry var2 <- curve({0,0}, {0,10}, {10,10}, 20); // var2
equals a quadratic Bezier curve geometry composed of 20 points
from p0 to p2.

geometry var3 <- curve({0,0}, {0,10}, {10,10}); // var3
equals a cubic Bezier curve geometry composed of 10 points
from p0 to p3.� �

See also:

around, circle, cone, link, norm, point, polygone, rectangle, square, triangle, line,

cylinder

Possible use:

• float cylinder float—> geometry
• cylinder (float , float) —> geometry

Result:

A cylinder geometry which radius is equal to the operand.

Comment:

the center of the cylinder is by default the location of the current agent in which has been
called this operator.

v 1.7 871

GAMAdocumentation Chapter 68. Operators

Special cases:

• returns a point if the operand is lower or equal to 0.

Examples:� �
geometry var0 <- cylinder(10,10); // var0 equals a geometry as

a circle of radius 10.� �
See also:

around, cone, line, link, norm, point, polygon, polyline, rectangle, square, triangle,

date

Possible use:

• date (any) —> date

Result:

Casts the operand into the type date

dbscan

Possible use:

• dbscan (list, float, int) —> list<list>

v 1.7 872

GAMAdocumentation Chapter 68. Operators

Result:

returns the list of clusters (list of instance indices) computed with the dbscan (density-based
spatial clustering of applications with noise) algorithm from the first operand data accord-
ing to the maximum radius of the neighborhood to be considered (eps) and the minimum
number of points needed for a cluster (minPts). Usage: dbscan(data,eps,minPoints)

Special cases:

• if the lengths of two vectors in the right-hand aren’t equal, returns 0

Examples:� �
dbscan ([[2,4,5], [3,8,2], [1,1,3], [4,3,4]],10,2)� �

dead

Possible use:

• dead (agent) —> bool

Result:

true if the agent is dead (or null), false otherwise.

Examples:� �
bool var0 <- dead(agent_A); // var0 equals true or false� �

v 1.7 873

GAMAdocumentation Chapter 68. Operators

degree_of

Possible use:

• graph degree_of unknown—> int
• degree_of (graph , unknown) —> int

Result:

returns the degree (in+out) of a vertex (right-hand operand) in the graph given as left-hand
operand.

Examples:� �
int var1 <- graphFromMap degree_of (node(3)); // var1 equals 3� �
See also:

in_degree_of, out_degree_of,

dem

Possible use:

• dem (file) —> geometry
• file dem float—> geometry
• dem (file , float) —> geometry
• file dem file—> geometry
• dem (file , file) —> geometry
• dem (file, file, float) —> geometry

Result:

A polygon that is equivalent to the surface of the texture

v 1.7 874

GAMAdocumentation Chapter 68. Operators

Examples:� �
geometry var0 <- dem(dem,z_factor); // var0 equals a geometry

as a rectangle of weight and height equal to the texture.
geometry var1 <- dem(dem,texture,z_factor); // var1 equals a

geometry as a rectangle of width and height equal to the
texture.

geometry var2 <- dem(dem); // var2 equals returns a geometry as
a rectangle of width and height equal to the texture.

geometry var3 <- dem(dem,texture); // var3 equals a geometry as
a rectangle of weight and height equal to the texture.� �

det

Same signification as determinant

determinant

Possible use:

• determinant (matrix) —> float

Result:

The determinant of the given matrix

Examples:� �
float var0 <- determinant(matrix([[1,2],[3,4]])); // var0

equals -2� �

v 1.7 875

GAMAdocumentation Chapter 68. Operators

diff

Possible use:

• float diff float—> float
• diff (float , float) —> float

diff2

Possible use:

• float diff2 float—> float
• diff2 (float , float) —> float

directed

Possible use:

• directed (graph) —> graph

Result:

the operand graph becomes a directed graph.

Comment:

the operator alters the operand graph, it does not create a new one.

See also:

undirected,

v 1.7 876

GAMAdocumentation Chapter 68. Operators

direction_between

Possible use:

• topology direction_between container<geometry>—> int
• direction_between (topology , container<geometry>) —> int

Result:

A direction (in degree) between a list of two geometries (geometries, agents, points) consid-
ering a topology.

Examples:� �
int var0 <- my_topology direction_between [ag1, ag2]; // var0

equals the direction between ag1 and ag2 considering the
topology my_topology� �

See also:

towards, direction_to, distance_to, distance_between, path_between, path_to,

direction_to

Same signification as towards

disjoint_from

Possible use:

• geometry disjoint_from geometry—> bool
• disjoint_from (geometry , geometry) —> bool

v 1.7 877

GAMAdocumentation Chapter 68. Operators

Result:

A boolean, equal to true if the left-geometry (or agent/point) is disjoints from the right-
geometry (or agent/point).

Special cases:

• if one of the operand is null, returns true.

• if one operand is a point, returns false if the point is included in the geometry.

Examples:� �
bool var0 <- polyline([{10,10},{20,20}]) disjoint_from polyline

([{15,15},{25,25}]); // var0 equals false
bool var1 <- polygon([{10,10},{10,20},{20,20},{20,10}])

disjoint_from polygon([{15,15},{15,25},{25,25},{25,15}]); //
var1 equals false

bool var2 <- polygon([{10,10},{10,20},{20,20},{20,10}])
disjoint_from {15,15}; // var2 equals false

bool var3 <- polygon([{10,10},{10,20},{20,20},{20,10}])
disjoint_from {25,25}; // var3 equals true

bool var4 <- polygon([{10,10},{10,20},{20,20},{20,10}])
disjoint_from polygon([{35,35},{35,45},{45,45},{45,35}]); //
var4 equals true� �

See also:

intersects, crosses, overlaps, partially_overlaps, touches,

distance_between

Possible use:

• topology distance_between container<geometry>—> float

v 1.7 878

GAMAdocumentation Chapter 68. Operators

• distance_between (topology , container<geometry>) —> float

Result:

A distance between a list of geometries (geometries, agents, points) considering a topology.

Examples:� �
float var0 <- my_topology distance_between [ag1, ag2, ag3];

// var0 equals the distance between ag1, ag2 and ag3
considering the topology my_topology� �

See also:

towards, direction_to, distance_to, direction_between, path_between, path_to,

distance_to

Possible use:

• point distance_to point—> float
• distance_to (point , point) —> float
• geometry distance_to geometry—> float
• distance_to (geometry , geometry) —> float

Result:

A distance between two geometries (geometries, agents or points) considering the topology
of the agent applying the operator.

v 1.7 879

GAMAdocumentation Chapter 68. Operators

Examples:� �
float var0 <- ag1 distance_to ag2; // var0 equals the distance

between ag1 and ag2 considering the topology of the agent
applying the operator� �

See also:

towards, direction_to, distance_between, direction_between, path_between, path_to,

distribution_of

Possible use:

• distribution_of (container) —> map
• container distribution_of int—> map
• distribution_of (container , int) —> map
• distribution_of (container, int, float, float) —> map

Result:

Discretize a list of values into n bins (computes the bins from a numerical variable into n (de-
fault 10) bins. Returns a distribution map with the values (values key), the interval legends
(legend key), the distribution parameters (params keys, for cumulative charts). Parameters
can be (list), (list, nbbins) or (list,nbbins,valmin,valmax)

Examples:� �
map var0 <- distribution_of([1,1,2,12.5]); // var0 equals map(['

values '::[2,1,0,0,0,0,1,0,0,0],'legend
'::['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]','[14.0:16.0]','[16.0:18.0]','[18.0:20.0]'],'
parlist '::[1,0]])

v 1.7 880

GAMAdocumentation Chapter 68. Operators

map var1 <- distribution_of([1,1,2,12.5],10); // var1 equals
map(['values '::[2,1,0,0,0,0,1,0,0,0],'legend
'::['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]','[14.0:16.0]','[16.0:18.0]','[18.0:20.0]'],'
parlist '::[1,0]])

map var2 <- distribution_of([1,1,2,12.5]); // var2 equals map(['
values '::[2,1,0,0,0,0,1,0,0,0],'legend
'::['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]','[14.0:16.0]','[16.0:18.0]','[18.0:20.0]'],'
parlist '::[1,0]])� �

See also:

as_map,

distribution2d_of

Possible use:

• container distribution2d_of container—> map
• distribution2d_of (container , container) —> map
• distribution2d_of (container, container, int, int) —> map
• distribution2d_of (container, container, int, float, float, int, float, float)
—> map

Result:

Discretize two lists of values into n bins (computes the bins from a numerical variable into
n (default 10) bins. Returns a distribution map with the values (values key), the interval
legends (legend key), the distribution parameters (params keys, for cumulative charts). Pa-
rameters can be (list), (list, nbbins) or (list,nbbins,valmin,valmax)

Examples:

v 1.7 881

GAMAdocumentation Chapter 68. Operators

� �
map var0 <- distribution_of([1,1,2,12.5],10); // var0 equals

map(['values '::[2,1,0,0,0,0,1,0,0,0],'legend
'::['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]','[14.0:16.0]','[16.0:18.0]','[18.0:20.0]'],'
parlist '::[1,0]])

map var1 <- distribution2d_of([1,1,2,12.5]); // var1 equals
map(['values '::[2,1,0,0,0,0,1,0,0,0],'legend
'::['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]','[14.0:16.0]','[16.0:18.0]','[18.0:20.0]'],'
parlist '::[1,0]])

map var2 <- distribution_of([1,1,2,12.5],10); // var2 equals
map(['values '::[2,1,0,0,0,0,1,0,0,0],'legend
'::['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]','[14.0:16.0]','[16.0:18.0]','[18.0:20.0]'],'
parlist '::[1,0]])� �

See also:

as_map,

div

Possible use:

• float div int—> int
• div (float , int) —> int
• int div float—> int
• div (int , float) —> int
• float div float—> int
• div (float , float) —> int
• int div int—> int
• div (int , int) —> int

Result:

Returns the truncation of the division of the left-hand operand by the right-hand operand.

v 1.7 882

GAMAdocumentation Chapter 68. Operators

Special cases:

• if the right-hand operand is equal to zero, raises an exception.

• if the right-hand operand is equal to zero, raises an exception.

• if the right-hand operand is equal to zero, raises an exception.

Examples:� �
int var0 <- 40.5 div 3; // var0 equals 13
int var1 <- 40 div 4.1; // var1 equals 9
int var2 <- 40.1 div 4.5; // var2 equals 8
int var3 <- 40 div 3; // var3 equals 13� �
See also:

mod,

dxf_file

Possible use:

• dxf_file (string) —> file

Result:

Constructs a file of type dxf. Allowed extensions are limited to dxf

v 1.7 883

GAMAdocumentation Chapter 68. Operators

edge

Possible use:

• edge (unknown) —> unknown
• edge (pair) —> unknown
• unknown edge float—> unknown
• edge (unknown , float) —> unknown
• pair edge float—> unknown
• edge (pair , float) —> unknown
• unknown edge unknown—> unknown
• edge (unknown , unknown) —> unknown
• edge (pair, unknown, float) —> unknown
• edge (unknown, unknown, unknown) —> unknown
• edge (unknown, unknown, float) —> unknown
• edge (unknown, unknown, unknown, float) —> unknown

edge_between

Possible use:

• graph edge_between pair—> unknown
• edge_between (graph , pair) —> unknown

Result:

returns the edge linking two nodes

Examples:� �
unknown var0 <- graphFromMap edge_between node1::node2; //

var0 equals edge1� �
v 1.7 884

GAMAdocumentation Chapter 68. Operators

See also:

out_edges_of, in_edges_of,

edges

Possible use:

• edges (container) —> container

eigenvalues

Possible use:

• eigenvalues (matrix) —> list<float>

Result:

The eigen values (matrix) of the given matrix

Examples:� �
list<float> var0 <- eigenvalues(matrix([[5,-3],[6,-4]])); //

var0 equals [2.0000000000000004,-0.9999999999999998]� �

electre_DM

Possible use:

• electre_DM (list<list>, list<map<string,object>>, float) —> int

v 1.7 885

GAMAdocumentation Chapter 68. Operators

Result:

The index of the best candidate according to amethod based on the ELECTREmethods. The
principle of the ELECTRE methods is to compare the possible candidates by pair. These
methods analyses the possible outranking relation existing between two candidates. An
candidate outranks another if this one is at least as good as the other one. The ELECTRE
methods are based on two concepts: the concordance and the discordance. The concor-
dance characterizes the fact that, for an outranking relation to be validated, a sufficient
majority of criteria should be in favor of this assertion. The discordance characterizes the
fact that, for an outranking relation to be validated, none of the criteria in the minority
should oppose too strongly this assertion. These two conditions must be true for validat-
ing the outranking assertion. More information about the ELECTRE methods can be found
in [http://www.springerlink.com/content/g367r44322876223/ Figueira, J., Mousseau, V.,
Roy, B.: ELECTRE Methods. In: Figueira, J., Greco, S., and Ehrgott, M., (Eds.), Multiple
Criteria Decision Analysis: State of the Art Surveys, Springer, New York, 133–162 (2005)].
The first operand is the list of candidates (a candidate is a list of criterion values); the sec-
ond operand the list of criterion: A criterion is a map that contains fives elements: a name,
a weight, a preference value (p), an indifference value (q) and a veto value (v). The prefer-
ence value represents the threshold from which the difference between two criterion values
allows to prefer one vector of values over another. The indifference value represents the
threshold from which the difference between two criterion values is considered significant.
The veto value represents the threshold fromwhich the difference between two criterion val-
ues disqualifies the candidate that obtained the smaller value; the last operand is the fuzzy
cut.

Special cases:

• returns -1 is the list of candidates is nil or empty

Examples:� �
int var0 <- electre_DM([[1.0, 7.0],[4.0,2.0],[3.0, 3.0]], [["name

"::"utility", "weight" :: 2.0,"p"::0.5, "q"::0.0, "s"::1.0, "
maximize" :: true],["name"::"price", "weight" :: 1.0,"p"::0.5,
"q"::0.0, "s"::1.0, "maximize" :: false]]); // var0 equals
0� �

v 1.7 886

GAMAdocumentation Chapter 68. Operators

See also:

weighted_means_DM, promethee_DM, evidence_theory_DM,

ellipse

Possible use:

• float ellipse float—> geometry
• ellipse (float , float) —> geometry

Result:

An ellipse geometry which x-radius is equal to the first operand and y-radius is equal to the
second operand

Comment:

the center of the ellipse is by default the location of the current agent inwhich has been called
this operator.

Special cases:

• returns a point if both operands are lower or equal to 0, a line if only one is.

Examples:� �
geometry var0 <- ellipse(10, 10); // var0 equals a geometry as

an ellipse of width 10 and height 10.� �
v 1.7 887

GAMAdocumentation Chapter 68. Operators

See also:

around, cone, line, link, norm, point, polygon, polyline, rectangle, square, circle, squircle,
triangle,

emotion

Possible use:

• emotion (any) —> emotion

Result:

Casts the operand into the type emotion

empty

Possible use:

• empty (string) —> bool
• empty (container<KeyType,ValueType>) —> bool

Result:

true if the operand is empty, false otherwise.

Comment:

the empty operator behavior depends on the nature of the operand

v 1.7 888

GAMAdocumentation Chapter 68. Operators

Special cases:

• if it is a map, empty returns true if the map contains no key-value mappings, and
false otherwise

• if it is a file, empty returns true if the content of the file (that is also a container) is
empty, and false otherwise

• if it is a population, empty returns true if there is no agent in the population, and false
otherwise

• if it is a graph, empty returns true if it contains no vertex and no edge, and false
otherwise

• if it is a matrix of int, float or object, it will return true if all elements are respectively
0, 0.0 or null, and false otherwise

• if it is a matrix of geometry, it will return true if the matrix contains no cell, and false
otherwise

• if it is a string, empty returns true if the string does not contain any character, and
false otherwise� �

bool var0 <- empty ('abced'); // var0 equals false� �
• if it is a list, empty returns true if there is no element in the list, and false otherwise� �

bool var1 <- empty([]); // var1 equals true� �

enlarged_by

Same signification as +

v 1.7 889

GAMAdocumentation Chapter 68. Operators

envelope

Possible use:

• envelope (unknown) —> geometry

Result:

A 3D geometry that represents the box that surrounds the geometries or the surface de-
scribed by the arguments. More general than geometry(arguments).envelope, as it allows
to pass int, double, point, image files, shape files, asc files, or any list combining these ar-
guments, in which case the envelope will be correctly expanded. If an envelope cannot be
determined from the arguments, a default one of dimensions (0,100, 0, 100, 0, 100) is re-
turned

eval_gaml

Possible use:

• eval_gaml (string) —> unknown

Result:

evaluates the given GAML string.

Examples:� �
unknown var0 <- eval_gaml("2+3"); // var0 equals 5� �

v 1.7 890

GAMAdocumentation Chapter 68. Operators

eval_when

Possible use:

• eval_when (BDIPlan) —> bool

Result:

evaluate the facet when of a given plan

Examples:� �
eval_when(plan1)� �

even

Possible use:

• even (int) —> bool

Result:

Returns true if the operand is even and false if it is odd.

Special cases:

• if the operand is equal to 0, it returns true.

• if the operand is a float, it is truncated before

v 1.7 891

GAMAdocumentation Chapter 68. Operators

Examples:� �
bool var0 <- even (3); // var0 equals false
bool var1 <- even(-12); // var1 equals true� �

every

Possible use:

• every (int) —> bool
• container every int—> container
• every (container , int) —> container

Result:

Retrieves elements from the first argument every step (second argument) elements. Raises
an error if the step is negative or equal to zero true every operand * cycle, false otherwise

Comment:

the value of the every operator depends on the cycle. It can be used to do something every x
cycle.

Examples:� �
if every(2) {write "the time step is even";}

else {write "the time step is odd";}� �

v 1.7 892

GAMAdocumentation Chapter 68. Operators

evidence_theory_DM

Possible use:

• list<list> evidence_theory_DM list<map<string,object>>—> int
• evidence_theory_DM (list<list> , list<map<string,object>>) —> int
• evidence_theory_DM (list<list>, list<map<string,object>>, bool) —> int

Result:

The index of the best candidate according to a method based on
the Evidence theory. This theory, which was proposed by Shafer
([http://www.glennshafer.com/books/amte.html Shafer G (1976) A mathematical
theory of evidence, Princeton University Press]), is based on the work of Dempster
([http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aoms/1177698950
Dempster A (1967) Upper and lower probabilities induced by multivalued mapping. Annals
of Mathematical Statistics, vol. 38, pp. 325–339]) on lower and upper probability distribu-
tions. The first operand is the list of candidates (a candidate is a list of criterion values);
the second operand the list of criterion: A criterion is a map that contains seven elements:
a name, a first threshold s1, a second threshold s2, a value for the assertion “this candidate
is the best” at threshold s1 (v1p), a value for the assertion “this candidate is the best” at
threshold s2 (v2p), a value for the assertion “this candidate is not the best” at threshold s1
(v1c), a value for the assertion “this candidate is not the best” at threshold s2 (v2c). v1p,
v2p, v1c and v2c have to been defined in order that: v1p + v1c <= 1.0; v2p + v2c <= 1.0.; the
last operand allows to use a simple version of this multi-criteria decision making method
(simple if true)

Special cases:

• returns -1 is the list of candidates is nil or empty

• if the operator is used with only 2 operands (the candidates and the criteria), the last
parameter (use simple method) is set to true

Examples:

v 1.7 893

GAMAdocumentation Chapter 68. Operators

� �
int var0 <- evidence_theory_DM([[1.0, 7.0],[4.0,2.0],[3.0, 3.0]],

[["name"::"utility", "s1" :: 0.0,"s2"::1.0, "v1p"::0.0, "v2p"
::1.0, "v1c"::0.0, "v2c"::0.0, "maximize" :: true],["name"::"
price", "s1" :: 0.0,"s2"::1.0, "v1p"::0.0, "v2p"::1.0, "v1c"
::0.0, "v2c"::0.0, "maximize" :: true]], true); // var0
equals 0� �

See also:

weighted_means_DM, electre_DM,

exp

Possible use:

• exp (float) —> float
• exp (int) —> float

Result:

Returns Euler’s number e raised to the power of the operand.

Special cases:

• the operand is casted to a float before being evaluated.

• the operand is casted to a float before being evaluated.

Examples:� �
float var0 <- exp (0); // var0 equals 1.0� �
v 1.7 894

GAMAdocumentation Chapter 68. Operators

See also:

ln,

fact

Possible use:

• fact (int) —> float

Result:

Returns the factorial of the operand.

Special cases:

• if the operand is less than 0, fact returns 0.

Examples:� �
float var0 <- fact(4); // var0 equals 24� �

farthest_point_to

Possible use:

• geometry farthest_point_to point—> point
• farthest_point_to (geometry , point) —> point

v 1.7 895

GAMAdocumentation Chapter 68. Operators

Result:

the farthest point of the left-operand to the left-point.

Examples:� �
point var0 <- geom farthest_point_to(pt); // var0 equals the

farthest point of geom to pt� �
See also:

any_location_in, any_point_in, closest_points_with, points_at,

farthest_to

Possible use:

• container<agent> farthest_to geometry—> geometry
• farthest_to (container<agent> , geometry) —> geometry

Result:

An agent or a geometry among the left-operand list of agents, species or meta-population
(addition of species), the farthest to the operand (casted as a geometry).

Comment:

the distance is computed in the topology of the calling agent (the agent inwhich this operator
is used), with the distance algorithm specific to the topology.

v 1.7 896

GAMAdocumentation Chapter 68. Operators

Examples:� �
geometry var0 <- [ag1, ag2, ag3] closest_to(self); // var0

equals return the farthest agent among ag1, ag2 and ag3 to the
agent applying the operator.

(species1 + species2) closest_to self� �
See also:

neighbors_at, neighbors_of, inside, overlapping, agents_overlapping, agents_inside,
agent_closest_to, closest_to, agent_farthest_to,

file

Possible use:

• file (string) —> file
• string file container—> file
• file (string , container) —> file

Result:

opens a file in read only mode, creates a GAML file object, and tries to determine and store
the file content in the contents attribute. Creates a file in read/write mode, setting its con-
tents to the container passed in parameter

Comment:

The file should have a supported extension, see file type definition for supported file exten-
sions.The type of container to pass will depend on the type of file (see the management of
files in the documentation). Can be used to copy files since files are considered as containers.
For example: save file(‘image_copy.png’, file(‘image.png’)); will copy image.png to image_-
copy.png

v 1.7 897

GAMAdocumentation Chapter 68. Operators

Special cases:

• If the specified string does not refer to an existing file, an exception is risen when the
variable is used.

Examples:� �
let fileT type: file value: file("../includes/Stupid_Cell.Data");

// fileT represents the file "../includes/Stupid_Cell
.Data"

// fileT.contents here contains a matrix storing all
the data of the text file� �

See also:

folder, new_folder,

file_exists

Possible use:

• file_exists (string) —> bool

Result:

Test whether the parameter is the path to an existing file.

v 1.7 898

GAMAdocumentation Chapter 68. Operators

first

Possible use:

• first (string) —> string
• first (container<KeyType,ValueType>) —> ValueType
• int first container—> container
• first (int , container) —> container

Result:

the first value of the operand

Comment:

the first operator behavior depends on the nature of the operand

Special cases:

• if it is a map, first returns the first value of the first pair (in insertion order)

• if it is a file, first returns the first element of the content of the file (that is also a
container)

• if it is a population, first returns the first agent of the population

• if it is a graph, first returns the first edge (in creation order)

• if it is a matrix, first returns the element at {0,0} in the matrix

• for a matrix of int or float, it will return 0 if the matrix is empty

• for a matrix of object or geometry, it will return nil if the matrix is empty

• if it is a string, first returns a string composed of its first character

v 1.7 899

GAMAdocumentation Chapter 68. Operators

� �
string var0 <- first ('abce'); // var0 equals 'a'� �

• if it is a list, first returns the first element of the list, or nil if the list is empty

� �
int var1 <- first ([1, 2, 3]); // var1 equals 1� �
See also:

last,

first_with

Possible use:

• container first_with any expression—> unknown
• first_with (container , any expression) —> unknown

Result:

the first element of the left-hand operand that makes the right-hand operand evaluate to
true.

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the
right-hand operand elements.

v 1.7 900

GAMAdocumentation Chapter 68. Operators

Special cases:

• if the left-hand operand is nil, first_with throws an error. If there is no element that
satisfies the condition, it returns nil

• if the left-operand is a map, the keyword each will contain each value� �
unknown var4 <- [1::2, 3::4, 5::6] first_with (each >= 4); //

var4 equals 4
unknown var5 <- [1::2, 3::4, 5::6].pairs first_with (each.value

>= 4); // var5 equals 3::4� �
Examples:� �
unknown var0 <- [1,2,3,4,5,6,7,8] first_with (each > 3); //

var0 equals 4
unknown var2 <- g2 first_with (length(g2 out_edges_of each) = 0);

// var2 equals node9
unknown var3 <- (list(node) first_with (round(node(each).location

.x) > 32); // var3 equals node2� �
See also:

group_by, last_with, where,

flip

Possible use:

• flip (float) —> bool

Result:

true or false given the probability represented by the operand

v 1.7 901

GAMAdocumentation Chapter 68. Operators

Special cases:

• flip 0 always returns false, flip 1 true

Examples:� �
bool var0 <- flip (0.66666); // var0 equals 2/3 chances to

return true.� �
See also:

rnd,

float

Possible use:

• float (any) —> float

Result:

Casts the operand into the type float

floor

Possible use:

• floor (float) —> float

v 1.7 902

GAMAdocumentation Chapter 68. Operators

Result:

Maps the operand to the largest previous following integer, i.e. the largest integer not greater
than x.

Examples:� �
float var0 <- floor(3); // var0 equals 3.0
float var1 <- floor(3.5); // var1 equals 3.0
float var2 <- floor(-4.7); // var2 equals -5.0� �
See also:

ceil, round,

folder

Possible use:

• folder (string) —> file

Result:

opens an existing repository

Special cases:

• If the specified string does not refer to an existing repository, an exception is risen.

v 1.7 903

GAMAdocumentation Chapter 68. Operators

Examples:� �
folder("../includes/")
file dirT <- folder("../includes/");

// dirT represents the repository "../includes/"
// dirT.contents here contains the list of the

names of included files� �
See also:

file, new_folder,

font

Possible use:

• font (string, int, int) —> font

Result:

Creates a new font, by specifying its name (either a font face name like ‘Lucida Grande Bold’
or ‘Helvetica’, or a logical name like ‘Dialog’, ‘SansSerif’, ‘Serif’, etc.), a size in points and a
style, either #bold, #italic or #plain or a combination (addition) of them.

Examples:� �
font var0 <- font ('Helvetica Neue',12, #bold + #italic); //

var0 equals a bold and italic face of the Helvetica Neue
family� �

v 1.7 904

GAMAdocumentation Chapter 68. Operators

frequency_of

Possible use:

• container frequency_of any expression—> map
• frequency_of (container , any expression) —> map

Result:

Returns a map with keys equal to the application of the right-hand argument (like collect)
and values equal to the frequency of this key (i.e. how many times it has been obtained)

Examples:� �
map var0 <- [ag1, ag2, ag3, ag4] frequency_of each.size; //

var0 equals the different sizes as keys and the number of
agents of this size as values� �

See also:

as_map,

fuzzy_kappa

Possible use:

• fuzzy_kappa (list<agent>, list, list, list<float>, list, matrix<float>, float)
—> float

• fuzzy_kappa (list<agent>, list, list, list<float>, list, matrix<float>, float,
list) —> float

v 1.7 905

GAMAdocumentation Chapter 68. Operators

Result:

fuzzy kappa indicator for 2 map comparisons: fuzzy_kappa(agents_list,list_vals1,list_-
vals2, output_similarity_per_agents,categories,fuzzy_categories_matrix, fuzzy_distance,
weights). Reference: Visser, H., and T. de Nijs, 2006. The map comparison kit, Environ-
mental Modelling & Software, 21 fuzzy kappa indicator for 2 map comparisons: fuzzy_-
kappa(agents_list,list_vals1,list_vals2, output_similarity_per_agents,categories,fuzzy_-
categories_matrix, fuzzy_distance). Reference: Visser, H., and T. de Nijs, 2006. The map
comparison kit, Environmental Modelling & Software, 21

Examples:� �
fuzzy_kappa([ag1, ag2, ag3, ag4, ag5],[cat1,cat1,cat2,cat3,cat2

],[cat2,cat1,cat2,cat1,cat2], similarity_per_agents ,[cat1,cat2
,cat3],[[1,0,0],[0,1,0],[0,0,1]], 2, [1.0,3.0,2.0,2.0,4.0])

fuzzy_kappa([ag1, ag2, ag3, ag4, ag5],[cat1,cat1,cat2,cat3,cat2
],[cat2,cat1,cat2,cat1,cat2], similarity_per_agents ,[cat1,cat2
,cat3],[[1,0,0],[0,1,0],[0,0,1]], 2)� �

fuzzy_kappa_sim

Possible use:

• fuzzy_kappa_sim (list<agent>, list, list, list, list<float>, list, matrix<
float>, float) —> float

• fuzzy_kappa_sim (list<agent>, list, list, list, list<float>, list, matrix<
float>, float, list) —> float

Result:

fuzzy kappa simulation indicator for 2 map comparisons: fuzzy_kappa_sim(agents_-
list,list_vals1,list_vals2, output_similarity_per_agents,fuzzy_transitions_matrix, fuzzy_-
distance, weights). Reference: Jasper van Vliet, Alex Hagen-Zanker, Jelle Hurkens, Hedwig
van Delden, A fuzzy set approach to assess the predictive accuracy of land use simulations,

v 1.7 906

GAMAdocumentation Chapter 68. Operators

Ecological Modelling, 24 July 2013, Pages 32-42, ISSN 0304-3800, fuzzy kappa simulation
indicator for 2 map comparisons: fuzzy_kappa_sim(agents_list,list_vals1,list_vals2, out-
put_similarity_per_agents,fuzzy_transitions_matrix, fuzzy_distance). Reference: Jasper
van Vliet, Alex Hagen-Zanker, Jelle Hurkens, Hedwig van Delden, A fuzzy set approach to
assess the predictive accuracy of land use simulations, Ecological Modelling, 24 July 2013,
Pages 32-42, ISSN 0304-3800,

Examples:� �
fuzzy_kappa_sim([ag1, ag2, ag3, ag4, ag5], [cat1,cat1,cat2,cat3,

cat2],[cat2,cat1,cat2,cat1,cat2], similarity_per_agents ,[cat1,
cat2,cat3
],[[1,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,0,1]],
2,[1.0,3.0,2.0,2.0,4.0])

fuzzy_kappa_sim([ag1, ag2, ag3, ag4, ag5], [cat1,cat1,cat2,cat3,
cat2],[cat2,cat1,cat2,cat1,cat2], similarity_per_agents ,[cat1,
cat2,cat3
],[[1,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,0,1]],
2)� �

gaml_file

Possible use:

• gaml_file (string) —> file

Result:

Constructs a file of type gaml. Allowed extensions are limited to gaml

v 1.7 907

GAMAdocumentation Chapter 68. Operators

gamma_index

Possible use:

• gamma_index (graph) —> float

Result:

returns the gamma index of the graph (Ameasure of connectivity that considers the relation-
ship between the number of observed links and the number of possible links: gamma = e/(3
* (v - 2)) - for planar graph.

Examples:� �
graph graphEpidemio <- graph([]);
float var1 <- gamma_index(graphEpidemio); // var1 equals the

gamma index of the graph� �
See also:

alpha_index, beta_index, nb_cycles, connectivity_index,

gauss

Possible use:

• gauss (point) —> float
• float gauss float—> float
• gauss (float , float) —> float

v 1.7 908

GAMAdocumentation Chapter 68. Operators

Result:

A value from a normally distributed random variable with expected value (mean) and vari-
ance (standardDeviation). The probability density function of such a variable is a Gaussian.
A value from a normally distributed random variable with expected value (mean) and vari-
ance (standardDeviation). The probability density function of such a variable is a Gaussian.

Special cases:

• when the operand is a point, it is read as {mean, standardDeviation}

• when standardDeviation value is 0.0, it always returns the mean value

• when the operand is a point, it is read as {mean, standardDeviation}

• when standardDeviation value is 0.0, it always returns the mean value

Examples:� �
float var0 <- gauss(0,0.3); // var0 equals 0.22354
float var1 <- gauss(0,0.3); // var1 equals -0.1357
float var2 <- gauss({0,0.3}); // var2 equals 0.22354
float var3 <- gauss({0,0.3}); // var3 equals -0.1357� �
See also:

truncated_gauss, poisson,

generate_barabasi_albert

Possible use:

• generate_barabasi_albert (container<agent>, species, int, bool) —> graph
• generate_barabasi_albert (species, species, int, int, bool) —> graph

v 1.7 909

GAMAdocumentation Chapter 68. Operators

Result:

returns a random scale-free network (following Barabasi-Albert (BA) model). returns a ran-
dom scale-free network (following Barabasi-Albert (BA) model).

Comment:

The Barabasi-Albert (BA) model is an algorithm for generating random scale-free networks
using a preferential attachment mechanism. A scale-free network is a network whose de-
gree distribution follows a power law, at least asymptotically.Such networks are widely ob-
served in natural and human-made systems, including the Internet, the world wide web,
citation networks, and some social networks. [From Wikipedia article]The map operand
should includes following elements:The Barabasi-Albert (BA)model is an algorithm for gen-
erating random scale-free networks using a preferential attachment mechanism. A scale-
free network is a network whose degree distribution follows a power law, at least asymptoti-
cally.Such networks are widely observed in natural and human-made systems, including the
Internet, theworldwideweb, citationnetworks, and some social networks. [FromWikipedia
article]The map operand should includes following elements:

Special cases:

• “agents”: list of existing node agents

• “edges_species”: the species of edges

• “size”: the graph will contain (size + 1) nodes

• “m”: the number of edges added per novel node

• “synchronized”: is the graph and the species of vertices and edges synchronized?

• “vertices_specy”: the species of vertices

• “edges_species”: the species of edges

• “size”: the graph will contain (size + 1) nodes

v 1.7 910

GAMAdocumentation Chapter 68. Operators

• “m”: the number of edges added per novel node

• “synchronized”: is the graph and the species of vertices and edges synchronized?

Examples:� �
graph<yourNodeSpecy ,yourEdgeSpecy > graphEpidemio <-

generate_barabasi_albert(
yourListOfNodes ,
yourEdgeSpecy ,
3,
5,
true);

graph<yourNodeSpecy ,yourEdgeSpecy > graphEpidemio <-
generate_barabasi_albert(

yourNodeSpecy ,
yourEdgeSpecy ,
3,
5,
true);� �

See also:

generate_watts_strogatz,

generate_complete_graph

Possible use:

• generate_complete_graph (container<agent>, species, bool) —> graph
• generate_complete_graph (container<agent>, species, float, bool) —> graph
• generate_complete_graph (species, species, int, bool) —> graph
• generate_complete_graph (species, species, int, float, bool) —> graph

v 1.7 911

GAMAdocumentation Chapter 68. Operators

Result:

returns a fully connected graph. returns a fully connected graph. returns a fully connected
graph. returns a fully connected graph.

Comment:

Arguments should include following elements:Arguments should include following ele-
ments:Arguments should include following elements:Arguments should include following
elements:

Special cases:

• “vertices_specy”: the species of vertices

• “edges_species”: the species of edges

• “size”: the graph will contain size nodes.

• “layoutRadius”: nodes of the graph will be located on a circle with radius layoutRa-
dius and centered in the environment.

• “synchronized”: is the graph and the species of vertices and edges synchronized?

• “agents”: list of existing node agents

• “edges_species”: the species of edges

• “layoutRadius”: nodes of the graph will be located on a circle with radius layoutRa-
dius and centered in the environment.

• “synchronized”: is the graph and the species of vertices and edges synchronized?

• “vertices_specy”: the species of vertices

• “edges_species”: the species of edges

v 1.7 912

GAMAdocumentation Chapter 68. Operators

• “size”: the graph will contain size nodes.

• “synchronized”: is the graph and the species of vertices and edges synchronized?

• “agents”: list of existing node agents

• “edges_species”: the species of edges

• “synchronized”: is the graph and the species of vertices and edges synchronized?

Examples:

� �
graph<myVertexSpecy ,myEdgeSpecy > myGraph <-

generate_complete_graph(
myVertexSpecy ,
myEdgeSpecy ,
10, 25,

true);
graph<myVertexSpecy ,myEdgeSpecy > myGraph <-

generate_complete_graph(
myListOfNodes ,
myEdgeSpecy ,
25,

true);
graph<myVertexSpecy ,myEdgeSpecy > myGraph <-

generate_complete_graph(
myVertexSpecy ,
myEdgeSpecy ,
10,

true);
graph<myVertexSpecy ,myEdgeSpecy > myGraph <-

generate_complete_graph(
myListOfNodes ,
myEdgeSpecy ,

true);� �
v 1.7 913

GAMAdocumentation Chapter 68. Operators

See also:

generate_barabasi_albert, generate_watts_strogatz,

generate_watts_strogatz

Possible use:

• generate_watts_strogatz (container<agent>, species, float, int, bool) —>
graph

• generate_watts_strogatz (species, species, int, float, int, bool) —> graph

Result:

returns a random small-world network (followingWatts-Strogatzmodel). returns a random
small-world network (following Watts-Strogatz model).

Comment:

The Watts-Strogatz model is a random graph generation model that produces graphs with
small-world properties, including short average path lengths and high clustering.A small-
world network is a type of graph in which most nodes are not neighbors of one another, but
most nodes can be reached from every other by a small number of hops or steps. [From
Wikipedia article]The map operand should includes following elements:TheWatts-Strogatz
model is a random graph generation model that produces graphs with small-world proper-
ties, including short average path lengths and high clustering.A small-world network is a
type of graph in which most nodes are not neighbors of one another, but most nodes can be
reached from every other by a small number of hops or steps. [FromWikipedia article]The
map operand should includes following elements:

Special cases:

• “agents”: list of existing node agents

v 1.7 914

GAMAdocumentation Chapter 68. Operators

• “edges_species”: the species of edges

• “p”: probability to “rewire” an edge. So it must be between 0 and 1. The parameter is
often called beta in the literature.

• “k”: the base degree of each node. k must be greater than 2 and even.

• “synchronized”: is the graph and the species of vertices and edges synchronized?

• “vertices_specy”: the species of vertices

• “edges_species”: the species of edges

• “size”: the graph will contain (size + 1) nodes. Size must be greater than k.

• “p”: probability to “rewire” an edge. So it must be between 0 and 1. The parameter is
often called beta in the literature.

• “k”: the base degree of each node. k must be greater than 2 and even.

• “synchronized”: is the graph and the species of vertices and edges synchronized?

Examples:� �
graph<myVertexSpecy ,myEdgeSpecy > myGraph <-

generate_watts_strogatz(
myListOfNodes ,
myEdgeSpecy ,
0.3,
2,

true);
graph<myVertexSpecy ,myEdgeSpecy > myGraph <-

generate_watts_strogatz(
myVertexSpecy ,
myEdgeSpecy ,
2,
0.3,
2,

true);

v 1.7 915

GAMAdocumentation Chapter 68. Operators

� �
See also:

generate_barabasi_albert,

geometric_mean

Possible use:

• geometric_mean (container) —> float

Result:

the geometric mean of the elements of the operand. See Geometric_mean for more details.

Comment:

The operator casts all the numerical element of the list into float. The elements that are not
numerical are discarded.

Examples:� �
float var0 <- geometric_mean ([4.5, 3.5, 5.5, 7.0]); // var0

equals 4.962326343467649� �
See also:

mean, median, harmonic_mean,

v 1.7 916

GAMAdocumentation Chapter 68. Operators

geometry

Possible use:

• geometry (any) —> geometry

Result:

Casts the operand into the type geometry

geometry_collection

Possible use:

• geometry_collection (container<geometry>) —> geometry

Result:

A geometry collection (multi-geometry) composed of the given list of geometries.

Special cases:

• if the operand is nil, returns the point geometry {0,0}

• if the operand is composed of a single geometry, returns a copy of the geometry.

Examples:� �
geometry var0 <- geometry_collection([{0,0}, {0,10}, {10,10},

{10,0}]); // var0 equals a geometry composed of the 4
points (multi-point).� �

v 1.7 917

GAMAdocumentation Chapter 68. Operators

See also:

around, circle, cone, link, norm, point, polygone, rectangle, square, triangle, line,

get

Possible use:

• agent get string—> unknown
• get (agent , string) —> unknown
• geometry get string—> unknown
• get (geometry , string) —> unknown

Result:

Reads an attribute of the specified agent (left operand). The attribute name is specified by
the right operand. Reads an attribute of the specified geometry (left operand). The attribute
name is specified by the right operand.

Special cases:

• Reading the attribute of another agent� �
string agent_name <- an_agent get('name'); // reads then '

name' attribute of an_agent then assigns the returned value to
the agent_name variable� �

• Reading the attribute of a geometry� �
string geom_area <- a_geometry get('area'); // reads then '

area' attribute of 'a_geometry ' variable then assigns the
returned value to the geom_area variable� �

v 1.7 918

GAMAdocumentation Chapter 68. Operators

get_about

Possible use:

• get_about (emotion) —> predicate

Result:

get the about value of the given emotion

Examples:� �
emotion set_intensity 12� �

get_decay

Possible use:

• get_decay (emotion) —> float

Result:

get the decay value of the given emotion

Examples:� �
emotion set_intensity 12� �

v 1.7 919

GAMAdocumentation Chapter 68. Operators

get_intensity

Possible use:

• get_intensity (emotion) —> float

Result:

get the intensity value of the given emotion

Examples:� �
emotion set_intensity 12� �

get_lifetime

Possible use:

• get_lifetime (predicate) —> int

get_priority

Possible use:

• get_priority (predicate) —> float

v 1.7 920

GAMAdocumentation Chapter 68. Operators

get_super_intention

Possible use:

• get_super_intention (predicate) —> predicate

graph

Possible use:

• graph (any) —> graph

Result:

Casts the operand into the type graph

grayscale

Possible use:

• grayscale (rgb) —> rgb

Result:

Converts rgb color to grayscale value

Comment:

r=red, g=green, b=blue. Between 0 and 255 and gray = 0.299 * red + 0.587 * green + 0.114
* blue (Photoshop value)

v 1.7 921

GAMAdocumentation Chapter 68. Operators

Examples:� �
rgb var0 <- grayscale (rgb(255,0,0)); // var0 equals to a dark

grey� �
See also:

rgb, hsb,

grid_at

Possible use:

• species grid_at point—> agent
• grid_at (species , point) —> agent

Result:

returns the cell of the grid (right-hand operand) at the position given by the right-hand
operand

Comment:

If the left-hand operand is a point of floats, it is used as a point of ints.

Special cases:

• if the left-hand operand is not a grid cell species, returns nil

v 1.7 922

GAMAdocumentation Chapter 68. Operators

Examples:� �
agent var0 <- grid_cell grid_at {1,2}; // var0 equals the agent

grid_cell with grid_x=1 and grid_y = 2� �

grid_cells_to_graph

Possible use:

• grid_cells_to_graph (container) —> graph

Result:

creates a graph from a list of cells (operand). An edge is created between neighbors.

Examples:� �
my_cell_graph <-grid_cells_to_graph(cells_list)� �

grid_file

Possible use:

• grid_file (string) —> file

Result:

Constructs a file of type grid. Allowed extensions are limited to asc, tif

v 1.7 923

GAMAdocumentation Chapter 68. Operators

group_by

Possible use:

• container group_by any expression—> map
• group_by (container , any expression) —> map

Result:

Returns a map, where the keys take the possible values of the right-hand operand and the
map values are the list of elements of the left-hand operand associated to the key value

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the
right-hand operand elements.

Special cases:

• if the left-hand operand is nil, group_by throws an error

Examples:� �
map var0 <- [1,2,3,4,5,6,7,8] group_by (each > 3); // var0

equals [false::[1, 2, 3], true::[4, 5, 6, 7, 8]]
map var1 <- g2 group_by (length(g2 out_edges_of each)); //

var1 equals [0::[node9, node7, node10, node8, node11], 1::[
node6], 2::[node5], 3::[node4]]

map var2 <- (list(node) group_by (round(node(each).location.x));
// var2 equals [32::[node5], 21::[node1], 4::[node0], 66::[

node2], 96::[node3]]
map var3 <- [1::2, 3::4, 5::6] group_by (each > 4); // var3

equals [false::[2, 4], true::[6]]� �
v 1.7 924

GAMAdocumentation Chapter 68. Operators

See also:

first_with, last_with, where,

harmonic_mean

Possible use:

• harmonic_mean (container) —> float

Result:

the harmonic mean of the elements of the operand. See Harmonic_mean for more details.

Comment:

The operator casts all the numerical element of the list into float. The elements that are not
numerical are discarded.

Examples:� �
float var0 <- harmonic_mean ([4.5, 3.5, 5.5, 7.0]); // var0

equals 4.804159445407279� �
See also:

mean, median, geometric_mean,

v 1.7 925

GAMAdocumentation Chapter 68. Operators

hexagon

Possible use:

• hexagon (point) —> geometry
• hexagon (float) —> geometry

Result:

A hexagon geometry which the given with and height

Comment:

the center of the hexagon is by default the location of the current agent in which has been
called this operator.the center of the hexagon is by default the location of the current agent
in which has been called this operator.

Special cases:

• returns nil if the operand is nil.

• returns nil if the operand is nil.

Examples:� �
geometry var0 <- hexagon({10,5}); // var0 equals a geometry as

a hexagon of width of 10 and height of 5.
geometry var1 <- hexagon(10); // var1 equals a geometry as a

hexagon of width of 10 and height of 10.� �
See also:

around, circle, cone, line, link, norm, point, polygon, polyline, rectangle, triangle,

v 1.7 926

GAMAdocumentation Chapter 68. Operators

hierarchical_clustering

Possible use:

• container<agent> hierarchical_clustering float—> container
• hierarchical_clustering (container<agent> , float) —> container

Result:

A tree (list of list) contained groups of agents clustered by distance considering a distance
min between two groups.

Comment:

use of hierarchical clustering with Minimum for linkage criterion between two groups of
agents.

Examples:� �
container var0 <- [ag1, ag2, ag3, ag4, ag5]

hierarchical_clustering 20.0; // var0 equals for example,
can return [[[ag1],[ag3]], [ag2], [[[ag4],[ag5]],[ag6]]� �

See also:

simple_clustering_by_distance,

hsb

Possible use:

• hsb (float, float, float) —> rgb
• hsb (float, float, float, int) —> rgb
• hsb (float, float, float, float) —> rgb

v 1.7 927

GAMAdocumentation Chapter 68. Operators

Result:

Converts hsb (h=hue, s=saturation, b=brightness) value to Gama color

Comment:

h,s and b components should be floating-point values between 0.0 and 1.0 and when
used alpha should be an integer (between 0 and 255) or a float (between 0 and 1) . Ex-
amples: Red=(0.0,1.0,1.0), Yellow=(0.16,1.0,1.0), Green=(0.33,1.0,1.0), Cyan=(0.5,1.0,1.0),
Blue=(0.66,1.0,1.0), Magenta=(0.83,1.0,1.0)

Examples:� �
rgb var0 <- hsb (0.0,1.0,1.0); // var0 equals rgb("red")
rgb var1 <- hsb (0.5,1.0,1.0,0.0); // var1 equals rgb("cyan",0)� �
See also:

rgb,

hypot

Possible use:

• hypot (float, float, float, float) —> float

Result:

Returns sqrt(x2 +y2) without intermediate overflow or underflow.

Special cases:

• If either argument is infinite, then the result is positive infinity. If either argument is
NaN and neither argument is infinite, then the result is NaN.

v 1.7 928

GAMAdocumentation Chapter 68. Operators

Examples:� �
float var0 <- hypot(0,1,0,1); // var0 equals sqrt(2)� �

IDW

Possible use:

• IDW (container<agent>, map<point,float>, int) —> map<agent,float>

Result:

Inverse Distance Weighting (IDW) is a type of deterministic method for multivariate in-
terpolation with a known scattered set of points. The assigned values to each geometry
are calculated with a weighted average of the values available at the known points. See:
http://en.wikipedia.org/wiki/Inverse_distance_weighting Usage: IDW (list of geometries,
map of points (key: point, value: value), power parameter)

Examples:� �
map<agent,float> var0 <- IDW([ag1, ag2, ag3, ag4, ag5

],[{10,10}::25.0, {10,80}::10.0, {100,10}::15.0], 2); // var0
equals for example, can return [ag1::12.0, ag2::23.0,ag3

::12.0,ag4::14.0,ag5::17.0]� �

image_file

Possible use:

• image_file (string) —> file

v 1.7 929

GAMAdocumentation Chapter 68. Operators

Result:

Constructs a file of type image. Allowed extensions are limited to tiff, jpg, jpeg, png, gif, pict,
bmp

in

Possible use:

• string in string—> bool
• in (string , string) —> bool
• unknown in container—> bool
• in (unknown , container) —> bool

Result:

true if the right operand contains the left operand, false otherwise

Comment:

the definition of in depends on the container

Special cases:

• if both operands are strings, returns true if the left-hand operand patterns is included
in to the right-hand string;

• if the right operand is nil or empty, in returns false

Examples:

v 1.7 930

GAMAdocumentation Chapter 68. Operators

� �
bool var0 <- 'bc' in 'abcded '; // var0 equals true
bool var1 <- 2 in [1,2,3,4,5,6]; // var1 equals true
bool var2 <- 7 in [1,2,3,4,5,6]; // var2 equals false
bool var3 <- 3 in [1::2, 3::4, 5::6]; // var3 equals false
bool var4 <- 6 in [1::2, 3::4, 5::6]; // var4 equals true� �
See also:

contains,

in_degree_of

Possible use:

• graph in_degree_of unknown—> int
• in_degree_of (graph , unknown) —> int

Result:

returns the in degree of a vertex (right-hand operand) in the graph given as left-hand
operand.

Examples:� �
int var1 <- graphFromMap in_degree_of (node(3)); // var1

equals 2� �
See also:

out_degree_of, degree_of,

v 1.7 931

GAMAdocumentation Chapter 68. Operators

in_edges_of

Possible use:

• graph in_edges_of unknown—> container
• in_edges_of (graph , unknown) —> container

Result:

returns the list of the in-edges of a vertex (right-hand operand) in the graph given as left-
hand operand.

Examples:� �
container var1 <- graphFromMap in_edges_of node({12,45}); //

var1 equals [LineString]� �
See also:

out_edges_of,

indented_by

Possible use:

• string indented_by int—> string
• indented_by (string , int) —> string

Result:

Converts a (possibly multiline) string by indenting it by a number – specified by the second
operand – of tabulations to the right

v 1.7 932

GAMAdocumentation Chapter 68. Operators

index_by

Possible use:

• container index_by any expression—> map
• index_by (container , any expression) —> map

Result:

produces a new map from the evaluation of the right-hand operand for each element of the
left-hand operand

Special cases:

• if the left-hand operand is nil, index_by throws an error.

Examples:� �
map var0 <- [1,2,3,4,5,6,7,8] index_by (each - 1); // var0

equals [0::1, 1::2, 2::3, 3::4, 4::5, 5::6, 6::7, 7::8]� �

index_of

Possible use:

• string index_of string—> int
• index_of (string , string) —> int
• container index_of unknown—> int
• index_of (container , unknown) —> int
• matrix index_of unknown—> point
• index_of (matrix , unknown) —> point
• species index_of unknown—> int
• index_of (species , unknown) —> int
• map index_of unknown—> unknown
• index_of (map , unknown) —> unknown

v 1.7 933

GAMAdocumentation Chapter 68. Operators

Result:

the index of the first occurence of the right operand in the left operand container the index
of the first occurence of the right operand in the left operand container

Comment:

The definition of index_of and the type of the index depend on the container

Special cases:

• if the left operator is a species, returns the index of an agent in a species. If the
argument is not an agent of this species, returns -1. Use int(agent) instead

• if the left operand is a map, index_of returns the index of a value or nil if the value is
not mapped

• if both operands are strings, returns the index within the left-hand string of the first
occurrence of the given right-hand string� �

int var0 <- "abcabcabc" index_of "ca"; // var0 equals 2� �
• if the left operand is a list, index_of returns the index as an integer� �

int var1 <- [1,2,3,4,5,6] index_of 4; // var1 equals 3
int var2 <- [4,2,3,4,5,4] index_of 4; // var2 equals 0� �

• if the left operand is a matrix, index_of returns the index as a point� �
point var3 <- matrix([[1,2,3],[4,5,6]]) index_of 4; // var3

equals {1.0,0.0}� �
Examples:� �
unknown var4 <- [1::2, 3::4, 5::6] index_of 4; // var4 equals 3� �
v 1.7 934

GAMAdocumentation Chapter 68. Operators

See also:

at, last_index_of,

inside

Possible use:

• container<agent> inside geometry—> list<geometry>
• inside (container<agent> , geometry) —> list<geometry>

Result:

A list of agents or geometries among the left-operand list, species or meta-population (addi-
tion of species), covered by the operand (casted as a geometry).

Examples:� �
list<geometry > var0 <- [ag1, ag2, ag3] inside(self); // var0

equals the agents among ag1, ag2 and ag3 that are covered by
the shape of the right-hand argument.

list<geometry > var1 <- (species1 + species2) inside (self);
// var1 equals the agents among species species1 and species2
that are covered by the shape of the right-hand argument.� �

See also:

neighbors_at, neighbors_of, closest_to, overlapping, agents_overlapping, agents_inside,
agent_closest_to,

v 1.7 935

GAMAdocumentation Chapter 68. Operators

int

Possible use:

• int (any) —> int

Result:

Casts the operand into the type int

inter

Possible use:

• geometry inter geometry—> geometry
• inter (geometry , geometry) —> geometry
• container inter container—> container
• inter (container , container) —> container

Result:

A geometry resulting from the intersection between the two geometries the intersection of
the two operands

Comment:

both containers are transformed into sets (so without duplicated element, cf. remove_depli-
cates operator) before the set intersection is computed.

Special cases:

• returns nil if one of the operands is nil

v 1.7 936

GAMAdocumentation Chapter 68. Operators

• if an operand is a graph, it will be transformed into the set of its nodes

• if an operand is a map, it will be transformed into the set of its values

� �
container var3 <- [1::2, 3::4, 5::6] inter [2,4]; // var3

equals [2,4]
container var4 <- [1::2, 3::4, 5::6] inter [1,3]; // var4

equals []� �
• if an operand is a matrix, it will be transformed into the set of the lines

� �
container var5 <- matrix([[1,2,3],[4,5,4]]) inter [3,4]; //

var5 equals [3,4]� �
Examples:� �
geometry var0 <- square(10) inter circle(5); // var0 equals

circle(5)
container var1 <- [1,2,3,4,5,6] inter [2,4]; // var1 equals

[2,4]
container var2 <- [1,2,3,4,5,6] inter [0,8]; // var2 equals []� �
See also:

union, +, -, remove_duplicates,

interleave

Possible use:

• interleave (container) —> container

v 1.7 937

GAMAdocumentation Chapter 68. Operators

Result:

a new list containing the interleaved elements of the containers contained in the operand

Comment:

the operand should be a list of lists of elements. The result is a list of elements.

Examples:� �
container var0 <- interleave([1,2,4,3,5,7,6,8]); // var0

equals [1,2,4,3,5,7,6,8]
container var1 <- interleave([['e11','e12','e13'],['e21','e22','

e23'],['e31','e32','e33']]); // var1 equals ['e11','e21','
e31','e12','e22','e32','e13','e23','e33']� �

internal_at

Possible use:

• agent internal_at container—> unknown
• internal_at (agent , container) —> unknown
• container<KeyType,ValueType> internal_at list<KeyType>—> ValueType
• internal_at (container<KeyType,ValueType> , list<KeyType>) —> ValueType
• geometry internal_at container—> unknown
• internal_at (geometry , container) —> unknown

Result:

For internal use only. Corresponds to the implementation, for agents, of the access to con-
tainers with index For internal use only. Corresponds to the implementation of the access
to containers with index For internal use only. Corresponds to the implementation, for ge-
ometries, of the access to containers with index

v 1.7 938

GAMAdocumentation Chapter 68. Operators

See also:

at,

internal_integrated_value

Possible use:

• any expression internal_integrated_value any expression—> container
• internal_integrated_value (any expression , any expression) —> container

Result:

For internal use only. Corresponds to the implementation, for agents, of the access to con-
tainers with index

internal_zero_order_equation

Possible use:

• internal_zero_order_equation (any expression) —> float

intersection

Same signification as inter

v 1.7 939

GAMAdocumentation Chapter 68. Operators

intersects

Possible use:

• geometry intersects geometry—> bool
• intersects (geometry , geometry) —> bool

Result:

A boolean, equal to true if the left-geometry (or agent/point) intersects the right-geometry
(or agent/point).

Special cases:

• if one of the operand is null, returns false.

Examples:� �
bool var0 <- square(5) intersects {10,10}; // var0 equals false� �
See also:

disjoint_from, crosses, overlaps, partially_overlaps, touches,

inverse

Possible use:

• inverse (matrix) —> matrix<float>

Result:

The inverse matrix of the given matrix. If no inverse exists, returns a matrix that has prop-
erties that resemble that of an inverse.

v 1.7 940

GAMAdocumentation Chapter 68. Operators

Examples:� �
matrix<float> var0 <- inverse(matrix([[5,-3],[6,-4]])); //

var0 equals [2.0000000000000004,-0.9999999999999998]� �

inverse_distance_weighting

Same signification as IDW

is

Possible use:

• unknown is any expression—> bool
• is (unknown , any expression) —> bool

Result:

returns true if the left operand is of the right operand type, false otherwise

Examples:� �
bool var0 <- 0 is int; // var0 equals true
bool var1 <- an_agent is node; // var1 equals true
bool var2 <- 1 is float; // var2 equals false� �

v 1.7 941

GAMAdocumentation Chapter 68. Operators

is_clockwise

Possible use:

• is_clockwise (geometry) —> bool

Result:

returns true if the geometry is defined clockwise

Examples:� �
bool var0 <- is_clockwise(circle(10)); // var0 equals true� �
See also:

change_clockwise,

is_csv

Possible use:

• is_csv (any) —> bool

Result:

Tests whether the operand is a csv file.

v 1.7 942

GAMAdocumentation Chapter 68. Operators

is_dxf

Possible use:

• is_dxf (any) —> bool

Result:

Tests whether the operand is a dxf file.

is_finite

Possible use:

• is_finite (float) —> bool

Result:

Returns whether the argument is a finite number or not

Examples:� �
bool var0 <- is_finite(4.66); // var0 equals true
bool var1 <- is_finite(#infinity); // var1 equals false� �

is_gaml

Possible use:

• is_gaml (any) —> bool

v 1.7 943

GAMAdocumentation Chapter 68. Operators

Result:

Tests whether the operand is a gaml file.

is_grid

Possible use:

• is_grid (any) —> bool

Result:

Tests whether the operand is a grid file.

is_image

Possible use:

• is_image (any) —> bool

Result:

Tests whether the operand is a image file.

is_number

Possible use:

• is_number (float) —> bool
• is_number (string) —> bool

v 1.7 944

GAMAdocumentation Chapter 68. Operators

Result:

Returns whether the argument is a real number or not tests whether the operand represents
a numerical value

Comment:

Note that the symbol . should be used for a float value (a string with , will not be considered
as a numeric value). Symbols e and E are also accepted. A hexadecimal value should begin
with #.

Examples:� �
bool var0 <- is_number(4.66); // var0 equals true
bool var1 <- is_number(#infinity); // var1 equals true
bool var2 <- is_number(#nan); // var2 equals false
bool var3 <- is_number("test"); // var3 equals false
bool var4 <- is_number("123.56"); // var4 equals true
bool var5 <- is_number("-1.2e5"); // var5 equals true
bool var6 <- is_number("1,2"); // var6 equals false
bool var7 <- is_number("#12FA"); // var7 equals true� �

is_obj

Possible use:

• is_obj (any) —> bool

Result:

Tests whether the operand is a obj file.

v 1.7 945

GAMAdocumentation Chapter 68. Operators

is_osm

Possible use:

• is_osm (any) —> bool

Result:

Tests whether the operand is a osm file.

is_pgm

Possible use:

• is_pgm (any) —> bool

Result:

Tests whether the operand is a pgm file.

is_property

Possible use:

• is_property (any) —> bool

Result:

Tests whether the operand is a property file.

v 1.7 946

GAMAdocumentation Chapter 68. Operators

is_R

Possible use:

• is_R (any) —> bool

Result:

Tests whether the operand is a R file.

is_shape

Possible use:

• is_shape (any) —> bool

Result:

Tests whether the operand is a shape file.

is_skill

Possible use:

• unknown is_skill string—> bool
• is_skill (unknown , string) —> bool

Result:

returns true if the left operand is an agent whose species implements the right-hand skill
name

v 1.7 947

GAMAdocumentation Chapter 68. Operators

Examples:� �
bool var0 <- agentA is_skill 'moving '; // var0 equals true� �

is_svg

Possible use:

• is_svg (any) —> bool

Result:

Tests whether the operand is a svg file.

is_text

Possible use:

• is_text (any) —> bool

Result:

Tests whether the operand is a text file.

is_threeds

Possible use:

• is_threeds (any) —> bool

v 1.7 948

GAMAdocumentation Chapter 68. Operators

Result:

Tests whether the operand is a threeds file.

is_URL

Possible use:

• is_URL (any) —> bool

Result:

Tests whether the operand is a URL file.

is_xml

Possible use:

• is_xml (any) —> bool

Result:

Tests whether the operand is a xml file.

kappa

Possible use:

• kappa (list, list, list) —> float
• kappa (list, list, list, list) —> float

v 1.7 949

GAMAdocumentation Chapter 68. Operators

Result:

kappa indicator for 2 map comparisons: kappa(list_vals1,list_vals2,categories, weights).
Reference: Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas.
1960, 20. kappa indicator for 2 map comparisons: kappa(list_vals1,list_vals2,categories).
Reference: Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas.
1960, 20.

Examples:� �
kappa([cat1,cat1,cat2,cat3,cat2],[cat2,cat1,cat2,cat1,cat2],[cat1

,cat2,cat3], [1.0, 2.0, 3.0, 1.0, 5.0])
kappa([cat1,cat1,cat2,cat3,cat2],[cat2,cat1,cat2,cat1,cat2],[cat1

,cat2,cat3])
float var2 <- kappa([1,3,5,1,5],[1,1,1,1,5],[1,3,5]); // var2

equals the similarity between 0 and 1
float var3 <- kappa([1,1,1,1,5],[1,1,1,1,5],[1,3,5]); // var3

equals 1.0� �

kappa_sim

Possible use:

• kappa_sim (list, list, list, list) —> float
• kappa_sim (list, list, list, list, list) —> float

Result:

kappa simulation indicator for 2 map comparisons: kappa(list_valsInits,list_valsObs,list_-
valsSim, categories). Reference: van Vliet, J., Bregt, A.K. & Hagen-Zanker, A. (2011).
Revisiting Kappa to account for change in the accuracy assessment of land-use change
models, Ecological Modelling 222(8). kappa simulation indicator for 2 map comparisons:
kappa(list_valsInits,list_valsObs,list_valsSim, categories, weights). Reference: van Vliet,
J., Bregt, A.K. & Hagen-Zanker, A. (2011). Revisiting Kappa to account for change in the
accuracy assessment of land-use change models, Ecological Modelling 222(8)

v 1.7 950

GAMAdocumentation Chapter 68. Operators

Examples:� �
kappa([cat1,cat1,cat2,cat2,cat2],[cat2,cat1,cat2,cat1,cat3],[cat2

,cat1,cat2,cat3,cat3], [cat1,cat2,cat3])
kappa([cat1,cat1,cat2,cat2,cat2],[cat2,cat1,cat2,cat1,cat3],[cat2

,cat1,cat2,cat3,cat3], [cat1,cat2,cat3],[1.0, 2.0, 3.0, 1.0,
5.0])� �

kmeans

Possible use:

• list kmeans int—> list<list>
• kmeans (list , int) —> list<list>
• kmeans (list, int, int) —> list<list>

Result:

returns the list of clusters (list of instance indices) computed with the kmeans++ algorithm
from the first operand data according to the number of clusters to split the data into (k) and
the maximum number of iterations to run the algorithm for (If negative, no maximum will
be used) (maxIt). Usage: kmeans(data,k,maxit) returns the list of clusters (list of instance
indices) computed with the kmeans++ algorithm from the first operand data according to
the number of clusters to split the data into (k). Usage: kmeans(data,k)

Special cases:

• if the lengths of two vectors in the right-hand aren’t equal, returns 0

• if the lengths of two vectors in the right-hand aren’t equal, returns 0

v 1.7 951

GAMAdocumentation Chapter 68. Operators

Examples:� �
kmeans ([[2,4,5], [3,8,2], [1,1,3], [4,3,4]],2,10)
kmeans ([[2,4,5], [3,8,2], [1,1,3], [4,3,4]],2)� �

kurtosis

Possible use:

• kurtosis (list) —> float

Result:

returns kurtosis value computed from the operand list of values

Special cases:

• if the length of the list is lower than 3, returns NaN

Examples:� �
kurtosis ([1,2,3,4,5])� �

last

Possible use:

• last (string) —> string
• last (container<KeyType,ValueType>) —> ValueType
• int last container—> container
• last (int , container) —> container

v 1.7 952

GAMAdocumentation Chapter 68. Operators

Result:

the last element of the operand

Comment:

the last operator behavior depends on the nature of the operand

Special cases:

• if it is a map, last returns the value of the last pair (in insertion order)

• if it is a file, last returns the last element of the content of the file (that is also a
container)

• if it is a population, last returns the last agent of the population

• if it is a graph, last returns a list containing the last edge created

• if it is a matrix, last returns the element at {length-1,length-1} in the matrix

• for a matrix of int or float, it will return 0 if the matrix is empty

• for a matrix of object or geometry, it will return nil if the matrix is empty

• if it is a string, last returns a string composed of its last character, or an empty string
if the operand is empty

� �
string var0 <- last ('abce'); // var0 equals 'e'� �

• if it is a list, last returns the last element of the list, or nil if the list is empty

� �
int var1 <- last ([1, 2, 3]); // var1 equals 3� �
v 1.7 953

GAMAdocumentation Chapter 68. Operators

See also:

first,

last_index_of

Possible use:

• string last_index_of string—> int
• last_index_of (string , string) —> int
• matrix last_index_of unknown—> point
• last_index_of (matrix , unknown) —> point
• container last_index_of unknown—> int
• last_index_of (container , unknown) —> int
• map last_index_of unknown—> unknown
• last_index_of (map , unknown) —> unknown
• species last_index_of unknown—> int
• last_index_of (species , unknown) —> int

Result:

the index of the last occurence of the right operand in the left operand container

Comment:

The definition of last_index_of and the type of the index depend on the container

Special cases:

• if the left operand is a species, the last index of an agent is the same as its index

• if both operands are strings, returns the index within the left-hand string of the right-
most occurrence of the given right-hand string

v 1.7 954

GAMAdocumentation Chapter 68. Operators

� �
int var0 <- "abcabcabc" last_index_of "ca"; // var0 equals 5� �

• if the left operand is a matrix, last_index_of returns the index as a point

� �
point var1 <- matrix([[1,2,3],[4,5,4]]) last_index_of 4; //

var1 equals {1.0,2.0}� �
• if the left operand is a list, last_index_of returns the index as an integer

� �
int var2 <- [1,2,3,4,5,6] last_index_of 4; // var2 equals 3
int var3 <- [4,2,3,4,5,4] last_index_of 4; // var3 equals 5� �

• if the left operand is a map, last_index_of returns the index as an int (the key of the
pair)

� �
unknown var4 <- [1::2, 3::4, 5::4] last_index_of 4; // var4

equals 5� �
See also:

at, last_index_of, index_of,

last_with

Possible use:

• container last_with any expression—> unknown
• last_with (container , any expression) —> unknown

v 1.7 955

GAMAdocumentation Chapter 68. Operators

Result:

the last element of the left-hand operand that makes the right-hand operand evaluate to
true.

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the
right-hand operand elements.

Special cases:

• if the left-hand operand is nil, last_with throws an error.

• If there is no element that satisfies the condition, it returns nil

• if the left-operand is a map, the keyword each will contain each value� �
unknown var4 <- [1::2, 3::4, 5::6] last_with (each >= 4); //

var4 equals 6
unknown var5 <- [1::2, 3::4, 5::6].pairs last_with (each.value >=

4); // var5 equals 5::6� �
Examples:� �
unknown var0 <- [1,2,3,4,5,6,7,8] last_with (each > 3); //

var0 equals 8
unknown var2 <- g2 last_with (length(g2 out_edges_of each) = 0);

// var2 equals node11
unknown var3 <- (list(node) last_with (round(node(each).location.

x) > 32); // var3 equals node3� �
See also:

group_by, first_with, where,

v 1.7 956

GAMAdocumentation Chapter 68. Operators

layout

Possible use:

• graph layout string—> graph
• layout (graph , string) —> graph
• layout (graph, string, int) —> graph
• layout (graph, string, int, map<string,unknown>) —> graph

Result:

layouts a GAMA graph.

length

Possible use:

• length (container<KeyType,ValueType>) —> int
• length (string) —> int

Result:

the number of elements contained in the operand

Comment:

the length operator behavior depends on the nature of the operand

Special cases:

• if it is a population, length returns number of agents of the population

v 1.7 957

GAMAdocumentation Chapter 68. Operators

• if it is a graph, length returns the number of vertexes or of edges (depending on the
way it was created)

• if it is a list or a map, length returns the number of elements in the list or map

� �
int var0 <- length([12,13]); // var0 equals 2
int var1 <- length([]); // var1 equals 0� �

• if it is a matrix, length returns the number of cells

� �
int var2 <- length(matrix([["c11","c12","c13"],["c21","c22","c23"

]])); // var2 equals 6� �
• if it is a string, length returns the number of characters

� �
int var3 <- length ('I am an agent '); // var3 equals 13� �

line

Possible use:

• line (container<geometry>) —> geometry
• container<geometry> line float—> geometry
• line (container<geometry> , float) —> geometry

Result:

A polyline geometry from the given list of points represented as a cylinder of radius r. A
polyline geometry from the given list of points.

v 1.7 958

GAMAdocumentation Chapter 68. Operators

Special cases:

• if the operand is nil, returns the point geometry {0,0}

• if the operand is composed of a single point, returns a point geometry.

• if the operand is nil, returns the point geometry {0,0}

• if the operand is composed of a single point, returns a point geometry.

• if a radius is added, the given list of points represented as a cylinder of radius r

� �
geometry var0 <- polyline([{0,0}, {0,10}, {10,10}, {10,0}],0.2);

// var0 equals a polyline geometry composed of the 4 points
.� �

Examples:� �
geometry var1 <- polyline([{0,0}, {0,10}, {10,10}, {10,0}]);

// var1 equals a polyline geometry composed of the 4 points.� �
See also:

around, circle, cone, link, norm, point, polygone, rectangle, square, triangle,

link

Possible use:

• geometry link geometry—> geometry
• link (geometry , geometry) —> geometry

v 1.7 959

GAMAdocumentation Chapter 68. Operators

Result:

A dynamic line geometry between the location of the two operands

Comment:

The geometry of the link is a line between the locations of the two operands, which is built
and maintained dynamically

Special cases:

• if one of the operands is nil, link returns a point geometry at the location of the other.
If both are null, it returns a point geometry at {0,0}

Examples:� �
geometry var0 <- link (geom1,geom2); // var0 equals a link

geometry between geom1 and geom2.� �
See also:

around, circle, cone, line, norm, point, polygon, polyline, rectangle, square, triangle,

list

Possible use:

• list (any) —> list

Result:

Casts the operand into the type list

v 1.7 960

GAMAdocumentation Chapter 68. Operators

list_with

Possible use:

• int list_with any expression—> container
• list_with (int , any expression) —> container

Result:

creates a list with a size provided by the first operand, and filled with the second operand

Comment:

Note that the right operand should be positive, and that the second one is evaluated for each
position in the list.

See also:

list,

ln

Possible use:

• ln (float) —> float
• ln (int) —> float

Result:

Returns the natural logarithm (base e) of the operand.

Special cases:

• an exception is raised if the operand is less than zero.

v 1.7 961

GAMAdocumentation Chapter 68. Operators

Examples:� �
float var0 <- ln(exp(1)); // var0 equals 1.0
float var1 <- ln(1); // var1 equals 0.0� �
See also:

exp,

load_graph_from_file

Possible use:

• load_graph_from_file (string) —> graph
• string load_graph_from_file file—> graph
• load_graph_from_file (string , file) —> graph
• string load_graph_from_file string—> graph
• load_graph_from_file (string , string) —> graph
• load_graph_from_file (string, species, species) —> graph
• load_graph_from_file (string, file, species, species) —> graph
• load_graph_from_file (string, string, species, species) —> graph
• load_graph_from_file (string, string, species, species, bool) —> graph

Result:

returns a graph loaded from a given file encoded into a given format. The last boolean pa-
rameter indicates whether the resulting graph will be considered as spatial or not by GAMA
loads a graph from a file

Comment:

Available formats: “pajek”: Pajek (Slovene word for Spider) is a program, for Windows, for
analysis and visualization of large networks. See: http://pajek.imfm.si/doku.php?id=pajek

v 1.7 962

GAMAdocumentation Chapter 68. Operators

for more details.“lgl”: LGL is a compendium of applications for making the visualization of
large networks and trees tractable. See: http://lgl.sourceforge.net/ for more details.“dot”:
DOT is a plain text graph description language. It is a simple way of describing graphs that
both humans and computer programs can use. See: http://en.wikipedia.org/wiki/DOT_-
language for more details.“edge”: This format is a simple text file with numeric vertex
ids defining the edges.“gexf”: GEXF (Graph Exchange XML Format) is a language for
describing complex networks structures, their associated data and dynamics. Started in
2007 at Gephi project by different actors, deeply involved in graph exchange issues, the
gexf specifications are mature enough to claim being both extensible and open, and suit-
able for real specific applications. See: http://gexf.net/format/ for more details.“graphml”:
GraphML is a comprehensive and easy-to-use file format for graphs based on XML. See:
http://graphml.graphdrawing.org/ for more details.“tlp” or “tulip”: TLP is the Tulip soft-
ware graph format. See: http://tulip.labri.fr/TulipDrupal/?q=tlp-file-format for more de-
tails. “ncol”: This format is used by the Large Graph Layout progra. It is simply a
symbolic weighted edge list. It is a simple text file with one edge per line. An edge is
defined by two symbolic vertex names separated by whitespace. (The symbolic vertex
names themselves cannot contain whitespace.) They might followed by an optional num-
ber, this will be the weight of the edge. See: http://bioinformatics.icmb.utexas.edu/lgl
for more details.The map operand should includes following elements:Available formats:
“pajek”: Pajek (Slovene word for Spider) is a program, for Windows, for analysis and vi-
sualization of large networks. See: http://pajek.imfm.si/doku.php?id=pajek for more de-
tails.“lgl”: LGL is a compendium of applications for making the visualization of large net-
works and trees tractable. See: http://lgl.sourceforge.net/ for more details.“dot”: DOT
is a plain text graph description language. It is a simple way of describing graphs that
both humans and computer programs can use. See: http://en.wikipedia.org/wiki/DOT_-
language for more details.“edge”: This format is a simple text file with numeric vertex
ids defining the edges.“gexf”: GEXF (Graph Exchange XML Format) is a language for
describing complex networks structures, their associated data and dynamics. Started in
2007 at Gephi project by different actors, deeply involved in graph exchange issues, the
gexf specifications are mature enough to claim being both extensible and open, and suit-
able for real specific applications. See: http://gexf.net/format/ for more details.“graphml”:
GraphML is a comprehensive and easy-to-use file format for graphs based on XML. See:
http://graphml.graphdrawing.org/ for more details.“tlp” or “tulip”: TLP is the Tulip soft-
ware graph format. See: http://tulip.labri.fr/TulipDrupal/?q=tlp-file-format for more de-
tails. “ncol”: This format is used by the Large Graph Layout progra. It is simply a sym-
bolic weighted edge list. It is a simple text file with one edge per line. An edge is defined
by two symbolic vertex names separated by whitespace. (The symbolic vertex names them-
selves cannot contain whitespace.) They might followed by an optional number, this will be

v 1.7 963

GAMAdocumentation Chapter 68. Operators

the weight of the edge. See: http://bioinformatics.icmb.utexas.edu/lgl for more details.The
map operand should includes following elements:

Special cases:

• “format”: the format of the file

• “filename”: the filename of the file containing the network

• “edges_species”: the species of edges

• “vertices_specy”: the species of vertices

• “format”: the format of the file

• “filename”: the filename of the file containing the network

• “edges_species”: the species of edges

• “vertices_specy”: the species of vertices

• “filename”: the filename of the file containing the network, “edges_species”: the
species of edges, “vertices_specy”: the species of vertices

� �
graph<myVertexSpecy ,myEdgeSpecy > myGraph <- load_graph_from_file(

"pajek",
"./example_of_Pajek_file",
myVertexSpecy ,
myEdgeSpecy);� �

• “format”: the format of the file, “file”: the file containing the network

� �
graph<myVertexSpecy ,myEdgeSpecy > myGraph <- load_graph_from_file(

"pajek",
"example_of_Pajek_file");� �

v 1.7 964

GAMAdocumentation Chapter 68. Operators

• “format”: the format of the file, “file”: the file containing thenetwork, “edges_species”:
the species of edges, “vertices_specy”: the species of vertices� �

graph<myVertexSpecy ,myEdgeSpecy > myGraph <- load_graph_from_file(
"pajek",
"example_of_Pajek_file",
myVertexSpecy ,
myEdgeSpecy);� �

• “file”: the file containing the network� �
graph<myVertexSpecy ,myEdgeSpecy > myGraph <- load_graph_from_file(

"pajek",
"example_of_Pajek_file");� �

• “format”: the format of the file, “filename”: the filename of the file containing the
network� �

graph<myVertexSpecy ,myEdgeSpecy > myGraph <- load_graph_from_file(
"pajek",
"example_of_Pajek_file");� �

Examples:� �
graph<myVertexSpecy ,myEdgeSpecy > myGraph <- load_graph_from_file(

"pajek",
"./example_of_Pajek_file",
myVertexSpecy ,
myEdgeSpecy , true);

graph<myVertexSpecy ,myEdgeSpecy > myGraph <- load_graph_from_file(
"pajek",
"./example_of_Pajek_file",
myVertexSpecy ,
myEdgeSpecy);� �

v 1.7 965

GAMAdocumentation Chapter 68. Operators

load_shortest_paths

Possible use:

• graph load_shortest_paths matrix—> graph
• load_shortest_paths (graph , matrix) —> graph

Result:

put in the graph cache the computed shortest paths contained in the matrix (rows: source,
columns: target)

Examples:� �
graph var0 <- load_shortest_paths(shortest_paths_matrix); //

var0 equals return my_graph with all the shortest paths
computed� �

log

Possible use:

• log (float) —> float
• log (int) —> float

Result:

Returns the logarithm (base 10) of the operand.

Special cases:

• an exception is raised if the operand is equals or less than zero.

v 1.7 966

GAMAdocumentation Chapter 68. Operators

Examples:� �
float var0 <- log(10); // var0 equals 1.0
float var1 <- log(1); // var1 equals 0.0� �
See also:

ln,

lower_case

Possible use:

• lower_case (string) —> string

Result:

Converts all of the characters in the string operand to lower case

Examples:� �
string var0 <- lower_case("Abc"); // var0 equals 'abc'� �
See also:

upper_case,

v 1.7 967

GAMAdocumentation Chapter 68. Operators

map

Possible use:

• map (any) —> map

Result:

Casts the operand into the type map

masked_by

Possible use:

• geometry masked_by container<geometry>—> geometry
• masked_by (geometry , container<geometry>) —> geometry
• masked_by (geometry, container<geometry>, int) —> geometry

Examples:� �
geometry var0 <- perception_geom masked_by obstacle_list; //

var0 equals the geometry representing the part of
perception_geom visible from the agent position considering
the list of obstacles obstacle_list.

geometry var1 <- perception_geom masked_by obstacle_list; //
var1 equals the geometry representing the part of
perception_geom visible from the agent position considering
the list of obstacles obstacle_list.� �

v 1.7 968

GAMAdocumentation Chapter 68. Operators

material

Possible use:

• float material float—> msi.gama.util.GamaMaterial
• material (float , float) —> msi.gama.util.GamaMaterial

Result:

Returns

Examples:� �� �
See also:

,

matrix

Possible use:

• matrix (any) —> matrix

Result:

Casts the operand into the type matrix

v 1.7 969

GAMAdocumentation Chapter 68. Operators

matrix_with

Possible use:

• point matrix_with any expression—> matrix
• matrix_with (point , any expression) —> matrix

Result:

creates amatrix with a size provided by the first operand, and filled with the second operand

Comment:

Note that both components of the right operand point should be positive, otherwise an ex-
ception is raised.

See also:

matrix, as_matrix,

max

Possible use:

• max (container) —> unknown

Result:

the maximum element found in the operand

Comment:

the max operator behavior depends on the nature of the operand

v 1.7 970

GAMAdocumentation Chapter 68. Operators

Special cases:

• if it is a population of a list of other type: max transforms all elements into integer
and returns the maximum of them

• if it is a map, max returns the maximum among the list of all elements value

• if it is a file,max returns themaximumof the content of the file (that is also a container)

• if it is a graph, max returns the maximum of the list of the elements of the graph (that
can be the list of edges or vertexes depending on the graph)

• if it is a matrix of int, float or object, max returns the maximum of all the numerical
elements (thus all elements for integer and float matrices)

• if it is a matrix of geometry, max returns the maximum of the list of the geometries

• if it is a matrix of another type, max returns the maximum of the elements trans-
formed into float

• if it is a list of int of float, max returns the maximum of all the elements� �
unknown var0 <- max ([100, 23.2, 34.5]); // var0 equals 100.0� �

• if it is a list of points: max returns the maximum of all points as a point (i.e. the point
with the greatest coordinate on the x-axis, in case of equality the pointwith the greatest
coordinate on the y-axis is chosen. If all the points are equal, the first one is returned.
)� �

unknown var1 <- max([{1.0,3.0},{3.0,5.0},{9.0,1.0},{7.0,8.0}]);
// var1 equals {9.0,1.0}� �

See also:

min,

v 1.7 971

GAMAdocumentation Chapter 68. Operators

max_of

Possible use:

• container max_of any expression—> unknown
• max_of (container , any expression) —> unknown

Result:

the maximum value of the right-hand expression evaluated on each of the elements of the
left-hand operand

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the
right-hand operand elements.

Special cases:

• As of GAMA 1.6, if the left-hand operand is nil or empty, max_of throws an error

• if the left-operand is a map, the keyword each will contain each value

� �
unknown var5 <- [1::2, 3::4, 5::6] max_of (each + 3); // var5

equals 6� �
Examples:� �
unknown var1 <- [1,2,4,3,5,7,6,8] max_of (each * 100); //

var1 equals 800
graph g2 <- as_edge_graph([{1,5}::{12,45},{12,45}::{34,56}]);
unknown var3 <- g2.vertices max_of (g2 degree_of(each)); //

var3 equals 2
unknown var4 <- (list(node) max_of (round(node(each).location.x))

; // var4 equals 96� �
v 1.7 972

GAMAdocumentation Chapter 68. Operators

See also:

min_of,

maximal_cliques_of

Possible use:

• maximal_cliques_of (graph) —> list<list>

Result:

returns the maximal cliques of a graph using the Bron-Kerbosch clique detection algorithm:
A clique is maximal if it is impossible to enlarge it by adding another vertex from the graph.
Note that a maximal clique is not necessarily the biggest clique in the graph.

Examples:� �
graph my_graph <- graph([]);
list<list> var1 <- maximal_cliques_of (my_graph); // var1

equals the list of all the maximal cliques as list� �
See also:

biggest_cliques_of,

mean

Possible use:

• mean (container) —> unknown

v 1.7 973

GAMAdocumentation Chapter 68. Operators

Result:

the mean of all the elements of the operand

Comment:

the elements of the operand are summed (see sum for more details about the sum of con-
tainer elements) and then the sum value is divided by the number of elements.

Special cases:

• if the container contains points, the result will be a point. If the container contains
rgb values, the result will be a rgb color

Examples:� �
unknown var0 <- mean ([4.5, 3.5, 5.5, 7.0]); // var0 equals

5.125� �
See also:

sum,

mean_deviation

Possible use:

• mean_deviation (container) —> float

Result:

the deviation from the mean of all the elements of the operand. See Mean_deviation for
more details.

v 1.7 974

GAMAdocumentation Chapter 68. Operators

Comment:

The operator casts all the numerical element of the list into float. The elements that are not
numerical are discarded.

Examples:� �
float var0 <- mean_deviation ([4.5, 3.5, 5.5, 7.0]); // var0

equals 1.125� �
See also:

mean, standard_deviation,

mean_of

Possible use:

• container mean_of any expression—> unknown
• mean_of (container , any expression) —> unknown

Result:

the mean of the right-hand expression evaluated on each of the elements of the left-hand
operand

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the
right-hand operand elements.

v 1.7 975

GAMAdocumentation Chapter 68. Operators

Special cases:

• if the left-operand is a map, the keyword each will contain each value� �
unknown var2 <- [1::2, 3::4, 5::6] mean_of (each); // var2

equals 4� �
Examples:� �
unknown var1 <- [1,2] mean_of (each * 10); // var1 equals 15� �
See also:

min_of, max_of, sum_of, product_of,

meanR

Possible use:

• meanR (container) —> unknown

Result:

returns the mean value of given vector (right-hand operand) in given variable (left-hand
operand).

Examples:� �
list<int> X <- [2, 3, 1];
int var1 <- meanR(X); // var1 equals 2� �

v 1.7 976

GAMAdocumentation Chapter 68. Operators

median

Possible use:

• median (container) —> unknown

Result:

the median of all the elements of the operand.

Special cases:

• if the container contains points, the result will be a point. If the container contains
rgb values, the result will be a rgb color

Examples:� �
unknown var0 <- median ([4.5, 3.5, 5.5, 3.4, 7.0]); // var0

equals 5.0� �
See also:

mean,

message

Possible use:

• message (unknown) —> msi.gama.extensions.messaging.GamaMessage

v 1.7 977

GAMAdocumentation Chapter 68. Operators

Result:

to be added

min

Possible use:

• min (container) —> unknown

Result:

the minimum element found in the operand.

Comment:

the min operator behavior depends on the nature of the operand

Special cases:

• if it is a list of points: min returns the minimum of all points as a point (i.e. the
point with the smallest coordinate on the x-axis, in case of equality the point with the
smallest coordinate on the y-axis is chosen. If all the points are equal, the first one is
returned.)

• if it is a population of a list of other types: min transforms all elements into integer
and returns the minimum of them

• if it is a map, min returns the minimum among the list of all elements value

• if it is a file, min returns theminimumof the content of the file (that is also a container)

v 1.7 978

GAMAdocumentation Chapter 68. Operators

• if it is a graph, min returns the minimum of the list of the elements of the graph (that
can be the list of edges or vertexes depending on the graph)

• if it is a matrix of int, float or object, min returns the minimum of all the numerical
elements (thus all elements for integer and float matrices)

• if it is a matrix of geometry, min returns the minimum of the list of the geometries

• if it is amatrix of another type, min returns theminimumof the elements transformed
into float

• if it is a list of int or float: min returns the minimum of all the elements� �
unknown var0 <- min ([100, 23.2, 34.5]); // var0 equals 23.2� �
See also:

max,

min_of

Possible use:

• container min_of any expression—> unknown
• min_of (container , any expression) —> unknown

Result:

the minimum value of the right-hand expression evaluated on each of the elements of the
left-hand operand

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the
right-hand operand elements.

v 1.7 979

GAMAdocumentation Chapter 68. Operators

Special cases:

• if the left-hand operand is nil or empty, min_of throws an error

• if the left-operand is a map, the keyword each will contain each value� �
unknown var5 <- [1::2, 3::4, 5::6] min_of (each + 3); // var5

equals 5� �
Examples:� �
unknown var1 <- [1,2,4,3,5,7,6,8] min_of (each * 100); //

var1 equals 100
graph g2 <- as_edge_graph([{1,5}::{12,45},{12,45}::{34,56}]);
unknown var3 <- g2 min_of (length(g2 out_edges_of each)); //

var3 equals 0
unknown var4 <- (list(node) min_of (round(node(each).location.x))

; // var4 equals 4� �
See also:

max_of,

mod

Possible use:

• int mod int—> int
• mod (int , int) —> int

Result:

Returns the remainder of the integer division of the left-hand operand by the right-hand
operand.

v 1.7 980

GAMAdocumentation Chapter 68. Operators

Special cases:

• if operands are float, they are truncated

• if the right-hand operand is equal to zero, raises an exception.

Examples:� �
int var0 <- 40 mod 3; // var0 equals 1� �

See also:

div,

mul

Possible use:

• mul (container) —> unknown

Result:

the product of all the elements of the operand

Comment:

the mul operator behavior depends on the nature of the operand

v 1.7 981

GAMAdocumentation Chapter 68. Operators

Special cases:

• if it is a list of points: mul returns the product of all points as a point (each coordinate
is the product of the corresponding coordinate of each element)

• if it is a list of other types: mul transforms all elements into integer and multiplies
them

• if it is a map, mul returns the product of the value of all elements

• if it is a file, mul returns the product of the content of the file (that is also a container)

• if it is a graph, mul returns the product of the list of the elements of the graph (that
can be the list of edges or vertexes depending on the graph)

• if it is a matrix of int, float or object, mul returns the product of all the numerical
elements (thus all elements for integer and float matrices)

• if it is a matrix of geometry, mul returns the product of the list of the geometries

• if it is a matrix of other types: mul transforms all elements into float and multiplies
them

• if it is a list of int or float: mul returns the product of all the elements

� �
unknown var0 <- mul ([100, 23.2, 34.5]); // var0 equals

80040.0� �

See also:

sum,

v 1.7 982

GAMAdocumentation Chapter 68. Operators

nb_cycles

Possible use:

• nb_cycles (graph) —> int

Result:

returns the maximum number of independent cycles in a graph. This number (u) is esti-
mated through the number of nodes (v), links (e) and of sub-graphs (p): u = e - v + p.

Examples:� �
graph graphEpidemio <- graph([]);
int var1 <- nb_cycles(graphEpidemio); // var1 equals the number

of cycles in the graph� �
See also:

alpha_index, beta_index, gamma_index, connectivity_index,

neighbors_at

Possible use:

• geometry neighbors_at float—> container
• neighbors_at (geometry , float) —> container

Result:

a list, containing all the agents of the same species than the left argument (if it is an agent)
located at a distance inferior or equal to the right-hand operand to the left-hand operand
(geometry, agent, point).

v 1.7 983

GAMAdocumentation Chapter 68. Operators

Comment:

The topology used to compute the neighborhood is the one of the left-operand if this one is
an agent; otherwise the one of the agent applying the operator.

Examples:� �
container var0 <- (self neighbors_at (10)); // var0 equals

all the agents located at a distance lower or equal to 10 to
the agent applying the operator.� �

See also:

neighbors_of, closest_to, overlapping, agents_overlapping, agents_inside, agent_closest_-
to, at_distance,

neighbors_of

Possible use:

• graph neighbors_of unknown—> container
• neighbors_of (graph , unknown) —> container
• topology neighbors_of agent—> container
• neighbors_of (topology , agent) —> container
• neighbors_of (topology, geometry, float) —> container

Result:

a list, containing all the agents of the same species than the argument (if it is an agent) located
at a distance inferior or equal to 1 to the right-hand operand agent considering the left-hand
operand topology.

v 1.7 984

GAMAdocumentation Chapter 68. Operators

Special cases:

• a list, containing all the agents of the same species than the left argument (if it is an
agent) located at a distance inferior or equal to the third argument to the second argu-
ment (agent, geometry or point) considering the first operand topology.

� �
container var0 <- neighbors_of (topology(self), self ,10); //

var0 equals all the agents located at a distance lower or
equal to 10 to the agent applying the operator considering its
topology.� �

Examples:� �
container var1 <- graphEpidemio neighbors_of (node(3)); //

var1 equals [node0,node2]
container var2 <- graphFromMap neighbors_of node({12,45}); //

var2 equals [{1.0,5.0},{34.0,56.0}]
container var3 <- topology(self) neighbors_of self; // var3

equals returns all the agents located at a distance lower or
equal to 1 to the agent applying the operator considering its
topology.� �

See also:

predecessors_of, successors_of, neighbors_at, closest_to, overlapping, agents_overlap-
ping, agents_inside, agent_closest_to,

new_emotion

Possible use:

• new_emotion (string) —> emotion
• string new_emotion float—> emotion

v 1.7 985

GAMAdocumentation Chapter 68. Operators

• new_emotion (string , float) —> emotion
• string new_emotion predicate—> emotion
• new_emotion (string , predicate) —> emotion
• new_emotion (string, float, float) —> emotion
• new_emotion (string, float, predicate) —> emotion
• new_emotion (string, float, predicate, float) —> emotion

Result:

a new emotion with the given properties (name, intensity) a new emotion with the
given properties (name) a new emotion with the given properties (name) a new emo-
tion with the given properties (name,about) a new emotion with the given properties
(name,intensity,decay) a new emotion with the given properties (name,intensity,about)

Examples:� �
emotion("joy",12.3)
emotion("joy",12.3,eatFood ,4)
emotion("joy")
emotion("joy",eatFood)
emotion("joy",12.3,4)
emotion("joy",12.3,eatFood)� �

new_folder

Possible use:

• new_folder (string) —> file

Result:

opens an existing repository or create a new folder if it does not exist.

v 1.7 986

GAMAdocumentation Chapter 68. Operators

Special cases:

• If the specified string does not refer to an existing repository, the repository is created.

• If the string refers to an existing file, an exception is risen.

Examples:� �
file dirNewT <- new_folder("incl/"); // dirNewT represents the

repository "../incl/"
//

eventually creates the directory ../incl� �
See also:

folder, file,

new_predicate

Possible use:

• new_predicate (string) —> predicate
• string new_predicate map—> predicate
• new_predicate (string , map) —> predicate
• string new_predicate bool—> predicate
• new_predicate (string , bool) —> predicate
• string new_predicate int—> predicate
• new_predicate (string , int) —> predicate
• string new_predicate float—> predicate
• new_predicate (string , float) —> predicate
• new_predicate (string, map, int) —> predicate
• new_predicate (string, map, bool) —> predicate
• new_predicate (string, map, float) —> predicate

v 1.7 987

GAMAdocumentation Chapter 68. Operators

Result:

a new predicate with the given properties (name, values, lifetime) a new predicate with the
given properties (name) a newpredicatewith the given properties (name, values) a newpred-
icate with the given is_true (name, is_true) a new predicate with the given is_true (name,
lifetime) a new predicate with the given properties (name, values, is_true) a new predicate
with the given is_true (name, priority) a new predicate with the given properties (name, val-
ues, priority)

Examples:� �
predicate("people to meet", ["time"::10], true)
predicate("people to meet")
predicate("people to meet", people1)
predicate("hasWater", true)
predicate("hasWater", 10
predicate("people to meet", ["time"::10], true)
predicate("hasWater", 2.0)
predicate("people to meet", people1, ["time"::10])� �

node

Possible use:

• node (unknown) —> unknown
• unknown node float—> unknown
• node (unknown , float) —> unknown

nodes

Possible use:

• nodes (container) —> container

v 1.7 988

GAMAdocumentation Chapter 68. Operators

norm

Possible use:

• norm (point) —> float

Result:

the norm of the vector with the coordinates of the point operand.

Examples:� �
float var0 <- norm({3,4}); // var0 equals 5.0� �

not

Same signification as !

obj_file

Possible use:

• obj_file (string) —> file

Result:

Constructs a file of type obj. Allowed extensions are limited to obj

v 1.7 989

GAMAdocumentation Chapter 68. Operators

of

Same signification as .

of_generic_species

Possible use:

• container of_generic_species species—> container
• of_generic_species (container , species) —> container

Result:

a list, containing the agents of the left-hand operand whose species is that denoted by the
right-hand operand and whose species extends the right-hand operand species

Examples:� �
// species test {}
// species sous_test parent: test {}
container var2 <- [sous_test(0),sous_test(1),test(2),test(3)]

of_generic_species test; // var2 equals [sous_test0 ,
sous_test1 ,test2,test3]

container var3 <- [sous_test(0),sous_test(1),test(2),test(3)]
of_generic_species sous_test; // var3 equals [sous_test0 ,
sous_test1]

container var4 <- [sous_test(0),sous_test(1),test(2),test(3)]
of_species test; // var4 equals [test2,test3]

container var5 <- [sous_test(0),sous_test(1),test(2),test(3)]
of_species sous_test; // var5 equals [sous_test0 ,
sous_test1]� �

v 1.7 990

GAMAdocumentation Chapter 68. Operators

See also:

of_species,

of_species

Possible use:

• container of_species species—> container
• of_species (container , species) —> container

Result:

a list, containing the agents of the left-hand operand whose species is the one denoted by the
right-hand operand.The expression agents of_species (species self) is equivalent to agents
where (species each = species self); however, the advantage of using the first syntax is that
the resulting list is correctly typed with the right species, whereas, in the second syntax, the
parser cannot determine the species of the agents within the list (resulting in the need to
cast it explicitly if it is to be used in an ask statement, for instance).

Special cases:

• if the right operand is nil, of_species returns the right operand

Examples:� �
container var0 <- (self neighbors_at 10) of_species (species (

self)); // var0 equals all the neighboring agents of the
same species.

container var1 <- [test(0),test(1),node(1),node(2)] of_species
test; // var1 equals [test0,test1]� �

v 1.7 991

GAMAdocumentation Chapter 68. Operators

See also:

of_generic_species,

one_of

Possible use:

• one_of (container<KeyType,ValueType>) —> ValueType

Result:

one of the values stored in this container at a random key

Comment:

the one_of operator behavior depends on the nature of the operand

Special cases:

• if it is a graph, one_of returns one of the lists of edges

• if it is a file, one_of returns one of the elements of the content of the file (that is also
a container)

• if the operand is empty, one_of returns nil� �� �
• if it is a list or a matrix, one_of returns one of the values of the list or of the matrix� �

int i <- any ([1,2,3]); // i equals 1, 2 or 3
string sMat <- one_of(matrix([["c11","c12","c13"],["c21","c22","

c23"]])); // sMat equals "c11","c12","c13", "c21","c22" or "
c23"� �

v 1.7 992

GAMAdocumentation Chapter 68. Operators

• if it is a map, one_of returns one the value of a random pair of the map

� �
int im <- one_of ([2::3, 4::5, 6::7]); // im equals 3, 5 or 7
bool var6 <- [2::3, 4::5, 6::7].values contains im; // var6

equals true� �
• if it is a population, one_of returns one of the agents of the population

� �
bug b <- one_of(bug); // Given a previously defined species bug

, b is one of the created bugs, e.g. bug3� �
See also:

contains,

or

Possible use:

• bool or any expression—> bool
• or (bool , any expression) —> bool

Result:

a bool value, equal to the logical or between the left-hand operand and the right-hand
operand.

Comment:

both operands are always casted to bool before applying the operator. Thus, an expression
like 1 or 0 is accepted and returns true.

v 1.7 993

GAMAdocumentation Chapter 68. Operators

See also:

bool, and, !,

or

Possible use:

• predicate or predicate—> predicate
• or (predicate , predicate) —> predicate

Result:

create a new predicate from two others by including them as subintentions. It’s an exclusive
“or”

Examples:� �
predicate1 or predicate2� �

osm_file

Possible use:

• string osm_file map<string,list>—> file
• osm_file (string , map<string,list>) —> file
• osm_file (string, map<string,list>, int) —> file

v 1.7 994

GAMAdocumentation Chapter 68. Operators

Result:

opens a file that a is a kind of OSM file with some filtering. opens a file that a is a kind of
OSM file with some filtering, forcing the initial CRS to be the one indicated by the second
int parameter (see http://spatialreference.org/ref/epsg/). If this int parameter is equal to
0, the data is considered as already projected.

Comment:

The file should have a OSM file extension, cf. file type definition for supported file exten-
sions.The file should have a OSM file extension, cf. file type definition for supported file
extensions.

Special cases:

• If the specified string does not refer to an existing OSM file, an exception is risen.

• If the specified string does not refer to an existing OSM file, an exception is risen.

Examples:� �
file myOSMfile <- osm_file("../includes/rouen.osm", ["highway"::[

"primary","motorway"]]);
file myOSMfile2 <- osm_file("../includes/rouen.osm",["highway"::[

"primary","motorway"]], 0);� �

See also:

file,

v 1.7 995

GAMAdocumentation Chapter 68. Operators

out_degree_of

Possible use:

• graph out_degree_of unknown—> int
• out_degree_of (graph , unknown) —> int

Result:

returns the out degree of a vertex (right-hand operand) in the graph given as left-hand
operand.

Examples:� �
int var1 <- graphFromMap out_degree_of (node(3)); // var1

equals 4� �
See also:

in_degree_of, degree_of,

out_edges_of

Possible use:

• graph out_edges_of unknown—> container
• out_edges_of (graph , unknown) —> container

Result:

returns the list of the out-edges of a vertex (right-hand operand) in the graph given as left-
hand operand.

v 1.7 996

GAMAdocumentation Chapter 68. Operators

Examples:� �
container var1 <- graphFromMap out_edges_of (node(3)); // var1

equals 3� �
See also:

in_edges_of,

overlapping

Possible use:

• container<agent> overlapping geometry—> list<geometry>
• overlapping (container<agent> , geometry) —> list<geometry>

Result:

A list of agents or geometries among the left-operand list, species or meta-population (addi-
tion of species), overlapping the operand (casted as a geometry).

Examples:� �
list<geometry > var0 <- [ag1, ag2, ag3] overlapping(self); //

var0 equals return the agents among ag1, ag2 and ag3 that
overlap the shape of the agent applying the operator.

(species1 + species2) overlapping self� �
See also:

neighbors_at, neighbors_of, agent_closest_to, agents_inside, closest_to, inside, agents_-
overlapping,

v 1.7 997

GAMAdocumentation Chapter 68. Operators

overlaps

Possible use:

• geometry overlaps geometry—> bool
• overlaps (geometry , geometry) —> bool

Result:

A boolean, equal to true if the left-geometry (or agent/point) overlaps the right-geometry (or
agent/point).

Special cases:

• if one of the operand is null, returns false.

• if one operand is a point, returns true if the point is included in the geometry

Examples:� �
bool var0 <- polyline([{10,10},{20,20}]) overlaps polyline

([{15,15},{25,25}]); // var0 equals true
bool var1 <- polygon([{10,10},{10,20},{20,20},{20,10}]) overlaps

polygon([{15,15},{15,25},{25,25},{25,15}]); // var1 equals
true

bool var2 <- polygon([{10,10},{10,20},{20,20},{20,10}]) overlaps
{25,25}; // var2 equals false

bool var3 <- polygon([{10,10},{10,20},{20,20},{20,10}]) overlaps
polygon([{35,35},{35,45},{45,45},{45,35}]); // var3 equals
false

bool var4 <- polygon([{10,10},{10,20},{20,20},{20,10}]) overlaps
polyline([{10,10},{20,20}]); // var4 equals true

bool var5 <- polygon([{10,10},{10,20},{20,20},{20,10}]) overlaps
{15,15}; // var5 equals true

bool var6 <- polygon([{10,10},{10,20},{20,20},{20,10}]) overlaps
polygon([{0,0},{0,30},{30,30}, {30,0}]); // var6 equals true

v 1.7 998

GAMAdocumentation Chapter 68. Operators

bool var7 <- polygon([{10,10},{10,20},{20,20},{20,10}]) overlaps
polygon([{15,15},{15,25},{25,25},{25,15}]); // var7 equals
true

bool var8 <- polygon([{10,10},{10,20},{20,20},{20,10}]) overlaps
polygon([{10,20},{20,20},{20,30},{10,30}]); // var8 equals
true� �

See also:

disjoint_from, crosses, intersects, partially_overlaps, touches,

pair

Possible use:

• pair (any) —> pair

Result:

Casts the operand into the type pair

partially_overlaps

Possible use:

• geometry partially_overlaps geometry—> bool
• partially_overlaps (geometry , geometry) —> bool

Result:

A boolean, equal to true if the left-geometry (or agent/point) partially overlaps the right-
geometry (or agent/point).

v 1.7 999

GAMAdocumentation Chapter 68. Operators

Comment:

if one geometry operand fully covers the other geometry operand, returns false (contrarily
to the overlaps operator).

Special cases:

• if one of the operand is null, returns false.

Examples:

� �
bool var0 <- polyline([{10,10},{20,20}]) partially_overlaps

polyline([{15,15},{25,25}]); // var0 equals true
bool var1 <- polygon([{10,10},{10,20},{20,20},{20,10}])

partially_overlaps polygon([{15,15},{15,25},{25,25},{25,15}]);
// var1 equals true

bool var2 <- polygon([{10,10},{10,20},{20,20},{20,10}])
partially_overlaps {25,25}; // var2 equals false

bool var3 <- polygon([{10,10},{10,20},{20,20},{20,10}])
partially_overlaps polygon([{35,35},{35,45},{45,45},{45,35}]);

// var3 equals false
bool var4 <- polygon([{10,10},{10,20},{20,20},{20,10}])

partially_overlaps polyline([{10,10},{20,20}]); // var4
equals false

bool var5 <- polygon([{10,10},{10,20},{20,20},{20,10}])
partially_overlaps {15,15}; // var5 equals false

bool var6 <- polygon([{10,10},{10,20},{20,20},{20,10}])
partially_overlaps polygon([{0,0},{0,30},{30,30}, {30,0}]);

// var6 equals false
bool var7 <- polygon([{10,10},{10,20},{20,20},{20,10}])

partially_overlaps polygon([{15,15},{15,25},{25,25},{25,15}]);
// var7 equals true

bool var8 <- polygon([{10,10},{10,20},{20,20},{20,10}])
partially_overlaps polygon([{10,20},{20,20},{20,30},{10,30}]);

// var8 equals false� �
v 1.7 1000

GAMAdocumentation Chapter 68. Operators

See also:

disjoint_from, crosses, overlaps, intersects, touches,

path

Possible use:

• path (any) —> path

Result:

Casts the operand into the type path

path_between

Possible use:

• topology path_between container<geometry>—> path
• path_between (topology , container<geometry>) —> path
• path_between (list<agent>, geometry, geometry) —> path
• path_between (graph, geometry, geometry) —> path

Result:

The shortest path between two objects according to set of cells The shortest path between a
list of two objects in a graph

v 1.7 1001

GAMAdocumentation Chapter 68. Operators

Examples:� �
path var0 <- my_topology path_between [ag1, ag2]; // var0

equals A path between ag1 and ag2
path var1 <- path_between (cell_grid where each.is_free, ag1, ag2

); // var1 equals A path between ag1 and ag2 passing
through the given cell_grid agents

path var2 <- path_between (my_graph , ag1, ag2); // var2
equals A path between ag1 and ag2� �

See also:

towards, direction_to, distance_between, direction_between, path_to, distance_to,

path_to

Possible use:

• geometry path_to geometry—> path
• path_to (geometry , geometry) —> path
• point path_to point—> path
• path_to (point , point) —> path

Result:

A path between two geometries (geometries, agents or points) considering the topology of
the agent applying the operator.

Examples:� �
path var0 <- ag1 path_to ag2; // var0 equals the path between

ag1 and ag2 considering the topology of the agent applying the
operator� �

v 1.7 1002

GAMAdocumentation Chapter 68. Operators

See also:

towards, direction_to, distance_between, direction_between, path_between, distance_to,

paths_between

Possible use:

• paths_between (graph, pair, int) —> list<path>

Result:

The K shortest paths between a list of two objects in a graph

Examples:� �
list<path> var0 <- paths_between(my_graph, ag1:: ag2, 2); //

var0 equals the 2 shortest paths (ordered by length) between
ag1 and ag2� �

percent_absolute_deviation

Possible use:

• list<float> percent_absolute_deviation list<float>—> float
• percent_absolute_deviation (list<float> , list<float>) —> float

Result:

percent absolute deviation indicator for 2 series of values: percent_absolute_devia-
tion(list_vals_observe,list_vals_sim)

v 1.7 1003

GAMAdocumentation Chapter 68. Operators

Examples:� �
percent_absolute_deviation

([200,300,150,150,200],[250,250,100,200,200])� �

pgm_file

Possible use:

• pgm_file (string) —> file

Result:

Constructs a file of type pgm. Allowed extensions are limited to pgm

plan

Possible use:

• container<geometry> plan float—> geometry
• plan (container<geometry> , float) —> geometry

Result:

A polyline geometry from the given list of points.

Special cases:

• if the operand is nil, returns the point geometry {0,0}

• if the operand is composed of a single point, returns a point geometry.

v 1.7 1004

GAMAdocumentation Chapter 68. Operators

Examples:� �
geometry var0 <- polyplan([{0,0}, {0,10}, {10,10}, {10,0}],10);

// var0 equals a polyline geometry composed of the 4 points
with a depth of 10.� �

See also:

around, circle, cone, link, norm, point, polygone, rectangle, square, triangle,

point

Possible use:

• int point float—> point
• point (int , float) —> point
• float point int—> point
• point (float , int) —> point
• int point int—> point
• point (int , int) —> point
• float point float—> point
• point (float , float) —> point
• point (float, int, int) —> point
• point (int, int, float) —> point
• point (int, int, int) —> point
• point (float, float, float) —> point
• point (int, float, float) —> point
• point (float, float, int) —> point
• point (float, int, float) —> point

Result:

internal use only. Use the standard construction {x,y, z} instead. internal use only. Use
the standard construction {x,y, z} instead. internal use only. Use the standard construction

v 1.7 1005

GAMAdocumentation Chapter 68. Operators

{x,y} instead. internal use only. Use the standard construction {x,y, z} instead. internal use
only. Use the standard construction {x,y, z} instead. internal use only. Use the standard
construction {x,y, z} instead. internal use only. Use the standard construction {x,y} instead.
internal use only. Use the standard construction {x,y, z} instead. internal use only. Use the
standard construction {x,y, z} instead. internal use only. Use the standard construction {x,y}
instead. internal use only. Use the standard construction {x,y} instead.

points_at

Possible use:

• int points_at float—> list<point>
• points_at (int , float) —> list<point>

Result:

A list of left-operand number of points located at a the right-operand distance to the agent
location.

Examples:� �
list<point> var0 <- 3 points_at(20.0); // var0 equals returns [

pt1, pt2, pt3] with pt1, pt2 and pt3 located at a distance of
20.0 to the agent location� �

See also:

any_location_in, any_point_in, closest_points_with, farthest_point_to,

v 1.7 1006

GAMAdocumentation Chapter 68. Operators

points_on

Possible use:

• geometry points_on float—> container
• points_on (geometry , float) —> container

Result:

A list of points of the operand-geometry distant from each other to the float right-operand .

Examples:� �
container var0 <- square(5) points_on(2); // var0 equals a list

of points belonging to the exterior ring of the square
distant from each other of 2.� �

See also:

closest_points_with, farthest_point_to, points_at,

poisson

Possible use:

• poisson (float) —> int

Result:

A value from a random variable following a Poisson distribution (with the positive expected
number of occurence lambda as operand).

v 1.7 1007

GAMAdocumentation Chapter 68. Operators

Comment:

The Poisson distribution is a discrete probability distribution that expresses the probabil-
ity of a given number of events occurring in a fixed interval of time and/or space if these
events occur with a known average rate and independently of the time since the last event,
cf. Poisson distribution on Wikipedia.

Examples:� �
int var0 <- poisson(3.5); // var0 equals a random positive

integer� �
See also:

binomial, gauss,

polygon

Possible use:

• polygon (container<agent>) —> geometry

Result:

A polygon geometry from the given list of points.

Special cases:

• if the operand is nil, returns the point geometry {0,0}

• if the operand is composed of a single point, returns a point geometry

• if the operand is composed of 2 points, returns a polyline geometry.

v 1.7 1008

GAMAdocumentation Chapter 68. Operators

Examples:� �
geometry var0 <- polygon([{0,0}, {0,10}, {10,10}, {10,0}]);

// var0 equals a polygon geometry composed of the 4 points.� �
See also:

around, circle, cone, line, link, norm, point, polyline, rectangle, square, triangle,

polyhedron

Possible use:

• container<geometry> polyhedron float—> geometry
• polyhedron (container<geometry> , float) —> geometry

Result:

A polyhedron geometry from the given list of points.

Special cases:

• if the operand is nil, returns the point geometry {0,0}

• if the operand is composed of a single point, returns a point geometry

• if the operand is composed of 2 points, returns a polyline geometry.

Examples:� �
geometry var0 <- polyhedron([{0,0}, {0,10}, {10,10}, {10,0}],10);

// var0 equals a polygon geometry composed of the 4 points
and of depth 10.� �

v 1.7 1009

GAMAdocumentation Chapter 68. Operators

See also:

around, circle, cone, line, link, norm, point, polyline, rectangle, square, triangle,

polyline

Same signification as line

polyplan

Same signification as plan

predecessors_of

Possible use:

• graph predecessors_of unknown—> container
• predecessors_of (graph , unknown) —> container

Result:

returns the list of predecessors (i.e. sources of in edges) of the given vertex (right-hand
operand) in the given graph (left-hand operand)

Examples:� �
container var1 <- graphEpidemio predecessors_of ({1,5}); //

var1 equals []
container var2 <- graphEpidemio predecessors_of node({34,56});

// var2 equals [{12;45}]� �
v 1.7 1010

GAMAdocumentation Chapter 68. Operators

See also:

neighbors_of, successors_of,

predicate

Possible use:

• predicate (any) —> predicate

Result:

Casts the operand into the type predicate

predict

Possible use:

• regression predict list<float>—> float
• predict (regression , list<float>) —> float

Result:

returns the value predict by the regression parameters for a given instance. Usage: pre-
dict(regression, instance)

Examples:� �
predict(my_regression , [1,2,3]� �

v 1.7 1011

GAMAdocumentation Chapter 68. Operators

product

Same signification as mul

product_of

Possible use:

• container product_of any expression—> unknown
• product_of (container , any expression) —> unknown

Result:

the product of the right-hand expression evaluated on each of the elements of the left-hand
operand

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the
right-hand operand elements.

Special cases:

• if the left-operand is a map, the keyword each will contain each value� �
unknown var2 <- [1::2, 3::4, 5::6] product_of (each); // var2

equals 48� �
Examples:� �
unknown var1 <- [1,2] product_of (each * 10); // var1 equals

200� �
v 1.7 1012

GAMAdocumentation Chapter 68. Operators

See also:

min_of, max_of, sum_of, mean_of,

promethee_DM

Possible use:

• list<list> promethee_DM list<map<string,object>>—> int
• promethee_DM (list<list> , list<map<string,object>>) —> int

Result:

The index of the best candidate according to the Promethee II method. This
method is based on a comparison per pair of possible candidates along each crite-
rion: all candidates are compared to each other by pair and ranked. More infor-
mation about this method can be found in [http://www.sciencedirect.com/science?_-
ob=ArticleURL&_udi=B6VCT-4VF56TV-1&_user=10&_coverDate=01%2F01%2F2010&_-
rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_search-
StrId=1389284642&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVer-
sion=0&_userid=10&md5=d334de2a4e0d6281199a39857648cd36 Behzadian, M.,
Kazemzadeh, R., Albadvi, A., M., A.: PROMETHEE: A comprehensive literature review on
methodologies and applications. European Journal of Operational Research(2009)]. The
first operand is the list of candidates (a candidate is a list of criterion values); the second
operand the list of criterion: A criterion is a map that contains fours elements: a name, a
weight, a preference value (p) and an indifference value (q). The preference value represents
the threshold from which the difference between two criterion values allows to prefer one
vector of values over another. The indifference value represents the threshold from which
the difference between two criterion values is considered significant.

Special cases:

• returns -1 is the list of candidates is nil or empty

v 1.7 1013

GAMAdocumentation Chapter 68. Operators

Examples:� �
int var0 <- promethee_DM([[1.0, 7.0],[4.0,2.0],[3.0, 3.0]], [["

name"::"utility", "weight" :: 2.0,"p"::0.5, "q"::0.0, "s"
::1.0, "maximize" :: true],["name"::"price", "weight" :: 1.0,"
p"::0.5, "q"::0.0, "s"::1.0, "maximize" :: false]]); // var0
equals 1� �

See also:

weighted_means_DM, electre_DM, evidence_theory_DM,

property_file

Possible use:

• property_file (string) —> file

Result:

Constructs a file of type property. Allowed extensions are limited to properties

pyramid

Possible use:

• pyramid (float) —> geometry

Result:

A square geometry which side size is given by the operand.

v 1.7 1014

GAMAdocumentation Chapter 68. Operators

Comment:

the center of the pyramid is by default the location of the current agent in which has been
called this operator.

Special cases:

• returns nil if the operand is nil.

Examples:� �
geometry var0 <- pyramid(5); // var0 equals a geometry as a

square with side_size = 5.� �
See also:

around, circle, cone, line, link, norm, point, polygon, polyline, rectangle, square,

R_correlation

Same signification as corR

R_file

Possible use:

• R_file (string) —> file

v 1.7 1015

GAMAdocumentation Chapter 68. Operators

Result:

Constructs a file of type R. Allowed extensions are limited to r

R_mean

Same signification as meanR

range

Possible use:

• range (int) —> container
• int range int—> container
• range (int , int) —> container
• range (int, int, int) —> container

Result:

Allows to build a list of int representing all contiguous values from zero to the argument. The
range can be increasing or decreasing. Passing 0 will return a singleton list with 0 Allows to
build a list of int representing all contiguous values from the first to the second argument,
using the step represented by the third argument. The range can be increasing or decreasing.
Passing the same value for both will return a singleton list with this value. Passing a step
of 0 will result in an exception. Attempting to build infinite ranges (e.g. end > start with a
negative step) will similarly not be accepted and yield an exception Allows to build a list of
int representing all contiguous values from the first to the second argument. The range can
be increasing or decreasing. Passing the same value for both will return a singleton list with
this value

v 1.7 1016

GAMAdocumentation Chapter 68. Operators

read

Possible use:

• read (string) —> unknown

Result:

Reads an attribute of the agent. The attribute’s name is specified by the operand.

Examples:� �
unknown agent_name <- read ('name'); // agent_name equals

reads the 'name' variable of agent then assigns the returned
value to the 'agent_name ' variable.� �

rectangle

Possible use:

• rectangle (point) —> geometry
• float rectangle float—> geometry
• rectangle (float , float) —> geometry
• point rectangle point—> geometry
• rectangle (point , point) —> geometry

Result:

A rectangle geometry which side sizes are given by the operands.

Comment:

the center of the rectangle is by default the location of the current agent in which has been
called this operator.the center of the rectangle is by default the location of the current agent
in which has been called this operator.

v 1.7 1017

GAMAdocumentation Chapter 68. Operators

Special cases:

• returns nil if the operand is nil.

• returns nil if the operand is nil.

• returns nil if the operand is nil.

Examples:� �
geometry var0 <- rectangle(10, 5); // var0 equals a geometry as

a rectangle with width = 10 and height = 5.
geometry var1 <- rectangle({2.0,6.0}, {6.0,20.0}); // var1

equals a geometry as a rectangle with {2.0,6.0} as the upper-
left corner, {6.0,20.0} as the lower-right corner.

geometry var2 <- rectangle({10, 5}); // var2 equals a geometry
as a rectangle with width = 10 and height = 5.� �

See also:

around, circle, cone, line, link, norm, point, polygon, polyline, square, triangle,

reduced_by

Same signification as -

regression

Possible use:

• regression (any) —> regression

v 1.7 1018

GAMAdocumentation Chapter 68. Operators

Result:

Casts the operand into the type regression

remove_duplicates

Possible use:

• remove_duplicates (container) —> container

Result:

produces a set from the elements of the operand (i.e. a list without duplicated elements)

Special cases:

• if the operand is nil, remove_duplicates returns nil

• if the operand is a graph, remove_duplicates returns the set of nodes

• if the operand is amatrix, remove_duplicates returns amatrix without duplicated row

• if the operand is amap, remove_duplicates returns the set of values without duplicate� �
container var1 <- remove_duplicates([1::3,2::4,3::3,5::7]);

// var1 equals [3,4,7]� �
Examples:� �
container var0 <- remove_duplicates([3,2,5,1,2,3,5,5,5]); //

var0 equals [3,2,5,1]� �

v 1.7 1019

GAMAdocumentation Chapter 68. Operators

remove_node_from

Possible use:

• geometry remove_node_from graph—> graph
• remove_node_from (geometry , graph) —> graph

Result:

removes a node from a graph.

Comment:

all the edges containing this node are also removed.

Examples:� �
graph var0 <- node(0) remove_node_from graphEpidemio; // var0

equals the graph without node(0)� �

replace

Possible use:

• replace (string, string, string) —> string

Result:

Returns the String resulting by replacing for the first operand all the sub-strings correspond-
ing the second operand by the third operand

v 1.7 1020

GAMAdocumentation Chapter 68. Operators

Examples:� �
string var0 <- replace('to be or not to be,that is the question

','to', 'do'); // var0 equals 'do be or not do be,that is
the question '� �

See also:

replace_regex,

replace_regex

Possible use:

• replace_regex (string, string, string) —> string

Result:

Returns the String resulting by replacing for the first operand all the sub-strings correspond-
ing to the regular expression given in the second operand by the third operand

Examples:� �
string var0 <- replace_regex("colour, color", "colou?r", "col");

// var0 equals 'col, col'� �
See also:

replace,

v 1.7 1021

GAMAdocumentation Chapter 68. Operators

reverse

Possible use:

• reverse (container<KeyType,ValueType>) —> container
• reverse (string) —> string

Result:

the operand elements in the reversed order in a copy of the operand.

Comment:

the reverse operator behavior depends on the nature of the operand

Special cases:

• if it is a file, reverse returns a copy of the file with a reversed content

• if it is a population, reverse returns a copy of the population with elements in the
reversed order

• if it is a graph, reverse returns a copy of the graph (with all edges and vertexes), with
all of the edges reversed

• if it is a list, reverse returns a copy of the operand list with elements in the reversed
order� �

container var0 <- reverse ([10,12,14]); // var0 equals [14,
12, 10]� �
• if it is a map, reverse returns a copy of the operandmap with each pair in the reversed
order (i.e. all keys become values and values become keys)� �

container var1 <- reverse (['k1'::44, 'k2'::32, 'k3'::12]);
// var1 equals [12::'k3', 32::'k2', 44::'k1']� �

v 1.7 1022

GAMAdocumentation Chapter 68. Operators

• if it is a matrix, reverse returns a new matrix containing the transpose of the operand.� �
container var2 <- reverse(matrix([["c11","c12","c13"],["c21","c22

","c23"]])); // var2 equals matrix([["c11","c21"],["c12","
c22"],["c13","c23"]])� �
• if it is a string, reverse returns a new string with characters in the reversed order� �

string var3 <- reverse ('abcd'); // var3 equals 'dcba'� �

rewire_n

Possible use:

• graph rewire_n int—> graph
• rewire_n (graph , int) —> graph

Result:

rewires the given count of edges.

Comment:

If there are too many edges, all the edges will be rewired.

Examples:� �
graph var1 <- graphEpidemio rewire_n 10; // var1 equals the

graph with 3 edges rewired� �

v 1.7 1023

GAMAdocumentation Chapter 68. Operators

rgb

Possible use:

• rgb rgb int—> rgb
• rgb (rgb , int) —> rgb
• rgb rgb float—> rgb
• rgb (rgb , float) —> rgb
• string rgb int—> rgb
• rgb (string , int) —> rgb
• rgb (int, int, int) —> rgb
• rgb (int, int, int, int) —> rgb
• rgb (int, int, int, float) —> rgb

Result:

Returns a color defined by red, green, blue components and an alpha blending value.

Special cases:

• It can be used with r=red, g=green, b=blue (each between 0 and 255), a=alpha
(between 0 and 255)

• It can be used with a color and an alpha between 0 and 255

• It can be used with r=red, g=green, b=blue (each between 0 and 255), a=alpha
(between 0.0 and 1.0)

• It can be used with a color and an alpha between 0 and 1

• It can be used with r=red, g=green, b=blue, each between 0 and 255

• It can be used with a name of color and alpha (between 0 and 255)

Examples:

v 1.7 1024

GAMAdocumentation Chapter 68. Operators

� �
rgb var0 <- rgb (255,0,0,125); // var0 equals a light red color
rgb var2 <- rgb(rgb(255,0,0) ,125); // var2 equals a light red

color
rgb var3 <- rgb (255,0,0,0.5); // var3 equals a light red color
rgb var4 <- rgb(rgb(255,0,0) ,0.5); // var4 equals a light red

color
rgb var5 <- rgb (255,0,0); // var5 equals #red
rgb var6 <- rgb ("red"); // var6 equals rgb(255,0,0)� �
See also:

hsb,

rgb_to_xyz

Possible use:

• rgb_to_xyz (file) —> list<point>

Result:

A list of point corresponding to RGB value of an image (r:x , g:y, b:z)

Examples:� �
list<point> var0 <- rgb_to_xyz(texture); // var0 equals a list

of points� �

v 1.7 1025

GAMAdocumentation Chapter 68. Operators

rnd

Possible use:

• rnd (point) —> point
• rnd (int) —> int
• rnd (float) —> float
• float rnd float—> float
• rnd (float , float) —> float
• point rnd point—> point
• rnd (point , point) —> point
• int rnd int—> int
• rnd (int , int) —> int
• rnd (point, point, float) —> point
• rnd (float, float, float) —> float
• rnd (int, int, int) —> int

Result:

a random integer in the interval [0, operand]

Comment:

to obtain a probability between 0 and 1, use the expression (rnd n) / n, where n is used to
indicate the precision

Special cases:

• if the operand is a point, returns a point with three random float ordinates, each in
the interval [0, ordinate of argument]

• if the operand is a float, returns an uniformly distributed float randomnumber in [0.0,
to]

Examples:

v 1.7 1026

GAMAdocumentation Chapter 68. Operators

� �
point var0 <- rnd ({2.0, 4.0}, {2.0, 5.0, 10.0}, 1); // var0

equals a point with x = 2.0, y equal to 2.0, 3.0 or 4.0 and z
between 0.0 and 10.0 every 1.0

float var1 <- rnd (2.0, 4.0); // var1 equals a float number
between 2.0 and 4.0

point var2 <- rnd ({2.5,3, 0.0}); // var2 equals {x,y} with x
in [0.0,2.0], y in [0.0,3.0], z = 0.0

float var3 <- rnd (2.0, 4.0, 0.5); // var3 equals a float number
between 2.0 and 4.0 every 0.5

int var4 <- rnd (2); // var4 equals 0, 1 or 2
float var5 <- rnd (1000) / 1000; // var5 equals a float

between 0 and 1 with a precision of 0.001
float var6 <- rnd(3.4); // var6 equals a random float between

0.0 and 3.4
int var7 <- rnd (2, 12, 4); // var7 equals 2, 6 or 10
point var8 <- rnd ({2.0, 4.0}, {2.0, 5.0, 10.0}); // var8

equals a point with x = 2.0, y between 2.0 and 4.0 and z
between 0.0 and 10.0

int var9 <- rnd (2, 4); // var9 equals 2, 3 or 4� �
See also:

flip,

rnd_choice

Possible use:

• rnd_choice (container) —> int

Result:

returns an index of the given list with a probability following the (normalized) distribution
described in the list (a form of lottery)

v 1.7 1027

GAMAdocumentation Chapter 68. Operators

Examples:� �
int var0 <- rnd_choice([0.2,0.5,0.3]); // var0 equals 2/10

chances to return 0, 5/10 chances to return 1, 3/10 chances to
return 2� �

See also:

rnd,

rnd_color

Possible use:

• rnd_color (int) —> rgb

Result:

rgb color

Comment:

Return a random color equivalent to rgb(rnd(operand),rnd(operand),rnd(operand))

Examples:� �
rgb var0 <- rnd_color(255); // var0 equals a random color,

equivalent to rgb(rnd(255),rnd(255),rnd(255))� �
v 1.7 1028

GAMAdocumentation Chapter 68. Operators

See also:

rgb, hsb,

rotated_by

Possible use:

• geometry rotated_by int—> geometry
• rotated_by (geometry , int) —> geometry
• geometry rotated_by float—> geometry
• rotated_by (geometry , float) —> geometry
• rotated_by (geometry, float, point) —> geometry

Result:

A geometry resulting from the application of a rotation by the right-hand operand angles
(degree) along the three axis (x,y,z) to the left-hand operand (geometry, agent, point) A ge-
ometry resulting from the application of a rotation by the right-hand operand angle (degree)
to the left-hand operand (geometry, agent, point)

Comment:

the right-hand operand can be a float or a int

Examples:� �
geometry var0 <- rotated_by(pyramid(10),45, {1,0,0}); // var0

equals the geometry resulting from a 45 degrees rotation along
the {1,0,0} vector to the geometry of the agent applying the

operator.
geometry var1 <- self rotated_by 45; // var1 equals the

geometry resulting from a 45 degrees rotation to the geometry
of the agent applying the operator.� �

v 1.7 1029

GAMAdocumentation Chapter 68. Operators

See also:

transformed_by, translated_by,

round

Possible use:

• round (int) —> int
• round (float) —> int
• round (point) —> point

Result:

Returns the rounded value of the operand.

Special cases:

• if the operand is an int, round returns it

Examples:� �
int var0 <- round (0.51); // var0 equals 1
int var1 <- round (100.2); // var1 equals 100
int var2 <- round(-0.51); // var2 equals -1
point var3 <- {12345.78943, 12345.78943, 12345.78943}

with_precision 2; // var3 equals
{12345.79,12345.79,12345.79}� �

See also:

int, with_precision, round,

v 1.7 1030

GAMAdocumentation Chapter 68. Operators

row_at

Possible use:

• matrix row_at int—> list
• row_at (matrix , int) —> list

Result:

returns the row at a num_line (right-hand operand)

Examples:� �
list var0 <- matrix([["el11","el12","el13"],["el21","el22","el23"

],["el31","el32","el33"]]) row_at 2; // var0 equals ["el13
","el23","el33"]� �

See also:

column_at, columns_list,

rows_list

Possible use:

• rows_list (matrix) —> list<list>

Result:

returns a list of the rows of the matrix, with each row as a list of elements

v 1.7 1031

GAMAdocumentation Chapter 68. Operators

Examples:� �
list<list> var0 <- rows_list(matrix([["el11","el12","el13"],["

el21","el22","el23"],["el31","el32","el33"]])); // var0
equals [["el11","el21","el31"],["el12","el22","el32"],["el13
","el23","el33"]]� �

See also:

columns_list,

sample

Possible use:

• sample (any expression) —> string
• string sample any expression—> string
• sample (string , any expression) —> string
• sample (container, int, bool) —> container
• sample (container, int, bool, container) —> container

Result:

takes a sample of the specified size from the elements of x using either with or without re-
placement takes a sample of the specified size from the elements of x using either with or
without replacement with given weights

Examples:� �
container var0 <- sample([2,10,1],2,false); // var0 equals

[1,2]
container var1 <- sample([2,10,1],2,false ,[0.1,0.7,0.2]); //

var1 equals [10,2]� �

v 1.7 1032

GAMAdocumentation Chapter 68. Operators

scaled_by

Same signification as *

scaled_to

Possible use:

• geometry scaled_to point—> geometry
• scaled_to (geometry , point) —> geometry

Result:

allows to restrict the size of a geometry so that it fits in the envelope {width, height, depth}
defined by the second operand

Examples:� �
geometry var0 <- shape scaled_to {10,10}; // var0 equals a

geometry corresponding to the geometry of the agent applying
the operator scaled so that it fits a square of 10x10� �

select

Same signification as where

v 1.7 1033

GAMAdocumentation Chapter 68. Operators

set_about

Possible use:

• emotion set_about predicate—> emotion
• set_about (emotion , predicate) —> emotion

Result:

change the about value of the given emotion

Examples:� �
emotion about predicate1� �

set_decay

Possible use:

• emotion set_decay float—> emotion
• set_decay (emotion , float) —> emotion

Result:

change the decay value of the given emotion

Examples:� �
emotion set_decay 12� �

v 1.7 1034

GAMAdocumentation Chapter 68. Operators

set_intensity

Possible use:

• emotion set_intensity float—> emotion
• set_intensity (emotion , float) —> emotion

Result:

change the intensity value of the given emotion

Examples:� �
emotion set_intensity 12� �

set_truth

Possible use:

• predicate set_truth bool—> predicate
• set_truth (predicate , bool) —> predicate

Result:

change the is_true value of the given predicate

Examples:� �
predicate set_truth false� �

v 1.7 1035

GAMAdocumentation Chapter 68. Operators

set_z

Possible use:

• geometry set_z container<float>—> geometry
• set_z (geometry , container<float>) —> geometry
• set_z (geometry, int, float) —> geometry

Result:

Sets the z ordinate of the n-th point of a geometry to the value provided by the third argument

Examples:� �
loop i from: 0 to: length(shape.points) - 1{set shape <- set_z (

shape, i, 3.0);}
shape <- triangle(3) set_z [5,10,14];� �

shape_file

Possible use:

• shape_file (string) —> file

Result:

Constructs a file of type shape. Allowed extensions are limited to shp

v 1.7 1036

GAMAdocumentation Chapter 68. Operators

shuffle

Possible use:

• shuffle (string) —> string
• shuffle (matrix) —> matrix
• shuffle (container) —> container

Result:

The elements of the operand in random order.

Special cases:

• if the operand is empty, returns an empty list (or string, matrix)

Examples:� �
string var0 <- shuffle ('abc'); // var0 equals 'bac' (for

example)
matrix var1 <- shuffle (matrix([["c11","c12","c13"],["c21","c22",

"c23"]])); // var1 equals matrix([["c12","c21","c11"],["
c13","c22","c23"]]) (for example)

container var2 <- shuffle ([12, 13, 14]); // var2 equals
[14,12,13] (for example)� �

See also:

reverse,

signum

Possible use:

• signum (float) —> int

v 1.7 1037

GAMAdocumentation Chapter 68. Operators

Result:

Returns -1 if the argument is negative, +1 if it is positive, 0 if it is equal to zero or not a
number

Examples:� �
int var0 <- signum(-12); // var0 equals -1
int var1 <- signum(14); // var1 equals 1
int var2 <- signum(0); // var2 equals 0� �

simple_clustering_by_distance

Possible use:

• container<agent> simple_clustering_by_distance float—> list<list<agent
>>

• simple_clustering_by_distance (container<agent> , float) —> list<list<
agent>>

Result:

A list of agent groups clustered by distance considering a distance min between two groups.

Examples:� �
list<list<agent>> var0 <- [ag1, ag2, ag3, ag4, ag5]

simpleClusteringByDistance 20.0; // var0 equals for example
, can return [[ag1, ag3], [ag2], [ag4, ag5]]� �

v 1.7 1038

GAMAdocumentation Chapter 68. Operators

See also:

hierarchical_clustering,

simple_clustering_by_envelope_distance

Same signification as simple_clustering_by_distance

simplification

Possible use:

• geometry simplification float—> geometry
• simplification (geometry , float) —> geometry

Result:

A geometry corresponding to the simplification of the operand (geometry, agent, point) con-
sidering a tolerance distance.

Comment:

The algorithm used for the simplification is Douglas-Peucker

Examples:� �
geometry var0 <- self simplification 0.1; // var0 equals the

geometry resulting from the application of the Douglas-Peuker
algorithm on the geometry of the agent applying the operator
with a tolerance distance of 0.1.� �

v 1.7 1039

GAMAdocumentation Chapter 68. Operators

sin

Possible use:

• sin (int) —> float
• sin (float) —> float

Result:

Returns the value (in [-1,1]) of the sinus of the operand (in decimal degrees). The argument
is casted to an int before being evaluated.

Special cases:

• Operand values out of the range [0-359] are normalized.

Examples:� �
float var0 <- sin (0); // var0 equals 0.0
float var1 <- sin(360); // var1 equals 0.0� �
See also:

cos, tan,

sin_rad

Possible use:

• sin_rad (float) —> float

v 1.7 1040

GAMAdocumentation Chapter 68. Operators

Result:

Returns the value (in [-1,1]) of the sinus of the operand (in decimal degrees). The argument
is casted to an int before being evaluated.

Special cases:

• Operand values out of the range [0-359] are normalized.

Examples:� �
float var0 <- sin(360); // var0 equals 0.0� �

See also:

cos, tan,

skeletonize

Possible use:

• skeletonize (geometry) —> list<geometry>

Result:

A list of geometries (polylines) corresponding to the skeleton of the operand geometry (ge-
ometry, agent)

v 1.7 1041

GAMAdocumentation Chapter 68. Operators

Examples:� �
list<geometry > var0 <- skeletonize(self); // var0 equals the

list of geometries corresponding to the skeleton of the
geometry of the agent applying the operator.� �

skewness

Possible use:

• skewness (list) —> float

Result:

returns skewness value computed from the operand list of values

Special cases:

• if the length of the list is lower than 3, returns NaN

Examples:� �
skewness ([1,2,3,4,5])� �

skill

Possible use:

• skill (any) —> skill

v 1.7 1042

GAMAdocumentation Chapter 68. Operators

Result:

Casts the operand into the type skill

smooth

Possible use:

• geometry smooth float—> geometry
• smooth (geometry , float) —> geometry

Result:

Returns a ‘smoothed’ geometry, where straight lines are replaces by polynomial (bicubic)
curves. The first parameter is the original geometry, the second is the ‘fit’ parameter which
can be in the range 0 (loose fit) to 1 (tightest fit).

Examples:� �
geometry var0 <- smooth(square(10), 0.0); // var0 equals a '

rounded' square� �

solid

Same signification as without_holes

v 1.7 1043

GAMAdocumentation Chapter 68. Operators

sort

Same signification as sort_by

sort_by

Possible use:

• container sort_by any expression—> container
• sort_by (container , any expression) —> container

Result:

Returns a list, containing the elements of the left-hand operand sorted in ascending order
by the value of the right-hand operand when it is evaluated on them.

Comment:

the left-hand operand is casted to a list before applying the operator. In the right-hand
operand, the keyword each can be used to represent, in turn, each of the elements.

Special cases:

• if the left-hand operand is nil, sort_by throws an error

Examples:� �
container var0 <- [1,2,4,3,5,7,6,8] sort_by (each); // var0

equals [1,2,3,4,5,6,7,8]
container var2 <- g2 sort_by (length(g2 out_edges_of each));

// var2 equals [node9, node7, node10, node8, node11, node6,
node5, node4]

container var3 <- (list(node) sort_by (round(node(each).location.
x)); // var3 equals [node5, node1, node0, node2, node3]

v 1.7 1044

GAMAdocumentation Chapter 68. Operators

container var4 <- [1::2, 5::6, 3::4] sort_by (each); // var4
equals [2, 4, 6]� �

See also:

group_by,

source_of

Possible use:

• graph source_of unknown—> unknown
• source_of (graph , unknown) —> unknown

Result:

returns the source of the edge (right-hand operand) contained in the graph given in left-hand
operand.

Special cases:

• if the lef-hand operand (the graph) is nil, throws an Exception

Examples:� �
graph graphEpidemio <- generate_barabasi_albert(["edges_species"

::edge,"vertices_specy"::node,"size"::3,"m"::5]);
unknown var1 <- graphEpidemio source_of(edge(3)); // var1

equals node1
graph graphFromMap <- as_edge_graph

([{1,5}::{12,45},{12,45}::{34,56}]);
point var3 <- graphFromMap source_of(link({1,5}::{12,45}));

// var3 equals {1,5}� �
v 1.7 1045

GAMAdocumentation Chapter 68. Operators

See also:

target_of,

spatial_graph

Possible use:

• spatial_graph (container) —> graph

Result:

allows to create a spatial graph from a container of vertices, without trying to wire them. The
container can be empty. Emits an error if the contents of the container are not geometries,
points or agents

See also:

graph,

species

Possible use:

• species (unknown) —> species

Result:

casting of the operand to a species.

v 1.7 1046

GAMAdocumentation Chapter 68. Operators

Special cases:

• if the operand is nil, returns nil;

• if the operand is an agent, returns its species;

• if the operand is a string, returns the species with this name (nil if not found);

• otherwise, returns nil

Examples:� �
species var0 <- species(self); // var0 equals the species of the

current agent
species var1 <- species('node'); // var1 equals node
species var2 <- species([1,5,9,3]); // var2 equals nil
species var3 <- species(node1); // var3 equals node� �

species_of

Same signification as species

sphere

Possible use:

• sphere (float) —> geometry

Result:

A sphere geometry which radius is equal to the operand.

v 1.7 1047

GAMAdocumentation Chapter 68. Operators

Comment:

the centre of the sphere is by default the location of the current agent in which has been
called this operator.

Special cases:

• returns a point if the operand is lower or equal to 0.

Examples:� �
geometry var0 <- sphere(10); // var0 equals a geometry as a

circle of radius 10 but displays a sphere.� �
See also:

around, cone, line, link, norm, point, polygon, polyline, rectangle, square, triangle,

split_at

Possible use:

• geometry split_at point—> list<geometry>
• split_at (geometry , point) —> list<geometry>

Result:

The two part of the left-operand lines split at the given right-operand point

Special cases:

• if the left-operand is a point or a polygon, returns an empty list

v 1.7 1048

GAMAdocumentation Chapter 68. Operators

Examples:� �
list<geometry > var0 <- polyline([{1,2},{4,6}]) split_at {7,6};

// var0 equals [polyline([{1.0,2.0},{7.0,6.0}]), polyline
([{7.0,6.0},{4.0,6.0}])]� �

split_geometry

Possible use:

• geometry split_geometry point—> list<geometry>
• split_geometry (geometry , point) —> list<geometry>
• geometry split_geometry float—> list<geometry>
• split_geometry (geometry , float) —> list<geometry>
• split_geometry (geometry, int, int) —> list<geometry>

Result:

A list of geometries that result from the decomposition of the geometry according to a grid
with the given number of rows and columns (geometry, nb_cols, nb_rows) A list of geome-
tries that result from the decomposition of the geometry by rectangle cells of the given di-
mension (geometry, {size_x, size_y}) A list of geometries that result from the decomposition
of the geometry by square cells of the given side size (geometry, size)

Examples:� �
list<geometry > var0 <- to_rectangles(self, 10,20); // var0

equals the list of the geometries corresponding to the
decomposition of the geometry of the agent applying the
operator

list<geometry > var1 <- to_rectangles(self, {10.0, 15.0}); //
var1 equals the list of the geometries corresponding to the
decomposition of the geometry by rectangles of size 10.0, 15.0

v 1.7 1049

GAMAdocumentation Chapter 68. Operators

list<geometry > var2 <- to_squares(self, 10.0); // var2 equals
the list of the geometries corresponding to the decomposition
of the geometry by squares of side size 10.0� �

split_lines

Possible use:

• split_lines (container<geometry>) —> list<geometry>

Result:

A list of geometries resulting after cutting the lines at their intersections.

Examples:� �
list<geometry > var0 <- split_lines([line([{0,10}, {20,10}]), line

([{0,10}, {20,10}])]); // var0 equals a list of four
polylines: line([{0,10}, {10,10}]), line([{10,10}, {20,10}]),
line([{10,0}, {10,10}]) and line([{10,10}, {10,20}])� �

split_with

Possible use:

• string split_with string—> container
• split_with (string , string) —> container

v 1.7 1050

GAMAdocumentation Chapter 68. Operators

Result:

Returns a list containing the sub-strings (tokens) of the left-hand operand delimited by each
of the characters of the right-hand operand.

Comment:

Delimiters themselves are excluded from the resulting list.

Examples:� �
container var0 <- 'to be or not to be,that is the question '

split_with ' ,'; // var0 equals ['to','be','or','not','to
','be','that','is','the','question ']� �

sqrt

Possible use:

• sqrt (int) —> float
• sqrt (float) —> float

Result:

Returns the square root of the operand.

Special cases:

• if the operand is negative, an exception is raised

v 1.7 1051

GAMAdocumentation Chapter 68. Operators

Examples:� �
float var0 <- sqrt(4); // var0 equals 2.0
float var1 <- sqrt(4); // var1 equals 2.0� �

square

Possible use:

• square (float) —> geometry

Result:

A square geometry which side size is equal to the operand.

Comment:

the centre of the square is by default the location of the current agent in which has been
called this operator.

Special cases:

• returns nil if the operand is nil.

Examples:� �
geometry var0 <- square(10); // var0 equals a geometry as a

square of side size 10.� �
v 1.7 1052

GAMAdocumentation Chapter 68. Operators

See also:

around, circle, cone, line, link, norm, point, polygon, polyline, rectangle, triangle,

squircle

Possible use:

• float squircle float—> geometry
• squircle (float , float) —> geometry

Result:

A mix of square and circle geometry (see : http://en.wikipedia.org/wiki/Squircle), which
side size is equal to the first operand and power is equal to the second operand

Comment:

the center of the ellipse is by default the location of the current agent inwhich has been called
this operator.

Special cases:

• returns a point if the side operand is lower or equal to 0.

Examples:� �
geometry var0 <- squircle(4,4); // var0 equals a geometry as

a squircle of side 4 with a power of 4.� �
v 1.7 1053

GAMAdocumentation Chapter 68. Operators

See also:

around, cone, line, link, norm, point, polygon, polyline, super_ellipse, rectangle, square,
circle, ellipse, triangle,

standard_deviation

Possible use:

• standard_deviation (container) —> float

Result:

the standard deviation on the elements of the operand. See Standard_deviation for more
details.

Comment:

The operator casts all the numerical element of the list into float. The elements that are not
numerical are discarded.

Examples:� �
float var0 <- standard_deviation ([4.5, 3.5, 5.5, 7.0]); //

var0 equals 1.2930100540985752� �
See also:

mean, mean_deviation,

v 1.7 1054

GAMAdocumentation Chapter 68. Operators

string

Possible use:

• string (any) —> string

Result:

Casts the operand into the type string

subtract_days

Possible use:

• date subtract_days int—> date
• subtract_days (date , int) —> date

Result:

Subtract a given number of days from a date

Examples:� �
date1 subtract_days 20� �

subtract_hours

Possible use:

• date subtract_hours int—> date
• subtract_hours (date , int) —> date

v 1.7 1055

GAMAdocumentation Chapter 68. Operators

Result:

Add a given number of hours from a date

Examples:� �
date1 subtract_hours 15� �

subtract_minutes

Possible use:

• date subtract_minutes int—> date
• subtract_minutes (date , int) —> date

Result:

Subtract a given number of minutes from a date

Examples:� �
date1 subtract_minutes 5� �

subtract_months

Possible use:

• date subtract_months int—> date
• subtract_months (date , int) —> date

v 1.7 1056

GAMAdocumentation Chapter 68. Operators

Result:

Subtract a given number of months from a date

Examples:� �
date1 subtract_months 5� �

subtract_seconds

Same signification as -

subtract_weeks

Possible use:

• date subtract_weeks int—> date
• subtract_weeks (date , int) —> date

Result:

Subtract a given number of weeks from a date

Examples:� �
date1 subtract_weeks 15� �

v 1.7 1057

GAMAdocumentation Chapter 68. Operators

subtract_years

Possible use:

• date subtract_years int—> date
• subtract_years (date , int) —> date

Result:

Subtract a given number of year from a date

Examples:� �
date1 subtract_years 3� �

successors_of

Possible use:

• graph successors_of unknown—> container
• successors_of (graph , unknown) —> container

Result:

returns the list of successors (i.e. targets of out edges) of the given vertex (right-hand
operand) in the given graph (left-hand operand)

Examples:� �
container var1 <- graphEpidemio successors_of ({1,5}); // var1

equals [{12,45}]
container var2 <- graphEpidemio successors_of node({34,56});

// var2 equals []� �
v 1.7 1058

GAMAdocumentation Chapter 68. Operators

See also:

predecessors_of, neighbors_of,

sum

Possible use:

• sum (graph) —> float
• sum (container) —> unknown

Result:

the sum of all the elements of the operand

Comment:

the behavior depends on the nature of the operand

Special cases:

• if it is a population or a list of other types: sum transforms all elements into float and
sums them

• if it is a map, sum returns the sum of the value of all elements

• if it is a file, sum returns the sum of the content of the file (that is also a container)

• if it is a graph, sum returns the sum of the list of the elements of the graph (that can
be the list of edges or vertexes depending on the graph)

• if it is amatrix of int, float or object, sum returns the sum of all the numerical elements
(i.e. all elements for integer and float matrices)

v 1.7 1059

GAMAdocumentation Chapter 68. Operators

• if it is a matrix of geometry, sum returns the sum of the list of the geometries

• if it is a matrix of other types: sum transforms all elements into float and sums them

• if it is a list of colors: sum will sum them and return the blended resulting color

• if it is a list of int or float: sum returns the sum of all the elements

� �
int var0 <- sum ([12,10,3]); // var0 equals 25� �

• if it is a list of points: sum returns the sum of all points as a point (each coordinate is
the sum of the corresponding coordinate of each element)

� �
unknown var1 <- sum([{1.0,3.0},{3.0,5.0},{9.0,1.0},{7.0,8.0}]);

// var1 equals {20.0,17.0}� �
See also:

mul,

sum_of

Possible use:

• container sum_of any expression—> unknown
• sum_of (container , any expression) —> unknown

Result:

the sum of the right-hand expression evaluated on each of the elements of the left-hand
operand

v 1.7 1060

GAMAdocumentation Chapter 68. Operators

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the
right-hand operand elements.

Special cases:

• if the left-operand is a map, the keyword each will contain each value� �
unknown var2 <- [1::2, 3::4, 5::6] sum_of (each + 3); // var2

equals 21� �
Examples:� �
unknown var1 <- [1,2] sum_of (each * 100); // var1 equals

300� �
See also:

min_of, max_of, product_of, mean_of,

svg_file

Possible use:

• svg_file (string) —> file

Result:

Constructs a file of type svg. Allowed extensions are limited to svg

v 1.7 1061

GAMAdocumentation Chapter 68. Operators

tan

Possible use:

• tan (int) —> float
• tan (float) —> float

Result:

Returns the value (in [-1,1]) of the trigonometric tangent of the operand (in decimal degrees).
The argument is casted to an int before being evaluated.

Special cases:

• Operand values out of the range [0-359] are normalized. Notice that tan(360) does
not return 0.0 but -2.4492935982947064E-16

• The tangent is only defined for any real number except 90 + k * 180 (k an positive
or negative integer). Nevertheless notice that tan(90) returns 1.633123935319537E16
(whereas we could except infinity).

Examples:� �
float var0 <- tan (0); // var0 equals 0.0
float var1 <- tan(90); // var1 equals 1.633123935319537E16� �
See also:

cos, sin,

v 1.7 1062

GAMAdocumentation Chapter 68. Operators

tan_rad

Possible use:

• tan_rad (float) —> float

Result:

Returns the value (in [-1,1]) of the trigonometric tangent of the operand (in decimal degrees).
The argument is casted to an int before being evaluated.

Special cases:

• Operand values out of the range [0-359] are normalized. Notice that tan(360) does
not return 0.0 but -2.4492935982947064E-16

• The tangent is only defined for any real number except 90 + k * 180 (k an positive
or negative integer). Nevertheless notice that tan(90) returns 1.633123935319537E16
(whereas we could except infinity).

See also:

cos, sin,

tanh

Possible use:

• tanh (float) —> float
• tanh (int) —> float

Result:

Returns the value (in the interval [-1,1]) of the hyperbolic tangent of the operand (which can
be any real number, expressed in decimal degrees).

v 1.7 1063

GAMAdocumentation Chapter 68. Operators

Examples:� �
float var0 <- tanh(0); // var0 equals 0.0
float var1 <- tanh(100); // var1 equals 1.0� �

target_of

Possible use:

• graph target_of unknown—> unknown
• target_of (graph , unknown) —> unknown

Result:

returns the target of the edge (right-hand operand) contained in the graph given in left-hand
operand.

Special cases:

• if the lef-hand operand (the graph) is nil, returns nil

Examples:� �
graph graphEpidemio <- generate_barabasi_albert(["edges_species"

::edge,"vertices_specy"::node,"size"::3,"m"::5]);
unknown var1 <- graphEpidemio source_of(edge(3)); // var1

equals node1
graph graphFromMap <- as_edge_graph

([{1,5}::{12,45},{12,45}::{34,56}]);
unknown var3 <- graphFromMap target_of(link({1,5}::{12,45}));

// var3 equals {12,45}� �
v 1.7 1064

GAMAdocumentation Chapter 68. Operators

See also:

source_of,

teapot

Possible use:

• teapot (float) —> geometry

Result:

A teapot geometry which radius is equal to the operand.

Comment:

the centre of the teapot is by default the location of the current agent inwhich has been called
this operator.

Special cases:

• returns a point if the operand is lower or equal to 0.

Examples:� �
geometry var0 <- teapot(10); // var0 equals a geometry as a

circle of radius 10 but displays a teapot.� �
See also:

around, cone, line, link, norm, point, polygon, polyline, rectangle, square, triangle,

v 1.7 1065

GAMAdocumentation Chapter 68. Operators

text_file

Possible use:

• text_file (string) —> file

Result:

Constructs a file of type text. Allowed extensions are limited to txt, data, text

TGauss

Same signification as truncated_gauss

threeds_file

Possible use:

• threeds_file (string) —> file

Result:

Constructs a file of type threeds. Allowed extensions are limited to 3ds, max

to

Same signification as range

v 1.7 1066

GAMAdocumentation Chapter 68. Operators

to_GAMA_CRS

Possible use:

• to_GAMA_CRS (geometry) —> geometry
• geometry to_GAMA_CRS string—> geometry
• to_GAMA_CRS (geometry , string) —> geometry

Special cases:

• returns the geometry corresponding to the transformation of the given geometry to
the GAMA CRS (Coordinate Reference System) assuming the given geometry is refer-
enced by the current CRS, the one corresponding to the world’s agent one

� �
geometry var0 <- to_GAMA_CRS({121,14}); // var0 equals a

geometry corresponding to the agent geometry transformed into
the GAMA CRS� �
• returns the geometry corresponding to the transformation of the given geometry to
the GAMA CRS (Coordinate Reference System) assuming the given geometry is refer-
enced by given CRS

� �
geometry var1 <- to_GAMA_CRS({121,14}, "EPSG:4326"); // var1

equals a geometry corresponding to the agent geometry
transformed into the GAMA CRS� �

to_gaml

Possible use:

• to_gaml (unknown) —> string

v 1.7 1067

GAMAdocumentation Chapter 68. Operators

Result:

returns the literal description of an expression or description – action, behavior, species,
aspect, even model – in gaml

Examples:� �
string var0 <- to_gaml(0); // var0 equals '0'
string var1 <- to_gaml(3.78); // var1 equals '3.78'
string var2 <- to_gaml(true); // var2 equals 'true'
string var3 <- to_gaml({23, 4.0}); // var3 equals

'{23.0,4.0,0.0}'
string var4 <- to_gaml(5::34); // var4 equals '5::34'
string var5 <- to_gaml(rgb(255,0,125)); // var5 equals 'rgb

(255, 0, 125,255)'
string var6 <- to_gaml('hello'); // var6 equals "'hello '"
string var7 <- to_gaml([1,5,9,3]); // var7 equals '[1,5,9,3]'
string var8 <- to_gaml(['a'::345, 'b'::13, 'c'::12]); // var8

equals "(['a'::345,'b'::13,'c'::12] as map)"
string var9 <- to_gaml([[3,5,7,9],[2,4,6,8]]); // var9 equals

'[[3,5,7,9],[2,4,6,8]]'
string var10 <- to_gaml(a_graph); // var10 equals ([((1 as node

)::(3 as node))::(5 as edge),((0 as node)::(3 as node))::(3 as
edge),((1 as node)::(2 as node))::(1 as edge),((0 as node)

::(2 as node))::(2 as edge),((0 as node)::(1 as node))::(0 as
edge),((2 as node)::(3 as node))::(4 as edge)] as map) as
graph

string var11 <- to_gaml(node1); // var11 equals 1 as node� �

to_rectangles

Same signification as split_geometry

Possible use:

• to_rectangles (geometry, point, bool) —> list<geometry>

v 1.7 1068

GAMAdocumentation Chapter 68. Operators

• to_rectangles (geometry, int, int, bool) —> list<geometry>

Result:

A list of rectangles of the size corresponding to the given dimension that result from the de-
composition of the geometry into rectangles (geometry, dimension, overlaps), if overlaps =
true, add the rectangles that overlap the border of the geometry A list of rectangles corre-
sponding to the given dimension that result from the decomposition of the geometry into
rectangles (geometry, nb_cols, nb_rows, overlaps) by a grid composed of the given number
of columns and rows, if overlaps = true, add the rectangles that overlap the border of the
geometry

Examples:� �
list<geometry > var0 <- to_rectangles(self, {10.0, 15.0}, true);

// var0 equals the list of rectangles of size {10.0, 15.0}
corresponding to the discretization into rectangles of the
geometry of the agent applying the operator. The rectangles
overlapping the border of the geometry are kept

list<geometry > var1 <- to_rectangles(self, 5, 20, true); //
var1 equals the list of rectangles corresponding to the
discretization by a grid of 5 columns and 20 rows into
rectangles of the geometry of the agent applying the operator.
The rectangles overlapping the border of the geometry are

kept� �

to_squares

Possible use:

• to_squares (geometry, float, bool) —> list<geometry>
• to_squares (geometry, int, bool) —> list<geometry>
• to_squares (geometry, int, bool, float) —> list<geometry>

v 1.7 1069

GAMAdocumentation Chapter 68. Operators

Result:

A list of a given number of squares from the decomposition of the geometry into squares
(geometry, nb_square, overlaps, precision_coefficient), if overlaps = true, add the squares
that overlap the border of the geometry, coefficient_precision should be close to 1.0 A list
of squares of the size corresponding to the given size that result from the decomposition of
the geometry into squares (geometry, size, overlaps), if overlaps = true, add the squares that
overlap the border of the geometry A list of a given number of squares from the decomposi-
tion of the geometry into squares (geometry, nb_square, overlaps), if overlaps = true, add
the squares that overlap the border of the geometry

Examples:� �
list<geometry > var0 <- to_squares(self, 10, true, 0.99); //

var0 equals the list of 10 squares corresponding to the
discretization into squares of the geometry of the agent
applying the operator. The squares overlapping the border of
the geometry are kept

list<geometry > var1 <- to_squares(self, 10.0, true); // var1
equals the list of squares of side size 10.0 corresponding to
the discretization into squares of the geometry of the agent
applying the operator. The squares overlapping the border of
the geometry are kept

list<geometry > var2 <- to_squares(self, 10, true); // var2
equals the list of 10 squares corresponding to the
discretization into squares of the geometry of the agent
applying the operator. The squares overlapping the border of
the geometry are kept� �

to_triangles

Same signification as triangulate

v 1.7 1070

GAMAdocumentation Chapter 68. Operators

tokenize

Same signification as split_with

topology

Possible use:

• topology (unknown) —> topology

Result:

casting of the operand to a topology.

Special cases:

• if the operand is a topology, returns the topology itself;

• if the operand is a spatial graph, returns the graph topology associated;

• if the operand is a population, returns the topology of the population;

• if the operand is a shape or a geometry, returns the continuous topology bounded by
the geometry;

• if the operand is a matrix, returns the grid topology associated

• if the operand is another kind of container, returns the multiple topology associated
to the container

• otherwise, casts the operand to a geometry and build a topology from it.

v 1.7 1071

GAMAdocumentation Chapter 68. Operators

Examples:� �
topology var0 <- topology(0); // var0 equals nil
topology(a_graph) --: Multiple topology in POLYGON

((24.712119771887785 7.867357373616512, 24.712119771887785
61.283226839310565, 82.4013676510046 7.867357373616512)) at
location[53.556743711446195;34.57529210646354]� �

See also:

geometry,

touches

Possible use:

• geometry touches geometry—> bool
• touches (geometry , geometry) —> bool

Result:

A boolean, equal to true if the left-geometry (or agent/point) touches the right-geometry (or
agent/point).

Comment:

returns true when the left-operand only touches the right-operand. When one geometry
covers partially (or fully) the other one, it returns false.

Special cases:

• if one of the operand is null, returns false.

v 1.7 1072

GAMAdocumentation Chapter 68. Operators

Examples:� �
bool var0 <- polyline([{10,10},{20,20}]) touches {15,15}; //

var0 equals false
bool var1 <- polyline([{10,10},{20,20}]) touches {10,10}; //

var1 equals true
bool var2 <- {15,15} touches {15,15}; // var2 equals false
bool var3 <- polyline([{10,10},{20,20}]) touches polyline

([{10,10},{5,5}]); // var3 equals true
bool var4 <- polyline([{10,10},{20,20}]) touches polyline

([{5,5},{15,15}]); // var4 equals false
bool var5 <- polyline([{10,10},{20,20}]) touches polyline

([{15,15},{25,25}]); // var5 equals false
bool var6 <- polygon([{10,10},{10,20},{20,20},{20,10}]) touches

polygon([{15,15},{15,25},{25,25},{25,15}]); // var6 equals
false

bool var7 <- polygon([{10,10},{10,20},{20,20},{20,10}]) touches
polygon([{10,20},{20,20},{20,30},{10,30}]); // var7 equals
true

bool var8 <- polygon([{10,10},{10,20},{20,20},{20,10}]) touches
polygon([{10,10},{0,10},{0,0},{10,0}]); // var8 equals
true

bool var9 <- polygon([{10,10},{10,20},{20,20},{20,10}]) touches
{15,15}; // var9 equals false

bool var10 <- polygon([{10,10},{10,20},{20,20},{20,10}]) touches
{10,15}; // var10 equals true� �

See also:

disjoint_from, crosses, overlaps, partially_overlaps, intersects,

towards

Possible use:

• geometry towards geometry—> int
• towards (geometry , geometry) —> int

v 1.7 1073

GAMAdocumentation Chapter 68. Operators

Result:

The direction (in degree) between the two geometries (geometries, agents, points) consider-
ing the topology of the agent applying the operator.

Examples:� �
int var0 <- ag1 towards ag2; // var0 equals the direction

between ag1 and ag2 and ag3 considering the topology of the
agent applying the operator� �

See also:

distance_between, distance_to, direction_between, path_between, path_to,

trace

Possible use:

• trace (matrix) —> float

Result:

The trace of the given matrix (the sum of the elements on the main diagonal).

Examples:� �
float var0 <- trace(matrix([[1,2],[3,4]])); // var0 equals 5� �

v 1.7 1074

GAMAdocumentation Chapter 68. Operators

transformed_by

Possible use:

• geometry transformed_by point—> geometry
• transformed_by (geometry , point) —> geometry

Result:

A geometry resulting from the application of a rotation and a scaling (right-operand : point
{angle(degree), scale factor} of the left-hand operand (geometry, agent, point)

Examples:� �
geometry var0 <- self transformed_by {45, 0.5}; // var0

equals the geometry resulting from 45 degrees rotation and 50%
scaling of the geometry of the agent applying the operator.� �

See also:

rotated_by, translated_by,

translated_by

Possible use:

• geometry translated_by point—> geometry
• translated_by (geometry , point) —> geometry

Result:

A geometry resulting from the application of a translation by the right-hand operand dis-
tance to the left-hand operand (geometry, agent, point)

v 1.7 1075

GAMAdocumentation Chapter 68. Operators

Examples:� �
geometry var0 <- self translated_by {10,10,10}; // var0

equals the geometry resulting from applying the translation to
the left-hand geometry (or agent).� �

See also:

rotated_by, transformed_by,

translated_to

Same signification as at_location

transpose

Possible use:

• transpose (matrix) —> matrix

Result:

The transposition of the given matrix

Examples:� �
matrix var0 <- transpose(matrix([[5,-3],[6,-4]])); // var0

equals [[5,6],[-3,-4]]� �

v 1.7 1076

GAMAdocumentation Chapter 68. Operators

triangle

Possible use:

• triangle (float) —> geometry

Result:

A triangle geometry which side size is given by the operand.

Comment:

the center of the triangle is by default the location of the current agent in which has been
called this operator.

Special cases:

• returns nil if the operand is nil.

Examples:� �
geometry var0 <- triangle(5); // var0 equals a geometry as a

triangle with side_size = 5.� �
See also:

around, circle, cone, line, link, norm, point, polygon, polyline, rectangle, square,

triangulate

Possible use:

• triangulate (list<geometry>) —> list<geometry>
• triangulate (geometry) —> list<geometry>

v 1.7 1077

GAMAdocumentation Chapter 68. Operators

Result:

A list of geometries (triangles) corresponding to the Delaunay triangulation of the operand
geometry (geometry, agent, point)

Examples:� �
list<geometry > var0 <- triangulate(self); // var0 equals the

list of geometries (triangles) corresponding to the Delaunay
triangulation of the geometry of the agent applying the
operator.

list<geometry > var1 <- triangulate(self); // var1 equals the
list of geometries (triangles) corresponding to the Delaunay
triangulation of the geometry of the agent applying the
operator.� �

truncated_gauss

Possible use:

• truncated_gauss (point) —> float
• truncated_gauss (container) —> float

Result:

A random value from a normally distributed random variable in the interval]mean - stan-
dardDeviation; mean + standardDeviation[.

Special cases:

• when the operand is a point, it is read as {mean, standardDeviation}

v 1.7 1078

GAMAdocumentation Chapter 68. Operators

• if the operand is a list, only the two first elements are taken into account as [mean,
standardDeviation]

• when truncated_gauss is called with a list of only one element mean, it will always
return 0.0

Examples:� �
float var0 <- truncated_gauss ({0, 0.3}); // var0 equals a

float between -0.3 and 0.3
float var1 <- truncated_gauss ([0.5, 0.0]); // var1 equals

0.5� �
See also:

gauss,

undirected

Possible use:

• undirected (graph) —> graph

Result:

the operand graph becomes an undirected graph.

Comment:

the operator alters the operand graph, it does not create a new one.

v 1.7 1079

GAMAdocumentation Chapter 68. Operators

See also:

directed,

union

Same signification as +

Possible use:

• union (container<geometry>) —> geometry
• container union container—> container
• union (container , container) —> container

Result:

returns a new list containing all the elements of both containers without duplicated ele-
ments.

Special cases:

• if the right-operand is a container of points, geometries or agents, returns the geome-
try resulting from the union all the geometries

• if the left or right operand is nil, union throws an error

Examples:� �
geometry var0 <- union([geom1, geom2, geom3]); // var0 equals a

geometry corresponding to union between geom1, geom2 and geom3
container var1 <- [1,2,3,4,5,6] union [2,4,9]; // var1 equals

[1,2,3,4,5,6,9]
container var2 <- [1,2,3,4,5,6] union [0,8]; // var2 equals

[1,2,3,4,5,6,0,8]

v 1.7 1080

GAMAdocumentation Chapter 68. Operators

container var3 <- [1,3,2,4,5,6,8,5,6] union [0,8]; // var3
equals [1,3,2,4,5,6,8,0]� �

See also:

inter, +,

unknown

Possible use:

• unknown (any) —> unknown

Result:

Casts the operand into the type unknown

upper_case

Possible use:

• upper_case (string) —> string

Result:

Converts all of the characters in the string operand to upper case

Examples:� �
string var0 <- upper_case("Abc"); // var0 equals 'ABC'� �
v 1.7 1081

GAMAdocumentation Chapter 68. Operators

See also:

lower_case,

URL_file

Possible use:

• URL_file (string) —> file

Result:

Constructs a file of type URL. Allowed extensions are limited to url

use_cache

Possible use:

• graph use_cache bool—> graph
• use_cache (graph , bool) —> graph

Result:

if the second operand is true, the operand graph will store in a cache all the previously com-
puted shortest path (the cache be cleared if the graph is modified).

Comment:

the operator alters the operand graph, it does not create a new one.

v 1.7 1082

GAMAdocumentation Chapter 68. Operators

See also:

path_between,

user_input

Possible use:

• user_input (any expression) —> map<string,unknown>
• string user_input any expression—> map<string,unknown>
• user_input (string , any expression) —> map<string,unknown>

Result:

asks the user for some values (not defined as parameters). Takes a string (optional) and a
map as arguments. The string is used to specify the message of the dialog box. The map is
to specify the parameters you want the user to change before the simulation starts, with the
name of the parameter in string key, and the default value as value.

Comment:

This operator takes a map [string::value] as argument, displays a dialog asking the user for
these values, and returns the same map with the modified values (if any). The dialog is
modal and will interrupt the execution of the simulation until the user has either dismissed
or accepted it. It can be used, for instance, in an init section to force the user to input new
values instead of relying on the initial values of parameters :

Examples:� �
map<string,unknown> values <- user_input(["Number" :: 100, "

Location" :: {10, 10}]);
create bug number: int(values at "Number") with: [location:: (

point(values at "Location"))];

v 1.7 1083

GAMAdocumentation Chapter 68. Operators

map<string,unknown> values2 <- user_input("Enter numer of agents
and locations",["Number" :: 100, "Location" :: {10, 10}]);

create bug number: int(values2 at "Number") with: [location:: (
point(values2 at "Location"))];� �

using

Possible use:

• any expression using topology—> unknown
• using (any expression , topology) —> unknown

Result:

Allows to specify in which topology a spatial computation should take place.

Special cases:

• has no effect if the topology passed as a parameter is nil

Examples:� �
unknown var0 <- (agents closest_to self) using topology(world);

// var0 equals the closest agent to self (the caller) in
the continuous topology of the world� �

variance

Possible use:

• variance (container) —> float

v 1.7 1084

GAMAdocumentation Chapter 68. Operators

Result:

the variance of the elements of the operand. See Variance for more details.

Comment:

The operator casts all the numerical element of the list into float. The elements that are not
numerical are discarded.

Examples:� �
float var0 <- variance ([4.5, 3.5, 5.5, 7.0]); // var0 equals

1.671875� �
See also:

mean, median,

variance_of

Possible use:

• container variance_of any expression—> unknown
• variance_of (container , any expression) —> unknown

Result:

the variance of the right-hand expression evaluated on each of the elements of the left-hand
operand

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the
right-hand operand elements.

v 1.7 1085

GAMAdocumentation Chapter 68. Operators

See also:

min_of, max_of, sum_of, product_of,

voronoi

Possible use:

• voronoi (list<point>) —> list<geometry>
• list<point> voronoi geometry—> list<geometry>
• voronoi (list<point> , geometry) —> list<geometry>

Result:

A list of geometries corresponding to the Voronoi diagram built from the list of points A list
of geometries corresponding to the Voronoi diagram built from the list of points according
to the given clip

Examples:� �
list<geometry > var0 <- voronoi

([{10,10},{50,50},{90,90},{10,90},{90,10}]); // var0 equals
the list of geometries corresponding to the Voronoi Diagram
built from the list of points.

list<geometry > var1 <- voronoi
([{10,10},{50,50},{90,90},{10,90},{90,10}], square(300));
// var1 equals the list of geometries corresponding to the
Voronoi Diagram built from the list of points with a square of
300m side size as clip.� �

v 1.7 1086

GAMAdocumentation Chapter 68. Operators

weight_of

Possible use:

• graph weight_of unknown—> float
• weight_of (graph , unknown) —> float

Result:

returns the weight of the given edge (right-hand operand) contained in the graph given in
right-hand operand.

Comment:

In a localized graph, an edge has a weight by default (the distance between both vertices).

Special cases:

• if the left-operand (the graph) is nil, returns nil

• if the right-hand operand is not an edge of the given graph, weight_of checks whether
it is a node of the graph and tries to return its weight

• if the right-hand operand is neither a node, nor an edge, returns 1.

Examples:� �
graph graphFromMap <- as_edge_graph

([{1,5}::{12,45},{12,45}::{34,56}]);
float var1 <- graphFromMap weight_of(link({1,5}::{12,45}));

// var1 equals 1.0� �

v 1.7 1087

GAMAdocumentation Chapter 68. Operators

weighted_means_DM

Possible use:

• list<list> weighted_means_DM list<map<string,object>>—> int
• weighted_means_DM (list<list> , list<map<string,object>>) —> int

Result:

The index of the candidate that maximizes the weighted mean of its criterion values. The
first operand is the list of candidates (a candidate is a list of criterion values); the second
operand the list of criterion (list of map)

Special cases:

• returns -1 is the list of candidates is nil or empty

Examples:� �
int var0 <- weighted_means_DM([[1.0, 7.0],[4.0,2.0],[3.0, 3.0]],

[["name"::"utility", "weight" :: 2.0],["name"::"price", "
weight" :: 1.0]]); // var0 equals 1� �

See also:

promethee_DM, electre_DM, evidence_theory_DM,

where

Possible use:

• container where any expression—> container
• where (container , any expression) —> container

v 1.7 1088

GAMAdocumentation Chapter 68. Operators

Result:

a list containing all the elements of the left-hand operand that make the right-hand operand
evaluate to true.

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the
right-hand operand elements.

Special cases:

• if the left-hand operand is a list nil, where returns a new empty list

• if the left-operand is a map, the keyword each will contain each value

� �
container var4 <- [1::2, 3::4, 5::6] where (each >= 4); //

var4 equals [4, 6]� �
Examples:� �
container var0 <- [1,2,3,4,5,6,7,8] where (each > 3); // var0

equals [4, 5, 6, 7, 8]
container var2 <- g2 where (length(g2 out_edges_of each) = 0);

// var2 equals [node9, node7, node10, node8, node11]
container var3 <- (list(node) where (round(node(each).location.x)

> 32); // var3 equals [node2, node3]� �
See also:

first_with, last_with, where,

v 1.7 1089

GAMAdocumentation Chapter 68. Operators

with_lifetime

Possible use:

• predicate with_lifetime int—> predicate
• with_lifetime (predicate , int) —> predicate

Result:

change the parameters of the given predicate

Examples:� �
predicate with_lifetime 10� �

with_max_of

Possible use:

• container with_max_of any expression—> unknown
• with_max_of (container , any expression) —> unknown

Result:

one of elements of the left-hand operand thatmaximizes the value of the right-hand operand

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the
right-hand operand elements.

v 1.7 1090

GAMAdocumentation Chapter 68. Operators

Special cases:

• if the left-hand operand is nil, with_max_of returns the default value of the right-hand
operand

Examples:� �
unknown var0 <- [1,2,3,4,5,6,7,8] with_max_of (each); // var0

equals 8
unknown var2 <- g2 with_max_of (length(g2 out_edges_of each)) ;

// var2 equals node4
unknown var3 <- (list(node) with_max_of (round(node(each).

location.x)); // var3 equals node3
unknown var4 <- [1::2, 3::4, 5::6] with_max_of (each); // var4

equals 6� �
See also:

where, with_min_of,

with_min_of

Possible use:

• container with_min_of any expression—> unknown
• with_min_of (container , any expression) —> unknown

Result:

one of elements of the left-hand operand thatminimizes the value of the right-hand operand

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the
right-hand operand elements.

v 1.7 1091

GAMAdocumentation Chapter 68. Operators

Special cases:

• if the left-hand operand is nil, with_max_of returns the default value of the right-hand
operand

Examples:� �
unknown var0 <- [1,2,3,4,5,6,7,8] with_min_of (each); // var0

equals 1
unknown var2 <- g2 with_min_of (length(g2 out_edges_of each));

// var2 equals node11
unknown var3 <- (list(node) with_min_of (round(node(each).

location.x)); // var3 equals node0
unknown var4 <- [1::2, 3::4, 5::6] with_min_of (each); // var4

equals 2� �
See also:

where, with_max_of,

with_optimizer_type

Possible use:

• graph with_optimizer_type string—> graph
• with_optimizer_type (graph , string) —> graph

Result:

changes the shortest path computation method of the given graph

v 1.7 1092

GAMAdocumentation Chapter 68. Operators

Comment:

the right-hand operand can be “Djikstra”, “Bellmann”, “Astar” to use the associated algo-
rithm. Note that these methods are dynamic: the path is computed when needed. In con-
trarily, if the operand is another string, a static method will be used, i.e. all the shortest are
previously computed.

Examples:� �
graphEpidemio <- graphEpidemio with_optimizer_type "static";� �
See also:

set_verbose,

with_precision

Possible use:

• point with_precision int—> point
• with_precision (point , int) —> point
• float with_precision int—> float
• with_precision (float , int) —> float

Result:

Rounds off the ordinates of the left-hand point to the precision given by the value of right-
hand operand Rounds off the value of left-hand operand to the precision given by the value
of right-hand operand

v 1.7 1093

GAMAdocumentation Chapter 68. Operators

Examples:� �
point var0 <- {12345.78943, 12345.78943, 12345.78943}

with_precision 2 ; // var0 equals {12345.79, 12345.79,
12345.79}

float var1 <- 12345.78943 with_precision 2; // var1 equals
12345.79

float var2 <- 123 with_precision 2; // var2 equals 123.00� �
See also:

round,

with_priority

Possible use:

• predicate with_priority float—> predicate
• with_priority (predicate , float) —> predicate

Result:

change the priority of the given predicate

Examples:� �
predicate with_priority 2� �

v 1.7 1094

GAMAdocumentation Chapter 68. Operators

with_values

Possible use:

• predicate with_values map—> predicate
• with_values (predicate , map) —> predicate

Result:

change the parameters of the given predicate

Examples:� �
predicate with_values ["time"::10]� �

with_weights

Possible use:

• graph with_weights container—> graph
• with_weights (graph , container) —> graph
• graph with_weights map—> graph
• with_weights (graph , map) —> graph

Result:

returns the graph (left-hand operand) with weight given in the map (right-hand operand).

Comment:

this operand re-initializes the path finder

v 1.7 1095

GAMAdocumentation Chapter 68. Operators

Special cases:

• if the right-hand operand is a list, affects the n elements of the list to the n first
edges. Note that the ordering of edges may change overtime, which can create some
problems…

• if the left-hand operand is a map, the map should contains pairs such as: ver-
tex/edge::double

� �
graph_from_edges (list(ant) as_map each::one_of (list(ant)))

with_weights (list(ant) as_map each::each.food)� �

without_holes

Possible use:

• without_holes (geometry) —> geometry

Result:

A geometry corresponding to the operand geometry (geometry, agent, point) without its
holes

Examples:� �
geometry var0 <- solid(self); // var0 equals the geometry

corresponding to the geometry of the agent applying the
operator without its holes.� �

v 1.7 1096

GAMAdocumentation Chapter 68. Operators

writable

Possible use:

• file writable bool—> file
• writable (file , bool) —> file

Result:

Marks the file as read-only or not, depending on the second boolean argument, and returns
the first argument

Comment:

A file is created using its native flags. This operator can change them. Beware that this
change is system-wide (and not only restrained to GAMA): changing a file to read-onlymode
(e.g. “writable(f, false)”)

Examples:� �
file var0 <- shape_file("../images/point_eau.shp") writable false

; // var0 equals returns a file in read-only mode� �
See also:

file,

xml_file

Possible use:

• xml_file (string) —> file

v 1.7 1097

GAMAdocumentation Chapter 68. Operators

Result:

Constructs a file of type xml. Allowed extensions are limited to xml

v 1.7 1098

GAMAdocumentation Chapter 68. Operators

References

This page contains a subset of the scientific papers that have beenwritten either aboutGAMA
or using the platform as an experimental/modeling support.

If you happen to publish a paper that uses or discusses GAMA, please let us know, so that
we can include it in this list.

As stated in the first page, if you need to cite GAMA in a paper, we kindly ask you to use
this reference: * A. Grignard, P. Taillandier, B. Gaudou, D-A. Vo, N-Q. Huynh, A. Drogoul
(2013), GAMA 1.6: Advancing the Art of Complex Agent-BasedModeling and Simulation. In
‘PRIMA 2013: Principles and Practice of Multi-Agent Systems’, Lecture Notes in Computer
Science, Vol. 8291, Springer, pp. 117-131.

Papers about GAMA

• Taillandier, Patrick, Arnaud Grignard, Benoit Gaudou, and Alexis Drogoul. “Des don-
nées géographiques à la simulation à base d’agents: application de la plate-forme
GAMA.” Cybergeo: European Journal of Geography (2014).

• A. Grignard, P. Taillandier, B. Gaudou, D-A. Vo, N-Q. Huynh, A. Drogoul (2013),
GAMA 1.6: Advancing the Art of Complex Agent-Based Modeling and Simulation. In
‘PRIMA 2013: Principles and Practice ofMulti-Agent Systems’, Lecture Notes in Com-
puter Science, Vol. 8291, Springer, pp. 117-131.

• Grignard, Arnaud, Alexis Drogoul, and Jean-Daniel Zucker. “Online analysis and visu-
alization of agent basedmodels.” Computational Science and Its Applications–ICCSA
2013. Springer Berlin Heidelberg, 2013. 662-672.

• Taillandier, P., Drogoul, A., Vo, D.A. and Amouroux, E. (2012), GAMA: a simulation
platform that integrates geographical information data, agent-based modeling and
multi-scale control. In ‘The 13th International Conference on Principles and Practices
in Multi-Agent Systems (PRIMA)’, India, Volume 7057/2012, pp 242-258.

v 1.7 1099

http://link.springer.com/chapter/10.1007/978-3-642-44927-7_9
http://link.springer.com/chapter/10.1007/978-3-642-44927-7_9
http://link.springer.com/chapter/10.1007/978-3-642-44927-7_9
http://link.springer.com/chapter/10.1007/978-3-642-44927-7_9
http://spi.cybergeo.revues.org/26263
http://spi.cybergeo.revues.org/26263
http://spi.cybergeo.revues.org/26263
http://link.springer.com/chapter/10.1007/978-3-642-44927-7_9
http://link.springer.com/chapter/10.1007/978-3-642-44927-7_9
http://link.springer.com/chapter/10.1007/978-3-642-44927-7_9
http://link.springer.com/chapter/10.1007/978-3-642-44927-7_9
http://link.springer.com/chapter/10.1007/978-3-642-39637-3_52#page-1
http://link.springer.com/chapter/10.1007/978-3-642-39637-3_52#page-1
http://link.springer.com/chapter/10.1007/978-3-642-39637-3_52#page-1
http://www.springerlink.com/content/j7135j8722742j82/
http://www.springerlink.com/content/j7135j8722742j82/
http://www.springerlink.com/content/j7135j8722742j82/
http://www.springerlink.com/content/j7135j8722742j82/

GAMAdocumentation Chapter 68. Operators

• Taillandier, P. & Drogoul, A. (2011), From Grid Environment to Geographic Vector
Agents, Modeling with the GAMA simulation platform. In ‘25th Conference of the
International Cartographic Association’, Paris, France.

• Taillandier, P. ; Drogoul A. ; Vo D.A. & Amouroux, E. (2010), GAMA : bringing GIS
andmulti-level capabilities tomulti-agent simulation, in ‘the 8th EuropeanWorkshop
on Multi-Agent Systems’, Paris, France.

• Amouroux, E., Taillandier, P. &Drogoul, A. (2010), Complex environment representa-
tion in epidemiology ABM: application on H5N1 propagation. In ‘the 3rd International
Conference on Theories and Applications of Computer Science’ (ICTACS’10).

• Amouroux, E., Chu, T.Q., Boucher, A. andDrogoul, A. (2007), GAMA: an environment
for implementing and running spatially explicit multi-agent simulations. In ‘Pacific
Rim International Workshop on Multi-Agents’, Bangkoku, Thailand, pp. 359–371.

PhD theses

• Truong Xuan Viet, “Optimization by Simulation of an Environmental Surveillance
Network: Application to the Fight against Rice Pests in the Mekong Delta (Vietnam)”,
University of Paris 6 & Ho Chi Minh University of Technology, defended June 24th,
2014.

• Nguyen Nhi Gia Vinh, “Designing multi-scale models to support environmental
decision: application to the control of Brown Plant Hopper invasions in the Mekong
Delta (Vietnam)”, University of Paris 6, defended Oct. 31st, 2013.

• Vo Duc An, “An operational architecture to handle multiple levels of representation
in agent-based models”, University of Paris 6, defended Nov. 30th 2012.

• Amouroux Edouard, “KIMONO: a descriptive agent-based modeling methodology
for the exploration of complex systems: an application to epidemiology”, University
of Paris 6, defended Sept. 30th, 2011.

• Chu Thanh Quang, “Using agent-based models and machine learning to enhance
spatial decision support systems: Application to resource allocation in situations of
urban catastrophes”, University of Paris 6, defended July 1st, 2011.

v 1.7 1100

http://icaci.org/files/documents/ICC_proceedings/ICC2011/Oral%20Presentations%20PDF/C4-Simulation,%20spatio-temporal%20modelling,%20visualisation/CO-288.pdf
http://icaci.org/files/documents/ICC_proceedings/ICC2011/Oral%20Presentations%20PDF/C4-Simulation,%20spatio-temporal%20modelling,%20visualisation/CO-288.pdf
http://icaci.org/files/documents/ICC_proceedings/ICC2011/Oral%20Presentations%20PDF/C4-Simulation,%20spatio-temporal%20modelling,%20visualisation/CO-288.pdf
http://www.springerlink.com/content/88006131542n1204/
http://www.springerlink.com/content/88006131542n1204/
http://www.springerlink.com/content/88006131542n1204/
https://drive.google.com/a/ctu.edu.vn/file/d/0B7ArAu2_CEjCaTVzZURNUGlfWmc/edit?usp=sharing
https://drive.google.com/a/ctu.edu.vn/file/d/0B7ArAu2_CEjCaTVzZURNUGlfWmc/edit?usp=sharing
https://drive.google.com/file/d/0BwzSY8KTNM0nLUVMVXR3WDVJSjQ/edit?usp=sharing
https://drive.google.com/file/d/0BwzSY8KTNM0nLUVMVXR3WDVJSjQ/edit?usp=sharing
https://drive.google.com/file/d/0BwzSY8KTNM0nLUVMVXR3WDVJSjQ/edit?usp=sharing
https://dl.dropboxusercontent.com/u/70529600/manuscrit_VoDucAn.pdf
https://dl.dropboxusercontent.com/u/70529600/manuscrit_VoDucAn.pdf
http://tel.archives-ouvertes.fr/tel-00630779
http://tel.archives-ouvertes.fr/tel-00630779
https://www.dropbox.com/s/i5ifnigqv7qltc9/CHU-Thanh-Quang_manuscrit.pdf
https://www.dropbox.com/s/i5ifnigqv7qltc9/CHU-Thanh-Quang_manuscrit.pdf
https://www.dropbox.com/s/i5ifnigqv7qltc9/CHU-Thanh-Quang_manuscrit.pdf

GAMAdocumentation Chapter 68. Operators

• Nguyen Ngoc Doanh, “Coupling Equation-Based and Individual-Based Models in
the Study of Complex Systems: A Case Study in Theoretical Population Ecology”, Uni-
versity of Paris 6, defended Dec. 14th, 2010.

Research papers that use GAMA as modeling/simula-
tion support

2016

• Bhamidipati, S., van der Lei, T., & Herder, P. (2016). A layered approach to model in-
terconnected infrastructure and its significance for asset management. EJTIR, 16(1),
254-272.

2014

• E. G. Macatulad , A. C. Blanco (2014) 3DGIS-BASED MULTI-AGENT GEOSIM-
ULATION AND VISUALIZATION OF BUILDING EVACUATION USING GAMA
PLATFORM. The International Archives of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, Volume XL-2, 2014. ISPRS Techni-
cal Commission II Symposium, 6 – 8 October 2014, Toronto, Canada. Re-
trieved from http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-
2/87/2014/isprsarchives-XL-2-87-2014.pdf

• S. Bhamidipati (2014) A simulation framework for asset management in
climate-change adaptation of transportation infrastructure. In: Proceedings of
42nd European Transport Conference. Frankfurt, Germany. Retrieved from
http://abstracts.aetransport.org/paper/download/id/4317

• Gaudou, B., Sibertin-Blanc, C., Thérond, O., Amblard, F., Auda, Y., Arcangeli, J.-
P., Balestrat, M., Charron-Moirez, M.-H., Gondet, E., Hong, Y., Lardy, R., Louail,
T., Mayor, E., Panzoli, D., Sauvage, S., Sanchez-Perez, J., Taillandier, P., Nguyen,
V. B., Vavasseur, M., Mazzega, P. (2014). The MAELIA multi-agent platform for in-
tegrated assessment of low-water management issues. In: International Workshop
on Multi-Agent-Based Simulation (MABS 2013), Saint-Paul, MN, USA, 06/05/2013-
07/05/2013, Vol. 8235, Shah Jamal Alam, H. Van Dyke Parunak, (Eds.), Springer,
Lecture Notes in Computer Science, p. 85-110.

v 1.7 1101

https://docs.google.com/file/d/0B5s1B4Qq19ycMDg4MTNhMmUtMDNlMC00NzQyLWFlZjEtMjZhOGY5YjRhNWU5/edit?hl=fr
https://docs.google.com/file/d/0B5s1B4Qq19ycMDg4MTNhMmUtMDNlMC00NzQyLWFlZjEtMjZhOGY5YjRhNWU5/edit?hl=fr
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf

GAMAdocumentation Chapter 68. Operators

• Gaudou, B., Lorini, E., Mayor, E. (2014.) Moral Guilt: An Agent-Based Model Analy-
sis. In: Conference of the European Social Simulation Association (ESSA 2013), War-
saw, 16/09/2013-20/09/2013, Vol. 229, Springer, Advances in Intelligent Systems
and Computing, p. 95-106.

2013 * Drogoul, A., Gaudou, B., Grignard, A., Taillandier, P., & Vo, D. A. (2013). Practical
Approach To Agent-Based Modelling. In: Water and its Many Issues. Methods and Cross-
cutting Analysis. Stéphane Lagrée (Eds.), Journées de TamDao, p. 277-300, Regional Social
Sciences Summer University.

• Drogoul, A., Gaudou, B. (2013) Methods for Agent-Based Computer Modelling. In:
Water and its Many Issues. Methods and Cross-cutting Analysis. Stéphane Lagrée
(Eds.), Journées de Tam Dao, 1.6, p. 130-154, Regional Social Sciences Summer Uni-
versity.

• Truong, M.-T., Amblard, F., Gaudou, B., Sibertin-Blanc, C., Truong, V. X., Drogoul,
A., Hyunh, X. H., Le, M. N. (2013). An implementation of framework of business
intelligence for agent-based simulation. In: Symposium on Information and Com-
munication Technology (SoICT 2013), Da Nang, Viet Nam, 05/12/2013-06/12/2013,
Quyet Thang Huynh, Thanh Binh Nguyen, Van Tien Do, Marc Bui, Hong Son Ngo
(Eds.), ACM, p. 35-44.

• Le, V. M., Gaudou, B., Taillandier, P., Vo, D. A (2013). A New BDI Architecture
To Formalize Cognitive Agent Behaviors Into Simulations. In: Advanced Methods
and Technologies for Agent andMulti-Agent Systems (KES-AMSTA 2013), Hue, Viet-
nam, 27/05/2013-29/05/2013, Vol. 252, Dariusz Barbucha, Manh Thanh Le, Robert
J. Howlett, C. Jain Lakhmi (Eds.), IOS Press, Frontiers in Artificial Intelligence and
Applications, p. 395-403.

2012 * Taillandier, P., Therond, O., Gaudou B. (2012), A new BDI agent architecture based
on the belief theory. Application to the modelling of cropping plan decision-making. In
‘International Environmental Modelling and Software Society’, Germany, pp. 107-116.

• Taillandier, P., Therond, O., Gaudou B. (2012), Une architecture d’agent BDI basée
sur la théorie des fonctions de croyance: application à la simulation du comportement
des agriculteurs. In ‘Journées Francophones sur les Systèmes Multi-Agents’, France,
pp. 107-116.

v 1.7 1102

http://www.irit.fr/EmoTES/Documents/Conference/Conf_ic_2013_Gaudou_et_al.pdf
http://www.irit.fr/EmoTES/Documents/Conference/Conf_ic_2013_Gaudou_et_al.pdf
http://www.irit.fr/EmoTES/Documents/Conference/Conf_ic_2013_Gaudou_et_al.pdf
http://www.irit.fr/EmoTES/Documents/Conference/Conf_ic_2013_Gaudou_et_al.pdf
http://hal.archives-ouvertes.fr/docs/00/93/24/23/PDF/JTD2012_-_Atelier_-_EN.pdf
http://hal.archives-ouvertes.fr/docs/00/93/24/23/PDF/JTD2012_-_Atelier_-_EN.pdf
http://hal.archives-ouvertes.fr/docs/00/93/24/23/PDF/JTD2012_-_Atelier_-_EN.pdf
http://hal.archives-ouvertes.fr/docs/00/93/24/23/PDF/JTD2012_-_Atelier_-_EN.pdf
http://www.tamdaoconf.com/tamdao/wp-content/plugins/download-monitor/download.php?id=185
http://www.tamdaoconf.com/tamdao/wp-content/plugins/download-monitor/download.php?id=185
http://www.tamdaoconf.com/tamdao/wp-content/plugins/download-monitor/download.php?id=185
http://www.tamdaoconf.com/tamdao/wp-content/plugins/download-monitor/download.php?id=185
http://dl.acm.org/citation.cfm?id=2542069
http://dl.acm.org/citation.cfm?id=2542069
http://dl.acm.org/citation.cfm?id=2542069
http://dl.acm.org/citation.cfm?id=2542069
http://dl.acm.org/citation.cfm?id=2542069
http://dl.acm.org/citation.cfm?id=2542069
http://ebooks.iospress.nl/publication/32865
http://ebooks.iospress.nl/publication/32865
http://ebooks.iospress.nl/publication/32865
http://ebooks.iospress.nl/publication/32865
http://ebooks.iospress.nl/publication/32865
http://ebooks.iospress.nl/publication/32865
http://www.iemss.org/sites/iemss2012//proceedings/H2_0404_Taillandier_et_al.pdf
http://www.iemss.org/sites/iemss2012//proceedings/H2_0404_Taillandier_et_al.pdf
http://www.iemss.org/sites/iemss2012//proceedings/H2_0404_Taillandier_et_al.pdf

GAMAdocumentation Chapter 68. Operators

• NGUYEN, Quoc Tuan, Alain BOUJU, and Pascal ESTRAILLIER. “Multi-agent archi-
tecture with space-time components for the simulation of urban transportation sys-
tems.” (2012).

• Cisse, A., Bah, A., Drogoul, A., Cisse, A.T., Ndione, J.A., Kebe, C.M.F. & Taillandier
P. (2012), Un modèle à base d’agents sur la transmission et la diffusion de la fièvre
de la Vallée du Rift à Barkédji (Ferlo, Sénégal), Studia Informatica Universalis 10 (1),
pp. 77-97.

• Taillandier, P., Amouroux, E., Vo, D.A. and Olteanu-Raimond A.M. (2012), Using Be-
lief Theory to formalize the agent behavior: application to the simulation of avian flu
propagation. In ‘The first Pacific Rim workshop on Agent-based modeling and simu-
lation of Complex Systems (PRACSYS)’, India, Volume 7057/2012, pp. 575-587.

• Le, V.M., Adam, C., Canal, R., Gaudou, B., Ho, T.V. and Taillandier, P. (2012), Sim-
ulation of the emotion dynamics in a group of agents in an evacuation situation. In
‘The first Pacific Rim workshop on Agent-based modeling and simulation of Complex
Systems (PRACSYS)’, India, Volume 7057/2012, pp. 604-619.

• Nguyen Vu, Q. A., Canal, R., Gaudou, B., Hassas, S., Armetta, F. (2012), TrustSets
- Using trust to detect deceitful agents in a distributed information collecting system.
In: Journal of Ambient Intelligence andHumanized Computing, Springer-Verlag, Vol.
3 N. 4, p. 251-263.

2011 * Taillandier, P. & Therond, O. (2011), Use of the Belief Theory to formalize Agent De-
cisionMaking Processes : Application to cropping Plan DecisionMaking. In ’25th European
Simulation and Modelling Conference’, Guimaraes, Portugal, pp. 138-142.

• Taillandier, P. & Amblard, F. (2011), Cartography of Multi-Agent Model Parameter
Space through a reactive Dicotomous Approach. In ’25th European Simulation and
Modelling Conference’, Guimaraes, Portugal, pp. 38-42.

• Taillandier, P. & Stinckwich, S. (2011), Using the PROMETHEE Multi-Criteria Deci-
sion Making Method to Define New Exploration Strategies for Rescue Robots’, IEEE
International Symposium on Safety, Security, and Rescue Robotics, Kyoto, Japon,
pp. 321 - 326.

2010 *NguyenVu, Q.A. , Gaudou, B., Canal, R., Hassas, S. andArmetta, F. (2010), A cluster-
based approach for disturbed, spatialized, distributed information gathering systems, in
‘The first Pacific Rim workshop on Agent-based modeling and simulation of Complex Sys-
tems (PRACSYS)’, India, pp. 588-603.

v 1.7 1103

http://www.sciencedirect.com.accesdistant.upmc.fr/science/article/pii/S1877042812042188
http://www.sciencedirect.com.accesdistant.upmc.fr/science/article/pii/S1877042812042188
http://www.sciencedirect.com.accesdistant.upmc.fr/science/article/pii/S1877042812042188
http://studia.complexica.net/Art/RI100104.pdf
http://studia.complexica.net/Art/RI100104.pdf
http://studia.complexica.net/Art/RI100104.pdf
http://studia.complexica.net/Art/RI100104.pdf
http://www.springerlink.com/content/8qg53u75q46252l2/
http://www.springerlink.com/content/8qg53u75q46252l2/
http://www.springerlink.com/content/8qg53u75q46252l2/
http://www.springerlink.com/content/8qg53u75q46252l2/
http://www.springerlink.com/content/c838365603qr7tx0/
http://www.springerlink.com/content/c838365603qr7tx0/
http://www.springerlink.com/content/c838365603qr7tx0/
http://www.springerlink.com/content/c838365603qr7tx0/
http://link.springer.com/article/10.1007%2Fs12652-012-0140-0
http://link.springer.com/article/10.1007%2Fs12652-012-0140-0
http://link.springer.com/article/10.1007%2Fs12652-012-0140-0
http://link.springer.com/article/10.1007%2Fs12652-012-0140-0
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6106747&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6106747
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6106747&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6106747
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6106747&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6106747
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6106747&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6106747
http://www.springerlink.com/content/u02nq35387418q11/
http://www.springerlink.com/content/u02nq35387418q11/
http://www.springerlink.com/content/u02nq35387418q11/
http://www.springerlink.com/content/u02nq35387418q11/

GAMAdocumentation Chapter 68. Operators

• Nguyen, N.D., Taillandier, P., Drogoul, A. and Augier, P. (2010), Inferring Equation-
Based Models from Agent-Based Models: A Case Study in Competition Dynamics.In
‘The 13th International Conference on Principles and Practices in Multi-Agent Sys-
tems (PRIMA)’, India, Volume 7057/2012, pp. 413-427.

• Amouroux, E., Gaudou, B. Desvaux, S. and Drogoul, A. (2010), O.D.D.: a Promis-
ing but Incomplete Formalism For Individual-Based Model Specification. in ‘IEEE
International Conference on Computing and Telecommunication Technologies’(2010
IEEE RIVF’), pp. 1-4.

• Nguyen, N.D., Phan, T.H.D., Nguyen, T.N.A., Drogoul, A. and Zucker, J-D. (2010),
Disk Graph-BasedModel for Competition Dynamic, Paper to appear in ‘IEEE Interna-
tional Conference on Computing and Telecommunication Technologies’(2010 IEEE
RIVF’).

• Nguyen, T.K., Marilleau, N., Ho T.V. and El Fallah Seghrouchni, A. (2010), A meta-
model for specifying collaborative simulation, Paper to appear in ‘IEEE International
Conference on Computing and Telecommunication Technologies’(2010 IEEE RIVF’).

• NguyenVu, Q.A. , Gaudou, B., Canal, R., Hassas, S. andArmetta, F. (2010), TrustSets
- Using trust to detect deceitful agents in a distributed information collecting system,
Paper to appear in ‘IEEE International Conference on Computing and Telecommuni-
cation Technologies’(2010 IEEE RIVF’), the best student paper award.

• Nguyen Vu, Q.A. , Gaudou, B., Canal, R., Hassas, S., Armetta, F. and Stinckwich, S.
(2010), Using trust and cluster organisation to improve robot swarmmapping, Paper
to appear in ‘Workshop on Robots and Sensors integration in future rescue INforma-
tion system’ (ROSIN 2010).

2009 * Taillandier, P. and Buard, E. (2009), Designing Agent Behaviour in Agent-Based
Simulation through participatory method. In ‘The 12th International Conference on Princi-
ples and Practices in Multi-Agent Systems (PRIMA)’, Nagoya, Japan, pp. 571–578.

• Taillandier, P. and Chu, T.Q. (2009), Using Participatory Paradigm to Learn Human
Behaviour. In ‘International Conference on Knowledge and Systems Engineering’, Ha
noi, Viet Nam, pp. 55–60.

• Gaudou, B., Ho, T.V. andMarilleau, N. (2009), Introduce collaboration inmethodolo-
gies of modeling and simulation of Complex Systems. In ‘International Conference on
Intelligent Networking and Collaborative Systems (INCOS ’09)’. Barcelona, pp. 1–8.

v 1.7 1104

http://www.springerlink.com/content/n23314gm326l4p27/
http://www.springerlink.com/content/n23314gm326l4p27/
http://www.springerlink.com/content/n23314gm326l4p27/
http://www.springerlink.com/content/n23314gm326l4p27/
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5633421&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5633421
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5633421&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5633421
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5633421&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5633421
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5633421&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5633421
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5633080
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5633080
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5633080
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5633080
http://users.info.unicaen.fr/~serge/share/ROSIN10/rosin10_submission_8.pdf
http://users.info.unicaen.fr/~serge/share/ROSIN10/rosin10_submission_8.pdf
http://users.info.unicaen.fr/~serge/share/ROSIN10/rosin10_submission_8.pdf
http://users.info.unicaen.fr/~serge/share/ROSIN10/rosin10_submission_8.pdf
http://www.springerlink.com/content/hu37551467646471/
http://www.springerlink.com/content/hu37551467646471/
http://www.springerlink.com/content/hu37551467646471/
http://www.computer.org/portal/web/csdl/doi/10.1109/KSE.2009.33
http://www.computer.org/portal/web/csdl/doi/10.1109/KSE.2009.33
http://www.computer.org/portal/web/csdl/doi/10.1109/KSE.2009.33
http://portal2.acm.org/citation.cfm?id=1681504.1681534&coll=GUIDE&dl=GUIDE&CFID=://www.google.com.vn/search?hl=fr&CFTOKEN=www.google.com.vn/search?hl=fr
http://portal2.acm.org/citation.cfm?id=1681504.1681534&coll=GUIDE&dl=GUIDE&CFID=://www.google.com.vn/search?hl=fr&CFTOKEN=www.google.com.vn/search?hl=fr
http://portal2.acm.org/citation.cfm?id=1681504.1681534&coll=GUIDE&dl=GUIDE&CFID=://www.google.com.vn/search?hl=fr&CFTOKEN=www.google.com.vn/search?hl=fr

GAMAdocumentation Chapter 68. Operators

• Nguyen, T.K., Gaudou B., Ho T.V. and Marilleau N. (2009), Application of PAMS
Collaboration Platform to Simulation-Based Researches in Soil Science: The Case of
the MIcro-ORganism Project. In ‘IEEE International Conference on Computing and
Telecommunication Technologies (IEEE-RIVF 09)’. Da Nang, Viet Nam, pp. 296–
303.

• Nguyen, V.Q., Gaudou B., Canal R., Hassas S. and Armetta F. (2009), Stratégie de
communication dans un système de collecte d’information à base d’agents perturbés.
In ‘Journées Francophones sur les Systèmes Multi-Agents (JFSMA’09)’.

2008 * Chu, T.Q., Boucher, A., Drogoul, A., Vo, D.A., Nguyen, H.P. and Zucker, J.D. (2008).
Interactive Learning of Expert Criteria for Rescue Simulations. In ‘Pacific Rim International
Workshop on Multi-Agents’, Ha Noi, Viet Nam, pp. 127–138.

• Amouroux, E., Desvaux, S. and Drogoul, A. (2008), Towards Virtual Epidemiology:
An Agent-Based Approach to the Modeling of H5N1 Propagation and Persistence in
North-Vietnam. In ‘Pacific Rim International Workshop on Multi-Agents’, Ha Noi,
Viet Nam, pp. 26–33.

v 1.7 1105

http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5174598%2F5174599%2F05174623.pdf%3Farnumber%3D5174623&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5174598%2F5174599%2F05174623.pdf%3Farnumber%3D5174623&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5174598%2F5174599%2F05174623.pdf%3Farnumber%3D5174623&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5174598%2F5174599%2F05174623.pdf%3Farnumber%3D5174623&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5174598%2F5174599%2F05174623.pdf%3Farnumber%3D5174623&authDecision=-203
http://liesp.insa-lyon.fr/v2/?q=fr/node/100911
http://liesp.insa-lyon.fr/v2/?q=fr/node/100911
http://liesp.insa-lyon.fr/v2/?q=fr/node/100911
http://www.springerlink.com/content/r83v0125vl0430l1/
http://www.springerlink.com/content/r83v0125vl0430l1/
http://www.springerlink.com/content/r83v0125vl0430l1/
http://www.springerlink.com/content/v6471t1453k17244/
http://www.springerlink.com/content/v6471t1453k17244/
http://www.springerlink.com/content/v6471t1453k17244/
http://www.springerlink.com/content/v6471t1453k17244/

GAMAdocumentation Chapter 68. Operators

References

This page contains a subset of the scientific papers that have beenwritten either aboutGAMA
or using the platform as an experimental/modeling support.

If you happen to publish a paper that uses or discusses GAMA, please let us know, so that
we can include it in this list.

As stated in the first page, if you need to cite GAMA in a paper, we kindly ask you to use
this reference: * A. Grignard, P. Taillandier, B. Gaudou, D-A. Vo, N-Q. Huynh, A. Drogoul
(2013), GAMA 1.6: Advancing the Art of Complex Agent-BasedModeling and Simulation. In
‘PRIMA 2013: Principles and Practice of Multi-Agent Systems’, Lecture Notes in Computer
Science, Vol. 8291, Springer, pp. 117-131.

Papers about GAMA

• Taillandier, Patrick, Arnaud Grignard, Benoit Gaudou, and Alexis Drogoul. “Des don-
nées géographiques à la simulation à base d’agents: application de la plate-forme
GAMA.” Cybergeo: European Journal of Geography (2014).

• A. Grignard, P. Taillandier, B. Gaudou, D-A. Vo, N-Q. Huynh, A. Drogoul (2013),
GAMA 1.6: Advancing the Art of Complex Agent-Based Modeling and Simulation. In
‘PRIMA 2013: Principles and Practice ofMulti-Agent Systems’, Lecture Notes in Com-
puter Science, Vol. 8291, Springer, pp. 117-131.

• Grignard, Arnaud, Alexis Drogoul, and Jean-Daniel Zucker. “Online analysis and visu-
alization of agent basedmodels.” Computational Science and Its Applications–ICCSA
2013. Springer Berlin Heidelberg, 2013. 662-672.

• Taillandier, P., Drogoul, A., Vo, D.A. and Amouroux, E. (2012), GAMA: a simulation
platform that integrates geographical information data, agent-based modeling and
multi-scale control. In ‘The 13th International Conference on Principles and Practices
in Multi-Agent Systems (PRIMA)’, India, Volume 7057/2012, pp 242-258.

v 1.7 1106

http://link.springer.com/chapter/10.1007/978-3-642-44927-7_9
http://link.springer.com/chapter/10.1007/978-3-642-44927-7_9
http://link.springer.com/chapter/10.1007/978-3-642-44927-7_9
http://link.springer.com/chapter/10.1007/978-3-642-44927-7_9
http://spi.cybergeo.revues.org/26263
http://spi.cybergeo.revues.org/26263
http://spi.cybergeo.revues.org/26263
http://link.springer.com/chapter/10.1007/978-3-642-44927-7_9
http://link.springer.com/chapter/10.1007/978-3-642-44927-7_9
http://link.springer.com/chapter/10.1007/978-3-642-44927-7_9
http://link.springer.com/chapter/10.1007/978-3-642-44927-7_9
http://link.springer.com/chapter/10.1007/978-3-642-39637-3_52#page-1
http://link.springer.com/chapter/10.1007/978-3-642-39637-3_52#page-1
http://link.springer.com/chapter/10.1007/978-3-642-39637-3_52#page-1
http://www.springerlink.com/content/j7135j8722742j82/
http://www.springerlink.com/content/j7135j8722742j82/
http://www.springerlink.com/content/j7135j8722742j82/
http://www.springerlink.com/content/j7135j8722742j82/

GAMAdocumentation Chapter 68. Operators

• Taillandier, P. & Drogoul, A. (2011), From Grid Environment to Geographic Vector
Agents, Modeling with the GAMA simulation platform. In ‘25th Conference of the
International Cartographic Association’, Paris, France.

• Taillandier, P. ; Drogoul A. ; Vo D.A. & Amouroux, E. (2010), GAMA : bringing GIS
andmulti-level capabilities tomulti-agent simulation, in ‘the 8th EuropeanWorkshop
on Multi-Agent Systems’, Paris, France.

• Amouroux, E., Taillandier, P. &Drogoul, A. (2010), Complex environment representa-
tion in epidemiology ABM: application on H5N1 propagation. In ‘the 3rd International
Conference on Theories and Applications of Computer Science’ (ICTACS’10).

• Amouroux, E., Chu, T.Q., Boucher, A. andDrogoul, A. (2007), GAMA: an environment
for implementing and running spatially explicit multi-agent simulations. In ‘Pacific
Rim International Workshop on Multi-Agents’, Bangkoku, Thailand, pp. 359–371.

PhD theses

• Truong Xuan Viet, “Optimization by Simulation of an Environmental Surveillance
Network: Application to the Fight against Rice Pests in the Mekong Delta (Vietnam)”,
University of Paris 6 & Ho Chi Minh University of Technology, defended June 24th,
2014.

• Nguyen Nhi Gia Vinh, “Designing multi-scale models to support environmental
decision: application to the control of Brown Plant Hopper invasions in the Mekong
Delta (Vietnam)”, University of Paris 6, defended Oct. 31st, 2013.

• Vo Duc An, “An operational architecture to handle multiple levels of representation
in agent-based models”, University of Paris 6, defended Nov. 30th 2012.

• Amouroux Edouard, “KIMONO: a descriptive agent-based modeling methodology
for the exploration of complex systems: an application to epidemiology”, University
of Paris 6, defended Sept. 30th, 2011.

• Chu Thanh Quang, “Using agent-based models and machine learning to enhance
spatial decision support systems: Application to resource allocation in situations of
urban catastrophes”, University of Paris 6, defended July 1st, 2011.

v 1.7 1107

http://icaci.org/files/documents/ICC_proceedings/ICC2011/Oral%20Presentations%20PDF/C4-Simulation,%20spatio-temporal%20modelling,%20visualisation/CO-288.pdf
http://icaci.org/files/documents/ICC_proceedings/ICC2011/Oral%20Presentations%20PDF/C4-Simulation,%20spatio-temporal%20modelling,%20visualisation/CO-288.pdf
http://icaci.org/files/documents/ICC_proceedings/ICC2011/Oral%20Presentations%20PDF/C4-Simulation,%20spatio-temporal%20modelling,%20visualisation/CO-288.pdf
http://www.springerlink.com/content/88006131542n1204/
http://www.springerlink.com/content/88006131542n1204/
http://www.springerlink.com/content/88006131542n1204/
https://drive.google.com/a/ctu.edu.vn/file/d/0B7ArAu2_CEjCaTVzZURNUGlfWmc/edit?usp=sharing
https://drive.google.com/a/ctu.edu.vn/file/d/0B7ArAu2_CEjCaTVzZURNUGlfWmc/edit?usp=sharing
https://drive.google.com/file/d/0BwzSY8KTNM0nLUVMVXR3WDVJSjQ/edit?usp=sharing
https://drive.google.com/file/d/0BwzSY8KTNM0nLUVMVXR3WDVJSjQ/edit?usp=sharing
https://drive.google.com/file/d/0BwzSY8KTNM0nLUVMVXR3WDVJSjQ/edit?usp=sharing
https://dl.dropboxusercontent.com/u/70529600/manuscrit_VoDucAn.pdf
https://dl.dropboxusercontent.com/u/70529600/manuscrit_VoDucAn.pdf
http://tel.archives-ouvertes.fr/tel-00630779
http://tel.archives-ouvertes.fr/tel-00630779
https://www.dropbox.com/s/i5ifnigqv7qltc9/CHU-Thanh-Quang_manuscrit.pdf
https://www.dropbox.com/s/i5ifnigqv7qltc9/CHU-Thanh-Quang_manuscrit.pdf
https://www.dropbox.com/s/i5ifnigqv7qltc9/CHU-Thanh-Quang_manuscrit.pdf

GAMAdocumentation Chapter 68. Operators

• Nguyen Ngoc Doanh, “Coupling Equation-Based and Individual-Based Models in
the Study of Complex Systems: A Case Study in Theoretical Population Ecology”, Uni-
versity of Paris 6, defended Dec. 14th, 2010.

Research papers that use GAMA as modeling/simula-
tion support

2016

• Bhamidipati, S., van der Lei, T., & Herder, P. (2016). A layered approach to model in-
terconnected infrastructure and its significance for asset management. EJTIR, 16(1),
254-272.

2014

• E. G. Macatulad , A. C. Blanco (2014) 3DGIS-BASED MULTI-AGENT GEOSIM-
ULATION AND VISUALIZATION OF BUILDING EVACUATION USING GAMA
PLATFORM. The International Archives of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, Volume XL-2, 2014. ISPRS Techni-
cal Commission II Symposium, 6 – 8 October 2014, Toronto, Canada. Re-
trieved from http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-
2/87/2014/isprsarchives-XL-2-87-2014.pdf

• S. Bhamidipati (2014) A simulation framework for asset management in
climate-change adaptation of transportation infrastructure. In: Proceedings of
42nd European Transport Conference. Frankfurt, Germany. Retrieved from
http://abstracts.aetransport.org/paper/download/id/4317

• Gaudou, B., Sibertin-Blanc, C., Thérond, O., Amblard, F., Auda, Y., Arcangeli, J.-
P., Balestrat, M., Charron-Moirez, M.-H., Gondet, E., Hong, Y., Lardy, R., Louail,
T., Mayor, E., Panzoli, D., Sauvage, S., Sanchez-Perez, J., Taillandier, P., Nguyen,
V. B., Vavasseur, M., Mazzega, P. (2014). The MAELIA multi-agent platform for in-
tegrated assessment of low-water management issues. In: International Workshop
on Multi-Agent-Based Simulation (MABS 2013), Saint-Paul, MN, USA, 06/05/2013-
07/05/2013, Vol. 8235, Shah Jamal Alam, H. Van Dyke Parunak, (Eds.), Springer,
Lecture Notes in Computer Science, p. 85-110.

v 1.7 1108

https://docs.google.com/file/d/0B5s1B4Qq19ycMDg4MTNhMmUtMDNlMC00NzQyLWFlZjEtMjZhOGY5YjRhNWU5/edit?hl=fr
https://docs.google.com/file/d/0B5s1B4Qq19ycMDg4MTNhMmUtMDNlMC00NzQyLWFlZjEtMjZhOGY5YjRhNWU5/edit?hl=fr
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf

GAMAdocumentation Chapter 68. Operators

• Gaudou, B., Lorini, E., Mayor, E. (2014.) Moral Guilt: An Agent-Based Model Analy-
sis. In: Conference of the European Social Simulation Association (ESSA 2013), War-
saw, 16/09/2013-20/09/2013, Vol. 229, Springer, Advances in Intelligent Systems
and Computing, p. 95-106.

2013 * Drogoul, A., Gaudou, B., Grignard, A., Taillandier, P., & Vo, D. A. (2013). Practical
Approach To Agent-Based Modelling. In: Water and its Many Issues. Methods and Cross-
cutting Analysis. Stéphane Lagrée (Eds.), Journées de TamDao, p. 277-300, Regional Social
Sciences Summer University.

• Drogoul, A., Gaudou, B. (2013) Methods for Agent-Based Computer Modelling. In:
Water and its Many Issues. Methods and Cross-cutting Analysis. Stéphane Lagrée
(Eds.), Journées de Tam Dao, 1.6, p. 130-154, Regional Social Sciences Summer Uni-
versity.

• Truong, M.-T., Amblard, F., Gaudou, B., Sibertin-Blanc, C., Truong, V. X., Drogoul,
A., Hyunh, X. H., Le, M. N. (2013). An implementation of framework of business
intelligence for agent-based simulation. In: Symposium on Information and Com-
munication Technology (SoICT 2013), Da Nang, Viet Nam, 05/12/2013-06/12/2013,
Quyet Thang Huynh, Thanh Binh Nguyen, Van Tien Do, Marc Bui, Hong Son Ngo
(Eds.), ACM, p. 35-44.

• Le, V. M., Gaudou, B., Taillandier, P., Vo, D. A (2013). A New BDI Architecture
To Formalize Cognitive Agent Behaviors Into Simulations. In: Advanced Methods
and Technologies for Agent andMulti-Agent Systems (KES-AMSTA 2013), Hue, Viet-
nam, 27/05/2013-29/05/2013, Vol. 252, Dariusz Barbucha, Manh Thanh Le, Robert
J. Howlett, C. Jain Lakhmi (Eds.), IOS Press, Frontiers in Artificial Intelligence and
Applications, p. 395-403.

2012 * Taillandier, P., Therond, O., Gaudou B. (2012), A new BDI agent architecture based
on the belief theory. Application to the modelling of cropping plan decision-making. In
‘International Environmental Modelling and Software Society’, Germany, pp. 107-116.

• Taillandier, P., Therond, O., Gaudou B. (2012), Une architecture d’agent BDI basée
sur la théorie des fonctions de croyance: application à la simulation du comportement
des agriculteurs. In ‘Journées Francophones sur les Systèmes Multi-Agents’, France,
pp. 107-116.

v 1.7 1109

http://www.irit.fr/EmoTES/Documents/Conference/Conf_ic_2013_Gaudou_et_al.pdf
http://www.irit.fr/EmoTES/Documents/Conference/Conf_ic_2013_Gaudou_et_al.pdf
http://www.irit.fr/EmoTES/Documents/Conference/Conf_ic_2013_Gaudou_et_al.pdf
http://www.irit.fr/EmoTES/Documents/Conference/Conf_ic_2013_Gaudou_et_al.pdf
http://hal.archives-ouvertes.fr/docs/00/93/24/23/PDF/JTD2012_-_Atelier_-_EN.pdf
http://hal.archives-ouvertes.fr/docs/00/93/24/23/PDF/JTD2012_-_Atelier_-_EN.pdf
http://hal.archives-ouvertes.fr/docs/00/93/24/23/PDF/JTD2012_-_Atelier_-_EN.pdf
http://hal.archives-ouvertes.fr/docs/00/93/24/23/PDF/JTD2012_-_Atelier_-_EN.pdf
http://www.tamdaoconf.com/tamdao/wp-content/plugins/download-monitor/download.php?id=185
http://www.tamdaoconf.com/tamdao/wp-content/plugins/download-monitor/download.php?id=185
http://www.tamdaoconf.com/tamdao/wp-content/plugins/download-monitor/download.php?id=185
http://www.tamdaoconf.com/tamdao/wp-content/plugins/download-monitor/download.php?id=185
http://dl.acm.org/citation.cfm?id=2542069
http://dl.acm.org/citation.cfm?id=2542069
http://dl.acm.org/citation.cfm?id=2542069
http://dl.acm.org/citation.cfm?id=2542069
http://dl.acm.org/citation.cfm?id=2542069
http://dl.acm.org/citation.cfm?id=2542069
http://ebooks.iospress.nl/publication/32865
http://ebooks.iospress.nl/publication/32865
http://ebooks.iospress.nl/publication/32865
http://ebooks.iospress.nl/publication/32865
http://ebooks.iospress.nl/publication/32865
http://ebooks.iospress.nl/publication/32865
http://www.iemss.org/sites/iemss2012//proceedings/H2_0404_Taillandier_et_al.pdf
http://www.iemss.org/sites/iemss2012//proceedings/H2_0404_Taillandier_et_al.pdf
http://www.iemss.org/sites/iemss2012//proceedings/H2_0404_Taillandier_et_al.pdf

GAMAdocumentation Chapter 68. Operators

• NGUYEN, Quoc Tuan, Alain BOUJU, and Pascal ESTRAILLIER. “Multi-agent archi-
tecture with space-time components for the simulation of urban transportation sys-
tems.” (2012).

• Cisse, A., Bah, A., Drogoul, A., Cisse, A.T., Ndione, J.A., Kebe, C.M.F. & Taillandier
P. (2012), Un modèle à base d’agents sur la transmission et la diffusion de la fièvre
de la Vallée du Rift à Barkédji (Ferlo, Sénégal), Studia Informatica Universalis 10 (1),
pp. 77-97.

• Taillandier, P., Amouroux, E., Vo, D.A. and Olteanu-Raimond A.M. (2012), Using Be-
lief Theory to formalize the agent behavior: application to the simulation of avian flu
propagation. In ‘The first Pacific Rim workshop on Agent-based modeling and simu-
lation of Complex Systems (PRACSYS)’, India, Volume 7057/2012, pp. 575-587.

• Le, V.M., Adam, C., Canal, R., Gaudou, B., Ho, T.V. and Taillandier, P. (2012), Sim-
ulation of the emotion dynamics in a group of agents in an evacuation situation. In
‘The first Pacific Rim workshop on Agent-based modeling and simulation of Complex
Systems (PRACSYS)’, India, Volume 7057/2012, pp. 604-619.

• Nguyen Vu, Q. A., Canal, R., Gaudou, B., Hassas, S., Armetta, F. (2012), TrustSets
- Using trust to detect deceitful agents in a distributed information collecting system.
In: Journal of Ambient Intelligence andHumanized Computing, Springer-Verlag, Vol.
3 N. 4, p. 251-263.

2011 * Taillandier, P. & Therond, O. (2011), Use of the Belief Theory to formalize Agent De-
cisionMaking Processes : Application to cropping Plan DecisionMaking. In ’25th European
Simulation and Modelling Conference’, Guimaraes, Portugal, pp. 138-142.

• Taillandier, P. & Amblard, F. (2011), Cartography of Multi-Agent Model Parameter
Space through a reactive Dicotomous Approach. In ’25th European Simulation and
Modelling Conference’, Guimaraes, Portugal, pp. 38-42.

• Taillandier, P. & Stinckwich, S. (2011), Using the PROMETHEE Multi-Criteria Deci-
sion Making Method to Define New Exploration Strategies for Rescue Robots’, IEEE
International Symposium on Safety, Security, and Rescue Robotics, Kyoto, Japon,
pp. 321 - 326.

2010 *NguyenVu, Q.A. , Gaudou, B., Canal, R., Hassas, S. andArmetta, F. (2010), A cluster-
based approach for disturbed, spatialized, distributed information gathering systems, in
‘The first Pacific Rim workshop on Agent-based modeling and simulation of Complex Sys-
tems (PRACSYS)’, India, pp. 588-603.

v 1.7 1110

http://www.sciencedirect.com.accesdistant.upmc.fr/science/article/pii/S1877042812042188
http://www.sciencedirect.com.accesdistant.upmc.fr/science/article/pii/S1877042812042188
http://www.sciencedirect.com.accesdistant.upmc.fr/science/article/pii/S1877042812042188
http://studia.complexica.net/Art/RI100104.pdf
http://studia.complexica.net/Art/RI100104.pdf
http://studia.complexica.net/Art/RI100104.pdf
http://studia.complexica.net/Art/RI100104.pdf
http://www.springerlink.com/content/8qg53u75q46252l2/
http://www.springerlink.com/content/8qg53u75q46252l2/
http://www.springerlink.com/content/8qg53u75q46252l2/
http://www.springerlink.com/content/8qg53u75q46252l2/
http://www.springerlink.com/content/c838365603qr7tx0/
http://www.springerlink.com/content/c838365603qr7tx0/
http://www.springerlink.com/content/c838365603qr7tx0/
http://www.springerlink.com/content/c838365603qr7tx0/
http://link.springer.com/article/10.1007%2Fs12652-012-0140-0
http://link.springer.com/article/10.1007%2Fs12652-012-0140-0
http://link.springer.com/article/10.1007%2Fs12652-012-0140-0
http://link.springer.com/article/10.1007%2Fs12652-012-0140-0
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6106747&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6106747
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6106747&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6106747
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6106747&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6106747
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6106747&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6106747
http://www.springerlink.com/content/u02nq35387418q11/
http://www.springerlink.com/content/u02nq35387418q11/
http://www.springerlink.com/content/u02nq35387418q11/
http://www.springerlink.com/content/u02nq35387418q11/

GAMAdocumentation Chapter 68. Operators

• Nguyen, N.D., Taillandier, P., Drogoul, A. and Augier, P. (2010), Inferring Equation-
Based Models from Agent-Based Models: A Case Study in Competition Dynamics.In
‘The 13th International Conference on Principles and Practices in Multi-Agent Sys-
tems (PRIMA)’, India, Volume 7057/2012, pp. 413-427.

• Amouroux, E., Gaudou, B. Desvaux, S. and Drogoul, A. (2010), O.D.D.: a Promis-
ing but Incomplete Formalism For Individual-Based Model Specification. in ‘IEEE
International Conference on Computing and Telecommunication Technologies’(2010
IEEE RIVF’), pp. 1-4.

• Nguyen, N.D., Phan, T.H.D., Nguyen, T.N.A., Drogoul, A. and Zucker, J-D. (2010),
Disk Graph-BasedModel for Competition Dynamic, Paper to appear in ‘IEEE Interna-
tional Conference on Computing and Telecommunication Technologies’(2010 IEEE
RIVF’).

• Nguyen, T.K., Marilleau, N., Ho T.V. and El Fallah Seghrouchni, A. (2010), A meta-
model for specifying collaborative simulation, Paper to appear in ‘IEEE International
Conference on Computing and Telecommunication Technologies’(2010 IEEE RIVF’).

• NguyenVu, Q.A. , Gaudou, B., Canal, R., Hassas, S. andArmetta, F. (2010), TrustSets
- Using trust to detect deceitful agents in a distributed information collecting system,
Paper to appear in ‘IEEE International Conference on Computing and Telecommuni-
cation Technologies’(2010 IEEE RIVF’), the best student paper award.

• Nguyen Vu, Q.A. , Gaudou, B., Canal, R., Hassas, S., Armetta, F. and Stinckwich, S.
(2010), Using trust and cluster organisation to improve robot swarmmapping, Paper
to appear in ‘Workshop on Robots and Sensors integration in future rescue INforma-
tion system’ (ROSIN 2010).

2009 * Taillandier, P. and Buard, E. (2009), Designing Agent Behaviour in Agent-Based
Simulation through participatory method. In ‘The 12th International Conference on Princi-
ples and Practices in Multi-Agent Systems (PRIMA)’, Nagoya, Japan, pp. 571–578.

• Taillandier, P. and Chu, T.Q. (2009), Using Participatory Paradigm to Learn Human
Behaviour. In ‘International Conference on Knowledge and Systems Engineering’, Ha
noi, Viet Nam, pp. 55–60.

• Gaudou, B., Ho, T.V. andMarilleau, N. (2009), Introduce collaboration inmethodolo-
gies of modeling and simulation of Complex Systems. In ‘International Conference on
Intelligent Networking and Collaborative Systems (INCOS ’09)’. Barcelona, pp. 1–8.

v 1.7 1111

http://www.springerlink.com/content/n23314gm326l4p27/
http://www.springerlink.com/content/n23314gm326l4p27/
http://www.springerlink.com/content/n23314gm326l4p27/
http://www.springerlink.com/content/n23314gm326l4p27/
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5633421&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5633421
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5633421&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5633421
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5633421&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5633421
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5633421&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5633421
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5633080
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5633080
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5633080
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5633080
http://users.info.unicaen.fr/~serge/share/ROSIN10/rosin10_submission_8.pdf
http://users.info.unicaen.fr/~serge/share/ROSIN10/rosin10_submission_8.pdf
http://users.info.unicaen.fr/~serge/share/ROSIN10/rosin10_submission_8.pdf
http://users.info.unicaen.fr/~serge/share/ROSIN10/rosin10_submission_8.pdf
http://www.springerlink.com/content/hu37551467646471/
http://www.springerlink.com/content/hu37551467646471/
http://www.springerlink.com/content/hu37551467646471/
http://www.computer.org/portal/web/csdl/doi/10.1109/KSE.2009.33
http://www.computer.org/portal/web/csdl/doi/10.1109/KSE.2009.33
http://www.computer.org/portal/web/csdl/doi/10.1109/KSE.2009.33
http://portal2.acm.org/citation.cfm?id=1681504.1681534&coll=GUIDE&dl=GUIDE&CFID=://www.google.com.vn/search?hl=fr&CFTOKEN=www.google.com.vn/search?hl=fr
http://portal2.acm.org/citation.cfm?id=1681504.1681534&coll=GUIDE&dl=GUIDE&CFID=://www.google.com.vn/search?hl=fr&CFTOKEN=www.google.com.vn/search?hl=fr
http://portal2.acm.org/citation.cfm?id=1681504.1681534&coll=GUIDE&dl=GUIDE&CFID=://www.google.com.vn/search?hl=fr&CFTOKEN=www.google.com.vn/search?hl=fr

GAMAdocumentation Chapter 68. Operators

• Nguyen, T.K., Gaudou B., Ho T.V. and Marilleau N. (2009), Application of PAMS
Collaboration Platform to Simulation-Based Researches in Soil Science: The Case of
the MIcro-ORganism Project. In ‘IEEE International Conference on Computing and
Telecommunication Technologies (IEEE-RIVF 09)’. Da Nang, Viet Nam, pp. 296–
303.

• Nguyen, V.Q., Gaudou B., Canal R., Hassas S. and Armetta F. (2009), Stratégie de
communication dans un système de collecte d’information à base d’agents perturbés.
In ‘Journées Francophones sur les Systèmes Multi-Agents (JFSMA’09)’.

2008 * Chu, T.Q., Boucher, A., Drogoul, A., Vo, D.A., Nguyen, H.P. and Zucker, J.D. (2008).
Interactive Learning of Expert Criteria for Rescue Simulations. In ‘Pacific Rim International
Workshop on Multi-Agents’, Ha Noi, Viet Nam, pp. 127–138.

• Amouroux, E., Desvaux, S. and Drogoul, A. (2008), Towards Virtual Epidemiology:
An Agent-Based Approach to the Modeling of H5N1 Propagation and Persistence in
North-Vietnam. In ‘Pacific Rim International Workshop on Multi-Agents’, Ha Noi,
Viet Nam, pp. 26–33.

v 1.7 1112

http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5174598%2F5174599%2F05174623.pdf%3Farnumber%3D5174623&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5174598%2F5174599%2F05174623.pdf%3Farnumber%3D5174623&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5174598%2F5174599%2F05174623.pdf%3Farnumber%3D5174623&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5174598%2F5174599%2F05174623.pdf%3Farnumber%3D5174623&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5174598%2F5174599%2F05174623.pdf%3Farnumber%3D5174623&authDecision=-203
http://liesp.insa-lyon.fr/v2/?q=fr/node/100911
http://liesp.insa-lyon.fr/v2/?q=fr/node/100911
http://liesp.insa-lyon.fr/v2/?q=fr/node/100911
http://www.springerlink.com/content/r83v0125vl0430l1/
http://www.springerlink.com/content/r83v0125vl0430l1/
http://www.springerlink.com/content/r83v0125vl0430l1/
http://www.springerlink.com/content/v6471t1453k17244/
http://www.springerlink.com/content/v6471t1453k17244/
http://www.springerlink.com/content/v6471t1453k17244/
http://www.springerlink.com/content/v6471t1453k17244/

	I Platform
	Installation
	Table of contents
	System Requirements
	Installation of Java

	Launching GAMA
	Table of contents
	Launching the Application
	Choosing a Workspace
	Welcome Page

	Headless Mode
	Table of contents
	Command
	Experiment Input File
	Output Directory
	Simulation Output
	Snapshot files

	Updating GAMA
	Table of contents
	Manual Update
	Automatic Update

	Installing Plugins
	Table of contents
	Installation
	Selected Plugins

	Troubleshooting
	Table of contents
	On Ubuntu (& Linux Systems)
	On Windows
	On MacOS X
	Memory problems
	Submitting an Issue

	Navigating in the Workspace
	Table of contents
	The Different Categories of Models
	Inspect Models
	Moving Models Around
	Closing and Deleting Projects

	Changing Workspace
	Table of contents
	Switching to another Workspace
	Cloning the Current Workspace

	Importing Models
	Table of contents
	The Import… Menu Command
	Silent import
	Drag'n Drop / Copy-Paste Limitations

	The GAML Editor - Generalities
	Table of contents
	Creating a first model
	Status of models in editors
	Editor Preferences
	Additional informations in the Editor
	Multiple editors
	Local history

	The GAML Editor Toolbar
	Table of contents
	Visualization tools in the editor
	Navigation tools in the editor
	Format tools in the editor
	Vocabulary tools in the editor

	Validation of Models
	Table of contents
	Syntactic errors
	Semantic errors
	Semantic warnings
	Semantic information
	Semantic documentation
	Changing the visual indicators
	Errors in imported files
	Cleaning models

	Launching Experiments from the User Interface
	Table of contents
	From an Editor
	From the Navigator
	Running Experiments Automatically
	Running Several Simulations

	Experiments User Interface
	Menus and Commands
	Table of contents
	Experiment Menu
	Agents Menu
	General Toolbar

	Parameters View
	Table of contents
	Built-in parameters
	Parameters View
	Modification of parameters values

	Inspectors and monitors
	Table of contents
	Agent Browser
	Agent Inspector
	Monitor

	Displays
	Table of contents
	Classical displays (java2D)
	OpenGL displays

	Batch Specific UI
	Table of contents
	Information bar
	Batch UI

	Errors View
	Table of contents
	Opening Preferences
	Simulation
	UI
	General
	Display
	Editor
	External
	Advanced Preferences

	II GAML (GAMA Modeling Language)
	How to proceed to learn better ?
	Table of contents
	Lexical semantics of GAML
	Translation into a concrete syntax
	Vocabulary correspondance with the object-oriented paradigm as in Java
	Vocabulary correspondance with the agent-based paradigm as in NetLogo

	Organization of a model
	Table of contents
	Model Header (model species)
	Species declarations
	Experiment declarations
	Basic skeleton of a model

	Basic programming concepts in GAML
	Index
	Variables
	Declare variables using facet
	Operators in GAMA
	Conditional structures
	Loop
	Manipulate containers
	Random values

	The global species
	Index
	Declaration
	Environment size
	Built-in attributes
	Built-in Actions
	The init statement

	Regular species
	Index
	Declaration
	Built-in attributes
	Built-in action
	The init statement
	The aspect statement
	Instantiate an agent

	Defining actions and behaviors
	Index
	Action
	Behavior
	Example

	Interaction between agents
	Index
	The ask statement
	Pseudo variables
	Some useful interaction operators
	Example

	Attaching Skills
	Index
	Skills

	Inheritance
	Index
	Mother species / child species
	Virtual action
	Get all the subspecies from a species

	Grid Species
	Index
	Declaration
	Built-in attributes
	Access to a cell
	Display Grid
	Grid from a matrix
	Example

	Graph Species
	Index
	Declaration
	Useful operators with graph

	Mirror species
	Index
	Declaration
	Example

	Multi-level architecture
	Index
	Declaration of micro-species
	Access to micro-agents, host agent
	Representation of an entity as different types of agent
	Dynamic migration of agents
	Example:

	Defining Parameters
	Index
	Defining parameters
	Additional facets

	Defining displays (Generalities)
	Index
	Displays and layers
	Organize your layers
	Example of layers

	Defining Charts
	Index
	Define a chart
	Data definition
	Different types of chart

	Defining 3D Displays
	Table of contents
	OpenGL display
	Camera
	Dynamic camera
	Lighting

	Defining monitors and inspectors
	Index
	Define a monitor
	Define an inspector

	Defining export files
	Index
	The Save Statement
	Export files in experiment
	Autosave

	Defining user interaction
	Index
	Catch Mouse Event
	Define User command
	User Control Architecture

	Run Several Simulations
	Index
	Create a simulation
	Manipulate simulations
	Random seed

	Defining Batch Experiments
	Table of contents
	The batch experiment facets
	Action step The_step_action of an experiment is called at the end of a simulation. It is possible to override this action to apply a specific action at the end of each simulation. Note that at the experiment level, you have access to all the species and all the global variables.
	Reflexes
	Permanent

	Exploration Methods
	Table of contents
	The method element
	Exhaustive exploration of the parameter space
	Hill Climbing
	Simulated Annealing
	Tabu Search
	Reactive Tabu Search
	Genetic Algorithm

	Runtime Concepts
	Table of contents
	Simulation initialization
	Agents Creation
	Agents Step
	Schedule Agents

	Optimizing Models
	Table of contents
	machine_time
	Scheduling
	Grid
	Operators
	Displays

	Control Architectures
	Index
	Finite State Machine
	Task Based
	User Control Architecture
	Other Control Architectures

	Using Equations
	Introduction
	Example of a SIR model
	Why and when can we use ODE in agent-based models ?
	Use of ODE in a GAML model
	equation
	solve an equation
	More details

	Manipulate OSM Datas
	Implementing diffusion
	Index
	Diffuse statement
	Diffusion with matrix
	Diffusion with parameters
	Computation methods
	Using mask
	Pseudo code

	Using Database Access
	Description
	Supported DBMS
	SQLSKILL
	MDXSKILL
	AgentDB
	Using database features to define environment or create species

	Calling R
	Introduction
	Table of contents
	Configuration in GAMA
	Calling R from GAML

	Using FIPA ACL
	Variables

	Using GAMAnalyzer
	Install
	Built-in Variable
	Example

	Using BDI
	Install
	Acteur Projet
	An introduction to cognitive agent
	Basic Example: A fire rescue model using cognitive agent

	Advanced Driving Skill
	Table of contents
	Structure of the network: road and roadNode skills
	Advanced driving skill
	Application example

	Manipulate Dates
	Managing Time in Models
	Definition of the step and use of temporal unity values
	The date variable type and the use of a real calendar

	Implementing light
	Index
	Light generalities
	Default light
	Custom lights

	Using Comodel
	Introduction
	Example of a Comodel
	Why and when can we use Comodel ?
	Use of Comodel in a GAML model
	Visualize micro-model
	More details
	Example of the comodel

	III GAML References (Documentation)
	Table of Contents
	agent
	AgentDB
	base_edge
	experiment
	graph_edge
	graph_node
	model
	physical_world

	The agent built-in species (Under Construction)
	agent attributes
	agent actions

	The model built-in species (Under Construction)
	model attributes
	model actions

	The experiment built-in species (Under Construction)
	experiment attributes
	experiment actions

	Built-in Skills
	Introduction
	Table of Contents
	advanced_driving
	driving
	fipa
	GAMASQL
	grid
	MDXSKILL
	messaging
	moving
	moving3D
	physics
	skill_road
	skill_road_node
	SQLSKILL

	Built-in Architectures
	INTRODUCTION
	Table of Contents
	fsm
	probabilistic_tasks
	reflex
	simple_bdi
	sorted_tasks
	user_first
	user_last
	user_only
	weighted_tasks

	Statements
	Table of Contents
	Statements by kinds
	Statements by embedment
	General syntax

	Types
	Table of contents
	Primitive built-in types
	Complex built-in types
	Defining custom types

	File Types
	Table of contents
	Text File
	CSV File
	Shapefile
	OSM File
	Constants
	Graphics units
	Length units
	Surface units
	Time units
	Volume units
	Weight units
	Colors

	Pseudo-variables
	Table of contents
	self
	myself
	each

	Variables and Attributes
	Table of contents
	Direct Access
	Remote Access

	Operators
	Definition
	Priority between operators
	Using actions as operators
	Table of Contents
	Operators by categories
	Operators
	Papers about GAMA
	PhD theses
	Research papers that use GAMA as modeling/simulation support
	Papers about GAMA
	PhD theses
	Research papers that use GAMA as modeling/simulation support

