
pack:tag
a packed guide to website performance optimization

Abstract

This paper explains the integration, configuration and optimal usage of pack:tag, a Java JSP taglib
for website performance optimization.
It also covers a basic practical understanding about website optimization in general.

Author: Daniel Galán y Martins
Intended audience: Developers, Website Designer/Maintainer/Administrators
Version: 1.5 (pack:tag 3.13.0)
Released: 2015-07-06
First release: 2008-04-17

License: This document is licensed under
Creative Commons Attribution-Noncommercial-Share Alike 2.0 Germany
http://creativecommons.org/licenses/by-nc-sa/2.0/de/

Found errors, typos or got some suggestions?
Please post an issue or pull request at https://github.com/galan/packtag

http://creativecommons.org/licenses/by-nc-sa/2.0/de/
https://github.com/galan/packtag

Table of contents
Introduction.. 3

Resources..3
Minification..3
Compression..4
Caching...4
Combination..4

pack:tag... 5
Features...5
Requirements..5
Integration...5
Usage.. 6
Configuration...8
Configuration Options..8

PackStrategies..10
Available PackStrategies..10
Setting the PackStrategy...11
Developing own PackStrategies...11

Best practices and FAQ...11
Cloaking resources..11
Gzipping dynamic content like HTML (GzipFilter)...12
Combined Resources mistakes..12
Ending semicolon in JavaScript..13
Exploded/unexploded war...13
JavaScript libraries...14
Manual cache emptying...14

Appendix.. 14
Thanks... 14
Licenses...14
Similar projects..14
Tools.. 15
Further readings and links...15
Additional Sources...15
Feedback...15

pack:tag - a packed guide to website performance optimization Page 2 / 19

Introduction
With the upcoming of Ajax and a stronger separation of content and design, many websites grow
heavier in terms of kilobytes. A website that loads initially at over 600 kB is no longer an
exception. Beside of the size of a website, the number of resources a website needs increases and
therefore the number of requests.
Because of this trend, the user has to wait longer for his website to be loaded and rendered in his
favorite browser, resulting in a user-experience that is suffering.
Server and bandwidth resources are wasted likewise.

Another problem is if the user returns to a website he visited earlier, and the websites resources
has been changed since then (e.g. a new version has been deployed). The website can appear
broken, because the browser caches some resources on its own to load the page faster. So even if
the resource has been changed on the server, the client uses still the old one.

pack:tag addresses these problems for Java Servlet/JSP based environments, and solves them in a
way transparent to the developer and user.

Resources
When a website is requested, several resources are loaded. A brief resource type overview:

● HTML
HTML is usually generated dynamically in a Servlet/JSP environment, and therefore the
delivered content is different each time. A possibility to increase download time is ad hoc
gzip compression.

● Images
Images reside statically in the file system, their content does not change in most cases.
Beside of tweaking the image formats properties (e.g. JPG compression), one widespread
method is to combine images which are same in width or height. This can reduce the
number of request dramatically and is used mostly on button and icon sets. The name of
this technique is know as CSS Sprites (explanation in detail:
http://www.alistapart.com/articles/sprites)

● CSS
CSS Files are static and written during development time. You can apply minification,
compression and caching of the packed resources to save bandwidth and CPU.

● JavaScript
To a JavaScript file apply the same conditions and rules as to CSS files.

● Objects (Flash, JavaFx, Java Applet, ..)
Embedded Object like Java Applets are usually already compressed. You can not change the
inner working from outside, so you have to deploy it as-is (you might tune the compression
by applying pack200 instead of zip).

pack:tag can handle by default JavaScript and CSS.
If you have another custom resource type you want to pack, you can accomplish this by extending
the class net.sf.packtag.tag.PackTag.
pack:tag also does offer a GzipFilter, that can be used to compress dynamically generated content
like HTML on the fly.

Minification
Minification describes the process of removing unnecessary elements (characters) from a
resource, without changing the logical semantics. Of course there are different algorithms out
there, but in common they remove white spaces, tabs, line feeds, one-line and multi-line
comments. This can shrink a file to about 60 percent of it's original size, depending on the coding
style.

pack:tag - a packed guide to website performance optimization Page 3 / 19

http://www.alistapart.com/articles/sprites

Let's look at an example, the following JavaScript file is not minified:

var ajax = {

/**
 * Returns a XmlHttpRequest Object,that can be used for async. request.
 * Works with mozilla, opera, safari as well as with the ugly IE.
 *
 * @return A XmlHttpRequest Object
 */
getXmlHttpRequest: function() {

var xhr = null;
// Mozilla, Opera, Safari as well as Internet Explorer 7
if (typeof XMLHttpRequest != “undefined”) {

xhr = new XMLHttpRequest();
}
if (!xhr) {

// Internet Explorer 6 and older
try {

xhr = new ActiveXObject("Msxml2.XMLHTTP");
}
catch(e) {

try {
xhr = new ActiveXObject("Microsoft.XMLHTTP");

}
catch(e) {

xhr = null;
}

}
}
return xhr;

}

}

This code snippet takes 686 characters, now lets look at the minified version:

var ajax={getXmlHttpRequest:function(){var xhr=null;if(typeof XMLHttpRequest!
=“undefined”){xhr=new XMLHttpRequest();}if (!xhr) {try {xhr=new
ActiveXObject("Msxml2.XMLHTTP");}catch(e){try{xhr=new
ActiveXObject("Microsoft.XMLHTTP");}catch(e){xhr=null;}}}return xhr;}}

After removing the unnecessary elements it only has 265 characters left, that's only 38,6 % of its
original size. Of course it still can be interpreted by a browsers.

Compression
Beside of minifying, a resource can always be compressed. The compression happens on a binary
level, and the compression ratio reaches between 65 and 85 percent.
Nowadays Browser support gzip, and most web servers have built-in gzip modules that only need
to be activated.

Caching
Both minification and compression come at a cost of CPU. Every time a user requests a resource,
the server has to minify and compress the same resource over and over again.
To prevent this, once a resource has been packed, it will be cached. This of course costs memory,
but today memory is cheaper then CPU cycles.

pack:tag - a packed guide to website performance optimization Page 4 / 19

Combination
Each resource you put on a web site has to be requested by the browser. Each request takes time
because of network overhead (lookup, handshake, headers, etc.). You can decrease this by putting
resources of the same type together, combining them. So instead of requesting e.g. five JavaScript
files, you only need to request only one.

pack:tag - a packed guide to website performance optimization Page 5 / 19

pack:tag

Features
pack:tag offers many advantages to your development and deployment:

● Minification of JavaScript and Cascading Style Sheets
● Caching to memory (default) or file system
● The minified content is delivered gzipped (memory)
● Combination of resources
● Combination of subdirectories (wildcard syntax)
● External resources can be packed and then served locally
● Cached resources are updated automatically on change
● Minification and compression adjustable on single resources
● Relative path support (memory)
● Charset support
● Strict XHTML conformity
● Apache Standard taglib support for evaluations
● Advanced caching techniques (etag configuration, 304 status header, expire header, ..)
● No resource will be written out twice
● Cloaking of resources
● Caching Provider are pluggable (Ehcache Provider is included)
● async and defer support (for xhtml or html5)

Benefits you get when compressing static resources with pack:tag:
● Reduced bandwidth
● Reduced number of requests
● Faster loading time for the client
● Browser caching side-effects of JavaScript files solved
● Obfuscation of the content (depending on the strategy, at least uglyfying) and the resource

names, cloaking is also possible

Requirements
You can use pack:tag when the following conditions are fulfilled:

● Java VM 1.4 or higher
● A Java Servlet Webcontainer (e.g. Tomcat or Resin)

pack:tag does not have any dependencies to other libraries.
However, if Apache Log4j or Apache Commons Logging is found (in that order), messages will be
send to the appropriate logger system. Elsewise they will be printed directly to System.out/err, so
even these libraries are completely optional.

Integration

Download pack:tag and files

You can find the latest version of pack:tag online on github.com: https://github.com/galan/packtag

If you decompress the archive, you will get the following directories and files:
/files/packtag-x.y.jar The library needed to run pack:tag, just copy it into the

library path of your webapplication (usually WEB-INF/lib)

/files/packtag.properties This is the configuration file for pack:tag, all settings are set
to the default values, so you only need it if you plan to
change the default behavior. This file then has to be directly
in WEB-INF.

/files/packtag.user.properties This is the configuration file for user-defined settings, they
will override those in packtag.properties. This file comes in

pack:tag - a packed guide to website performance optimization Page 6 / 19

https://github.com/galan/packtag

handy if you want your site-wide settings in your version
control system, but override some settings during
development. Your version control system should ignore this
file (add this file to a .cvsignore file (CVS) or add a svn:ignore
property (SVN)).
This file has to be in the same directory as
packtag.properties.

/files/web.xml web.xml serves as template, you just need to copy the
<servlet> and <servlet-mapping> for the PackServlet into
your own web.xml, which is usually in your WEB-INF
directory.

/javadocs In this directory you find the generated JavaDocs.

/src In this directory you find a copy of the source files

/LICENSE.txt The license file, pack:tag is licensed under the LGPL 2.1.

/README.txt A short description of the archives content.

packtag - one minute quick
start tutorial.pdf

A short introduction to pack:tag

packtag - a packed guide to
website performance
optimization.pdf

This document

If you wonder why there is no separate tld file any longer, it is bundled in the packtag-x.y.jar,
because modern web containers auto detect those files. If you still need it, just extract it from the
jar, it is located in the META-INF directory.

Installation using Maven

1. Add the maven dependency to your project:

<dependency>
<groupId>de.galan.packtag</groupId>
<artifactId>packtag-core</artifactId>
<version>3.13.0</version>

</dependency>

2. Copy the `<servlet>` and `<servlet-mapping>` from the web.xml on
https://github.com/galan/packtag/blob/master/packtag-testsite/src/main/webapp/WEB-INF/web.xml
into your /WEB-INF/web.xml

Usage
To use the taglib in a JSP, you have to declare it first (like all taglibs):

<%@ taglib uri="https://github.com/galan/packtag" prefix="pack" %>

Now you can easily pack JavaScript with the following tag:

<pack:script src="/myJavaScriptFile.js"/>

Accordingly for Cascading Style Sheets:

<pack:style src="/myCascadingStyleSheet.css"/>

Sources

You can point to resources in various ways, pack:tag offers following possibilities:

Contextpath

You can point to a file directly from the root of your contextpath, that means starting with a
leading slash:

<pack:script src="/js/util/common.js"/>

pack:tag - a packed guide to website performance optimization Page 7 / 19

https://github.com/galan/packtag/blob/master/packtag-testsite/src/main/webapp/WEB-INF/web.xml

This way it doesn't matter from where you point to that file, because it is an absolute notation.

Relative

Image your JSP is located in "/my/account/login.jsp", and the css "/my/account/login.css" is located
in the same subdirectory, so you can use a relative notation in that JSP:

<pack:style src="login.css"/>

If you want to point to another file relative to the current subdirectory (e.g.
"/my/account/logout/logout.css") you can write the following:

<pack:style src="../logout/logout.css"/>

Wildcard

A new way to define resources in pack:tag is the wildcard notation. With this notation you can
pack all the files in a directory with one declaration.
The next example packs all JavaScript files in the directory "/js":

<pack:script src="/js/*"/>

If you want to include all of the files in a directory and its subdirectories, do the following:

<pack:script src="/js/**"/>

Of course you can use a relative path like here:

<pack:script src="account/**"/>

External

You can also point to external resources. pack:tag will download, minify, compress and cache them
for you. External resources start with http:// or https://, an example:

<pack:style src="http://www.somedomain.com/css/main.css"/>

You can override this behavior globally by setting "resources.external" to "false" or on a single
resource by setting the attribute "enabled" to "false".

Attributes

Besides the src attribute, pack:tag has some other useful options you can set per tag individually:

Attribute
name

Type Mandatory Description

src String Yes Path to the resource (see above)

enabled Boolean No When set to true, the resource will be written out
directly. No compression or minification takes place.

minify Boolean No Disables the minification when set to true. pack:tag
still delivers the resource - compressed and with all
caching headers (servlet).

media String No Defines the output media. This attribute is only
applicable for pack:style.

async Boolean No Adds the async attribute for browser hinting.

defer Boolean No Adds the defer attribute for browser hinting.

prefix String No Adds a customizable name in front of the generated
name for a combined resource, which helps
identifying those resources.

Combining resources

With pack:tag, you can combine resources easily. See the following code:

<pack:script src="/js/validation.js"/>
<pack:script src="/js/tracking.js"/>

pack:tag - a packed guide to website performance optimization Page 8 / 19

<pack:script src="/js/edges.js"/>

This code produces three packed resources, each resulting in a request the browser has to send
and receive. We can combine them simply by listing them up, so only a single resource will be
delivered:

<pack:script>
<src>/js/validation.js</src>
<src>/js/tracking.js</src>
<src>/js/edges.js</src>

</pack:script>

Inside a combined resource you can mix all forms of sources as we can see here in this extreme
example:

<pack:style>
<src>/main.css</src>
<src>../logout/logout.css</src>
<src>/css/**</src>
<src>http://www.example.com/css/browserfixes.css</src>
<src>/WEB-INF/css/hidden.css</src>

</pack:style>

Configuration
pack:tag offers many configuration possibilities. The easiest and preferred way to change them is
to copy the packtag.properties file into your WEB-INF, and then change the appropriate setting like
this:

cache.type=servlet

Another possibility to configure pack:tag is as context parameter in the web.xml file.
Here is an example (note that you have to prefix the setting name with "packtag."):

<context-param>
<param-name>packtag.cache.type</param-name>
<param-value>servlet</param-value>

</context-param>

Notice that settings in the packtag.properties file override context parameters settings.

Thus methods are great for deployment, but what if you have to locally change the setting
temporarily? You can create a file called packtag.user.properties in the WEB-INF directory, that
overrides the changes in the web.xml and packtag.properties file.
This file is for user-defined settings (e.g. to set the cache.type to disabled during development)
and should not be checked into your code-repository. The best way to achieve this is to add the
packtag.user.properties file to the .cvsignore file, svn:ignore propset, etc. (your VCS here).

pack:tag - a packed guide to website performance optimization Page 9 / 19

Configuration Options
Overview of the existing settings:

Name possible
values

default

cache.type servlet, file,
disabled

servlet

cache.file.path valid path pack

cache.servlet.combined.<resourcetype>.path valid path (empty)

cache.provider Classname to
CacheProvider
implementing
Class

DefaultCacheProvider

cache.provider.path valid path
(Only
applicable for
EhcacheCache
Provider)

(empty)

resources.checktimestamps true, false true

resources.tracking true, false true

resources.external true, false true

resources.charset JVM supported
charset name

Java >= 5: Platform default
Java = 1.4: Latin9

hide.errors true, false false

<resourcetype>.strategy Classname to
PackStrategy
implementing
Class

JavaScript:
JsminPackStrategy
Css:
IbloomCssPackStrategy

script.asyncdefer XHTML, HTML5 XHTML

The settings in detail:

cache.type

This defines the way how pack:tag caches and delivers the resources for you.
In short: when set to "servlet" the minified data is cached in memory, if "file" the minified data is
written to a file.

Here is a more comprehensive overview:

cache.type servlet (default) file disabled

Minification Yes Yes No

Basic browser
caching issues

Yes Yes No

Additional browser
caching issues
(header,
expiration, ..)

Yes No No

Send gzipped Yes No No

Relative Path
support

Yes No Yes

pack:tag - a packed guide to website performance optimization Page 10 / 19

Note that you lose the benefit of using relatives path declarations when working with cache type
"file".

The cache type "disabled" is useful during development, when you debug your JavaScript code.

I suggest to use the cache type "servlet", which is the default, to get the maximum out of
pack:tag.

cache.file.path

When you set your cache.type to file,the generated files will be saved in a directory with the name
"pack". If you want to change this default name to something else, set the parameter
"cache.file.path" to the desired directory name. Your server process must have write access to this
directory.

cache.servlet.combined.<resourcetype>.path

This defines the path of the combined packed resources (per resource type), and is only possible
when "cache.type" is set to "servlet".
Example: Setting the combined path for JavaScript files to "/js", write the following:

cache.servlet.combined.js.path=js

Example: Same applies to CSS files, for the directory "/css/combined" write the following:

cache.servlet.combined.style.path=css/combined

cache.provider

Packed resources are efficiently cached in pack:tag. The DefaultCacheProvider works perfectly, but
a different CacheProvider can be plugged into pack:tag. This might be useful if you already have a
cache framework and you want even finer access.

cache.provider.path

The path to an ehcache configuration file. This setting is only applicable when "cache.provider" is
set to EhcacheProvider .
The SingletonEhcacheProvider, in contrast, uses the single CacheManager approach, and searches
for the configuration-file in the classpath. Check the ehcache documentation for more information.

resources.checktimestamps

pack:tag checks by default for each request if the underlying resource has been changed (via
timestamp). If it has changed, the resource will be reloaded and packed again.
If a file from a combined resource has been changed, all files from the combined resource will be
reloaded and packed.
To disable the timestamp checks, set this option to "false".
Note that you have to set this option to "false" if you work with unexploded wars.

resources.tracking

Each time you include a resource in a JSP, it is also remembered in the request. This way, a
resource is only written out once, even it is included multiple times.
You can disable this by setting "resources.tracking" to "false".

resources.external

As explained earlier, pack:tag downloads files from external locations (those starting with http:// or
https://), minifies, compresses and serves them locally. You can, however, disable this behavior
and let pack:tag write out the source directly. This works for single resources as well as for
combined ones.

resources.charset

This defines the character set used for encoding, when loading the resources from disk.

pack:tag - a packed guide to website performance optimization Page 11 / 19

If not set, the default charset of the JVM is used (Java >= 1.5). If you are still using Java 1.4, Latin9
will be assumed.
A list with the supported charsets on your system can be found by calling the
Charset.availableCharsets() method.

hide.errors

If an error occurs (e.g. file not found), the system will throw an exception for you, so you can see
the error during development immediately.
You can hide those errors by setting this option to "true", so an exception will not be shown to the
user. The resource will not be written to the rendered page, but a stack trace will be written in a
HTML comment.

<resourcetype>.strategy

Each resource type needs an algorithm how it can be minified. You can set the algorithm by
defining a class that implements it.
To set the PackStrategy for JavaScript files, set "script.strategy" to a full qualified classname, e.g.:

script.strategy=net.sf.packtag.implementation.yui.YuiCompressorPackStrategy

To set the PackStrategy for CSS files, set "style.strategy" to a full qualified classname, e.g.:

style.strategy=net.sf.packtag.implementation.yui.CssCompressorPackStrategy

See the next chapter for a detailed explanation of the integrated PackStrategies.

script.asyncdefer

The attributes async and defer are new and not fully standardized, and not supported by all
browser. Additional they differ in their markup when using XHTML or HTML 5. You can toggle the
generated markup by setting this property to XHTML or HTML5.

pack:tag - a packed guide to website performance optimization Page 12 / 19

PackStrategies
PackStrategies encapsulate existing minification algorithms, so they could be plugged into
pack:tag.

Available PackStrategies
pack:tag comes with some build-in PackStrategy implementations, as well as strategies that wrap
algorithms from external libraries.
The default implementation for JavaScript is "JSMin", for CSS "iBloom CSS Compressor." Let's take
a look at the minification algorithms in detail:

JSMin

Resource type: JavaScript
Class: net.sf.packtag.implementation.JsminPackStrategy
Author: Douglas Crockford
Website: http://www.crockford.com/javascript/jsmin.html
Licence: BSD like

iBloom CSS Compressor

Resource type: CSS
Class: net.sf.packtag.implementation.IBloomCssPackStrategy
Author: Nicholas Gagne
Website: http://www.ibloomstudios.com/articles/php_css_compressor
Licence: None

YuiCompressor

Resource type: JavaScript, CSS
Class: net.sf.packtag.implementation.yui.YuiCompressorPackStrategy (JavaScript)

net.sf.packtag.implementation.yui.CssCompressorPackStrategy (CSS)
Author: Julien Lecomte
Website: http://www.julienlecomte.net/yuicompressor
Licence: BSD
Note: Notice that the YuiCompressor depends on Mozilla Rhino (http://www.mozilla.org/rhino),
which is dual licensed under MPL 1.1/GPL 2.0.
So you have to download the YuiCompressor jar by yourself (which bundles Mozilla Rhino), in order
to use the YuiCompressor PackStrategy.

Foohack CSS Compressor

Resource type: CSS
Class: net.sf.packtag.implementation.yui.CssCompressorPackStrategy
Author: Isaac Schlueter
Website: http://www.julienlecomte.net/blog/2007/08/14 (announcement), http://foohack.com
Licence: BSD
Note: You have to download the YuiCompressor jar by yourself, in order to use this PackStrategy.

Jawr Css Minifier

Resource type: CSS
Class: net.sf.packtag.implementation.jawr.CssMinifierPackStrategy
Author: Jordi Hernández Sellés
Website: https://jawr.dev.java.net
Licence: Apache Licence 2.0
Note: Notice that you need to download the jawr library to use this PackStrategy.

Andrew Roberts CSS Compressor

Resource type: CSS

pack:tag - a packed guide to website performance optimization Page 13 / 19

http://foohack.com/
http://www.julienlecomte.net/blog/2007/08/14
http://www.mozilla.org/rhino
http://www.julienlecomte.net/yuicompressor
http://www.ibloomstudios.com/articles/php_css_compressor
http://www.crockford.com/javascript/jsmin.html

Class: net.sf.packtag.implementation.andyr.AndyrCssCompressorPackStrategy
Author: Andrew Roberts
Website: http://www.andy-roberts.net/software/csscompressor
Licence: BSD
Note: This is a Fork of the YUI-CssCompressor. The PackStrategy is experimental.

Barry van Oudtshoorn CSS minifier and alphabetiser

Resource type: CSS
Class: net.sf.packtag.implementation.barryvan.BarryvanCssMinifierPackStrategy
Author: Barry van Oudtshoorn
Website: http://www.barryvan.com.au/2009/08/css-minifier-and-alphabetiser
Licence: BSD
Note: The PackStrategy is experimental.

Setting the PackStrategy
You can change the PackStrategy for a resource type by the "<resourcetype>.strategy" setting.
Take a look in the previous configuration options chapter for detailed information.

A short example, to set the JavaScript PackStrategy to the YuiCompressor, write the following in
your packtag.properties file:

script.strategy=net.sf.packtag.implementation.yui.YuiCompressorPackStrategy

To set the style PackStrategy from to the Foohack CSS Compressor:

style.strategy=net.sf.packtag.implementation.yui.CssCompressorPackStrategy

Developing your own PackStrategies
A PackStrategy is nothing but a very simple Interface:

public interface PackStrategy {
public String pack(InputStream resourceAsStream, Charset charset)

throws PackException;
}

As you can see, a resource is delivered as an InputStream, as well as the used Charset.
For your convenience, an abstract implementation that reads the stream and delivers a String
called AbstractPackStrategy exists.
So your minification algorithm can work either directly on the stream or, if you prefer, on a String.

pack:tag - a packed guide to website performance optimization Page 14 / 19

http://www.julienlecomte.net/yuicompressor
http://www.julienlecomte.net/yuicompressor

Best practices and FAQ

Cloaking resources
In a typical Java web-application you put all your requestable resources (like JSPs, JavaScript, CSS,
images, etc.) under a special directory called "webapp". All resources can be accessed by the
browser directly (except those who are intercepted by the webcontainer for execution, like JSP or
Servlets).
When a JavaScript file is put under "/webapp/js/app.js", the user can access that file in his browser
by simply requesting "http://www.yourdomain.com/js/app.js". In this case he can see the file
formatted and with all comments.

This is common practice, but can be avoided. Inside the webapp directory, another special
purpose directory exists: "WEB-INF". "WEB-INF" contains meta-information about your web-
application and content inside this directory can not be accessed by the user.
So instead putting your JavaScript or CSS file somewhere inside your "webapp" directory, put them
in your "WEB-INF". This would usually not work, because the user can not access "WEB-INF",
luckily you are using pack:tag. Let's take the example from above and refer to it with pack:tag:

<pack:script src="/WEB-INF/js/app.js"/>

This will will be rendered as follow:

<script type="text/javascript" src="/js/app.js.h1995556352.pack"
charset="utf-8"></script>

As you can see, pack:tag maps the file one subdirectory down to a virtual location.

This solution has only one drawback: when you disable pack:tag, no resource can be found.

Gzipping dynamic content like generated HTML (GzipFilter)
As mentioned in the introduction, only static resources can be cached, otherwise they have to be
minified and/or compressed at runtime, which costs more CPU but saves bandwidth.
To apply compression to dynamic content, you can use the GzipFilter pack:tag includes. The
GzipFilter was originally written by Jayson Falkner.
In order to use the compression for generated HTML, declare the GzipFilter in your web.xml:

<filter>
<filter-name>GzipFilter</filter-name>
<filter-class>net.sf.packtag.filter.GzipFilter</filter-class>

</filter>

<filter-mapping>
<filter-name>GzipFilter</filter-name>
<url-pattern>*.jsp</url-pattern>

</filter-mapping>

This applies compression to all requested JSPs. Don't use an url-pattern like "*", because this can
lead to errors when resources are compressed twice.
To enable the GzipFilter e.g. for a Struts-based application add the following filter-mapping:

<filter-mapping>
<filter-name>GzipFilter</filter-name>
<url-pattern>*.do</url-pattern>

</filter-mapping>

Combined Resources mistakes
I have seen people using combined resources in the following way: they wanted only the resources
that were needed on the current page. As honorable this seems, it produces larger downloads.
Let's look at an example.

pack:tag - a packed guide to website performance optimization Page 15 / 19

On page 1 three resources were needed:

<pack:script>
<src>/js/app.js</src>
<src>/js/effects.js</js>
<src>/js/tools.js</src>

</pack:script>

On page 2 the same three resources were needed, plus some validation for forms:

<pack:script>
<src>/js/app.js</src>
<src>/js/effects.js</js>
<src>/js/tools.js</src>
<src>/js/validation.js</src>

</pack:script>

On page 3, only two of them were really needed, so lets pack them:

<pack:script>
<src>/js/app.js</src>
<src>/js/tools.js</src>

</pack:script>

Obviously, this results in three different resources, that has to be downloaded on each site again,
even if two resources are always the same.
There are some approaches to solve this:

1. Always deliver all resources
a. By explicit naming:
<pack:script>

<src>/js/app.js</src>
<src>/js/effects.js</js>
<src>/js/tools.js</src>
<src>/js/validation.js</src>

</pack:script>
b. By wildcard naming:
<pack:script src="/js/*"/>

2. Deliver only the core as combined resource:
This means for page 2 that two resources will be delivered as single requests:
<pack:script>

<src>/js/app.js</src>
<src>/js/tools.js</src>

</pack:script>
And the rest as single resource
<pack:script src="/js/effects.js"/>
<pack:script src="/js/validation.js"/>

3. Don't deliver combined:
Instead you have to deliver all resources as single requests:
<pack:script src="/js/app.js"/>
<pack:script src="/js/tools.js"/>
<pack:script src="/js/effects.js"/>
<pack:script src="/js/validation.js"/>

You have to decide which approach fits your development, deployment and performance strategy
best.

Ending semicolon in JavaScript
JavaScript is a dynamic language, that has also very lax restrictions on its syntax. You don't have
to end a statement in a single line with a semicolon.
However, a minified version of a JavaScript file with such a syntax would end in errors, either on
minification, or later on client side. So I advice you to write clean code.
The same rules apply to other elements like curly braces.

pack:tag - a packed guide to website performance optimization Page 16 / 19

Exploded/unexploded war
pack:tag works well with exploded wars. If you restrain the automatic war extraction, you have to
set the "resources.checktimestamps" setting to "false".

JavaScript libraries
Some JavaScript libraries can cause headaches, here some of them:

prototype

prototype can not be minified because the syntax isn't very minifier friendly (missing semicolons,
etc.). There exists prepacked prototype libraries, but they are not maintained by the originators.
Instead you could use the minify="false" attribute, this way prototype is not minified but
compressed (24kb is better then 101kb ;)). You might also want to try the YuiCompressor.
Further readings:

● http://dev.rubyonrails.org/ticket/7311
● http://andrewdupont.net/2007/02/26/packing-prototype

script.aculo.us

script.aculo.us with loader options doesn't works. This happens because the scriptaculous.js is just
a loader stub. Use the packer on the specific files (e.g. slider.js) instead.

Manual cache flushing
You can clean pack:tag's cache with the following line of code:

PackCache.clearCache();

pack:tag - a packed guide to website performance optimization Page 17 / 19

http://andrewdupont.net/2007/02/26/packing-prototype
http://dev.rubyonrails.org/ticket/7311

Appendix

Thanks
In alphabetically order:

● Dr. Michael Sievers
● frenchyooy@sf.net
● pherris@github
● Philipp Rosenhagen
● qxo@sf.net
● Ryan Gardner
● Sicke Westerdijk
● Stuart Batty
● Tarun Reddy
● Thomas Duerr

Licenses

pack:tag

pack:tag is developed by Daniel Galán y Martins in 2007-2015, licensed under LGPL 2.1.
A copy of the LGPL 2.1 can be found here: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

This document

This document is licensed under Creative Commons Attribution-Noncommercial-Share Alike 2.0
Germany, the license conditions can be found here:
http://creativecommons.org/licenses/by-nc-sa/2.0/de/

Similar projects
There exists some other projects out there, that have similar goals:

Jawr

Jawr is a bundling and compression solution for web application resources.
In contrast to pack:tag, you have to declare all resources you want to use in so called "bundles"
first. You do this with a special notation in property files.
Website: https://jawr.java.net

Resource Accelarate

The Resource Accelerate from Xucia is a Filter that provides compression, header directives and
JavaScript minification.
Website: http://www.xucia.com/#Resource%20Accelerate

JavaScript Optimizer JSO

As the website says: A project that allow you to manage easily your JavaScript and CSS resources
and to reduce the amount of data transfered between the server and the client.
Website: http://js-optimizer.sourceforge.net

Bundle-Foo

This does minification, combination and header directives for Ruby.
Website: http://code.google.com/p/bundle-fu/

Tools
No article to website optimization would be complete without mentioning the most outstanding
web development tools:

pack:tag - a packed guide to website performance optimization Page 18 / 19

http://code.google.com/p/bundle-fu/
http://js-optimizer.sourceforge.net/
http://www.xucia.com/#Resource%20Accelerate
https://jawr.java.net/
http://creativecommons.org/licenses/by-nc-sa/2.0/de/
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
https://github.com/pherris
mailto:frenchyooy@sf.net

● FireBug - http://www.getfirebug.com
THE web development inspection and analysis tool

● YSlow - http://developer.yahoo.com/yslow
Yahoo's performance analysis tool

With this tools you can analyze your web traffic in detail, and track performance issues.

Further readings and links
● http://stevesouders.com/hpws

14 Rules for Faster-Loading Web Sites, from the book High Performance Web Sites by Steve
Souders. Worth reading (covers the yslow rules).

● http://www.slideshare.net/stoyan/high-performance-web-pages-20-new-best-practices
High Performance Web Pages Presentation, 20 new rules by Yahoo

● http://www.alistapart.com/articles/sprites
Explaination of image combination in CSS, called sprites.

● http://dean.edwards.name/packer
Another minification algorithm, maybe you can create a Java version that can be plugged
into pack:tag? :)

Additional Sources
Articles about pack:tag

● http://blog.augmentedfragments.com/2008/01/compressing-and-obfuscating-
javascript.html

● http://www.selfcontained.us/2008/02/29/combine-your-js-and-css-files-with-packtag/
Miscellaneous:

● pack:tag on ohloh - http://www.ohloh.net/projects/7677

Feedback
If you have suggestions, found bugs, typos or want to give feedback in general, please go to the
project page, hosted on github, and create an issue or pull request:
https://github.com/galan/packtag

pack:tag - a packed guide to website performance optimization Page 19 / 19

https://github.com/galan/packtag
http://www.ohloh.net/projects/7677
http://www.selfcontained.us/2008/02/29/combine-your-js-and-css-files-with-packtag/
http://blog.augmentedfragments.com/2008/01/compressing-and-obfuscating-javascript.html
http://blog.augmentedfragments.com/2008/01/compressing-and-obfuscating-javascript.html
http://dean.edwards.name/packer
http://www.alistapart.com/articles/sprites
http://www.slideshare.net/stoyan/high-performance-web-pages-20-new-best-practices
http://stevesouders.com/hpws
http://developer.yahoo.com/yslow
http://www.getfirebug.com/

	Introduction
	Resources
	Minification
	Compression
	Caching
	Combination

	pack:tag
	Features
	Requirements
	Integration
	Download pack:tag and files
	Installation using Maven

	Usage
	Sources
	Contextpath
	Relative
	Wildcard
	External

	Attributes
	Combining resources

	Configuration
	Configuration Options
	cache.type
	cache.file.path
	cache.servlet.combined.<resourcetype>.path
	cache.provider
	cache.provider.path
	resources.checktimestamps
	resources.tracking
	resources.external
	resources.charset
	hide.errors
	<resourcetype>.strategy
	script.asyncdefer

	PackStrategies
	Available PackStrategies
	JSMin
	iBloom CSS Compressor
	YuiCompressor
	Foohack CSS Compressor
	Jawr Css Minifier
	Andrew Roberts CSS Compressor
	Barry van Oudtshoorn CSS minifier and alphabetiser

	Setting the PackStrategy
	Developing your own PackStrategies

	Best practices and FAQ
	Cloaking resources
	Gzipping dynamic content like generated HTML (GzipFilter)
	Combined Resources mistakes
	Ending semicolon in JavaScript
	Exploded/unexploded war
	JavaScript libraries
	prototype
	script.aculo.us

	Manual cache flushing

	Appendix
	Thanks
	Licenses
	pack:tag
	This document

	Similar projects
	Jawr
	Resource Accelarate
	JavaScript Optimizer JSO
	Bundle-Foo

	Tools
	Further readings and links
	Additional Sources
	Feedback

