
PFx Brick

Host Interface Control Document
for

USB and Bluetooth LE

Document No.: 11 80 17 10001

Rev. 3.37

Apr 28, 2019

Ottawa, ON CANADA

www.fxbricks.com

© 2019 Fx Bricks Inc., All rights reserved

CONTENTS CONTENTS

Contents

1 Introduction 6

2 PFx Brick USB HID Device Class 6

2.1 PFx Brick Vendor and Product ID (VID/PID) . 6

2.2 Message Packet Format . 6

3 Bluetooth Low Energy 7

3.1 Message Packet Format . 9

4 Host Command Messages 10

4.1 PFX_CMD_GET_ICD_REV . 14

4.2 PFX_CMD_GET_STATUS . 15

4.3 PFX_CMD_SET_FACTORY_DEFAULTS . 19

4.4 PFX_CMD_GET_CONFIG . 20

4.5 PFX_CMD_SET_CONFIG . 25

4.6 PFX_CMD_GET_CURRENT_STATE . 27

4.7 PFX_CMD_GET_NAME . 29

4.8 PFX_CMD_SET_NAME . 29

4.9 PFX_CMD_GET_EVENT_ACTION . 30

4.10 PFX_CMD_SET_EVENT_ACTION . 32

4.11 PFX_CMD_TEST_ACTION . 34

4.12 PFX_CMD_SEND_EVENT . 35

4.13 PFX_CMD_INC_VOLUME . 36

4.14 PFX_CMD_DEC_VOLUME . 36

4.15 PFX_CMD_SET_AUDIO_EQ . 37

4.16 PFX_CMD_LOAD_FIRMWARE_FILE . 38

4.17 PFX_CMD_LOAD_FIRMWARE_DATA . 41

4.18 PFX_CMD_LOAD_FIRMWARE_DONE . 42

4.19 PFX_CMD_READ_BOOTCONFIG . 43

4.20 PFX_CMD_REBOOT . 44

4.21 PFX_CMD_FILE_OPEN . 45

4.22 PFX_CMD_FILE_CLOSE . 47

4.23 PFX_CMD_FILE_READ . 48

4.24 PFX_CMD_FILE_WRITE . 49

4.25 PFX_CMD_FILE_SEEK . 50

PFx Brick USB & BLE Host ICD Rev 3.37 i

CONTENTS CONTENTS

4.26 PFX_CMD_FILE_DIR . 51

4.27 PFX_CMD_FILE_REMOVE . 54

4.28 PFX_CMD_FILE_FORMAT_FS . 55

4.29 PFX_CMD_FILE_GET_FS_STATE . 56

4.30 PFX_CMD_RUN_SCRIPT . 57

4.31 PFX_CMD_STATUS_LED . 58

4.32 PFX_CMD_WRITE_SPI . 59

4.33 PFX_CMD_READ_SPI . 60

4.34 PFX_CMD_WRITE_I2C . 61

4.35 PFX_CMD_READ_I2C . 62

4.36 PFX_CMD_READ_FLASH . 63

4.37 PFX_CMD_GET_IRRX_STATUS . 64

4.38 PFX_CMD_GET_BT_STATUS . 65

4.39 PFX_CMD_SET_BT_POWER . 65

4.40 PFX_CMD_SEND_BT_UART . 66

4.41 PFX_CMD_RECEIVE_BT_UART . 66

4.42 PFX_CMD_SET_NOTIFCATIONS . 67

4.43 PFX_MSG_NOTIFICATION . 68

5 Scripting Actions 69

5.1 Loading Scripts . 69

5.2 Executing Scripts . 69

5.2.1 Event/Action Script Execution . 69

5.2.2 ICD Message . 69

5.3 Script Syntax . 70

5.3.1 Comments . 70

5.3.2 Keywords . 70

5.3.3 Numeric Values . 71

5.3.4 Strings . 71

5.4 Command Reference . 72

5.5 Examples . 74

PFx Brick USB & BLE Host ICD Rev 3.37 ii

CONTENTS CONTENTS

6 Event/Action Data Structures 75

6.1 Event Encoding . 75

6.2 Action Encoding . 78

6.2.1 COMMAND . 80

6.2.2 MOTOR_ACTION_ID . 81

6.2.3 MOTOR_MASK . 82

6.2.4 MOTOR_PARAMx . 83

6.2.5 LIGHT_FX_ID . 87

6.2.6 LIGHT_FX_ID Single Light Actions . 87

6.2.7 LIGHT_OUTPUT_MASK . 88

6.2.8 LIGHT_PF_OUTPUT_MASK . 88

6.2.9 LIGHT_PARAMx Single Light Actions . 89

6.2.10 LIGHT_FX_ID Combination Light Actions . 92

6.2.11 Combination Light F/X Notes . 93

6.2.12 LIGHT_PARAMx Combination Light Actions . 95

6.2.13 LIGHT_PARAMx Definitions . 98

6.2.14 SOUND_FX_ID . 107

6.2.15 SOUND_FILE_ID . 108

6.2.16 Sound F/X Notes . 108

6.2.17 SOUND_PARAMx . 110

6.2.18 SOUND_PARAMx Definitions . 111

7 Notifications 113

8 Memory Map 114

9 Flash Memory File System 115

9.1 Flash Directory Structure . 115

9.1.1 File ID . 115

9.1.2 Flags . 116

9.1.3 First Sector . 116

9.1.4 File Size . 116

9.1.5 User Attributes . 116

9.1.6 User Data1/2 . 117

9.1.7 CRC32 . 118

9.1.8 Filename . 118

9.2 File System Access Commands . 118

PFx Brick USB & BLE Host ICD Rev 3.37 iii

CONTENTS CONTENTS

10 Product ID Codes & Descriptors 120

11 Status Codes 121

12 Error Codes 122

PFx Brick USB & BLE Host ICD Rev 3.37 iv

CONTENTS CONTENTS

Revision Notes

Changes made to each version of this document are summarized in the table below.

Rev Change Notes

2.1 The PFX_CMD_GET_ICD_REVmessage was added so that firmware can report which revision
of ICD it conforms with.

The COMMAND_IR_LOCKOUT_TOGGLE command was added to the COMMAND byte of event/ac-
tion definition.

The MOTOR_ACTION_ID definitions for MOTOR_STOP and MOTOR_COAST were redefined to
MOTOR_ESTOP and MOTOR_STOP respectively.

New PFX settings bit added to the PFx Brick configuration called Audio DRC.

The PFX_CMD_WRITE_SN and PFX_CMD_READ_SNmessages were added to manage PFx Brick
serial number assignment.

2.2 Added description for the traffic light combo light f/x.

2.3 Added new message PFX_CMD_GET_CURRENT_STATE to report internal operating state of
motors, lights, audio, etc.

2.4 Modified the format of the PFX_CMD_GET_CURRENT_STATE message to report motor PWM
speed.

Corrected the numeric definitions of BAR_STYLE used with the sound bar light f/x.

2.5 Added newmessage PFX_CMD_GET_IRRX_STATUSmessage to report low level data from the
IR receiver processor.

2.6 Added newmessage PFX_CMD_SET_AUDIO_EQmessage to set audio equalization levels. The
valid range for bass/treble EQ values has been set to -20 to +20 dB in the configuration.

Modified the PFX_CMD_GET_CURRENT_STATE message format to send the internal millisec-
ond counter data.

2.7 Added new parameter SWEEP_STYLE for the COMBOFX_LINEAR_SWEEP and
COMBOFX_BARGRAPH_SWEEP combination light f/x.

2.8 Added new MOTOR_STEP parameter for Lego compatible 7 step operation.

Added new COMBOFX_LAVA_LAMP combo light f/x

Added new WHELEN_STYLE parameter for a random program of flashing sequences.

2.9 Added new motor configuration bit ”TLG Mode” to add emulation of the Lego IR receiver
motor control.

PFx Brick USB & BLE Host ICD Rev 3.37 1

CONTENTS CONTENTS

Rev Change Notes

3.0 Revised the PFX_CMD_GET_STATUS message to include comprehensive product identifica-
tion. This includes a new fields for USB PID, Product Number, Product Descriptor, a new
4-byte Serial Number, and a new 2-byte Firmware Version.

Deprecated the Product ID, Hardware Version, Firmware Version, and Serial Number fields
in the the PFX_CMD_GET_CONFIG message.

Revised the PFX_CMD_WRITE_SN and PFX_CMD_READ_SNmessages to accommodate the new
4-byte serial number format.

Added new COMMAND bytes to the event/action LUT.

Renamed EVT_DEFAULT_EVENT to EVT_STARTUP_EVENT1 and added 3 more startup events.

3.1 Revised the PFX_CMD_GET_ICD_REV message to support a 2-byte revision numbering
scheme.

3.11 Added a new RETRIGGER parameter to the SOUNDFX_PLAY_ONCE sound f/x.

Added new COMBOFX_LASER_CANNON combination light f/x.

Corrected the description of EVT_STARTUP_EVENTx for both the
PFX_CMD_GET_EVENT_ACTION, PFX_CMD_SET_EVENT_ACTION messages.

3.12 Changed the format of the PFX_CMD_GET_AUDIO_LUT_ENTRY message to also return the
start address of the audio sample data. The File Size field now represents the Data Size
of audio sample data, not the total file size. These changes reflect internal changes in the
firmware to be tolerant of different WAV file formats including LIST and INFO chunks.

Changed the format of the PFX_CMD_ADD_AUDIO_DATA message to report progress infor-
mation for lengthy flash erase operations which result in a PFX_ERR_TRANSFER_BUSY_WAIT
status response code.

3.13 Added suggested default values for all of the light f/x.

3.14 Added new LIGHTFX_BROKEN_LIGHT single light f/x.

Added new LIGHTFX_STATUS_INDICATOR single light f/x.

Revised the definition of the light output 7 for emergency flashers from solid to 2x flasher.

Added a Silent flag for the PFX_CMD_GET_ICD_REVmessage so that it can be used for covert
connection monitoring.

3.15 Added new LIGHTFX_SOUND_MODULATED single light f/x.

Added new FLICKER_ON parameter to LIGHTFX_ON_OFF_TOGGLE light f/x.

Added new definition to LIGHT_PARAM4 for single light f/x to assert output state beyond
simple toggle on/off.

Increased the audio LUT size from 16 to 32 entries.

3.16 Added new LIGHTFX_MOTOR_MODULATED single light f/x.

Corrected the parameter definition for LIGHTFX_SCIFI_ENGINE_GLOW

PFx Brick USB & BLE Host ICD Rev 3.37 2

CONTENTS CONTENTS

Rev Change Notes

3.17 Added new COMMAND_RESTART command

Added additional response data to the PFX_CMD_GET_CURRENT_STATE command

Changed references of PFXBrick to PFx Brick to match product naming conventions

3.20 Updated the memory map to show the addition a File Allocation Table file system and re-
moval of the Audio LUT structure.

Added a description of a newly introduced file system applied to the flash memory. New
USB command messages have been added to interact with the file system

Deprecated the following messages associated with audio file access:
PFX_CMD_ADD_AUDIO_FILE, PFX_CMD_ADD_AUDIO_DATA, PFX_CMD_ADD_AUDIO_DONE,
PFX_CMD_GET_AUDIO_FILE, PFX_CMD_GET_AUDIO_DATA, PFX_CMD_ERASE_AUDIO_LUT

Added an error code reference for file system access commands

Deprecated the PFX_CMD_DIAG_LED command

Changed the command byte value of PFX_CMD_GET_ICD_REV to 0x08 from 0x00 since 0x00
seems to be a reserved report byte usage value for USB HID report packets

Changed the format of the configuration data in PFX_CMD_SET_CONFIG and
PFX_CMD_GET_CONFIG to support optional individual brightness adjustments for each
lighting channel.

Changed the format of the PFX_CMD_GET_STATUS message to include new fields for USB
VID and firmware build no.

3.21 Changed the PFX_CMD_FILE_FORMAT_FS message to specify different formatting modes.

Added a new request to the PFX_CMD_FILE_DIR command.

Changed the PFX_CMD_GET_CURRENT_STATE message to add more status parameters.

3.22 Changed the PFX_CMD_FILE_GET_FS_STATE message to report both free and empty sec-
tors.

3.23 Added an INVERT parameter to LIGHTFX_SOUND_MODULATED single light effect.

3.24 Changed product ID and corresponding descriptors. Added product ID reference table as
an appendix.

Added new motor actions MOTOR_SET_SPD_TIMED, MOTOR_OSCILLATE,
MOTOR_OSCILLATE_BIDIR, MOTOR_OSCILLATE_BIDIR_WAIT, MOTOR_RANDOM,
MOTOR_RANDOM_BIDIR, MOTOR_SOUND_MODULATED

Added new motor parameters DURATION and MOTOR_PERIOD

Extended the definition of the MOTOR_SPEED parameter to allow for higher resolution set
speed.

Added support for additional IR remote controls: LEGO® RC Train remote, Sparkfun COM-
11759 mini IR remote, and Adafruit 389 mini IR remote. These definitions expand the
Event/Action LUT.

PFx Brick USB & BLE Host ICD Rev 3.37 3

CONTENTS CONTENTS

Rev Change Notes

3.25 Added new Bluetooth communications commands PFX_CMD_GET_BT_STATUS,
PFX_CMD_SET_BT_POWER, PFX_CMD_SEND_BT_UART, PFX_CMD_RECEIVE_BT_UART

3.30 Changed the format of the configuration data in PFX_CMD_SET_CONFIG and
PFX_CMD_GET_CONFIG to support new parameters.

Specification of the user-defined name has been moved from the configuration messages
to two new messages: PFX_CMD_SET_NAME and PFX_CMD_GET_NAME

Added new section discussing the Bluetooth interface services and message format

Added an introduction to this document to reinforce the commonality of both USB and BLE
interfaces for remote configuration and control

3.31 Added a new command PFX_CMD_SEND_EVENT to simulate remote control events over USB
or BLE.

Expanded the definition of the MOTOR_PERIOD parameter to specify both an ON and OFF
duration.

3.32 Added the notificaiton mechanism to allow USB and BLE connected hosts to subscribe
to notifications from the PFx Brick. This adds the PFX_CMD_SET_NOTIFICATIONS and
PFX_MSG_NOTIFICATION commands to the host control interface.

3.33 Added new SOUND_FX_ID: SOUND_FX_PLAY_IDX_MOTOR for realistic motor/prime mover
sound effects based on sampled sound files indexed by changes in motor speed.

Added new new SOUND_FX_ID: SOUND_FX_PLAY_RAND to randomly playback a specified
sound file continuously.

Changed the format of the configuration data in PFX_CMD_SET_CONFIG and
PFX_CMD_GET_CONFIG to store speed boundaries between indexed motor speed sounds.

Added new TRAFFIC_STYLE type ”European 2”.

3.34 Added new TRAFFIC_STYLE type ”European 2 with pedestrian crossing”

Changed the format of the PFX_CMD_GET_CURRENT_STATE return message

Added new items to the SOURCE1 parameter

Deprecated the namespace prefix of PFX_USB_CMD_ and replaced it with the more appropri-
ate PFX_CMD_ prefix. All references to either namespace are considered synonymous.

Changed the format of the PFX_CMD_FILE_DIR response message to include the request
type in the response to simplify parsing by the host.

3.35 Deprecated the PFX_CMD_GET_AUDIO_LUT_ENTRY, PFX_CMD_GET_AUDIO_CAPACITY mes-
sages

Added new PFX_CMD_FILE_DIR request type PFX_DIR_REQ_SET_ATTR_MASKED_ID

Expanded the definition of the file ”User Attributes” field to tag files for use with indexed
motor sound samples

PFx Brick USB & BLE Host ICD Rev 3.37 4

CONTENTS CONTENTS

Rev Change Notes

3.36 Changed the SOUNDFX_STOP definition to stop audio playback of the file specified in
SOUND_FILE_ID rather than all audio playback.

Deprecated the PFX_CMD_GET_LAST_IR_MSG, PFX_CMD_VERIFY_CONFIG,
PFX_CMD_VERIFY_EVENT_LUT messages

Added new error code PFX_ERR_TRAP_BROWNOUT_RST

Corrected the PFX_CMD_READ_I2C, PFX_CMD_WRITE_I2C messages description to conform
with actual firmware implementation.

Changed the USB PID to the officially sublicensed PID from Microchip for the PFx Brick.

3.37 Removed the 2x auxiliary flasher (on light ch. 7) for EVT_COMBOFX_EMCY_TWSONIC,
EVT_COMBOFX_EMCY_WHELEN combo light effects

Added TRANSITION parameter as LIGHT_PARAM5 to the EVT_COMBOFX_ALT_FLASH combo
light effect to specify behaviour when toggling effect

Added EVT_COMBOFX_DRAGSTER combo light effect

Added EVT_COMBOFX_FORMULA1 combo light effect

Added EVT_COMBOFX_RUNWAY combo light effect

Rename TRAFFIC_STYLE ”European 2” to ”International”

Added new TRAFFIC_STYLE ”International 2”

Added new MOTOR_SET_SERVO to MOTOR_ACTION_ID to set servo motor position

Added new MOTOR_POS motor parameter to specify servo motor position

Added new step size for servo motor increments in the MOTOR_STEP parameter

Added new script language support for the PFx Brick

Added new COMMAND_RUN_SCRIPT to the COMMAND byte of event/action.

Added new PFX_CMD_RUN_SCRIPT message to execute a script file

Added a new User Attribute for file system to mark text files for use with scripting

Added new error codes

Changed the format of the PFX_CMD_GET_CURRENT_STATE message response

Added 3 new request types for the PFX_CMD_FILE_DIR command mes-
sage: PFX_DIR_REQ_GET_NAMED_FILE_ID, PFX_DIR_REQ_GET_SMALL_DIR_ID,
PFX_DIR_REQ_GET_SMALL_DIR_IDX

Re-organized the document by putting reference descriptions of the memory map, file sys-
tem, etc. at the end

PFx Brick USB & BLE Host ICD Rev 3.37 5

2 PFX BRICK USB HID DEVICE CLASS

1 Introduction

The PFx Brick injects new possibilites of animation and control for LEGO®models by offering rich ca-
pabilities for controlling Power Functions motors, diverse lighting effects and for the first time, user
defined sound effects. These features have a wide range of operational possibilies and characteris-
tics. In order to use and configure these features to a user’s desired application, a host computer or
mobile device uses a software application to make this process simple and efficient. Fx Bricks offers
the PFx App to perform this function; however, it is possible for any 3rd party to make a software
application to interact with the PFx Brick as well.

In order for a host application to interact with the PFx Brick, it must connect to the PFx Brick via
either the standard USB interface or optionally with a Bluetooth Low Energy (BLE) connection. Both
of these physical interfaces offer a common command and control message facility described in this
Interface Control Document (ICD).

2 PFx Brick USB HID Device Class

The PFx Brick firmware includes a USB HID compliant interface device for communications with USB
attached hosts. This will allow host applications to configure and update any attached PFx Brick
without the need for custom device drivers. An attached PFx Brick should automatically trigger the
host operating system to enumerate the PFx Brick within the USB stack and recognize it as a USB
HID compliant device with custom endpoints.

2.1 PFx Brick Vendor and Product ID (VID/PID)

The PFx Brick unoffical vendor ID is 0x04D8 (Microchip Inc.’s registered VID) The PFx Brick USB
product ID is 0xEF74 (Microchip vendor sublicensed PID for the PFx Brick)

To find the PFx Brick using the HID API, the following code could be used:

device = hid_open(0x04D8 , 0xEF74 , NULL);

2.2 Message Packet Format

USB HID message packets are exchanged via two buffers:

1. OUT endpoint 64 bytes (data from the host)
2. IN endpoint 64 bytes (data to the host)

The PFx Brick will respond to commands issued by the host using a set of customized command
messages. The format of these message packets is described in this document. These messages
facilitate a wide range of functionality and will continue to evolve over the lifecycle of the PFx Brick.

PFx Brick USB & BLE Host ICD Rev 3.37 6

3 BLUETOOTH LOW ENERGY

3 Bluetooth Low Energy

Certain PFx Brick models are fitted with a Bluetooth Low Energy (BLE) v.4.2 compliant interface. This
interface allows connected BLE hosts to control and interact with the PFx Brick identically to a USB
connected host. The messages described in this document are identically formatted for transport
via USB and/or BLE.

The BLE interface on the PFx Brick is configured to operate as a “transparent UART”. That is, it
provides the same functionality as a bi-directional asychronous serial interface. The PFx Brick ad-
vertises this as a BLE compliant GATT service with characteristics assigned to transmit and receive
operations. Additionally, the PFx Brick also offers the standardized Bluetooth Device Information
service GATT for detailed identification of the PFx Brick.

The BLE GATT services which the PFx Brick advertises are as follows:

Service UUID 0x180A

Service Device Information

Characteristic UUID 0x2A29

Characteristic Descriptor Manufacturer Name String

Characteristic UUID 0x2A24

Characteristic Descriptor Model Number String

Characteristic UUID 0x2A25

Characteristic Descriptor Serial Number String

Characteristic UUID 0x2A27

Characteristic Descriptor Hardware Revision String

Characteristic UUID 0x2A26

Characteristic Descriptor Firmware Revision String

Characteristic UUID 0x2A28

Characteristic Descriptor Software Revision String

Characteristic UUID 0x2A23

Characteristic Descriptor System ID

Characteristic UUID 0x2A2A

Characteristic Descriptor IEEE Regulatory Certification

PFx Brick USB & BLE Host ICD Rev 3.37 7

3 BLUETOOTH LOW ENERGY

Service UUID 49535343-FE7D-4AE5-8FA9-9FAFD205E455

Service Transparent UART

Characteristic UUID 49535343-1E4D-4BD9-BA61-23C647249616

Characteristic Descriptor UART Receive

Characteristic Properties Write Without Response Write Notify Indicate

Characteristic UUID 49535343-8841-43F4-A8D4-ECBE34729BB3

Characteristic Descriptor UART Transmit

Characteristic Properties Write Without Response Write

Characteristic UUID 49535343-A4C8-39B3-2F49-511CFF073B7E

Characteristic Descriptor UART Transmit (with response)

Characteristic Properties Write Notify

The PFx Brick normally advertises its presence periodically so that it can be discovered by a con-
necting host. Once discovered, a host can connect to the PFx Brick and ask for service descriptors
for both the Device Information and Transparent UART. It can then send and receive ICD messages
with the Transparent UART service by using the UART Receive and Transmit characteristics.

PFx Brick USB & BLE Host ICD Rev 3.37 8

3.1 Message Packet Format 3 BLUETOOTH LOW ENERGY

3.1 Message Packet Format

BLEmessage packets are exchanged via two buffers which are part of the UART Transmit and Receive
charactersitics. Internally, these buffers are limited to 20 bytes each. Therefore, the standard 64
byte ICD messages will be broken up into an integral number of 20 byte transactions to perform
the transfer. From the point of view of the PFx Brick, this process is transparent. However, for the
connecting host, extra processing will be required to assemble/disassemble ICD messages into 20
byte payloads.

Messages are sent to the PFx Brick via the UART Transmit service characteristic. The format of the
message block is as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0x5B 0x5B 0x5B ICD message data

...
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

ICD message data (up to 64)

67 68 69

0x5D 0x5D 0x5D

Note that all messages sent to the PFx Brick are pre-delimited with 3x "[" characters (91 decimal,
0x5B hex) and post-delimited with 3x "]" characters (93 decimal, 0x5D hex).

The PFx Brick always sends a response to every transmitted message it receives. These responses
are sent as raw data bytes without any pre or post delimiters in exactly the same format as they
would be for USB connected hosts.

PFx Brick USB & BLE Host ICD Rev 3.37 9

4 HOST COMMAND MESSAGES

4 Host Command Messages

The USB HID class supports the exchange of message buffers between the host and a device of up to
64 bytes. The PFx Brick message definition consists of various command messages which originate
from the host. The structure of these messages is as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CMD Byte Data bytes 0-14

...
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Data bytes 49-62

The CMD byte is a numeric literal which specifies the command. A command message may have
up to 63 additional data bytes associated with it depending on its purpose. A description of each
command is given below along with the format of a device responses if applicable. The device
response will prefix its response in byte 0 with the CMD byte xor-ed with 0x80, i.e. it will send the
command byte back with the MSB set to ‘1’.

The following tables show the host CMD bytes grouped by functional category. Also shown is the
applicability and/or support of each message within the different software operational contexts. For
example, the bootloader application context will not have support for every message since it has
limited resources to for processing.

Operation and Configuration Commands

Context

CMD Nmemonic Firmware Bootloader Host App

0x08 PFX_CMD_GET_ICD_REV y y y

0x01 PFX_CMD_GET_STATUS y y y

0x02 PFX_CMD_SET_FACTORY_DEFAULTS y y

0x03 PFX_CMD_GET_CONFIG y y

0x04 PFX_CMD_SET_CONFIG y y

0x06 PFX_CMD_GET_CURRENT_STATE y y

0x07 PFX_CMD_GET_NAME y y

0x09 PFX_CMD_SET_NAME y y

PFx Brick USB & BLE Host ICD Rev 3.37 10

4 HOST COMMAND MESSAGES

Event/Action LUT Commands

Context

CMD Nmemonic Firmware Bootloader Host App

0x11 PFX_CMD_GET_EVENT_ACTION y y

0x12 PFX_CMD_SET_EVENT_ACTION y y

0x13 PFX_CMD_TEST_ACTION y y

0x15 PFX_CMD_SEND_EVENT y y

Audio Commands

Context

CMD Nmemonic Firmware Bootloader Host App

0x20 PFX_CMD_INC_VOLUME y y

0x21 PFX_CMD_DEC_VOLUME y y

0x2A PFX_CMD_SET_AUDIO_EQ y y

Service Commands

Context

CMD Nmemonic Firmware Bootloader Host App

0x30 PFX_CMD_LOAD_FIRMWARE_FILE y y y

0x31 PFX_CMD_LOAD_FIRMWARE_DATA y y y

0x32 PFX_CMD_LOAD_FIRMWARE_DONE y y y

0x34 PFX_CMD_READ_BOOTCONFIG y

0x37 PFX_CMD_REBOOT y y y

PFx Brick USB & BLE Host ICD Rev 3.37 11

4 HOST COMMAND MESSAGES

File System Access Commands

Context

CMD Nmemonic Firmware Bootloader Host App

0x40 PFX_CMD_FILE_OPEN y y

0x41 PFX_CMD_FILE_CLOSE y y

0x42 PFX_CMD_FILE_READ y y

0x43 PFX_CMD_FILE_WRITE y y

0x44 PFX_CMD_FILE_SEEK y y

0x45 PFX_CMD_FILE_DIR y y

0x46 PFX_CMD_FILE_REMOVE y y

0x47 PFX_CMD_FILE_FORMAT_FS y y

0x48 PFX_CMD_FILE_GET_FS_STATE y y

0x4B PFX_CMD_RUN_SCRIPT y y

Bluetooth Interface Commands

Context

CMD Nmemonic Firmware Bootloader Host App

0x50 PFX_CMD_GET_BT_STATUS y

0x51 PFX_CMD_SET_BT_POWER y

0x52 PFX_CMD_SEND_BT_UART y

0x53 PFX_CMD_RECEIVE_BT_UART y

Notification Commands

Context

CMD Nmemonic Firmware Bootloader Host App

0x60 PFX_CMD_SET_NOTIFICATIONS y y

0x61 PFX_MSG_NOTIFICATION y y

PFx Brick USB & BLE Host ICD Rev 3.37 12

4 HOST COMMAND MESSAGES

Low Level Test/Debug Commands

Context

CMD Nmemonic Firmware Bootloader Host App

0x70 PFX_CMD_STATUS_LED y

0x72 PFX_CMD_WRITE_SPI y

0x73 PFX_CMD_READ_SPI y

0x74 PFX_CMD_WRITE_I2C y

0x75 PFX_CMD_READ_I2C y

0x76 PFX_CMD_READ_FLASH y

0x77 PFX_CMD_GET_IRRX_STATUS y

PFx Brick USB & BLE Host ICD Rev 3.37 13

4.1 PFX_CMD_GET_ICD_REV 4 HOST COMMAND MESSAGES

4.1 PFX_CMD_GET_ICD_REV

This command queries the revision number of the Interface Control Document/Specification (ICD)
that the PFx Brick supports. The returned version number will correspond to the revision number
of this document. This will give both firmware and host software development a common reference
point for determining compatibility. The ICD revision number is independent of both the firmware
revision and host software revision/build state. It is possible that several consecutive versions of
firmware may support a common revision of ICD.

Host command packet:
0 1 2 3 4

0x08 0x60 0x0D 0x01 Silent

Device response packet:
0 1 2

0x88 Revision

The ICD revision is encoded in BCD (binary coded decimal). The major code is in the first byte (byte
1) and the minor code is in the second byte (byte 2), e.g. v.3.14 would be encoded as 0x03 0x14.

The Silent flag can be used to disable the blink indication of the PFx Brick status LED when re-
sponding to this message. Note that it only disables the blink indication for this message–all other
messages will blink the status LED as usual. A value of 1 disables the blink notificaiton, all other
values will show the blink indication. This flag is included so that a host can periodically poll the
PFx Brick in order to maintain its connection status, without incurring visually distracting status LED
blink activity.

PFx Brick USB & BLE Host ICD Rev 3.37 14

4.2 PFX_CMD_GET_STATUS 4 HOST COMMAND MESSAGES

4.2 PFX_CMD_GET_STATUS

This command queries the fundamental operational state of the PFx Brick. Normally, the PFx Brick
is running its main application firmware. However, the PFx Brick is designed to have its firmware
upgraded in the field by the end user with a host PC application. This functionality requires a per-
manent firmware component called a bootloader. The bootloader resides permanently in the PFx
Brick and is executed after reset or a power cycle. The bootloader checks to see if valid application
firmware has been loaded onto the PFx Brick. If present, it immediately transfers execution to the
application firmware. However, if no application firmware is present or corrupted, the bootloader
continues to operate the PFx Brick in Servicemode. This mode has just enough functionality to allow
a USB host to load a new application firmware binary image. If successfully loaded, the PFx Brick
will restart and then launch the new firmware image.

Additionally, the main application firmware also allows the host to load a new firmware image. In
actual fact, the firmware “stages” the new firmware in flash memory, and if successfully loaded,
will reboot the PFx Brick. Upon reboot, the bootloader will detect a new “staged” firmware image
and attempt to replace the existing firmware with the new one. If successful, the new firmware will
execute. If unsuccessful, then at least the PFx Brick will remain in Service mode so that another
attempt at loading firmware can be made.

One of the goals of the PFX_CMD_GET_STATUS command is simply to determine if the PFx Brick is
operating normally with its main application firmware or is running the bootloader in Service mode.
Based on this determination, the host will know which workflows are permissible. For example, if
operating in Service mode, then most USB host commands will simply not work. The only actions
that should be exposed to the user are for selecting and loading a new application firmware image.

Lastly, the PFX_CMD_GET_STATUS command can be used to determine the specific PFx Brick part
number and serial number. This information will be useful for determining the device capabilities,
e.g. number of motor channels, storage capacity, etc. as well determining which firmware is compat-
ible with the device. Furthermore, a 24 character product descriptor is included which definitively
describes the product identity. Note that the part number and product descriptor are different than
the USB PID (Product ID). One USB PIDmay in fact be used to represent a family of PFx Brick procucts.
Rather than exhaust the limited availability of USB PID numbers, the Part Number/Product Descrip-
tor pair can be used to detemine the specific PFx Brick type that is connected.

Host command packet:
0 1 2 3 4 5 6 7

0x01 0xA5 0x5A 0x6E 0x40 0x54 0xA4 0xE5

Device response packet:
0 1 2 3 4 5 6 7 8 9 10 11 12

0x81 Status Error USB
VID

USB
PID

Part
Number

Serial
Number

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Left justified 24 character product descriptor UTF8 encoded

37 38 39 40

Firmware
Version

Firmware
Build No.

PFx Brick USB & BLE Host ICD Rev 3.37 15

4.2 PFX_CMD_GET_STATUS 4 HOST COMMAND MESSAGES

Status Codes

Status Code Description

0x00 PFX_STATUS_NORMAL if the PFx Brick is running its main application
firmware, i.e. normal operation

0x33 PFX_STATUS_NORMAL_PENDING PFx Brick is running in normal mode with a new
application firmware image loaded into staging
and pending upgrade

0x55 PFX_STATUS_SERVICE PFx Brick is running in Service mode with no er-
rors, i.e. a typical state for a new uninitialized PFx
Brick

0x53 PFX_STATUS_SERVICE_PENDING PFx Brick is running in Service mode with a new
application firmware image loaded into staging
and pending upgrade

0x5B PFX_STATUS_SERVICE_BUSY Running in Service mode, busy performing
firmware upgrade

Error Codes

Error Code Description

0x00 PFX_ERR_NONE no errors

0x04 PFX_ERR_SPKR_SHORTCIR_FAULT Short circuit detected on speaker output

0x06 PFX_ERR_TRANSFER_CRC_MISMATCH Error loading firmware from host into staging
memory space

0x08 PFX_ERR_DAC_OVERTEMP_FAULT Overtemperature condition

0x0B PFX_ERR_BLE_FAULT Bluetooth radio module fault

0x80 PFX_ERR_UPGRADE_FAIL Error copying staged firmware into active op-
erational flash program memory space

0x0A PFX_ERR_TRAP_BROWNOUT_RST Reset error due to brownout power condition

0x10 PFX_ERR_TRAP_CONFLICT Reset error due a trap conflict

0x20 PFX_ERR_TRAP_ILLEGAL_OPCODE Reset error due to illegal OP code execution

0x40 PFX_ERR_TRAP_CONFIG_MISMATCH Reset error due configuration mismatch

PFx Brick USB & BLE Host ICD Rev 3.37 16

4.2 PFX_CMD_GET_STATUS 4 HOST COMMAND MESSAGES

USB VID/PID

The USB VID (Vendor ID) and PID (Product ID) is part of the standard USB assigned VID/PID pair
used to enumerate USB devices.

Serial Number

The serial number is 4 bytes and each PFx Brick will be assigned a unique cryptographically random
serial number. The serial number may originate from a unique ID register value embedded in a flash
memory device (if available) or it may be assigned by the bootloader after it has been installed.

Firmware Version / Build No.

The firmware version number occupies 2 bytes. The version number is BCD encoded with first byte
(byte 37) representing the major version number and the second byte (byte 38) representing the
minor version number, e.g. v.3.14 would be encoded as 0x03 0x14. The Build No. complements the
version number by indicating a specific build within a series of releases. It is encoded as a verbatim
16-bit value.

PFx Brick USB & BLE Host ICD Rev 3.37 17

4.2 PFX_CMD_GET_STATUS 4 HOST COMMAND MESSAGES

Part Number / Part Descriptors

The Part Number is a unique 2-byte value which corresponds to a distinct SKU product. Each product
Part Number has a corresponding Product Descriptor. The descriptor is an unambiguous product
name encoded as UTF-8 character strings.

Part
Number

Product Descriptor Description

0x1201 PFx Brick alpha First pre-production prototype PFx Brick with 2x motor
channels (using the DRV8839), 8x light channel with dis-
crete pico light connectors, and sound.

0x1202 PFx Brick beta Second pre-production prototype PFx Brick with 2x motor
channels (using the DRV8835), 8x light channels on the
standard 10-pin lighting dock connector, and sound.

0x1203 PFx Brick gamma Third pre-production prototype with 2x motor channels
(using the DRV8833), 8x light channels on the standard
10-pin lighting dock connector, and sound.

0x1204 PFx Brick delta IR Fourth pre-production prototype with 2x motor channels
(using the DRV8833), 8x light channels on the standard
10-pin lighting dock connector, and sound.

0x9204 PFx Brick delta Fourth pre-production prototype with 2x motor channels
(using the DRV8833), Bluetooth interface, 8x light chan-
nels on the standard 10-pin lighting dock connector, and
sound.

0x2204 PFx Brick IR 4 MB Production version of the 4 MB PFx Brick IR with 2x motor
channels, 8x light channels, and sound.

0x2208 PFx Brick IR 8 MB 8 MB PFx Brick IR

0x2216 PFx Brick IR 16 MB 16 MB PFx Brick IR

0xA204 PFx Brick 4 MB Production version of the 4MB PFx Brick with Bluetooth in-
terface, 2x motor channels, 8x light channels, and sound.

0xA208 PFx Brick 8 MB 8 MB PFx Brick

0xA216 PFx Brick 16 MB 16 MB PFx Brick

0x1701 PFXLite alpha Pre-production economy PFx Brick with light f/x only (8x
channels with 10-pin dock connector). It has no plastic
enclosure, but has stud mounting holes for integration
into a model.

0x2702 PFXLite Production economy PFx Brick with light f/x only.

0x1401 PFx Brick Pro alpha Pre-production PFx Brick with 4x motor channels, 8x light
channels, and sound.

0x2404 PFx Brick Pro 4 MB Production 4 MB PFx Brick with 4x motor channels, 8x
light channels, and sound.

0x2408 PFx Brick Pro 8 MB 8 MB PFx Brick Pro

0x2410 PFx Brick Pro 16 MB 16 MB PFx Brick Pro

PFx Brick USB & BLE Host ICD Rev 3.37 18

4.3 PFX_CMD_SET_FACTORY_DEFAULTS 4 HOST COMMAND MESSAGES

4.3 PFX_CMD_SET_FACTORY_DEFAULTS

Resets the global configuration, event look-up table and file system with factory default values. This
command will overwrite the current configuration of the PFx Brick and cannot be undone.

Host command packet:
0 1 2 3 4 5 6 7

0x02 0xAA 0x55 0xDE 0xAD 0xBE 0xEF 0x02

Device response packet:
0

0x82

PFx Brick USB & BLE Host ICD Rev 3.37 19

4.4 PFX_CMD_GET_CONFIG 4 HOST COMMAND MESSAGES

4.4 PFX_CMD_GET_CONFIG

Retrieves global configuration data from the PFx Brick.

Host command packet:
0

0x03

Device response packet:
0 1 2 3 4 5 6

0x83
Light Ch 1
Brightness

Light Ch 2
Brightness

Light Ch 3
Brightness

Light Ch 4
Brightness

Light Ch 5
Brightness

Light Ch 6
Brightness

7 8 9 10 11 12 13 14

Notch
Count

Notch 1-2
Bound

Notch 2-3
Bound

Notch 3-4
Bound

Notch 4-5
Bound

Notch 5-6
Bound

Notch 6-7
Bound

Notch 7-8
Bound

15 16 17 18 19 20 21 22 23 24 25

Reserved

26 27 28 29 30

IR Auto Off BLE Auto Off BLE
Disconnect Motor

BLE
Advertisement

Power

BLE
Session Power

31 32 33 34 35 36 37

Light Ch 7
Brightness

Light Ch 8
Brightness

PF Light A
Brightness

PF Light B
Brightness Audio Bass Audio

Treble
PFX

Settings

38 39 40 41 42 43

Motor A
Config

Motor A
vMin

Motor A
vMid

Motor A
vMax

Motor A
Accel

Motor A
Decel

44 45 46 47 48 49

Motor B
Config

Motor B
vMin

Motor B
vMid

Motor B
vMax

Motor B
Accel

Motor B
Decel

50 51 52 53 54 55

Motor C
Config

Motor C
vMin

Motor C
vMid

Motor C
vMax

Motor C
Accel

Motor C
Decel

56 57 58 59 60 61

Motor D
Config

Motor D
vMin

Motor D
vMid

Motor D
vMax

Motor D
Accel

Motor D
Decel

62 63

Default
Volume

Default
Brightness

PFx Brick USB & BLE Host ICD Rev 3.37 20

4.4 PFX_CMD_GET_CONFIG 4 HOST COMMAND MESSAGES

Light Ch Brightness

These bytes were formally reserved and are now used to represent individual startup brightness
values for each light channel. This includes 8x brightness values for the dedicated light output
ports and 2x brightness values for lights attached to the PF Motor channel connectors A and
B. Setting individual brightness values is optional. Normally, all channels are set to the master
Default Brightness value in byte 63. However, if Default Brightness is set to zero (0x00), then
the individual brightness values for each channel will apply. Having individual default brightness
control is useful for situations where relative brightness for each light output is mismatched due to
installation, colour, electrical resistance, etc.

Notch Count

The Notch Count value specifies how many power “notches” or levels are to be used for simulated
engine sound Fx which are indexed by motor speed. This value is only relevant when used with the
SOUND_FX_PLAY_IDX_MOTOR sound Fx. When this sound Fx is used, up to 8 distinct power levels or
notches can be represented by sound files. The selection of a power notch is defined by a desired
motor channel’s speed. The boundaries between adjacent power notches represent a monotonically
changing motor speed. The Notch 1-2 Bound represents the motor speed which defines boundary
between power notch 1 and 2 and so on. Typically, Notch 1 represents “idle” or minimum motor
speed and Notch Count representsmaximummotor speed. Typically the boundaries between power
notches represent evenly spaced intervals of motor speed.

IR Auto Off

The infrared sensor and IR message processing can be configured to automatically turn off and be
disabled after a specified interval of time with no activity. This can be a useful feature to either save
power or to increase the immunity of the PFx Brick to unintended IR messages.

0x00 = Never , IR sensor always enabled
0x01 = Automatic disable after 1 minute of no activity
0x02 = Automatic disable after 5 minutes of no activity
0x03 = Disable immediately after startup (always disabled)

BLE Auto Off

The Bluetooth interface can be configured to automatically turn off and be disabled after a specified
interval of time with no activity. This can be a useful feature to either save power or reduce radio
spectrum congestion.

0x00 = Never , BLE interface always enabled
0x01 = Automatic disable after 1 minute of no activity
0x02 = Automatic disable after 5 minutes of no activity
0x03 = Disable immediately after startup (always disabled)

BLE Disconnect Motor

If a PFx Brick is being remotely operated by a Bluetooth connected host, there is always the possibil-
ity of unintentional disconnection of the radio link due to interference, radio range, or other factors.
When a disconnection occurs, the user has no means of controlling a model until reconnected. In
the case of models which are mobile such as trains or cars, this could lead to a “run-away” model sit-
uation. In order to avoid this scenario, the PFx Brick can be configured to either continue operating
the motors normally or turn off all motors in the event of a BLE disconnection.

0x00 = Continue to operate motors normally
0x01 = Turn off all motor channels on a BLE disconnection event

BLE Advertisement Power BLE Session Power

PFx Brick USB & BLE Host ICD Rev 3.37 21

4.4 PFX_CMD_GET_CONFIG 4 HOST COMMAND MESSAGES

The transmitter power of the BLE radio can be adjusted in order to trade-off energy consumption
and radio range performance. The BLE radio operates in two basic modes: Advertisement and Con-
nected Session. During Advertisement, the BLE radio will periodically transmit advertisement signals
notifying nearby hosts that the PFx Brick is on and available for connection. During a connected ses-
sion, the BLE radio is used to send messages between the PFx Brick and a connected host for remote
control. The transmitter power of both of these modes can be adjusted to trade off energy usage
and radio performance.

Range between 0x00~0x05 where
0x00 = Maximum transmitter power
0x05 = Minimum transmitter power

Audio Bass/Treble

The audio subsystem will have adjustable spectral EQ for bass and treble. The level is specified as
a 2’s complement signed 8-bit value relative to a nominal value of 0 dB. The adjustable range is
therefore -128 to +127 dB; however, in practice it is limited to -20 to +20 dB.

PFX Settings

The PFx Brick has some device specific settings which can be customized by the user. They are
encoded as bitfields within the PFX Settings byte as follows:

01234567

Reserved Audio
DRC

Lockout/sleep
mode

Auto power down
mode

Volume
beep

Status
LED

where

Status LED : 0 = Normally on, wink off with activity
1 = Normally off, wink on with activity

Volume Beep : 0 = No beep sound with change in audio volume
1 = Audible beep sound with every change in audio volume

Auto Power
Down Mode : 00 = No automatic power down

01 = Automatic power down/sleep after 30 minutes
10 = Automatic power down/sleep after 60 minutes
11 = Automatic power down/sleep after 3 hours

Lockout/Sleep
Mode : 00 = Lockout/sleep disabled

01 = Toggle lockout/sleep with 4-double taps on channel 1 only
10 = Toggle lockout/sleep with 4-double taps on any channel
11 = synonymous with 00 (disabled)

Audio DRC : 0 = Automatic audio Dynamic Range Control (DRC) off
1 = Automatic audio DRC on

PFx Brick USB & BLE Host ICD Rev 3.37 22

4.4 PFX_CMD_GET_CONFIG 4 HOST COMMAND MESSAGES

Motor Configuration Each motor output on the PFx Brick can be customized by the user for different
motor speed and momentum behaviour. These settings apply to each specific motor output connec-
tor channel on the PFx Brick. Up to 4x motor channels (A,B,C,D) can be configured; however, the
initial version of the PFx Brick has only 2x motor channels fitted (A & B). The settings for channels
C & D are placeholders for future 4x channel PFx Bricks.

The motor configuration byte is defined as follows:
0 1 2 3 4 5 6 7

Reserved TLG
Mode

Torque
Comp Invert

where

Invert : 0 = Motor polarity normal
1 = Motor polarity reversed
Motors with the same polarity will rotate in the same direction.

Torque Comp : 0 = High frequency PWM at all speeds (default)
1 = Low frequency PWM for starting motor with additional torque

High freq PWM at all other speeds
TLG Mode : 0 = Normal high resolution PWM motor control (default)

1 = Lego IR receiver compatibility mode. Motor driven with low
frequency 1 kHz PWM with 7 speed steps in each direction
emulating the operation of the Lego IR receiver.

vMin, vMid, vMax

These parameters define the shape of the motor speed curve. Normally, motor speed is set directly
proportional to user commanded speed (linear). However, this relationship can be modified with
alternative speed curves. Examples include parabolically increasing speed curves with more reso-
lution at slower speeds or inverse parabolic curves with rapid initial acceleration. The shape of the
curve is a smooth spline-fitted curve between points vMin, vMid, and vMax. vMin should be chosen
to represent the minimum starting speed of the motor and vMax should represent the maximum ap-
plied motor speed. Speed values are absolute values between 0 (no speed) up to 255 (maximum
speed). This allows the motor to be “clamped” to a maximum speed below the absolute full voltage
maximum (255). vMid can be chosen to represent the shape of the speed curve. If vMid is midway
between vMin and vMax, then the curve will be a standard linear straight line through all three points.
If vMid is biased toward vMin, then the curve will be approximately parabolic with emphasis on low-
speed control. Conversely, if vMid is biased towards vMax, then the speed curve will have an initial
rapid increase of speed up to a asymptopic convergence to vMax.

Acceleration/Deceleration

The rate at which the user commanded speed and actual motor speed is applied is normally instan-
taneous. However, momentum or inertia effects can be simulated by setting the acceleration and
deceleration factors for increasing and decreasing speed behaviour respectively. For example, a
motorized train could have realistic slow acceleration from start and progressive smooth braking to
a stop. For no accel/decel effects, these values can be set to 0. Accel/decel factors can be specified
from a minimum of 1 up to 255 representing acceleration/deceleration in units of TBD/s.

PFx Brick USB & BLE Host ICD Rev 3.37 23

4.4 PFX_CMD_GET_CONFIG 4 HOST COMMAND MESSAGES

Default Volume

Configuration for the default audio volume to apply after power up. The valid range is 0x00~0xFF
corresponding to minimum and maximum volume respectively.

Default Brightness

Configuration for the default global light output brightness to apply after power up. The valid range
is 0x00~0xFF corresponding to minimum and maximum brightness respectively.

PFx Brick USB & BLE Host ICD Rev 3.37 24

4.5 PFX_CMD_SET_CONFIG 4 HOST COMMAND MESSAGES

4.5 PFX_CMD_SET_CONFIG

Overwrites the PFx Brick global configuration data. The PFx Brick will store the new configuration
to flash memory.

Host command packet:
0

0x04

1 2 3 4 5 6 7 8

Notch
Count

Notch 1-2
Bound

Notch 2-3
Bound

Notch 3-4
Bound

Notch 4-5
Bound

Notch 5-6
Bound

Notch 6-7
Bound

Notch 7-8
Bound

9 10 11 12 13 14 15 16 17 18 19

Reserved

20 21 22 23 24

IR Auto Off BLE Auto Off BLE
Disconnect Motor

BLE
Advertisement

Power

BLE
Session Power

25 26 27

Audio Bass Audio
Treble

PFX
Settings

28 29 30 31 32 33

Motor A
Config

Motor A
vMin

Motor A
vMid

Motor A
vMax

Motor A
Accel

Motor A
Decel

34 35 36 37 38 39

Motor B
Config

Motor B
vMin

Motor B
vMid

Motor B
vMax

Motor B
Accel

Motor B
Decel

40 41 42 43 44 45

Motor C
Config

Motor C
vMin

Motor C
vMid

Motor C
vMax

Motor C
Accel

Motor C
Decel

46 47 48 49 50 51

Motor D
Config

Motor D
vMin

Motor D
vMid

Motor D
vMax

Motor D
Accel

Motor D
Decel

52 53

Default
Volume

Default
Brightness

54 55 56 57 58 59

Light Ch 1
Brightness

Light Ch 2
Brightness

Light Ch 3
Brightness

Light Ch 4
Brightness

Light Ch 5
Brightness

Light Ch 6
Brightness

60 61 62 63

Light Ch 7
Brightness

Light Ch 8
Brightness

PF Light A
Brightness

PF Light B
Brightness

PFx Brick USB & BLE Host ICD Rev 3.37 25

4.5 PFX_CMD_SET_CONFIG 4 HOST COMMAND MESSAGES

Device response packet:
0

0x84

PFx Brick USB & BLE Host ICD Rev 3.37 26

4.6 PFX_CMD_GET_CURRENT_STATE 4 HOST COMMAND MESSAGES

4.6 PFX_CMD_GET_CURRENT_STATE

This message asks the PFx Brick to report its current internal operating state. This includes data
such as the current motor target and operating speed, light output states, audio playback status,
etc. This information can be useful for test purposes in order to verify that the PFx Brick is cor-
rectly responding to event/actions. It is also useful for simple passive monitoring for informational
purposes.

Host command packet:
0

0x06

Device response packet:
0 1 2

0x86 Brightness Volume

3 4 5 6 7 8 9 10

Motor A
direction

Motor A
target speed

Motor A
current
speed

Motor A PWM
speed

Motor B
direction

Motor B
target speed

Motor B
current
speed

Motor B PWM
speed

11 12 13 14 15 16 17 18

Motor C
direction

Motor C
target speed

Motor C
current
speed

Motor C PWM
speed

Motor D
direction

Motor D
target speed

Motor D
current
speed

Motor D PWM
speed

19 20

Light Ch 1-8
Active Mask

PF Light Ch A-D
Active Mask

21 22 23 24 25 26 27 28

Light Ch 1
target level

Light Ch 2
target level

Light Ch 3
target level

Light Ch 4
target level

Light Ch 5
target level

Light Ch 6
target level

Light Ch 7
target level

Light Ch 8
target level

29 30 31 32

PF Light Ch A
target level

PF Light Ch B
target level

PF Light Ch C
target level

PF Light Ch D
target level

33 34 35 36 37 38 39 40

Light Ch 1
current
level

Light Ch 2
current
level

Light Ch 3
current
level

Light Ch 4
current
level

Light Ch 5
current
level

Light Ch 6
current
level

Light Ch 7
current
level

Light Ch 8
current
level

41 42 43 44

PF Light Ch A
current level

PF Light Ch B
current level

PF Light Ch C
current level

PF Light Ch D
current level

PFx Brick USB & BLE Host ICD Rev 3.37 27

4.6 PFX_CMD_GET_CURRENT_STATE 4 HOST COMMAND MESSAGES

45 46 47 48

Audio Ch 0
mode

Audio Ch 0
file ID

Audio Ch 1
mode

Audio Ch 1
file ID

49 50 51 52

Audio Ch 2
mode

Audio Ch 2
file ID

Audio Ch 3
mode

Audio Ch 3
file ID

53 54 55 56

millisec count slow 1 sec count

57 58 59 60 61

Status Latch
1

Status Latch
2

File system
state

Current
audio peak

Current
audio notch

62 63

Script exec
state

Script exec
line

PFx Brick USB & BLE Host ICD Rev 3.37 28

4.7 PFX_CMD_GET_NAME 4 HOST COMMAND MESSAGES

4.7 PFX_CMD_GET_NAME

The device name is user configurable identifier which can be changed at any time. It allows the
owner of multiple PFx Bricks to uniquely assign a convenient name for each PFx Brick. The device
name is a UTF8 encoded string up to 24 bytes long left justified within the 24 byte block. Unused
characters should be padded with zeros (0x00).

Host command packet:
0

0x07

Device response packet:
0

0x87

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Left justified 24 character name UTF8 encoded

4.8 PFX_CMD_SET_NAME

This message sets the user assigned name of the PFx Brick. The name is 24 bytes long and is UTF8
encoded. Unused characters should be padded with zeros (0x00).

Host command packet:
0

0x09

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Left justified 24 character name UTF8 encoded

Device response packet:
0

0x89

PFx Brick USB & BLE Host ICD Rev 3.37 29

4.9 PFX_CMD_GET_EVENT_ACTION 4 HOST COMMAND MESSAGES

4.9 PFX_CMD_GET_EVENT_ACTION

The message allows the host to read the contents of the event LUT for a specific IR remote event
and IR channel.

Host command packet:
0 1 2

0x11 Event ID Channel

or alternatively synonymous with:
0 1 2

0x11 Address
[6:2]

Address
[1:0]

Device response packet:
0

0x91

1 2

COMMAND MOTOR_ACTION_ID

3 4

MOTOR_PARAM1 MOTOR_PARAM2

5 6

LIGHT_FX_ID LIGHT_OUTPUT_MASK

7 8

LIGHT_PF_OUTPUT_MASK LIGHT_PARAM1

9 10

LIGHT_PARAM2 LIGHT_PARAM3

11 12

LIGHT_PARAM4 LIGHT_PARAM5

13 14

SOUND_FX_ID SOUND_FILE_ID

15 16

SOUND_PARAM1 SOUND_PARAM2

PFx Brick USB & BLE Host ICD Rev 3.37 30

4.9 PFX_CMD_GET_EVENT_ACTION 4 HOST COMMAND MESSAGES

where the Event ID is defined as:

Event ID MNEMONIC

0x00 EVT_8879_TWO_BUTTONS

0x01 EVT_8879_LEFT_BUTTON

0x02 EVT_8879_RIGHT_BUTTON

0x03 EVT_8879_LEFT_INC

0x04 EVT_8879_LEFT_DEC

0x05 EVT_8879_RIGHT_INC

0x06 EVT_8879_RIGHT_DEC

0x07 EVT_8885_LEFT_FWD

0x08 EVT_8885_LEFT_REV

0x09 EVT_8885_RIGHT_FWD

0x0A EVT_8885_RIGHT_REV

0x0B EVT_8885_LEFT_CTROFF

0x0C EVT_8885_RIGHT_CTROFF

0x0D EVT_EV3_BEACON

0x0E EVT_TEST_EVENT

0x0F EVT_STARTUP_EVENT

0x10 EVT_STARTUP_EVENT2

Channel is the requested IR channel enumerated as 0,1,2,3 corresponding to the labelled IR
channels of 1,2,3,4 respectively. For the EVT_TEST_EVENT the Channel byte is ignored. For the
EVT_STARTUP_EVENT the Channel byte specifies one of the four startup events enumerated as
0,1,2,3 corresponding to starup events 1,2,3,4 respectively. Similarly, for EVT_STARTUP_EVENT2
the Channel byte refers to starup events 5,6,7,8.

PFx Brick USB & BLE Host ICD Rev 3.37 31

4.10 PFX_CMD_SET_EVENT_ACTION 4 HOST COMMAND MESSAGES

4.10 PFX_CMD_SET_EVENT_ACTION

The message allows the host to set the contents of the event LUT for a specific IR remote event and
IR channel.

Host command packet:
0 1 2

0x12 Event ID Channel

or alternatively synonymous with:
0 1 2

0x12 Address
[6:2]

Address
[1:0]

3 4

COMMAND MOTOR_ACTION_ID

5 6

MOTOR_PARAM1 MOTOR_PARAM2

7 8

LIGHT_FX_ID LIGHT_OUTPUT_MASK

9 10

LIGHT_PF_OUTPUT_MASK LIGHT_PARAM1

11 12

LIGHT_PARAM2 LIGHT_PARAM3

13 14

LIGHT_PARAM4 LIGHT_PARAM5

15 16

SOUND_FX_ID SOUND_FILE_ID

17 18

SOUND_PARAM1 SOUND_PARAM2

Device response packet:
0

0x92

PFx Brick USB & BLE Host ICD Rev 3.37 32

4.10 PFX_CMD_SET_EVENT_ACTION 4 HOST COMMAND MESSAGES

where the Event ID is defined as:

Event ID MNEMONIC

0x00 EVT_8879_TWO_BUTTONS

0x01 EVT_8879_LEFT_BUTTON

0x02 EVT_8879_RIGHT_BUTTON

0x03 EVT_8879_LEFT_INC

0x04 EVT_8879_LEFT_DEC

0x05 EVT_8879_RIGHT_INC

0x06 EVT_8879_RIGHT_DEC

0x07 EVT_8885_LEFT_FWD

0x08 EVT_8885_LEFT_REV

0x09 EVT_8885_RIGHT_FWD

0x0A EVT_8885_RIGHT_REV

0x0B EVT_8885_LEFT_CTROFF

0x0C EVT_8885_RIGHT_CTROFF

0x0D EVT_EV3_BEACON

0x0E EVT_TEST_EVENT

0x0F EVT_STARTUP_EVENT

0x10 EVT_STARTUP_EVENT2

Channel is the requested IR channel enumerated as 0,1,2,3 corresponding to the labelled IR
channels of 1,2,3,4 respectively. For the EVT_TEST_EVENT the Channel byte is ignored. For the
EVT_STARTUP_EVENT the Channel byte specifies one of the four startup events enumerated as
0,1,2,3 corresponding to starup events 1,2,3,4 respectively. Similarly, for EVT_STARTUP_EVENT2
the Channel byte refers to starup events 5,6,7,8.

PFx Brick USB & BLE Host ICD Rev 3.37 33

4.11 PFX_CMD_TEST_ACTION 4 HOST COMMAND MESSAGES

4.11 PFX_CMD_TEST_ACTION

Allows a host to test an event/action. The specified action is performed immediately and is not
stored in the event LUT. The format of the action definition is identical to event/actions stored in the
event LUT.

Host command packet:
0

0x13

1 2

COMMAND MOTOR_ACTION_ID

3 4

MOTOR_PARAM1 MOTOR_PARAM2

5 6

LIGHT_FX_ID LIGHT_OUTPUT_MASK

7 8

LIGHT_PF_OUTPUT_MASK LIGHT_PARAM1

9 10

LIGHT_PARAM2 LIGHT_PARAM3

11 12

LIGHT_PARAM4 LIGHT_PARAM5

13 14

SOUND_FX_ID SOUND_FILE_ID

15 16

SOUND_PARAM1 SOUND_PARAM2

Device response packet:
0

0x93

PFx Brick USB & BLE Host ICD Rev 3.37 34

4.12 PFX_CMD_SEND_EVENT 4 HOST COMMAND MESSAGES

4.12 PFX_CMD_SEND_EVENT

This message triggers an action from the event/action LUT by specifying an event index into the
LUT. The event index corresponds to an equivalent received IR event and can be used to simulate IR
events from USB or BLE connected hosts.

Host command packet:
0

0x15 Event
Index

Event Index is the address into the event/action LUT. It can also be interpreted as Event ID in bits
[6:2] and Channel in bits[1:0] to form a composite Event Index address.

Device response packet:
0

0x95

PFx Brick USB & BLE Host ICD Rev 3.37 35

4.13 PFX_CMD_INC_VOLUME 4 HOST COMMAND MESSAGES

4.13 PFX_CMD_INC_VOLUME

This message increases the sound volume one increment.

Host command packet:
0

0x20

Device response packet:
0

0xA0

4.14 PFX_CMD_DEC_VOLUME

This message decreases the sound volume one increment.

Host command packet:
0

0x21

Device response packet:
0

0xA1

PFx Brick USB & BLE Host ICD Rev 3.37 36

4.15 PFX_CMD_SET_AUDIO_EQ 4 HOST COMMAND MESSAGES

4.15 PFX_CMD_SET_AUDIO_EQ

This message can be used to set the audio equalization levels for bass and treble as well as setting
the state of the automatic Dynamic Range Control (DRC). These values are applied immediately but
do not override the default settings stored in the configuration. The values stored in configuration
are applied immediately after startup. This message can then be used to set different bass/treble
values during operation with a connected USB host.

Host command packet:
0 1 2 3

0x2A Bass
Level

Treble
Level DRC

Device response packet:
0

0xAA

The values for Bass Level and Treble Level are valid as 2’s complement numbers from -20 to 20
inclusive representing the gain/attenuation in dB with a nominal value of 0 dB.

The DRC value is either 0 or 1 reprsenting off or on respectively.

PFx Brick USB & BLE Host ICD Rev 3.37 37

4.16 PFX_CMD_LOAD_FIRMWARE_FILE 4 HOST COMMAND MESSAGES

4.16 PFX_CMD_LOAD_FIRMWARE_FILE

This message is the mandatory start message to initiate the transfer of a new firmware image file
from the host to the PFx Brick. After this message one or more PFX_CMD_LOAD_FIRMWARE_DATA
messages will follow containing the verbatim data content of the firmware image file. Finally, after
all of the data has been transferred with multiple PFX_CMD_LOAD_FIRMWARE_DATA messages, a final
PFX_CMD_LOAD_FIRMWARE_DONE message is sent to terminate the transfer. After each message, the
PFx Brick will respond with an acknowlegement packet to pace the transfer from the host.

The total size of the file in bytes must be specified so that the PFx Brick can pre-allocate the flash
memory sectors ahead of the write operations which will follow this message.

This message will not actually replace the running firmware application. Rather, it transfers the new
firmware image into a “staging” area. After rebooting the PFx Brick, the bootloader will detect the
new firmware image and attempt to replace the existing firmware. The PFX_CMD_REBOOT command
can be used to force the reboot process in order to complete the firmware replacement.

PFX Encrypted Firmware Format

The PFx Brick firmware update process is both secure and robust. This is achieved with 128-bit
AES encryption of the firmware payload data and CRC32 verification of the decrypted data. The
decryption of the data is performed on the PFx Brick itself so that all data in transit via the USB
interface is securely transferred. Furthermore, CRC32 checking is perfomed after transferring the
firmware image into its staging area and again after replacing the active firmware image.

The file format used to transfer firmware image files is a custom format derived from the Intel HEX file
format. The PFx Brick firmware is compiled by the Microchip MPLAB X IDE and its linker script gen-
erates a standard Intel HEX file describing the firmware application binary. When decoded, this file
describes binary data contained in three distinct locations in the PFx Brick microcontroller NVRAM
flash memory:

1. IVT Table (Interrupt Vector Table) 0x000 - 0x1FE
2. Application Firmware 0x200-0x1FFFE
3. Configuration Flash Fuses 0xF80000-0xF81000

A CRC32 code is computed over all of the bytes in the IVT and Application Firmware spaces. The
Configuration Flash Fuse data is discarded. All of the data bytes in the IVT and Application Firmware
spaces are encrypted with AES 128-bit encryption with zero padding if required to acheive an integer
multiple of 16 bytes.

The PFX Encrypted Firmware file is then written as follows:
0 1 2 3 4 5 6 7

Byte Count CRC32

8 9 10 11 12 13 14 15

IVT Start IVT Length

16 17 18 19 20 21 22 23

App Start App Length

PFx Brick USB & BLE Host ICD Rev 3.37 38

4.16 PFX_CMD_LOAD_FIRMWARE_FILE 4 HOST COMMAND MESSAGES

24 25 26 27 28 29 30 31

Cfg Start Cfg Length

32 33 34 35

Reset Vector

36 37 38 39 40 41 42 43

Encrypted data bytes

...

where,

Byte Count = total number of data bytes in the IVT and Application firmware spaces

CRC32 = the CRC32 code computed over the IVT and Application spaces

IVT Start = start address of IVT space (word aligned/2-byte boundary)

IVT Length = number of 3-byte words in IVT space

App Start = start address of Application (word aligned/2-byte boundary)

App Length = number of 3-byte words in Application space

Cfg Start = start address of Configuration space (word aligned)

Cfg Length = number of 3-byte words in Configuration space

Reset Vector = start address of application contained at IVT address 0x0000

PFx Brick USB & BLE Host ICD Rev 3.37 39

4.16 PFX_CMD_LOAD_FIRMWARE_FILE 4 HOST COMMAND MESSAGES

Host command packet:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0x30
File
type

Total file size
[31:0] CRC32 [31:0] IVT size App size

where,

File type = 0 for PFx encrypted Intel HEX file format, 1 for Microchip blob format

CRC32 is the computed CRC-32 (IEEE 802.3 Ethernet version) over the entire firmware image file.
The polynomial implemented is:

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

Commonly this is represented as 0xEDB88320 (or 0x04C11DB7 for big endian)

IVT size = number of 3-byte words in IVT space App size = number of 3-byte words in Application
space

Device response packet:
0 1

0xB0 Status

Status Code Description

0x00 PFX_ERR_TRANSFER_REQUEST_OK load firmware file request is ok

0x03 PFX_ERR_TRANSFER_TOO_BIG file size exceeds free capacity of the firmware
staging area

PFx Brick USB & BLE Host ICD Rev 3.37 40

4.17 PFX_CMD_LOAD_FIRMWARE_DATA 4 HOST COMMAND MESSAGES

4.17 PFX_CMD_LOAD_FIRMWARE_DATA

One or more of these messages is sent after the PFX_CMD_LOAD_FIRMWARE_FILEmessage containing
the raw byte-for-byte verbatim content of the firmware image file densely packed into every data
byte.

Host command packet:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0x31 Firmware Image File Data Bytes

...
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Firmware Image File Data Bytes

Device response packet:
0 1

0xB1 Status

Status Code Description

0x00 PFX_ERR_NONE transfer of firmware payload data ok

0x04 PFX_ERR_TRANSFER_INVALID data transfer session is invalid (usually due to amiss-
ing PFX_CMD_LOAD_FIRMWARE_FILE packet)

0x07 PFX_ERR_TRANSFER_BUSY_WAIT data transfer of this packet should wait and try again
due to an active time-sensitive write or erase oper-
ation. The host should reattempt to send the same
data packet and check the Status byte.

PFx Brick USB & BLE Host ICD Rev 3.37 41

4.18 PFX_CMD_LOAD_FIRMWARE_DONE 4 HOST COMMAND MESSAGES

4.18 PFX_CMD_LOAD_FIRMWARE_DONE

This message is sent after the final PFX_CMD_LOAD_FIRMWARE_DATA message to signal the termina-
tion of the firmware file transfer. The host should check the returned error code to ensure that the
file transfer was successful.

Host command packet:
0

0x32

Device response packet:
0 1

0xB2 Status

Status Code Description

0x00 PFX_ERR_NONE firmware file transfer completed with no errors

0x04 PFX_ERR_TRANSFER_INVALID data transfer session is invalid (usually due to amiss-
ing PFX_CMD_LOAD_FIRMWARE_FILE packet)

0x06 PFX_ERR_TRANSFER_CRC_MISMATCH computed CRC32 of received firmware image does
not match provided CRC32 code

PFx Brick USB & BLE Host ICD Rev 3.37 42

4.19 PFX_CMD_READ_BOOTCONFIG 4 HOST COMMAND MESSAGES

4.19 PFX_CMD_READ_BOOTCONFIG

This message allows the host to read back the contents of bootloader status and control values
stored in the microcontroller NVRAM. These values are used to coordinate the firmware upgrade
process between the bootloader and the host as well as storing the operational state of the PFx
Brick.

Host command packet:
0

0x34

Device response packet:
0

0xB4

1 2 3 4

MAGIC_NUMBER

5 6 7 8

STATE

9 10 11 12

FILESIZE_UPPER

13 14 15 16

FILESIZE_LOWER

17 18 19 20

CRCIN_UPPER

21 22 23 24

CRCIN_LOWER

PFx Brick USB & BLE Host ICD Rev 3.37 43

4.20 PFX_CMD_REBOOT 4 HOST COMMAND MESSAGES

4.20 PFX_CMD_REBOOT

Reboots the PFx Brick. This command should only be issued to initiate the upgrade of application
firmware after it has been successfully transferred and staged into the PFx Brick.

Note that immediately after issuing this command, the reboot process will terminate the current USB
HID communication session. The host application will not be able to communicate with the PFx Brick
unless it periodically attempts to re-open a new USB HID session. The host operating system USB
stack will continue to re-enumerate the PFx Brick when it restarts and the host application should
then be able to re-negotiate a new USB HID session. It will be important for the host application
to check the PFx Brick status (i.e. with the PFX_CMD_GET_STATUS command) after re-connection in
order to determine whether the PFx Brick is running in Normal mode, Service mode, or if any errors
are present in the firmware upgrade process.

Host command packet:
0 1 2 3 4 5 6 7

0x37 0x5A 0xA5 0xD0 0xBE 0xB0 0x04 0x77

Device response packet:
0

0xB7

PFx Brick USB & BLE Host ICD Rev 3.37 44

4.21 PFX_CMD_FILE_OPEN 4 HOST COMMAND MESSAGES

4.21 PFX_CMD_FILE_OPEN

The PFx Brick File System is a simple block-oriented file storage facility which allows files of any
content to be transfered to and from the connected host. The primary function of this file system is
to store audio files; however, it is general purpose enough to be used for storage of any file type for
future applications.

Access to the file system is provided by a set of conventional file I/O methods such as open, close,
read, write, etc. Before any file can be accessed, it must be opened. This will ensure that pointers to
the file data content for read and write operations are initialized to a known state. Open files must
also be closed when the host has completed any read or write tasks. This ensures any buffered
data is safely committed back to the file system and the state of file handles and directories remain
consistent.

The PFX_CMD_FILE_OPEN command opens a virtual file handle to a file for host file I/O. If the specified
file does not exist, then it is created by reserving a directory entry for the file and empty storage
sectors are allocated for the file. Unlike other file systems, the creation of a new file requires that
the file size be known in advance for preallocation. If the host connects to the PFx Brick via more
than one USB HID interface session, each session is granted its own virtual file handle. Futhermore,
there is only one file handle per USB HID interface.

Host command packet:
0 1 2 3 4 5 6

0x40 Unique
File ID Mode Total file size [31:0]

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Left justified 32 character file name UTF8 encoded

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Device response packet:
0 1

0xC0 Status

The Mode parameter is specified as the logical-OR of the following flags:

Mode Flag Description

0x01 PFX_FILE_READ open file with read access

0x02 PFX_FILE_WRITE open file with write access

0x04 PFX_FILE_CREATE create a new file with ID and size

If a new file is created with PFX_FILE_CREATE mode flag, then the specified file ID must be unique
and the total file size must be specified in bytes. Optionally, a 32 character UTF-8 filename can
be specified with the file create request. This name appears in the file directory. If the name is
not specified, the request will still succeed and the file can be renamed at any other time after it is
created. If the file ID is already in use, then the file open request will not succeed. File open requests

PFx Brick USB & BLE Host ICD Rev 3.37 45

4.21 PFX_CMD_FILE_OPEN 4 HOST COMMAND MESSAGES

on existing files (without the create flag) only need to specify the file ID and do not need to specify
file name or size.

If the file specified by ID is valid, then a virual file handle will be retained on the PFx associated
with the USB interface channel that made the request. This file handle can then be used to perform
subsequent read and write file operations.

The file open request will return a status code which indicates either success or error according
to the table below. Note that these error codes are shared among all of the file system access
commands and returned in the Status byte. These error codes are also repeated in the Error Code
section at the end of this document.

Status Code Description

0x00 PFX_ERR_NONE file system operation ok

0xF0 PFX_ERR_FILE_SYSTEM_ERR overall file system error

0xF1 PFX_ERR_FILE_INVALID file request was invalid or file is invalid

0xF2 PFX_ERR_FILE_OUT_OF_RANGE file access request is outside of file size

0xF3 PFX_ERR_FILE_READ_ONLY file creation or write access denied

0xF4 PFX_ERR_FILE_TOO_BIG requested file creation is too big

0xF5 PFX_ERR_FILE_NOT_FOUND requested file ID is not found

0xF6 PFX_ERR_FILE_NOT_UNIQUE requested file creation ID is already used

0xF7 PFX_ERR_FILE_LOCKED_BUSY file system is locked or busy

0xF8 PFX_ERR_FILE_SYSTEM_FULL file system full

0xF9 PFX_ERR_FILE_SYSTEM_TIMEOUT file access operation time out

0xFA PFX_ERR_FILE_INVALID_ADDRESS file system request resulted in an invalid memory
address

0xFB PFX_ERR_FILE_NEXT_SECTOR file system FAT points to an invalid sector

0xFC PFX_ERR_FILE_ACCESS_DENIED file system operation denied or prohibited

0xFF PFX_ERR_FILE_EOF file access has reached the end of the file

PFx Brick USB & BLE Host ICD Rev 3.37 46

4.22 PFX_CMD_FILE_CLOSE 4 HOST COMMAND MESSAGES

4.22 PFX_CMD_FILE_CLOSE

The PFX_CMD_FILE_CLOSE command closes the virtual file handle to a file which was opened with the
PFX_CMD_FILE_OPEN command. It is important to close a file especially after any write operations.
This is to ensure that any buffered or cached data is committed to the file system so that no written
data is lost.

Host command packet:
0 1

0x41 File
ID

Device response packet:
0 1

0xC1 Status

PFx Brick USB & BLE Host ICD Rev 3.37 47

4.23 PFX_CMD_FILE_READ 4 HOST COMMAND MESSAGES

4.23 PFX_CMD_FILE_READ

The PFX_CMD_FILE_READ command is used to read file data sequentially from the current file read
pointer location. Each read file operation advances the file pointer by howmany file bytes have been
retrieved. This ensures consecutive read operations maintain continuity along the file data stream.

Host command packet:
0 1

0x42 File
ID

nBytes

Device response packet:
0 1 2 3 4 5 6 7 8 9 10 11

0xC2 Status Received file data bytes

...
52 53 54 55 56 57 58 59 60 61 62 63

Received file data bytes (up to 62)

The nBytes field specifies up to how many data bytes should be read (valid range is 1-62).

The returned Status byte is either an error code or the number of bytes (1-62) contained in this
packet.

PFx Brick USB & BLE Host ICD Rev 3.37 48

4.24 PFX_CMD_FILE_WRITE 4 HOST COMMAND MESSAGES

4.24 PFX_CMD_FILE_WRITE

The PFX_CMD_FILE_WRITE command is used to write file data sequentially from the current file write
pointer location. Each write file operation advances the file pointer by howmany file bytes have been
written. This ensures consecutive write operations maintain continuity along the file data stream.

Host command packet:
0 1 2 3 4 5 6 7 8 9 10 11

0x43 File
ID

nBytes Data Bytes to Write

...
52 53 54 55 56 57 58 59 60 61 62 63

Data Bytes to Write

Device response packet:
0 1

0xC3 Status

The nBytes field specifies up to how many data bytes should be read (valid range is 1-62).

The returned Status byte error code indicates if write operaton was successful.

PFx Brick USB & BLE Host ICD Rev 3.37 49

4.25 PFX_CMD_FILE_SEEK 4 HOST COMMAND MESSAGES

4.25 PFX_CMD_FILE_SEEK

The PFX_CMD_FILE_SEEK command is used to reposition the file access pointer to any location within
the file. The position is specified as an absolute value in bytes relative to the start of the file.

Host command packet:
0 1 2 3 4 5

0x44 File ID File byte position [31:0]

Device response packet:
0 1

0xC4 Status

PFx Brick USB & BLE Host ICD Rev 3.37 50

4.26 PFX_CMD_FILE_DIR 4 HOST COMMAND MESSAGES

4.26 PFX_CMD_FILE_DIR

The PFX_CMD_FILE_DIR command is used to interact with the file system directory. The file directory
contains a list of files currently stored on the file system along with several attributes and data fields.
This command can be used request different types of directory information such as the number of
files, free space, individual file directory entries, etc. It can also be used to modify the directory
entry of a stored file.

Host command packet:
0 1 2

0x45 Request File ID, index, optional
parameters, ...

The Request byte can be specified as follows:

Status Code Description

0x00 PFX_DIR_REQ_GET_FILE_COUNT Get number of files

0x01 PFX_DIR_REQ_GET_FREE_SPACE Get free space and total capacity

0x02 PFX_DIR_REQ_GET_DIR_ENTRY_IDX Get directory entry at index

0x03 PFX_DIR_REQ_GET_DIR_ENTRY_ID Get directory entry of File ID

0x04 PFX_DIR_REQ_ADD_AUDIO_FILE_ID Add audio meta data to directory for File ID

0x05 PFX_DIR_REQ_RENAME_FILE_ID Rename File ID

0x06 PFX_DIR_REQ_SET_ATTR_ID Set attributes for File ID

0x07 PFX_DIR_REQ_SET_USER_DATA1_ID Set UserData1 attributes for File ID

0x08 PFX_DIR_REQ_SET_USER_DATA2_ID Set UserData2 attributes for File ID

0x09 PFX_DIR_REQ_COMPUTE_CRC32_ID Compute CRC32 for File ID

0x0A PFX_DIR_REQ_SET_ATTR_MASKED_ID Set attributes with mask for File ID

0x0B PFX_DIR_REQ_GET_NAMED_FILE_ID Get File ID for file name

0x0C PFX_DIR_REQ_GET_SMALL_DIR_ID Get compact file info of File ID

0x0D PFX_DIR_REQ_GET_SMALL_DIR_IDX Get compact file info at index

Device response packets

Request 0x00 - Get Number of Files
0 1 2 3

0xC5 RequestStatus File
Count[15:0]

Request 0x01 - Get Free Space / Capacity
0 1 2 3 4 5 6 7 8 9 10

0xC5 RequestStatus Bytes Free[31:0] Bytes Capacity[31:0]

PFx Brick USB & BLE Host ICD Rev 3.37 51

4.26 PFX_CMD_FILE_DIR 4 HOST COMMAND MESSAGES

Request 0x02 - Get Directory Entry at Index

Request 0x03 - Get Directory Entry of File ID
0 1 2 3 4 5 6 7 8 9

0xC5 RequestStatus File
ID File Size[31:0] First

Sector[15:0]

10 11 12 13 14 15 16 17 18 19

Attributes
[15:0] UserData1 [31:0] UserData2 [31:0]

20 21 22 23

CRC32[31:0]

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Left justified 32 character file name UTF8 encoded

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

Request 0x04 - Add Audio Meta Data to Directory with ID

This command will trigger the file system to read the specified file and extract meta data associated
with an audio WAV file. This meta data is then written to the directory in the Attributes, UserData1,
and UserData2 fields.

Request 0x05 - Rename File with ID

Changes the 32 character filename of the specified file. The filename data bytes should be contained
in bytes 3 to 34 of the host command packet.

Request 0x06 - Set Attributes with ID

Changes the Attributes field of the file directory entry. The Attributes[15:0] data bytes should
be contained in bytes 3 and 4 of the host command packet.

Request 0x0A - Set Attributes with ID, masked

Changes the Attributes field of the file directory entry. The Attributes[15:0] data bytes should
be contained in bytes 3 and 4 of the host command packet and a bit mask should be contained in
bytes 5 and 6. The only bits that are changed in the Attributes field are the bits specified with
the bit mask. This allows non-destructive modification of attributes by only specifying the bits that
require changing. For example a command to modify the file type of file ID 0x77 to WAV would be as
follows: 0x45 0x0A 0x77 0x00 0x00 0xFF 0x00, i.e. only User Attributes[15:8] is set to 0x00
because of the bit mask 0xFF00.

Request 0x07 - Set UserData1 with ID

Request 0x08 - Set UserData2 with ID

Changes the UserData1/2 fields of the file directory entry. The UserData1/2[31:0] data bytes
should be contained in bytes 3 to 6 of the host command packet.

PFx Brick USB & BLE Host ICD Rev 3.37 52

4.26 PFX_CMD_FILE_DIR 4 HOST COMMAND MESSAGES

Request 0x09 - Compute CRC32 with ID

Computes the CRC32 hash code of the specified file and stores it into the file directory. Normally,
the CRC32 code is automatically computed when a file that is being written is closed. This command
can be used force the recalculation of the CRC32 code. Note that the computation of the CRC32
code is performed as a background process and may take several seconds to complete for large
files. The CRC32 code is set to zero before a new computation is performed. This can be used to
monitor the progress of the CRC32 computation since it will revert to a non-zero value when it is
completed.

Request 0x0B - Get File ID for Filename

Attempts to find the file ID of a specified filename. The filename data bytes should be contained
in bytes 3 to 34 of the host command packet and byte 2 should contain the length of filename. If
the filename is found, then it is returned in the Status field, otherwise an error code indicating
PFX_ERR_FILE_NOT_FOUND or PFX_ERR_FILE_NOT_UNIQUE may be returned.

Request 0x0C - Get Compact File Info with ID

Request 0x0D - Get Compact File Info with Index

This message returns two consecutive file directory entries in a compact form within one message.
This directory request type is available for the benefit of Bluetooth mobile hosts needing to enumer-
ate sound files quickly by reducing the number of BLE transactions and bandwidth. The message
returns only essential file information such as size, attributes, and a truncated version of the file-
name. The message also packs two entries starting at the index of requested file and if it exists, the
next consecutive file directory entry.

0 1 2 3 4 5 6 7 8 9

0xC5 RequestStatus File
ID 1 File Size 1 [31:0] Attributes 1

[15:0]

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Left justified 23 character file name 1 UTF8 encoded

33 34 35 36 37 38 39

File
ID 2 File Size 2 [31:0] Attributes 2

[15:0]

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

Left justified 23 character file name 2 UTF8 encoded

The Status byte contains the result code of the directory operation request which should nominally
be 0x00 indicating success.

0 1 2

0xC5 RequestStatus

PFx Brick USB & BLE Host ICD Rev 3.37 53

4.27 PFX_CMD_FILE_REMOVE 4 HOST COMMAND MESSAGES

4.27 PFX_CMD_FILE_REMOVE

The PFX_CMD_FILE_REMOVE command deletes a file from the file system. The file is specified by its
unique File ID.

Host command packet:
0 1

0x46 File
ID

Device response packet:
0 1

0xC6 Status

PFx Brick USB & BLE Host ICD Rev 3.37 54

4.28 PFX_CMD_FILE_FORMAT_FS 4 HOST COMMAND MESSAGES

4.28 PFX_CMD_FILE_FORMAT_FS

The PFX_CMD_FILE_FORMAT_FS command erases and re-initializes the entire file system. After this
command is performed, the PFx Brick will automatically start to pre-erase the file storage space on
the flash memory. During this process, the host can continue to access the file system; however,
response times will be reduced due to the arbitration that must take place to interleave access to
the flash memory. The process of pre-erasing memory usually takes less than one minute and after
it is completed, full response time will be restored.

Host command packet:
0 1 2 3 4

0x47 0xEA 0x5E 0x88 Mode

Device response packet:
0 1

0xC7 Status

The Mode parameter can be used to specify one of two formatting modes:

0 = Fast Format: erases only occupied sectors
1 = Complete: erases all sectors

PFx Brick USB & BLE Host ICD Rev 3.37 55

4.29 PFX_CMD_FILE_GET_FS_STATE 4 HOST COMMAND MESSAGES

4.29 PFX_CMD_FILE_GET_FS_STATE

The PFX_CMD_FILE_GET_FS_STATE command reports low-level operational status information of the
file system. This data is mainly used for test and debug purposes; however, it could be used for
useful status updates.

Host command packet:
0

0x48

Device response packet:
0 1 2 3 4 5 6 7

0xC8 nFiles State Flags Current Erase
Sector

Initial Time
Count

8 9 10 11 12 13 14 15 16 17

Autosync Dir
Time

Autosync FAT
Time

Sector
Capacity Free Sectors Empty Sectors

The nFiles byte reports the number of files contained in the file system.

The State byte reports the state of the finite state machine which operates the file system.

The Flags byte reports operational state flags of the file system.

The Current Erase Sector field reports the current sector of the garbage collection process. This
value will change continuously representing the on-going scanning of FAT looking for freed sectors
to erase.

The Initial Time Count field reports the initial timer value of time out counters.

The Autosync Dir Time and Autosync FAT Time fields report the timer values of the autosync
hold-off before any autosync processes commit file system changes to flash memory.

Sector Capacity reports the total available storage capacity in 4096 byte sectors of the file system.
The total byte capacity can be computed by multiplying this value by 4096.

Free Sectors reports the sum of free and empty sectors. Sectors are 4096 byte storage blocks of
the file system. The free byte capacity can be computed by multiplying this value by 4096. When
a file is removed or if the file system is formatted, occupied sectors are de-allocated from the file
system andmarked as free. These free sectors can bemade available for storage after the file system
recovers the sectors by erasing them in an automated garbage collection process. After free sectors
are erased, they become empty sectors available for re-allocation for new files.

Empty Sectors reports the remaining available empty sectors. Empty sectors can be allocated for
the creation of new files. The available byte capacity can be computed by multiplying this value by
4096.

PFx Brick USB & BLE Host ICD Rev 3.37 56

4.30 PFX_CMD_RUN_SCRIPT 4 HOST COMMAND MESSAGES

4.30 PFX_CMD_RUN_SCRIPT

The PFX_CMD_RUN_SCRIPT command starts execution of a script file stored in the file system. The
file is specified by its unique File ID.

Host command packet:
0 1

0x4B File
ID

Device response packet:
0 1

0xCB Status

The Status byte contains the result code of this command and should nominally be 0x00 indicating
success.

If the File ID byte is set to 0xFF, then the current running script will be stopped.

PFx Brick USB & BLE Host ICD Rev 3.37 57

4.31 PFX_CMD_STATUS_LED 4 HOST COMMAND MESSAGES

4.31 PFX_CMD_STATUS_LED

This message allows the host to either poll or set the state of the status LED.

Host command packet:
0 1 2

0x70 get=0
set=1

on=1
off=0

To get the state of the LED, byte 1 is 0. To set the state of the LED, byte 1 is non-zero, and byte 2
turns the LED off if 0, and on otherwise.

Device response packet:
0 1

0xF0 LED
State

LED state = 0 if LED is off, non-zero if LED is on.

PFx Brick USB & BLE Host ICD Rev 3.37 58

4.32 PFX_CMD_WRITE_SPI 4 HOST COMMAND MESSAGES

4.32 PFX_CMD_WRITE_SPI

This message allows the host to perform a write command over the SPI bus connected to the flash
memory. This permits very low level access to the flash memory device for test and debug purposes.

Host command packet:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0x72 num Bytes SPI data bytes

...
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

SPI data bytes (up to 62)

numBytes(n) specifies how many payload SPI bytes are contained in this packet (<=62) each byte
in the desired SPI transfer follows up to the specified numBytes.

Device response packet:
0

0xF2

PFx Brick USB & BLE Host ICD Rev 3.37 59

4.33 PFX_CMD_READ_SPI 4 HOST COMMAND MESSAGES

4.33 PFX_CMD_READ_SPI

This message allows the host to perform a write command over the SPI bus and read back a corre-
sponding SPI response. This permits very low level access to the flash memory device for test and
debug purposes.

Host command packet:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0x73 num Bytes
(n)

Rx num
Bytes (m) SPI data bytes

...
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

SPI data bytes (up to 61)

numBytes(n) specifies how many payload SPI bytes are contained in this packet (<=61)

numBytes(m) specifies how many response SPI bytes are expected in return (<=62) each byte in
the desired SPI transfer follows up to the specified numBytes.

Device response packet:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0xF3 num Bytes
(m) Received SPI data bytes

...
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Received SPI data bytes (up to 62)

numBytes(m) specifies how many response payload SPI bytes are contained in this packet (<=62)

PFx Brick USB & BLE Host ICD Rev 3.37 60

4.34 PFX_CMD_WRITE_I2C 4 HOST COMMAND MESSAGES

4.34 PFX_CMD_WRITE_I2C

This message allows the host to perform a write command over the I2C bus. This permits very low
level access to connected I2C devices such as the audio DSP/DAC for test and debug purposes.

Host command packet:
0 1 2 3

0x74 Dev
Address

Reg
Address Data

Dev Address is the I2C 7-bit device address of the audio DSP/DAC device. Normally this is 0x30 for
the Texas Instruments TLV320DAC3120 fitted to the PFx Brick.

Reg Address is the address of the register within the I2C device that is desired to be accessed.

Data is the value to write to the specified I2C register.

Device response packet:
0

0xF4

PFx Brick USB & BLE Host ICD Rev 3.37 61

4.35 PFX_CMD_READ_I2C 4 HOST COMMAND MESSAGES

4.35 PFX_CMD_READ_I2C

This message allows the host to read a device register over the I2C bus. This permits very low level
access to connected I2C devices such as the audio DSP/DAC for test and debug purposes.

Host command packet:
0 1 2

0x75 Dev
Address

Reg
Address

Dev Address is the I2C 7-bit device address of the audio DSP/DAC device. Normally this is 0x30 for
the Texas Instruments TLV320DAC3120 fitted to the PFx Brick.

Reg Address is the address of the register within the I2C device that is desired to be accessed.

Device response packet:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0xF5
num

Bytes
(m)

Received I2C data bytes

...
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Received I2C data bytes (up to 62)

numBytes(m) specifies how many response payload I2C bytes are contained in this packet (<=62)

PFx Brick USB & BLE Host ICD Rev 3.37 62

4.36 PFX_CMD_READ_FLASH 4 HOST COMMAND MESSAGES

4.36 PFX_CMD_READ_FLASH

This message allows the host to read back the contents of the flash memory device starting at
specified address up to 63 additional byte locations.

Host command packet:
0 1 2 3 4 5

0x76 Address[31:0] numBytes
n

Address[31:0] is a 32-bit byte aligned address

numBytes(n) specifies how many bytes to read starting at address (1<=n<64)

Device response packet:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0xF6 Flash data bytes

...
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Flash data bytes

byte 1 is data as read from Address[31:0] byte 2 is data as read from Address[31:0]+1 and so on

PFx Brick USB & BLE Host ICD Rev 3.37 63

4.37 PFX_CMD_GET_IRRX_STATUS 4 HOST COMMAND MESSAGES

4.37 PFX_CMD_GET_IRRX_STATUS

This command retreives detailed low level data from the IR receiver protocol processor. This mes-
sage may or may not be supported for a particular PFx Brick due to the overhead required to capture
the data. The return message from the PFx Brick will indicate if there is valid data available.

Host command packet:
0

0x77

Device response packet:
0 1 2 3 4 5

0xF7 Status IR Data Prev IR Data

6 7 8 9 10 11 12 13

Timeout Count LRC Error Count Unknown Count Start Too Short

14 15 16 17 18 19 20 21

Start Too Long Bit Too Short Bit Too Long Bit Too Long Idx

22 23 24 25 26 27 28 29

Good Start Len Prev Good Start
Len Bad Start Len Prev Bad Start

Len

Status is 1 if IR protocol data is available in bytes 6-29 contained in this message. If Status is 0,
then bytes 6-29 do not contain valid data since it is unsupported by the version of PFx Brick queried.

The IR Data and Prev IR Data fields are always valid independent of the value of Status.

PFx Brick USB & BLE Host ICD Rev 3.37 64

4.38 PFX_CMD_GET_BT_STATUS 4 HOST COMMAND MESSAGES

4.38 PFX_CMD_GET_BT_STATUS

This command gets the operational status of the Bluetooth interface module.

Host command packet:
0

0x50

Device response packet:
0 1 2

0xD0 Present Sleep

Present = 0 if no Bluetooth interface is installed, 1 = Bluetooth interface available

Sleep = 0 if Bluetooth module is active, 1 = Bluetooth module is in power saving sleep mode

4.39 PFX_CMD_SET_BT_POWER

This command sets the power mode of the Bluetooth interface module.

Host command packet:
0 1

0x51 Sleep

Sleep=1 puts the Bluetooth interfacemodule into low power sleepmode and disables the Bluetooth
module. Setting Sleep to 0 wakes up the Bluetooth module for normal operation.

Device response packet:
0

0xD1

PFx Brick USB & BLE Host ICD Rev 3.37 65

4.40 PFX_CMD_SEND_BT_UART 4 HOST COMMAND MESSAGES

4.40 PFX_CMD_SEND_BT_UART

This command sends an ASCII message to the Bluetooth interface module UART.

Host command packet:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0x52
num

Bytes UART data bytes

...
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

UART data bytes (up to 62)

numBytes specifies how many payload bytes are contained in this packet (<=62) each byte in the
desired UART message follows up to the specified numBytes.

Device response packet:
0

0xD2

4.41 PFX_CMD_RECEIVE_BT_UART

This message reads back the contents of the receive buffer from the Bluetooth module UART.

Host command packet:
0

0x53

Device response packet:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0xD3
num

Bytes Received data bytes

...
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Received data bytes (up to 62)

numBytes specifies how many bytes are contained in this packet (<=62)

PFx Brick USB & BLE Host ICD Rev 3.37 66

4.42 PFX_CMD_SET_NOTIFCATIONS 4 HOST COMMAND MESSAGES

4.42 PFX_CMD_SET_NOTIFCATIONS

This message configures the notification service in the PFx Brick.

Host command packet:
0 1

0x60 Flags

A detailed description of the Flags field can be found in section 7 of this document.

Device response packet:
0

0xE0

PFx Brick USB & BLE Host ICD Rev 3.37 67

4.43 PFX_MSG_NOTIFICATION 4 HOST COMMAND MESSAGES

4.43 PFX_MSG_NOTIFICATION

Thesemessages are sent asynchronously from the PFx Brick after notifications have been configured
by a connected host using the PFX_CMD_SET_NOTIFCATIONS command. Each notification message
contains information about one notification event. Therefore, if the host subscribes to two or more
notifcations, then multiple notification messages can be expected from the PFx Brick, one or more
for each event. Unlike the command to set notifications which represent the logical-OR of multi-
ple notifications, the notification messages themselves are sent individually, one for each desired
notification.

The format of the notification message from the PFx Brick is as follows:
0 1 2

0x61 Notification Data

The Notification field represents the notification type. The Data field optionally contains extra
qualifying data if applicable.

Notification MNEMONIC Data

0x01 PFX_NOTIFICATION_AUDIO_PLAY_DONE File ID of audio file

0x02 PFX_NOTIFICATION_AUDIO_PLAY File ID of audio file

0x04 PFX_NOTIFICATION_MOTORA_CURR_SPD Current motor speed

0x08 PFX_NOTIFICATION_MOTORA_STOP n/a

0x10 PFX_NOTIFICATION_MOTORB_CURR_SPD Current motor speed

0x20 PFX_NOTIFICATION_MOTORB_STOP n/a

PFx Brick USB & BLE Host ICD Rev 3.37 68

5 SCRIPTING ACTIONS

5 Scripting Actions

As of ICD version 3.37 (and PFx Brick firmware versions 1.40+), the ability to execute complex
actions and behaviours defined in script files was added. Script files are simple, human readable
text files stored in the PFx Brick file system. These files conform to a simple script language syntax
described later in this document. The scripting capability can be summarized as follows:

1. Scripts are ASCII text files stored in the PFx Brick file system.
2. Scripts execute one at a time. Executing another script will terminate the current script and
start the new one.

3. Scripts can be executed either by using an Event/Action (with the COMMAND byte) or with the
ICD message PFX_CMD_RUN_SCRIPT.

4. Script execution is sequential line-by-line from the start of the file to the end. At the end, the
script will either stop or repeat if a repeat command is the last line.

5. Script lines with bad syntax are ignored and script execution will continue to the next line.

5.1 Loading Scripts

Script files can be loaded on to the PFx Brick using the PFx App or by using other 3rd party software
to copy files from a host PC to the PFx Brick. A script file will have a name and file ID on the PFx
Brick file system. The unique file ID must be known in order to execute a script (see the file system
section for more information).

Creating script files or making changes to a script must be made on a host PC using any standard
text editor (e.g. Windows Notepad, macOS Text Editor, etc.) To modify a script file, the old one must
be removed from the PFx Brick file system and then replaced with a new copy (with the same file ID).

5.2 Executing Scripts

Script files can be executed in one of two ways:

1. Using an Event/Action
2. Using the PFX_CMD_RUN_SCRIPT ICD message via USB or BLE.

5.2.1 Event/Action Script Execution

The Event/Action data structure COMMAND byte (0) can be set to COMMAND_RUN_SCRIPT (0x09) and the
script file ID can be specified in the SOUND_FILE_ID byte (13). When a IR remote action is configured
this way, it will trigger the execution of the specified script file. Therefore, a simple event from a
remote control can trigger a very complex sequence of actions defined by the script.

5.2.2 ICD Message

The PFX_CMD_RUN_SCRIPT ICD message can be sent to the PFx Brick via a USB or BLE connected
host to trigger the execution of a script file. A unique file ID must be specified in the message to
indicate which script file to execute.

PFx Brick USB & BLE Host ICD Rev 3.37 69

5.3 Script Syntax 5 SCRIPTING ACTIONS

5.3 Script Syntax

The PFx Brick script language syntax is a simple human readable free form text file format. Script
files can contain comments and arbitrary amounts of whitespace in addition to the recognized script
keywords. Script file execution is sequential and proceeds line by line from the start of the file to
the end. This implies that all logical script commands must be terminated with a either a linefeed
(0x0A) and/or carriage return character (0x0D).

5.3.1 Comments

Comment lines start with either a # character (similar to python) or // characters (similar to C++).
Comments should not be used in line with a command.

Valid comment
// Another valid comment
light 1 on # not a valid comment location

5.3.2 Keywords

The script syntax uses case sensitive keyword commands and specifiers. There are several pri-
mary keywords which act as commands and many secondary keywords used for specifying sub-
commands, parameters values and options.

The primary keyword commands are as follows:

light channels commands
motor channels commands
sound commands
ir parameters
wait parameters
repeat
run
stop

The secondary command and parameter keywords are as follows:

play, fade, all, on, off, flash, loop, left, right, up, down,
ch, speed, fx, vol, bass, treble, bright, joy, beep, button

PFx Brick USB & BLE Host ICD Rev 3.37 70

5.3 Script Syntax 5 SCRIPTING ACTIONS

5.3.3 Numeric Values

Many commands and options require specified numeric quantities. The script syntax supports both
integer and decimal values. The following are examples of valid numeric quantities:

0 127 -55 0.010 35.75 -90.5

Additionally, integer values may be specified in hexadecimal (base16) prefixed with the characters
0x.

0x0 0xABCD 0x32

For commands which support a list of values, a list is specified as a group of comma separated
numbers enclosed in matching square brackets:

[0, 1, 2, 3]

5.3.4 Strings

Some commands also support the use of strings–typically for specifying items such as filenames.
Strings are UTF-8 formatted and enclosed within double quotations marks ".

"This is a string"

PFx Brick USB & BLE Host ICD Rev 3.37 71

5.4 Command Reference 5 SCRIPTING ACTIONS

5.4 Command Reference

Light Commands

light channels commands

channels can be specified as a single channel number 1-8, a list of channels enclosed with
[] parenthesis, or the keyword all

commands are a combination of the following keywords and values:
on - turn on light channel(s)
off - turn off light channel(s)
fade <time> - fade time (0 to 10.0 seconds).
flash <ontime> [offtime] - periodic flashing light (0.05 to 60.0 seconds)
bright <value> - set brightness (0 to 255)
fx <id> [parameters] - performs light action <id> as LIGHT_FX_ID with specified parameters
if channels = all then <id> is a combo id

light 1 on
light [1,4,8] off fade 0.5
light [2,4] flash 0.1 0.4 fade 0.1
light all bright 128
light [6,7] fx 0x0C [1,0,3,0,0]

Sound Commands

sound command

command is one of the following keywords:
play fileID - start playback of fileID
stop fileID - stop playback of fileID
play fileID repeat - continuous playback of fileID
play fileID loop <value> - plays fileID for value times
vol <value> - set volume (0 to 255)
bass <value> - set bass (-20 to 20)
beep - short beep sound
treble <value> - set treble (-20 to 20)
fx fileID <id> [parameters] - performs sound action <id> as SOUND_FX_ID with
specified parameters

fileID can be specified either as a numeric
file ID or string containing the filename.

sound play 3 loop 5
sound play "Siren1.wav"
sound vol 160
sound treble -6
sound fx 9 0x04 0 0

PFx Brick USB & BLE Host ICD Rev 3.37 72

5.4 Command Reference 5 SCRIPTING ACTIONS

Motor Commands
motor channels command

channels can be specified as a single channel number 1 or 2 (or as a and b), a list of channels
enclosed with [] parenthesis, or the keyword all

command is one of the following keywords:
stop - stop motor channel(s)
speed <value> - motor speed (-255 to 255), +speed is forward, -speed is reverse direction
servo <value> - servo motor angle (-90 to 90)
fx <id> [parameters] - performs motor action <id> as MOTOR_FX_ID with specified parameters

motor all stop
motor a speed -50
motor 2 servo 45
motor 1 fx 0x07 0x03 0

IR Commands

ir on - activates the IR sensor
ir off - disables the IR sensor

Execution Control

Delay execution and wait for event to resume:
wait <time> - pause (0.05 to unlimited sec)
wait sound fileID - pause execution until sound file fileID has stopped playing
wait ir parameters - pause execution until IR event has been received
where parameters can be any combination of:
joy - joystick remote, speed - speed remote, up,down,left,right,button - remote actions
ch <value> - IR channel

Redirect execution to same or different script:
repeat - repeat execution of current script
run fileID - execute script with fileID
stop - stops the script at the current line

wait 3.0
wait sound 5
wait ir joy left up
wait ir speed ch 4 left button
stop
run 3
run "MyScript.txt"

PFx Brick USB & BLE Host ICD Rev 3.37 73

5.5 Examples 5 SCRIPTING ACTIONS

5.5 Examples

Traffic light sequence
#
Ch 1: Red, Ch 2: Yellow, Ch 3: Green
Ch 4: Don't Walk, Ch 5: Walk
reset all light channels
light all off
Red phase
light [1,4] on
light [2,3,5] off fade 0.2
wait 8.0
Green phase
light [1,4] off fade 0.2
light [3,5] on
wait 8.0
Pedestrian crossing warning
light 5 off fade 0.1
light 4 flash 0.4 fade 0.1
wait 5
Yellow
light 3 off fade 0.2
light [2,4] on
wait 4
Start the sequence again
repeat

Motorized musical procession
#
Vehicle with motor, lights and music; Triggered by IR remote

Start with everything off
light all off
sound stop all
motor all off

Wait for joystick remote ch 1 right up
wait ir joy ch 1 right up

Play sound and move
motor a speed 30
light all on
sound play "MySong.wav"

Wait until song is finished, stop and repeat
wait sound "MySong.wav"
motor a stop
repeat

PFx Brick USB & BLE Host ICD Rev 3.37 74

6 EVENT/ACTION DATA STRUCTURES

6 Event/Action Data Structures

The fundamental behaviour of the PFx Brick is to perform actions in response to received IR and/or
Bluetooth interface events. Actions are encoded in a data structure called the event look up table
(LUT). The actions performed are indexed by a corresponding event trigger into the event LUT, i.e. the
event LUT is “addressed” by message events. This section will describe event LUT and the many
associated fields and parameters.

6.1 Event Encoding

The events sent by IR remotes and/or Bluetooth interface cue corresponding actions stored in the
event look up table. These actions include controlling motors, light f/x and sound. Some event
actions may depend on the current state of other items, e.g. the change of direction on a motor
channel may depend on its current speed.

The event LUT address format used internally by the PFx Brick is as follows:

01234567

Reserved Event ID IR Channel

LEGO® Power Funcitons IR Remotes

Address Event ID MNEMONIC

0x00-0x03 0x00 EVT_8879_TWO_BUTTONS

0x04-0x07 0x01 EVT_8879_LEFT_BUTTON

0x08-0x0B 0x02 EVT_8879_RIGHT_BUTTON

0x0C-0x0F 0x03 EVT_8879_LEFT_INC

0x10-0x13 0x04 EVT_8879_LEFT_DEC

0x14-0x17 0x05 EVT_8879_RIGHT_INC

0x18-0x1B 0x06 EVT_8879_RIGHT_DEC

0x1C-0x1F 0x07 EVT_8885_LEFT_FWD

0x20-0x23 0x08 EVT_8885_LEFT_REV

0x24-0x27 0x09 EVT_8885_RIGHT_FWD

0x28-0x2B 0x0A EVT_8885_RIGHT_REV

0x2C-0x2F 0x0B EVT_8885_LEFT_CTROFF

0x30-0x33 0x0C EVT_8885_RIGHT_CTROFF

0x34-0x37 0x0D EVT_EV3_BEACON

PFx Brick USB & BLE Host ICD Rev 3.37 75

6.1 Event Encoding 6 EVENT/ACTION DATA STRUCTURES

Following the Power Functions IR remote events, there are special event LUT entries reserved for
other purposes as follows:

Address Event ID MNEMONIC Description

0x38 0x0E EVT_TEST_EVENT Used for testing actions sent by a USB con-
nected host

0x3C 0x0F EVT_STARTUP_EVENT1 Used for storing start-up actions per-
formed after power on

0x3D 0x0F EVT_STARTUP_EVENT2

0x3E 0x0F EVT_STARTUP_EVENT3

0x3F 0x0F EVT_STARTUP_EVENT4

0x40 0x10 EVT_STARTUP_EVENT5

0x41 0x10 EVT_STARTUP_EVENT6

0x42 0x10 EVT_STARTUP_EVENT7

0x43 0x10 EVT_STARTUP_EVENT8

LEGO® RC Train IR Remote

The RC Train remote was black with 4 yellow buttons. The buttons are labelled Up, Down, Horn,
and Stop. A channel selector switch allows you to select channels labelled 1, 2, 3, 1+2+3. These
channels correspond to 0, 1, 2, 3 respectively within the event LUT.

Address Event ID MNEMONIC

0x50-0x53 0x14 EVT_RCTRAIN_UP

0x54-0x57 0x15 EVT_RCTRAIN_DOWN

0x58-0x5B 0x16 EVT_RCTRAIN_STOP

0x5C-0x5F 0x17 EVT_RCTRAIN_HORN

PFx Brick USB & BLE Host ICD Rev 3.37 76

6.1 Event Encoding 6 EVENT/ACTION DATA STRUCTURES

Sparkfun COM-11759 Mini IR Remote

Address Event ID Ch MNEMONIC

0x60 0x18 0 EVT_SPARKFUN_POWER

0x61 0x18 1 EVT_SPARKFUN_A

0x62 0x18 2 EVT_SPARKFUN_B

0x63 0x18 3 EVT_SPARKFUN_C

0x64 0x19 0 EVT_SPARKFUN_UP

0x65 0x19 1 EVT_SPARKFUN_DOWN

0x66 0x19 2 EVT_SPARKFUN_LEFT

0x67 0x19 3 EVT_SPARKFUN_RIGHT

Adafruit 389 Mini IR Remote

Address Event ID Ch MNEMONIC

0x68 0x1A 0 EVT_ADAFRUIT_VOLDOWN

0x69 0x1A 1 EVT_ADAFRUIT_PLAY

0x6A 0x1A 2 EVT_ADAFRUIT_VOLUP

0x6B 0x1A 3 EVT_ADAFRUIT_SETUP

0x6C 0x1B 0 EVT_ADAFRUIT_STOP

0x6D 0x1B 1 EVT_ADAFRUIT_UP

0x6E 0x1B 2 EVT_ADAFRUIT_DOWN

0x6F 0x1B 3 EVT_ADAFRUIT_LEFT

0x70 0x1C 0 EVT_ADAFRUIT_RIGHT

0x71 0x1C 1 EVT_ADAFRUIT_ENTER

0x72 0x1C 2 EVT_ADAFRUIT_REPEAT

0x73 0x1C 3 EVT_ADAFRUIT_0

0x74 0x1D 0 EVT_ADAFRUIT_1

0x75 0x1D 1 EVT_ADAFRUIT_2

0x76 0x1D 2 EVT_ADAFRUIT_3

0x77 0x1D 3 EVT_ADAFRUIT_4

0x78 0x1E 0 EVT_ADAFRUIT_5

0x79 0x1E 1 EVT_ADAFRUIT_6

0x7A 0x1E 2 EVT_ADAFRUIT_7

0x7B 0x1E 3 EVT_ADAFRUIT_8

0x7C 0x1F 0 EVT_ADAFRUIT_9

PFx Brick USB & BLE Host ICD Rev 3.37 77

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2 Action Encoding

The event LUT stores encoded actions in a multi-byte data structure. The actions performed by the
PFx Brick are grouped into the following categories:

1. Motor Actions
2. Single Light F/X Output Actions
3. Combo Light F/X Output Actions
4. Sound F/X Actions

Note that these actions can be combined to respond to a single event, e.g. play a sound with a
lighting effect, actuate multiple lights as a group, etc.

The encoded action data structure is composed of 16 bytes as follows:

01234567

0 COMMAND

1 MOTOR_ACTION_ID MOTOR_MASK

2 MOTOR_PARAM1

3 MOTOR_PARAM2

4 COMBO LIGHT_FX_ID

5 LIGHT_OUTPUT_MASK

6 LIGHT_PF_OUTPUT_MASK

7 LIGHT_PARAM1

8 LIGHT_PARAM2

9 LIGHT_PARAM3

10 LIGHT_PARAM4

11 LIGHT_PARAM5

12 SOUND_FX_ID

13 SOUND_FILE_ID

14 SOUND_PARAM1

15 SOUND_PARAM2

PFx Brick USB & BLE Host ICD Rev 3.37 78

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

When an event is triggered (e.g. from an IR remote, or a PFX_CMD_TEST_ACTIONmessage is received
via USB or BLE), the PFx Brick performs the action specified by the associated action data structure.
The action is processed sequentially starting from the first byte COMMAND.

1. If COMMAND in byte 0 is non-zero, the specified command is executed and rest of the ac-
tion data structure is ignored. One execption is when the COMMAND byte is specified as
COMMAND_RUN_SCRIPT; in this case the PFx Brick will execute the script file specified in the
SOUND_FILE_ID byte (13).

2. If MOTOR_MASK in byte 1 is non-zero, the motor action specified by MOTOR_ACTION_ID is per-
formed using the parameters MOTOR_PARAM1 and MOTOR_PARAM2.

3. If LIGHT_FX_ID in byte 4 is non-zero, the light effect action is performed on the light out-
puts specified by LIGHT_OUTPUT_MASK and LIGHT_PF_OUTPUT_MASK using the parameters in
LIGHT_PARAM1-5.

4. If SOUND_FX_ID in byte 12 is non-zero, the sound effect action is performed with the sound file
specified by SOUND_FILE_ID using parameters SOUND_PARAM1 and SOUND_PARAM2.

PFx Brick USB & BLE Host ICD Rev 3.37 79

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.1 COMMAND
01234567

0 COMMAND

The COMMAND byte is used to perform special actions not related to the core actions related to motors,
lights and sound. The supported commands are listed as follows:

ID MNEMONIC Description

0x00 COMMAND_NONE No action

0x01 COMMAND_ALL_OFF Shut off all motor channels, light output ports, and
stop all audio playback

0x02 COMMAND_IR_LOCKOUT_ON Activate IR receiver lockout, ignores IR receiver pack-
ets

0x03 COMMAND_IR_LOCKOUT_OFF Deactivate IR receiver lockout, resumes processing of
IR receiver

0x04 COMMAND_IR_LOCKOUT_TOGGLE Toggle the state of the IR lockout mode

0x05 COMMAND_ALL_MOTORS_OFF Turn off all motor channels

0x06 COMMAND_ALL_LIGHTS_OFF Turn off all lighting channels

0x07 COMMAND_ALL_AUDIO_OFF Stop all audio playback

0x08 COMMAND_RESTART Stop all current actions, and restart with all STARTUP
actions

0x09 COMMAND_RUN_SCRIPT Execute a script file specified by the file ID in the
SOUND_FILE_ID byte (13)

PFx Brick USB & BLE Host ICD Rev 3.37 80

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.2 MOTOR_ACTION_ID
01234567

1 MOTOR_ACTION_ID MOTOR_MASK

The MOTOR_ACTION_ID is a 4-bit encoded value which occupies bits [7:4] and specifies the type of
action to apply to the motor channel(s) specified in the MOTOR_MASK bits. The MOTOR_ACTION_ID bits
are defined as follows:

ID MNEMONIC Description

0x00 MOTOR_ESTOP Motor braked to stop immediately (emergency
stop)

0x01 MOTOR_STOP Motor commanded to stop using the configured de-
celeration rate.

0x02 MOTOR_INC_SPEED Increase motor speed one step (up to vMax)

0x03 MOTOR_DEC_SPEED Decrease motor speed one step (clamped to zero)

0x04 MOTOR_INC_SPEED_BIDIR Increase motor speed one step; passing zero
changes direction

0x05 MOTOR_DEC_SPEED_BIDIR Decrease motor speed one step; passing zero
changes direction

0x06 MOTOR_CHANGE_DIR Change motor direction (motor must be stopped
first)

0x07 MOTOR_SET_SPD Sets the motor speed to specific value

0x08 MOTOR_SET_SPD_TIMED Sets the motor speed to run for a fixed time

0x09 MOTOR_OSCILLATE Oscillate motor speed on and off

0x0A MOTOR_OSCILLATE_BIDIR Oscillate motor speed forward/reverse

0x0B MOTOR_OSCILLATE_BIDIR_WAIT Oscillate motor speed forward/reverse with a wait
interval in between

0x0C MOTOR_RANDOM Set random motor speed periodically within set
speed

0x0D MOTOR_RANDOM_BIDIR Set randommotor speed and direction periodically
within set speed

0x0E MOTOR_SOUND_MODULATED Set motor speed within set speed modulated by
sound intensity

0x0F MOTOR_SET_SERVO Set LEGO Power Functions servo motor position

PFx Brick USB & BLE Host ICD Rev 3.37 81

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.3 MOTOR_MASK
01234567

1 MOTOR_ACTION_ID MOTOR_MASK

Motor actions can be applied to any combination of motor outputs simultaneously, e.g. two or more
motors controlled to the same speed. The MOTOR_MASK<3:0> has 4 bits corresponding to motor
outputs D,C,B,A respectively. The initial PFx Brick design has only 2 motor outputs (A & B); however,
provision for future expanded versions of the PFx Brick with 4 motor outputs is being accomodated.
A bit value of 1 in each position indicates that the corresponding motor output will be controlled,
e.g. MOTOR_MASK<3:0>=0xA means that motor outputs D and B will be operated together.

PFx Brick USB & BLE Host ICD Rev 3.37 82

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.4 MOTOR_PARAMx
01234567

2 MOTOR_PARAM1

3 MOTOR_PARAM2

The MOTOR_PARAM1 and MOTOR_PARAM2 bytes encode parameters which are associated with some
of the MOTOR_ACTION_ID items. The definition of MOTOR_PARAM1 and MOTOR_PARAM2 is shown in the
table below:

ID MNEMONIC MOTOR_PARAM1 MOTOR_PARAM2

0x00 MOTOR_ESTOP

0x01 MOTOR_STOP

0x02 MOTOR_INC_SPEED MOTOR_STEP

0x03 MOTOR_DEC_SPEED MOTOR_STEP

0x04 MOTOR_INC_SPEED_BIDIR MOTOR_STEP

0x05 MOTOR_DEC_SPEED_BIDIR MOTOR_STEP

0x06 MOTOR_CHANGE_DIR

0x07 MOTOR_SET_SPD MOTOR_SPEED

0x08 MOTOR_SET_SPD_TIMED MOTOR_SPEED DURATION

0x09 MOTOR_OSCILLATE MOTOR_SPEED MOTOR_PERIOD

0x0A MOTOR_OSCILLATE_BIDIR MOTOR_SPEED MOTOR_PERIOD

0x0B MOTOR_OSCILLATE_BIDIR_WAIT MOTOR_SPEED MOTOR_PERIOD

0x0C MOTOR_RANDOM MOTOR_SPEED MOTOR_PERIOD

0x0D MOTOR_RANDOM_BIDIR MOTOR_SPEED MOTOR_PERIOD

0x0E MOTOR_SOUND_MODULATED MOTOR_SPEED

0x0F MOTOR_SET_SERVO MOTOR_POS

PFx Brick USB & BLE Host ICD Rev 3.37 83

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.4.1 MOTOR_SPEED The MOTOR_SPEED parameter specifies absolute motor speed to be directly
applied without intermediate incremental steps. This parameter is defined as follows:

MOTOR_SPEED Value
0x0 stopped
0x1 10%
0x2 25% % of maximum
0x3 33% speed in the
0x4 50% forward direction
0x5 67%
0x6 75%
0x7 100%
0x8 stopped
0x9 10%
0xA 25% % of maximum
0xB 33% speed in the
0xC 50% reverse direction
0xD 67%
0xE 75%
0xF 100%

The MOTOR_SPEED parameter can also be used to specify a higher resolution set speed. This is
achieved by setting the MOTOR_SPEED[7] bit to ‘1’ and using the MOTOR_SPEED[6] bit as a direction
flag. MOTOR_SPEED[5:0] bits specify absolute speed in either direction. Therefore MOTOR_SPEED can
be defined as follows for high resolution speed settings:

7 6 5 4 3 2 1 0

1 Dir Speed
0=fwd, 1=rev

This allows for a range of speed settings as follows:

MOTOR_SPEED Speed
0xBF 1 0 1 1 1 1 1 1 Maximum speed forward
0xBE 1 0 1 1 1 1 1 0
... ...

0x81 1 0 0 0 0 0 0 1 Minimum speed forward
0x80 1 0 0 0 0 0 0 0 stopped
0xC0 1 1 0 0 0 0 0 0 stopped
0xC1 1 1 0 0 0 0 0 1 Minimum speed reverse
... ...

0xFE 1 1 1 1 1 1 1 0
0xFF 1 1 1 1 1 1 1 1 Maximum speed reverse

PFx Brick USB & BLE Host ICD Rev 3.37 84

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.4.2 MOTOR_STEP Motor actions which increment or decrement the motor speed can specify
the magnitude of the change with the MOTOR_STEP parameter. It is defined as follows:

MOTOR_STEP Value

0x0 default +/-1 step (highest resolution)

0x1 1% (100 speed steps)

0x2 2% (50 speed steps)

0x3 3% (33 speed steps)

0x4 5% (20 speed steps)

0x5 6% (16 speed steps)

0x6 10% (10 speed steps)

0x7 20% (5 speed steps)

0x8 25% (4 speed steps)

0x9 33% (3 speed steps)

0xA Lego compatible 7 step

0xB 15 deg (servo motor position increment)

The percentage change in speed is specified as an increment equal to that percentage of full speed.

6.2.4.3 MOTOR_PERIOD The MOTOR_PERIOD parameter specifies the time period for oscillating mo-
tor actions. This parameter is defined as follows:

01234567

OFF Period ON Period

For motor actions which have both an on and off interval, they can be specified individually. The
definition of the motor period for both the ON and OFF period are defined as follows:

Value Definition Value Definition

0x00 0.25 sec 0x08 3.0 sec

0x01 0.5 sec 0x09 4.0 sec

0x02 0.75 sec 0x0A 5.0 sec

0x03 1.0 sec 0x0B 10 sec

0x04 1.25 sec 0x0C 15 sec

0x05 1.5 sec 0x0D 20 sec

0x06 2.0 sec 0x0E 30 sec

0x07 2.5 sec 0x0F 60 sec

PFx Brick USB & BLE Host ICD Rev 3.37 85

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.4.4 DURATION The DURATION parameter specifies a fixed time interval as follows:

Value Definition Value Definition

0x0 0.5 sec 0x8 15 sec

0x1 1.0 sec 0x9 20 sec

0x2 1.5 sec 0xA 30 sec

0x3 2.0 sec 0xB 45 sec

0x4 3.0 sec 0xC 60 sec

0x5 4.0 sec 0xD 90 sec

0x6 5.0 sec 0xE 2 min

0x7 10 sec 0xF 5 min

6.2.4.5 MOTOR_POS The MOTOR_POS parameter specifies the angular position of a LEGO Power
Functions servo motor. This parameter offers a convenient method of specifying the servo posi-
ton rather than a corresponding voltage or speed.

Value Definition Value Definition

0x0 -90 deg 0x8 30 deg

0x1 -75 deg 0x9 45 deg

0x2 -60 deg 0xA 60 deg

0x3 -45 deg 0xB 75 deg

0x4 -30 deg 0xC 90 deg

0x5 -15 deg

0x6 0 deg

0x7 15 deg

PFx Brick USB & BLE Host ICD Rev 3.37 86

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.5 LIGHT_FX_ID
01234567

4 COMBO LIGHT_FX_ID

Light F/X actions are specified with an ID code which determines the action. There are two main
types of light f/x: single and combination. Single light actions are applied to individually assigned
lighting outputs (specified with the LIGHT_OUTPUT_MASK bytes). Combination light f/x are coordi-
nated to drive an entire group of light outputs in a specific pattern. These combo light effects are
applied to designated light output channels and override their current state when activated.

The COMBO bit <7> of the LIGHT_FX_ID byte specifies if the light f/x is a single or combo light action
when set to 0 or 1 respectively. Based on the state of COMBO bit, the LIGHT_FX_ID is interpreted
differently.

6.2.6 LIGHT_FX_ID Single Light Actions

When the COMBO bit is zero, then the LIGHT_FX_ID field is defined as follows:

ID MNEMONIC Description

0x01 LIGHTFX_ON_OFF_TOGGLE Toggle light output on/off

0x02 LIGHTFX_INC_BRIGHTNESS Increase brightness one step

0x03 LIGHTFX_DEC_BRIGHTNESS Decrease brightness one step

0x04 LIGHTFX_SET_BRIGHTNESS Set brightness to specified level

0x05 LIGHTFX_FLASH_50_POS 50% duty cycle flasher (pos phase)

0x06 LIGHTFX_FLASH_50_NEG 50% duty cycle flasher (neg phase)

0x07 LIGHTFX_STROBE_POS strobe light flasher (pos phase)

0x08 LIGHTFX_STROBE_NEG strobe light flasher (neg phase)

0x09 LIGHTFX_GYRALITE_POS fading MARS/Gyralite flasher (pos phase)

0x0A LIGHTFX_GYRALITE_NEG fading MARS/Gyralite flasher (neg phase)

0x0B LIGHTFX_FLICKER random flickering light

0x0C LIGHTFX_RANDOM_BLINK random blinking light

0x0D LIGHTFX_PHOTON_TORPEDO photon torpedo effect

0x0E LIGHTFX_LASER_PULSE shooting laser effect

0x0F LIGHTFX_SCIFI_ENGINE_GLOW glowing/pulsating engine glow effect

0x10 LIGHTFX_LIGHTHOUSE rotating lighthouse effect

0x11 LIGHTFX_BROKEN_LIGHT flickering faulty light effect

0x12 LIGHTFX_STATUS_INDICATOR a status indicator of PFX events and status

0x13 LIGHTFX_SOUND_MODULATED sound modulated light intensity

0x14 LIGHTFX_MOTOR_MODULATED motor speed modulated light intensity

PFx Brick USB & BLE Host ICD Rev 3.37 87

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.7 LIGHT_OUTPUT_MASK
01234567

5 LIGHT_OUTPUT_MASK

The selected light f/x can be applied to any combination of the dedicated light output ports. This
is configured by the LIGHT_OUTPUT_MASK byte where a logic 1 in each bit corresponds to selected
light output port, e.g. a LIGHT_OUTPUT_MASK<7:0>=0xC5 means that the light f/x will be applied to
light output ports 8,7,3, and 1.

6.2.8 LIGHT_PF_OUTPUT_MASK
01234567

6 LIGHT_PF_OUTPUT_MASK

In addition to single light actions being applicable to the 8 dedicated light output ports, they can
also be applied to the Power Functions motor output connectors. This is to support the use of
the Lego brand 8870 dual LED lights with all of the sophisticated light f/x offered by the PFx Brick.
Therefore, a single light action can be performed on up to 12 light output ports simultaneously.
The LIGHT_PF_OUTPUT_MASK byte specifies which Power Functions output connectors are used as
follows:

01234567

6 unused Motor
Output D

Motor
Output C

Motor
Output B

Motor
Output A

Note, that if a conflicting event/action simultaneously commands a motor output and a light action
on the same Power Functions motor output port, the motor action will take priority and the light f/x
action will be ignored.

PFx Brick USB & BLE Host ICD Rev 3.37 88

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.9 LIGHT_PARAMx Single Light Actions
01234567

7 LIGHT_PARAM1

8 LIGHT_PARAM2

9 LIGHT_PARAM3

10 LIGHT_PARAM4

11 LIGHT_PARAM5

Each of the single light actions defined by LIGHT_FX_ID field may have up to 5 additional parameter
bytes to modify the behaviour of the light f/x. Currently, only the first 4 bytes have corresponding
parameter assignments with byte 5 reserved for future use. The LIGHT_PARAM1, LIGHT_PARAM2, and
LIGHT_PARAM3 bytes are assigned as follows to single action light f/x:

ID MNEMONIC LIGHT_PARAM1 LIGHT_PARAM2 LIGHT_PARAM3

0x01 LIGHTFX_ON_OFF_TOGGLE DIR_OPTION FADE_TIME FLICKER_ON

0x02 LIGHTFX_INC_BRIGHTNESS

0x03 LIGHTFX_DEC_BRIGHTNESS

0x04 LIGHTFX_SET_BRIGHTNESS BRIGHTNESS

0x05 LIGHTFX_FLASH_50_POS PERIOD FADE_FACTOR

0x06 LIGHTFX_FLASH_50_NEG PERIOD FADE_FACTOR

0x07 LIGHTFX_STROBE_POS PERIOD DUTY_CYCLE BURST_COUNT

0x08 LIGHTFX_STROBE_NEG PERIOD DUTY_CYCLE BURST_COUNT

0x09 LIGHTFX_GYRALITE_POS PERIOD FADE_FACTOR

0x0A LIGHTFX_GYRALITE_NEG PERIOD FADE_FACTOR

0x0B LIGHTFX_FLICKER PERIOD2 FADE_FACTOR

0x0C LIGHTFX_RANDOM_BLINK PERIOD2 FADE_FACTOR

0x0D LIGHTFX_PHOTON_TORPEDO PERIOD2

0x0E LIGHTFX_LASER_PULSE PERIOD2

0x0F LIGHTFX_SCIFI_ENGINE_GLOW PERIOD FADE_FACTOR

0x10 LIGHTFX_LIGHTHOUSE PERIOD

0x11 LIGHTFX_BROKEN_LIGHT FAULT_RATE FADE_TIME FAULT_INTENSITY

0x12 LIGHTFX_STATUS_INDICATOR SOURCE1 SOURCE2 INVERT

0x13 LIGHTFX_SOUND_MODULATED FADE_TIME INVERT

0x14 LIGHTFX_MOTOR_MODULATED FADE_TIME SOURCE2 INVERT

PFx Brick USB & BLE Host ICD Rev 3.37 89

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

The LIGHT_PARAM4 parameter is used to qualify the tranisition behaviour of the light. Normally, an
individual light action results in toggling the light output on or off. However, this can be qualified
to assert the light output to either on or off rather than a toggle action. The LIGHT_PARAM4 byte is
defined as follows:

01234567

10 LIGHT_PARAM4

10 DURATION Reserved TRANSITION

The TRANSITION parameter is defined as follows:

Value Description

0x00 toggle light output

0x01 turn light ON

0x02 turn light OFF

0x03 turn light ON for a specified DURATION

The DURATION parameter specifies a fixed time interval as follows:

Value Definition Value Definition

0x0 0.5 sec 0x8 15 sec

0x1 1.0 sec 0x9 20 sec

0x2 1.5 sec 0xA 30 sec

0x3 2.0 sec 0xB 45 sec

0x4 3.0 sec 0xD 60 sec

0x5 4.0 sec 0xD 90 sec

0x6 5.0 sec 0xE 2 min

0x7 10 sec 0xF 5 min

PFx Brick USB & BLE Host ICD Rev 3.37 90

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

Suggested Default Parameter Values

The table below shows some suggested default values for a host application for each light f/x.

ID MNEMONIC LIGHT_PARAM1 LIGHT_PARAM2 LIGHT_PARAM3

0x01 LIGHTFX_ON_OFF_TOGGLE 0x00 : None 0x00 : No Fade 0x00 : No flicker

0x02 LIGHTFX_INC_BRIGHTNESS

0x03 LIGHTFX_DEC_BRIGHTNESS

0x04 LIGHTFX_SET_BRIGHTNESS 0x7F

0x05 LIGHTFX_FLASH_50_POS 0x04 : 1 sec. 0x03 : 10%

0x06 LIGHTFX_FLASH_50_NEG 0x04 : 1 sec. 0x03 : 10%

0x07 LIGHTFX_STROBE_POS 0x04 : 1 sec. 0x04 : 15% 0x01 : 2 pulses

0x08 LIGHTFX_STROBE_NEG 0x04 : 1 sec. 0x04 : 15% 0x01 : 2 pulses

0x09 LIGHTFX_GYRALITE_POS 0x04 : 1 sec. 0x09 : 50%

0x0A LIGHTFX_GYRALITE_NEG 0x04 : 1 sec. 0x09 : 50%

0x0B LIGHTFX_FLICKER 0x01 : 0.1 sec. 0x06 : 25%

0x0C LIGHTFX_RANDOM_BLINK 0x02 : 0.2 sec. 0x03 : 10%

0x0D LIGHTFX_PHOTON_TORPEDO 0x0A : 1 sec.

0x0E LIGHTFX_LASER_PULSE 0x01 : 0.1 sec.

0x0F LIGHTFX_SCIFI_ENGINE_GLOW 0x08 : 2 sec. 0x09 : 50%

0x10 LIGHTFX_LIGHTHOUSE 0x0A : 3 sec.

0x11 LIGHTFX_BROKEN_LIGHT 0x02 : Often 0x00 : None 0x02 : Severe

0x12 LIGHTFX_STATUS_INDICATOR 0x01 0x00 0x00

0x13 LIGHTFX_SOUND_MODULATED 0x03 : 10%

0x14 LIGHTFX_MOTOR_MODULATED 0x03 : 10% 0x00 : None 0x00 : not inverted

The suggested default value for LIGHT_PARAM4 is 0x00, i.e. toggle light output on/off.

PFx Brick USB & BLE Host ICD Rev 3.37 91

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.10 LIGHT_FX_ID Combination Light Actions
01234567

4 COMBO LIGHT_FX_ID

When the COMBO bit is set, then the LIGHT_FX_ID corresponds to a combination light action specified
in the table below. Unlike masked combinations of single light actions, these effects are coordinated
to drive all 8x light outputs in a specific pattern. These combo light effects are applied to all 8x light
f/x channels and override their current state when activated.

ID MNEMONIC Description

0x01 COMBOFX_LINEAR_SWEEP Linear sweep of sequential lights

0x02 COMBOFX_BARGRAPH_SWEEP Linear bargraph sweep

0x03 COMBOFX_KNIGHT_RIDER Knight rider back-forth scanner

0x04 COMBOFX_EMCY_TWINSONIC Emergency vehicle with twinsonic lightbars

0x05 COMBOFX_EMCY_WHELEN Emergency vehicle with Whelen lightbars

0x06 COMBOFX_TIMES_SQUARE Constantly changing patterns of sweeping lights

0x07 COMBOFX_NOISE Random patterns

0x08 COMBOFX_TWINKLING_STARS Simulated twinkling star field effect

0x09 COMBOFX_TRAFFIC_LIGHTS Traffic light sequence including pedestrian crossing

0x0A COMBOFX_SOUND_BAR A bargraph modulated by sound playback

0x0B COMBOFX_ALTERNATE_FLASH A pair of lights which flash in opposite phases

0x0C COMBOFX_LAVA_LAMP A soft fluid modulated light effect

0x0D COMBOFX_LASER_CANNON A one-shot sweeping light effect

0x0E COMBOFX_DRAGSTER Dragster starter signal lights

0x0F COMBOFX_RUNWAY Airport runway approach lights

0x10 COMBOFX_FORMULA1 Formula 1 style starter lights

PFx Brick USB & BLE Host ICD Rev 3.37 92

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.11 Combination Light F/X Notes

6.2.11.1 Sound Bargraph The sound bargraph light f/x animates a bargraph type display in re-
sponse to any audio playback activity. The bargraph deflects at a level proportional to the instan-
taneous audio level. The bargraph style as well as the number of lights and peristence can be
configured using parameters BAR_STYLE, SIZE, and FADE_FACTOR.

6.2.11.2 Traffic Lights Traffic lights for a typical four way intersection can be simulated with
the traffic lights combo light f/x. The two opposing flows of traffic are designated North/South and
East/West and each have a dedicated group of Red, Yellow, and Green light aspects. Additionally, the
North/South flow has two optional light outputs for a pedestrian crossing indicator with “Walk” and
“Don’t Walk” aspects. The assignment of light output channels to the corresponding light aspects
is as follows:

Light Output

1 2 3 4 5 6 7 8

R Y G R Y G Don’t Walk Walk

North/South East/West North/South Ped Crossing

6.2.11.3 Emergency Flashers The combo light f/x which are used to simulate flashers on emer-
gency vehicles (e.g. police, fire, ambulance, etc.) enable builders to configure light outputs to match
a wide variety of emergency vehicles used around the world and from different eras. A key feature
of emergency vehicle flashers is the roof mounted lighting; implemented either as discrete lights
or more commonly mounted into a light bar structure on the roof. In addition to the roof/lightbar
flashers are auxilary flashing lights. These auxilary lights vary widely in terms of quantity and loca-
tion among all emergency vehicles. Examples include side mounted flashers, radiator grille flashers,
headlamp cluster flashers, etc. Auxilary flashers are often synchronized with one or more of the
lightbar flashers and may or may not have the same flashing pattern. The PFx Brick provides a va-
riety of functional flashing light outputs for all emergency flasher types in order to match a wide
variety of prototypical emergency vehicles. The builder does not have to use every light output and
may chose any combination which best suits their model. The emergency flashers use 6 of 8 light
output ports, leaving the 7th and 8th port available for another use, e.g. headlamps.

For all emergency flasher applications, the light outputs are defined the same way. They are as
follows:

Light Output

1 2 3 4 5 6

Light bar Auxilary Flashers

Left Right 1x flash

outer inner inner outer left right

6.2.11.4 Light Bar The lightbar or roof mounted lights consist of a group of 4 lights which flash in
variety of different styles. Often, these lights will be co-packaged into a roof mounted light bar. Two
lights are intended for the left side of the vehicle and another pair is intended for the right side. Each
left/right pair can have an inner and outer light. This allows light flashing sequences to alternate

PFx Brick USB & BLE Host ICD Rev 3.37 93

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

from left to right or from inside to outside depending on the style. For more simple applications, one
of each of the left and right pairs can be used, e.g. just the outer left/right pair.

Two very common types of lightbar flashers are the so-called “Twinsonic” and “Whelen” style light-
bars. These are named after the trade-marked products of Federal Signal and Whelen Engineering
respectively; manufacturers of emergency vehicle lighting products. These style names are intended
to be representative and not exact copies of any particular lighting product. The “Twinsonic” style
light bar physically consisted of rotating mirrors around a light source and were common in older or
heritage emergency vehicles. The rotating light effect is simulated with periodically variable bright-
ness and has a “softer” flashing effect. The “Whelen” style lightbar is designed to simulate the
flashing effects of modern and contemporary LED strobe-type emergency flashers. These light bars
have many different strobe-like patterns and sequences. The PFx Brick includes most of the typical
sequences available from this style of emergency flasher.

6.2.11.5 Auxilary Flashers Many emergency vehicles incorporate additional flashing lights to
those mounted on the roof. These can consist of flashers which duplicate the flashing sequence
from the light bar or flash periodically synchronized with the alternating effect of the lightbar. The
PFx Brick provides auxilary flasher outputs in order to connect lights which best represent the flash-
ing light configuration of a particular vehicle.

The left/right auxilary 1x flashers flash periodically at the specificied rate alternating from left to
right. The 1x and auxilary flashers are simple periodic flashers and do not exhibit the complicated
flash sequences of the light bar. They are however synchronized with the light bar flash rate.

PFx Brick USB & BLE Host ICD Rev 3.37 94

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.12 LIGHT_PARAMx Combination Light Actions
01234567

7 LIGHT_PARAM1

8 LIGHT_PARAM2

9 LIGHT_PARAM3

10 LIGHT_PARAM4

11 LIGHT_PARAM5

Each of the combination light actions defined by LIGHT_FX_ID field may have up to 5 additional
parameter bytes to modify the behaviour of the light f/x. Most of the combo light f/x use 2 to 4 pa-
rameter bytes with the remaining bytes reserved for future use. The LIGHT_PARAM1 - LIGHT_PARAM4
bytes are assigned as follows to combination light f/x:

PFx Brick USB & BLE Host ICD Rev 3.37 95

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

ID MNEMONIC LIGHT_PARAM1 LIGHT_PARAM2 LIGHT_PARAM3

0x01 COMBOFX_LINEAR_SWEEP PERIOD FADE_FACTOR SIZE

LIGHT_PARAM4

SWEEP_STYLE

0x02 COMBOFX_BARGRAPH_SWEEP PERIOD FADE_FACTOR SIZE

LIGHT_PARAM4

SWEEP_STYLE

0x03 COMBOFX_KNIGHT_RIDER PERIOD FADE_FACTOR SIZE

0x04 COMBOFX_EMCY_TWINSONIC TWIN_STYLE SEQ FLASH_RATE

0x05 COMBOFX_EMCY_WHELEN WHELEN_STYLE SEQ FLASH_RATE

0x06 COMBOFX_TIMES_SQUARE PERIOD2 FADE_FACTOR

0x07 COMBOFX_NOISE PERIOD2 FADE_FACTOR

0x08 COMBOFX_TWINKLING_STARS PERIOD FADE_FACTOR

0x09 COMBOFX_TRAFFIC_LIGHTS TRAFFIC_STYLE FADE_FACTOR SEQ_TIME

0x0A COMBOFX_SOUND_BAR BAR_STYLE FADE_FACTOR SIZE

0x0B COMBOFX_ALTERNATE_FLASH PERIOD FADE_FACTOR DUTY_CYCLE

LIGHT_PARAM4 LIGHT_PARAM5

OUT_MASK TRANSITION

0x0C COMBOFX_LAVA_LAMP PERIOD SIZE

0x0D COMBOFX_LASER_CANON FLASH_RATE FADE_FACTOR SIZE

LIGHT_PARAM4

SWEEP_STYLE

0x0E COMBOFX_DRAGSTER DRAGSTER_STYLE FADE_FACTOR

0x0F COMBOFX_RUNWAY RUNWAY_RATE FADE_FACTOR RUNWAY_BRIGHT

0x10 COMBOFX_FORMULA1 F1_STYLE FADE_FACTOR FLASH_RATE

PFx Brick USB & BLE Host ICD Rev 3.37 96

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

Suggested Default Parameter Values

The table below shows some suggested default values for a host application for each light f/x.

ID MNEMONIC LIGHT_PARAM1 LIGHT_PARAM2 LIGHT_PARAM3

0x01 COMBOFX_LINEAR_SWEEP 0x02 : 0.5 sec. 0x06 : 25% 0x00 : 8 lights

LIGHT_PARAM4

0x01 : R to L

0x02 COMBOFX_BARGRAPH_SWEEP 0x04 : 1.0 sec. 0x03 : 10% 0x00 : 8 lights

LIGHT_PARAM4

0x01 : R to L

0x03 COMBOFX_KNIGHT_RIDER 0x06 : 1.5 sec. 0x06 : 25% 0x00 : 8 lights

0x04 COMBOFX_EMCY_TWINSONIC 0x02 : Aero 0x01 : L/R 0x02 : Fast

0x05 COMBOFX_EMCY_WHELEN 0x0A : Random 0x02 : In/Out 0x02 : Fast

0x06 COMBOFX_TIMES_SQUARE 0x01 : 0.1 sec. 0x0A : 75%

0x07 COMBOFX_NOISE 0x01 : 0.1 sec. 0x09 : 50%

0x08 COMBOFX_TWINKLING_STARS 0x08 : 2 sec. 0x0F : 400%

0x09 COMBOFX_TRAFFIC_LIGHTS 0x04 : Std w/Xing 0x06 : 25% 0x01 : Med

0x0A COMBOFX_SOUND_BAR 0x00 : L to R 0x06 : 25% 0x00 : 8 lights

0x0B COMBOFX_ALTERNATE_FLASH 0x04 : 1 sec. 0x09 : 50% 0x06 : 25%

LIGHT_PARAM4 LIGHT_PARAM5

0x0F 0x00 Toggle

0x0C COMBOFX_LAVA_LAMP 0x04 : 1 sec. 0x00 : 8 lights

0x0D COMBOFX_LASER_CANON 0x03 : Very Fast 0x06 : 25% 0x04 : 4 lights

LIGHT_PARAM4

0x01 : R to L

0x0E COMBOFX_DRAGSTER 0x00 Starter 0x03 10%

0x0F COMBOFX_RUNWAY 0x02 Med 0x03 10% 0x00 Maximum

0x10 COMBOFX_FORMULA1 0x00 Race Start 0x03 10% 0x01 Med

PFx Brick USB & BLE Host ICD Rev 3.37 97

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.13 LIGHT_PARAMx Definitions

This section describes all of the named parameters occupying the LIGHT_PARAMx event action bytes.
Many of the parameters are shared among both single and combination light f/x.

6.2.13.1 DIR_OPTION The DIR_OPTION parameter qualifies the illumination of individual lighting
events based on motor direction. This can be used for directional head and tail lamps on a motor
powered vehicle for example.

Value Description

0x00 No directional behaviour

0x01 Lights illuminate if Motor A is FWD

0x02 Lights illuminate if Motor A is REV

0x03 Lights illuminate if Motor B is FWD

0x04 Lights illuminate if Motor B is REV

0x05 Lights illuminate if Motor C is FWD

0x06 Lights illuminate if Motor C is REV

0x07 Lights illuminate if Motor D is FWD

0x08 Lights illuminate if Motor D is REV

0x09 Odd lights illuminate if Motor A is FWD, even lights if REV

0x0A Odd lights illuminate if Motor B is FWD, even lights if REV

0x0B Odd lights illuminate if Motor C is FWD, even lights if REV

0x0C Odd lights illuminate if Motor D is FWD, even lights if REV

0x0D Odd lights illuminate if Motor A is REV, even lights if FWD

0x0E Odd lights illuminate if Motor B is REV, even lights if FWD

0x0F Odd lights illuminate if Motor C is REV, even lights if FWD

0x10 Odd lights illuminate if Motor D is REV, even lights if FWD

6.2.13.2 FLICKER_ON The FLICKER_ON parameter specifies whether a light should flicker during
its transition from off to on. Any non-zero value will enable this feature.

6.2.13.3 OUT_MASK The OUT_MASK parameter corresponds to an light output mask with bits 7-0
corresponding to light output ports 8-1 respectively. A 1 in a bit position indicates that the corre-
sponding light output port should be used/active.

PFx Brick USB & BLE Host ICD Rev 3.37 98

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.13.4 FADE_TIME The FADE_TIME parameter specifies the absolute duration of intensity fading
when the light transitions to a different intensity levels.

Value Definition Value Definition

0x00 No Fade 0x08 1.0 sec

0x01 50 ms 0x09 1.5 sec

0x02 0.1 sec 0x0A 2.0 sec

0x03 0.2 sec 0x0B 2.5 sec

0x04 0.4 sec 0x0C 3.0 sec

0x05 0.5 sec 0x0D 4.0 sec

0x06 0.6 sec 0x0E 5.0 sec

0x07 0.8 sec 0x0F 10.0 sec

6.2.13.5 FADE_FACTOR The FADE_FACTOR parameter specifies the duration (relative to the period
of the light f/x) of intensity fading when the light transitions to a different intensity levels.

Value Definition Value Definition

0x00 No Fade 0x08 40 %

0x01 1 % 0x09 50 %

0x02 5 % 0x0A 75 %

0x03 10 % 0x0B 90 %

0x04 15 % 0x0C 100 %

0x05 20 % 0x0D 150 %

0x06 25 % 0x0E 200 %

0x07 30 % 0x0F 400 %

PFx Brick USB & BLE Host ICD Rev 3.37 99

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.13.6 PERIOD The PERIOD parameter specifies repeating period for many light f/x.

Value Definition Value Definition

0x00 0.1 sec 0x08 2.0 sec

0x01 0.25 sec 0x09 2.5 sec

0x02 0.5 sec 0x0A 3.0 sec

0x03 0.75 sec 0x0B 4.0 sec

0x04 1.0 sec 0x0C 5.0 sec

0x05 1.25 sec 0x0D 8.0 sec

0x06 1.5 sec 0x0E 10.0 sec

0x07 1.75 sec 0x0F 20.0 sec

6.2.13.7 PERIOD2 The PERIOD2 parameter specifies repeating period for many light f/x.

Value Definition Value Definition

0x00 0.05 sec 0x08 0.8 sec

0x01 0.1 sec 0x09 0.9 sec

0x02 0.2 sec 0x0A 1.0 sec

0x03 0.3 sec 0x0B 1.25 sec

0x04 0.4 sec 0x0C 1.5 sec

0x05 0.5 sec 0x0D 1.75 sec

0x06 0.6 sec 0x0E 2.0 sec

0x07 0.7 sec 0x0F 3.0 sec

6.2.13.8 TRANSITION The TRANSITION parameter used with the alternating flash effect defines
the transition after the active (flashing) state. It is defined as follows:

Value Description

0x00 toggle light output

0x01 transition to always ON

0x02 transition to OFF

PFx Brick USB & BLE Host ICD Rev 3.37 100

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.13.9 DUTY_CYCLE The DUTY_CYCLE parameter specifies ratio of On/Off intervals for several
periodic light f/x.

Value Definition Value Definition

0x00 1% 0x0A 60%

0x01 2% 0x0B 70%

0x02 5% 0x0C 75%

0x03 10% 0x0D 80%

0x04 15% 0x0E 85%

0x05 20% 0x0F 90%

0x06 25% 0x10 95%

0x07 30% 0x11 98%

0x08 40% 0x12 99%

0x09 50%

6.2.13.10 BURST_COUNT The BURST_COUNT parameter specifies how many consective strobe in-
tervals a LIGHTFX_STROBE_POS/NEG light f/x has. Generally, the strobe intervals are much shorter
than the overall period of the light f/x and are specified with the DUTY_CYCLE parameter.

Value Description

0x00 1 strobe pulse

0x01 2 strobe pulses

0x02 3 strobe pulses

0x03 4 strobe pulses

6.2.13.11 SIZE The SIZE parameter restricts the number of light outputs used for combo light
f/x. Most combo light f/x use up to all 8 light output channels; however, some light f/x can be
scaled to use less light channels. Restricting the size of the combo action makes the remaining light
channels available for other light f/x actions.

Value Description

0x00 8 lights

0x01 7 lights

0x02 6 lights

0x03 5 lights

0x04 4 lights

PFx Brick USB & BLE Host ICD Rev 3.37 101

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.13.12 BAR_STYLE The BAR_STYLE parameter determines the modulation pattern of combo
light f/x such as the sound bar.

Value Description

0x01 Left to Right bar graph

0x02 Right to Left bar graph

0x03 In to Out symmetric bar graph

0x04 Out to In symmetric bar graph

6.2.13.13 TWINSONIC_STYLE The TWINSONIC_STYLE parameter determines the modulation pat-
tern of the Twinsonic emergency flasher combo light f/x.

Value Description

0x00 Single

0x01 Dual

0x02 Aero

0x03 Combo

6.2.13.14 WHELEN_STYLE The WHELEN_STYLE parameter determines the modulation pattern of
the Whelen light bar emergency flasher combo light f/x.

Value Description

0x0 Signal Alert

0x1 Signal Alert Steady

0x2 Comet Flash

0x3 Action Flash 50

0x4 Action Flash 150

0x5 Modu Flash

0x6 Single Flash

0x7 Double Flash

0x8 Triple Flash

0x9 Warning

0xA Random

PFx Brick USB & BLE Host ICD Rev 3.37 102

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.13.15 SWEEP_STYLE The SWEEP_STYLE parameter determines the modulation pattern of
combo light f/x such as linear sweep and bar graph.

Value Description

0x00 Left to Right pattern

0x01 Right to Left pattern

6.2.13.16 TRAFFIC_STYLE The TRAFFIC_STYLE parameter determines the type of traffic light se-
quence to simulate.

Value Description

0x00 Standard

0x01 Standard with flashing green

0x02 European

0x03 Flashing red (NS), flashing yellow (EW)

0x04 Standard with pedestrian crossing

0x05 Standard with flashing green and pedestrian crossing

0x06 European with pedestrian crossing

0x07 Flashing red (EW), flashing yellow (NS)

0x08 International

0x09 International with pedestrian crossing

0x08 International 2

0x09 International 2 with pedestrian crossing

6.2.13.17 SEQ_TIME The SEQ_TIME parameter determines the length of traffic light sequence.

Value Description

0x00 Slow (60 sec)

0x01 Medium (45 sec)

0x02 Fast (30 sec)

0x03 Very Fast (20 sec)

6.2.13.18 SEQ The SEQ parameter determines how the flashing pattern is sequenced on emer-
gency flasher light bars, e.g. alternating left and right, alternating from inside to outside, etc.

Value Description

0x00 Solid

0x01 Left/Right

0x02 In/Out

PFx Brick USB & BLE Host ICD Rev 3.37 103

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.13.19 FLASH_RATE The FLASH_RATE parameter determines flashing rate of emergency flash-
ers.

Value Description

0x00 Slow (60 fpm)

0x01 Medium (90 fpm)

0x02 Fast (120 fpm)

0x03 Very Fast (150 fpm)

6.2.13.20 FAULT_RATE The FAULT_RATE parameter determines the approximate probability of the
broken light flickering.

Value Description

0x00 Rare (5%)

0x01 Occasionally (10%)

0x02 Often (25%)

0x03 Very Often (50%)

6.2.13.21 FAULT_INTENSITY The FAULT_INTENSITY parameter determines the approximate rela-
tive change of intensity of the broken light flickering.

Value Description

0x00 Subtle

0x01 Moderate

0x02 Severe

0x03 Maximum

PFx Brick USB & BLE Host ICD Rev 3.37 104

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.13.22 SOURCE1 The SOURCE1 parameter specifies a combination of internal PFx Brick events
which can trigger a light channel. Each of the values listed can be logically OR-ed together to indicate
multiple items on one light channel.

Value Description

0x01 USB connected

0x02 USB activity

0x04 IR activity

0x08 IR lockout active

0x10 Audio playback active

0x20 BLE connected

0x40 BLE activity

0x80 Flash File System activity

6.2.13.23 SOURCE2 The SOURCE2 parameter specifies a combination of motor channel states
which can trigger a light channel. The indication is only active when the motor channel is operating
at a speed that is not zero. Each of the values listed can be logically OR-ed together to indicate
multiple items on one light channel.

Value Description

0x01 Motor channel A forward

0x02 Motor channel A reverse

0x04 Motor channel B forward

0x08 Motor channel B reverse

0x10 Motor channel C forward

0x20 Motor channel C reverse

0x40 Motor channel D forward

0x80 Motor channel D reverse

6.2.13.24 INVERT The INVERT parameter is used to specify whether the light channel output is
inverted, i.e. an active state is shown with the light off. Normally, an active state is shown with the
light on. When INVERT is zero, the indicator is normal, i.e. active=on. When set to a non-zero value,
the indicator is inverted, i.e. active=off.

6.2.13.25 BRIGHTNESS A numeric value specifying light intensity. The valid range is 0 to 255
corresponding to minimum and maximum brightness respectively.

PFx Brick USB & BLE Host ICD Rev 3.37 105

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.13.26 DRAGSTER_STYLE The dragster starting lights can operate in one of the 3 folloing styles:

Value Description

0x00 Standard countdown to green

0x01 Pro countdown to green 0.5 sec

0x02 Pro countdown to green 0.4 sec

6.2.13.27 F1_STYLE The Formula 1 combo light effects can operate in a variety of styles which
correspond to the different operational phases of a typical F1 race. The F1 styles are defined as
follows:

Value Description

0x00 Race start countdown

0x01 Training countdown

0x02 Race break / caution

0x03 Training start

0x04 Training break

0x05 Training end

6.2.13.28 RUNWAY_RATE The runway approach flasher lights can operate with flashing rates de-
fined as follows:

Value Description

0x00 Steady - no flashing

0x01 Slow

0x02 Med

0x03 Fast

6.2.13.29 RUNWAY_BRIGHT The runway approach lights illuminate with a static brightness level
under the animating flashing effect. The static brightness level is defined by this parameter as
follows:

Value Description

0x00 Maximum

0x01 Med

0x02 Low

0x03 Minimum

PFx Brick USB & BLE Host ICD Rev 3.37 106

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.14 SOUND_FX_ID
01234567

12 SOUND_FX_ID

Sound effects are actions to playback a specific sound “file” stored in flash memory. Sounds are
stored in flash memory and are pre-loaded by the host PFX Application. Polyphonic mixing of sounds
is the default behaviour so that sound f/x can be combined realistically. The SOUND_FX_ID encodes
the sound f/x actions as follows:

ID MNEMONIC Description

0x00 SOUNDFX_NONE No audio effect

0x01 SOUNDFX_INC_VOLUME Increase master volume one step

0x02 SOUNDFX_DEC_VOLUME Decrease master volume one step

0x03 SOUNDFX_SET_VOLUME Set volume to a specific step

0x04 SOUNDFX_PLAY_ONCE Play sound file one time

0x05 SOUNDFX_PLAY_CONTINUOUS Play sound file continuously (effect can be toggled)

0x06 SOUNDFX_PLAY_NTIMES Play sound file a specified number of times

0x07 SOUNDFX_PLAY_DURATION Loop sound file playback for a specified duration

0x08 SOUNDFX_PLAY_PITCHBEND_MOTOR Play sound file continuous; modulate pitch as a func-
tion of motor speed

0x09 SOUNDFX_PLAY_GATED_MOTOR Play sound file; then silence at a rate proportional to
motor speed (e.g. for ”chuffing” sound)

0x0A SOUNDFX_PLAY_AM_MOTOR Play sound file continuous; modulate volume as a
function of motor speed

0x0B SOUNDFX_STOP Stop playback of specified sound file

0x0C SOUNDFX_PLAY_IDX_MOTOR Play sound files automatically indexed by motor
speed. Allows for realistic simulation of engine
sounds stored in audio files.

0x0D SOUNDFX_PLAY_RAND Play sound file at randomly defined time intervals

PFx Brick USB & BLE Host ICD Rev 3.37 107

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.15 SOUND_FILE_ID
01234567

13 SOUND_FILE_ID

The SOUND_FILE_ID is the file ID of a sound file stored in the PFx Brick file system.

6.2.16 Sound F/X Notes

6.2.16.1 Indexed Motor/Engine Sounds (SOUNDFX_PLAY_IDX_MOTOR) One of the more sophis-
ticated sound playback behaviours for the PFx Brick is the automatic playback of sound files to sim-
ulate engines, motors, prime-movers, etc. This requires specially prepared sound files which can be
reliably looped and/or sequentially played without gaps and acoustically transition smoothly.

A motor sound will typically have different acoustic properties depending on the speed or load of the
motor. For example, as a motor increases or decrease speed or rpm, its pitch will increase/decrease
proportionally to its speed. In order to simulate the sound of the motor, the PFx Brick can loop up
to 8 different sound file loops representing the sound of the motor at each speed or power level
called “notches”. In the PFx Brick configuration, the number of power notches can be specified
as well as the speed level between each notch. Details of this configuration can be found in the
PFX_CMD_SET_CONFIG section.

For maximum fidelity, the sound of the motor transitioning between each power notch (accelerating
and/or decelerating) can be represented with a dedicated sound file for each transition. Lastly,
dedicated sound files for a motor startup and shutdown sound can also be specified.

In order to designate sound files stored on the PFx Brick for use with SOUNDFX_PLAY_IDX_MOTOR
sound effect, the files have special attributes set in the file’s directory listing. In particular, the
lower byte of the User Attributes field of the directory entry has special bits which tag the file as
follows:

01234567

Reseved Loop Type Loop Index Sample
Size

Sample
Rate

Using this scheme, the sound files that can be specified for motor speed indexed playback can be
summarized as follows:

PFx Brick USB & BLE Host ICD Rev 3.37 108

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

File User Attributes[7:0] Loop
Type

Loop
Index

Description

Notch 1 Loop X010 00XX [0x20] 01 000 Loop for minimum speed

Notch 2 Loop X010 01XX [0x24] 01 001 Loop for speed notch 2

Notch 3 Loop X010 10XX [0x28] 01 010 Loop for speed notch 3

Notch 4 Loop X010 11XX [0x2C] 01 011 Loop for speed notch 4

Notch 5 Loop X011 00XX [0x30] 01 100 Loop for speed notch 5

Notch 6 Loop X011 01XX [0x34] 01 101 Loop for speed notch 6

Notch 7 Loop X011 10XX [0x38] 01 110 Loop for speed notch 7

Notch 8 Loop X011 11XX [0x3C] 01 111 Loop for speed notch 8

Accel 1-2 X100 00XX [0x40] 10 000 Sound transition from notch 1 to 2

Accel 2-3 X100 01XX [0x44] 10 001 Sound transition from notch 2 to 3

Accel 3-4 X100 10XX [0x48] 10 010 Sound transition from notch 3 to 4

Accel 4-5 X100 11XX [0x4C] 10 011 Sound transition from notch 4 to 5

Accel 5-6 X101 00XX [0x50] 10 100 Sound transition from notch 5 to 6

Accel 6-7 X101 01XX [0x54] 10 101 Sound transition from notch 6 to 7

Accel 7-8 X101 10XX [0x58] 10 110 Sound transition from notch 7 to 8

Startup X101 11XX [0x5C] 10 111 Startup sound

Decel 2-1 X110 00XX [0x60] 11 000 Sound transition from notch 2 to 1

Decel 3-2 X110 01XX [0x64] 11 001 Sound transition from notch 3 to 2

Decel 4-3 X110 10XX [0x68] 11 010 Sound transition from notch 4 to 3

Decel 5-4 X110 11XX [0x6C] 11 011 Sound transition from notch 5 to 4

Decel 6-5 X111 00XX [0x70] 11 100 Sound transition from notch 6 to 5

Decel 7-6 X111 01XX [0x74] 11 101 Sound transition from notch 7 to 6

Decel 8-7 X111 10XX [0x78] 11 110 Sound transition from notch 8 to 7

Shutdown X111 11XX [0x7C] 11 111 Shutdown sound

The process of preparing the PFx Brick for this sound effect can be summarized as follows:

1. Use the PFX_CMD_SET_CONFIG command to set the Notch Count for the desired number of
fixed power notches to simulate (1 to 8)

2. Use the PFX_CMD_SET_CONFIG command to also set the speed boundaries between the power
notches. These boundaries must be set in monotonically increasing order.

3. Load all of the desired audio files corresponding to the motor speed loops on to the PFx Brick
file system.

4. Use the PFX_CMD_FILE_DIR command with a request type of 0x0A (set masked attributes with
ID) to set attributes of each file. For example, to configure a file with ID 0x55 to be a loop
file for notch 7, then the PFX_CMD_FILE_DIR command is as follows: 0x45 0x0A 0x55 0x00
0x38 0x00 0x7C The 0x007C is convenient mask so that only bits associated with the Loop
Type and Loop Index are set, i.e. 0x0038.

PFx Brick USB & BLE Host ICD Rev 3.37 109

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.17 SOUND_PARAMx
01234567

14 SOUND_PARAM1

15 SOUND_PARAM2

Some sound f/x actions have associated parameters and are encoded as follows:

ID MNEMONIC SOUND_PARAM1 SOUND_PARAM2

0x00 SOUNDFX_NONE

0x01 SOUNDFX_INC_VOLUME

0x02 SOUNDFX_DEC_VOLUME

0x03 SOUNDFX_SET_VOLUME VOLUME

0x04 SOUNDFX_PLAY_ONCE RETRIGGER RELVOLUME

0x05 SOUNDFX_PLAY_CONTINUOUS RELVOLUME

0x06 SOUNDFX_PLAY_NTIMES REPEAT_COUNT RELVOLUME

0x07 SOUNDFX_PLAY_DURATION DURATION RELVOLUME

0x08 SOUNDFX_PLAY_PITCHBEND_MOTOR MOTOR_OUTPUT GAIN

0x09 SOUNDFX_PLAY_GATED_MOTOR MOTOR_OUTPUT GAIN

0x0A SOUNDFX_PLAY_AM_MOTOR MOTOR_OUTPUT GAIN

0x0B SOUNDFX_STOP

0x0C SOUNDFX_PLAY_IDX_MOTOR MOTOR_OUTPUT IDX_OPTIONS

0x0D SOUNDFX_PLAY_RAND PROBABILITY

PFx Brick USB & BLE Host ICD Rev 3.37 110

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.18 SOUND_PARAMx Definitions

6.2.18.1 DURATION The DURATION parameter specifies a fixed time interval used by some f/x.

Value Definition Value Definition

0x0 0.5 sec 0x8 15 sec

0x1 1.0 sec 0x9 20 sec

0x2 1.5 sec 0xA 30 sec

0x3 2.0 sec 0xB 45 sec

0x4 3.0 sec 0xD 60 sec

0x5 4.0 sec 0xD 90 sec

0x6 5.0 sec 0xE 2 min

0x7 10 sec 0xF 5 min

6.2.18.2 RETRIGGER If an event to playback the same file occurs while the file is playing, the
RETRIGGER parameter specifies which action should be taken as follows:

0 = Toggle playback on/off
1 = Restart playback from the beginning of the file

6.2.18.3 REPEAT_COUNT A numeric value specifying the number of times to repeat audio playback.
The valid range is 1 to 100.

6.2.18.4 VOLUME A numeric value specifying audio volume. The valid range is 0 to 255 corre-
sponding to minimum and maximum volume respectively.

6.2.18.5 RELVOLUME 2’s complement 0x8 ~ 0x7 corresponding to a relative volume level
expressed as a gain/attenuation factor in dB from the current playback volume.

6.2.18.6 GAIN The GAIN parameter corresponds to the gain or amount of influence motor speed
has on the modulation. The valid range is -100 to 100, where negative values define modulation
effect in the opposite sense to motor speed, e.g. audio volume which decreases with increasing
motor speed.

6.2.18.7 MOTOR_OUTPUT The MOTOR_OUTPUT parameter specifies which motor channel is used to
modulate a sound f/x. Motor channels A, B, C, and D are specified as 0x0, 0x1, 0x2, and 0x3
respectively.

If the MOTOR_OUTPUT parameter is used with the SOUNDFX_PLAY_IDX_MOTOR sound Fx, then bit 2 of
MOTOR_OUTPUT can specify whether the desired motor channel’s target or current speed is used to
determine the index of the sound file to play.

If MOTOR_OUTPUT[2] = 0 then the target speed is used, if MOTOR_OUTPUT[2] = 1 then the current
speed is used.

PFx Brick USB & BLE Host ICD Rev 3.37 111

6.2 Action Encoding 6 EVENT/ACTION DATA STRUCTURES

6.2.18.8 IDX_OPTIONS The IDX_OPTIONS parameter customizes the behaviour of the SOUNDFX_PLAY_IDX_MOTOR
sound Fx. The IDX_OPTIONS parameter is defined as follows:

0123

Startup Sound
Override

Play Startup
Shutdown Volume Modulation

Startup Sound Override allows any changes in motor speed to interrupt the playback of startup
sounds. This is a useful option to avoid waiting for a lengthy startup sound to finish. If set to 1,
motor speed changes will halt playback of the startup sound, and immediately start operational
motor sounds. If not set (0), the startup sound file will playback to completion before responding
to any motor speed changes for sound playback.

Play Startup Shutdown specifies whether or not sound files representing engine startup and shut-
down sounds should be played when the SOUNDFX_PLAY_IDX_MOTOR sound Fx is toggled on or off. If
set to 1, sound files representing the startup and shutdown sounds should be pre-loaded into the
file system with the correct corresponding reserved file IDs.

Volume Modulation specifies if any volume modulation should also be applied to motor indexed
sound playback. This will allow for a variable amount of loudness to be simulated corresponding to
engines which sound louder at higher speeds.

0x0 = no volume modulation
0x1 = light modulation
0x2 = medium modulation
0x3 = heavy modulation

6.2.18.9 PROBABILITY The PROBABILITY parameter specifies the approximate probability of play-
ing a specified sound file when used with the SOUNDFX_PLAY_RAND sound Fx. The PROBABILITY pa-
rameter is specified as follows:

0x0 = rare
0x1 = occasional
0x2 = often
0x3 = very often

PFx Brick USB & BLE Host ICD Rev 3.37 112

7 NOTIFICATIONS

7 Notifications

The PFx Brick implements an optional notification mechanism to asynchronously send messages to
a connected host. These notification messages operate on a subscription model whereby the host
indicates which combination of notifications it wants to receive. After a command has been issued
to subscribe to notifications, the PFx Brick will then send messages corresponding to the desired
notification events. The notifications can be enabled or disabled at any time by the host.

The specify which notifications are desired to be sent, a logical-OR combination of bit flags is used.
This allows for any desired combination of notifications to be sent to the host as required. The flags
to specify notifications are defined as follows:

ID MNEMONIC Description

0x01 PFX_NOTIFICATION_AUDIO_PLAY_DONE When any audio channel reaches the end
of its playback interval, a notification is
sent with a parameter indicating which au-
dio file ID ended playback.

0x02 PFX_NOTIFICATION_AUDIO_PLAY When an audio channel begins playback, a
notification is sent indicating which audio
file ID is starting playback.

0x04 PFX_NOTIFICATION_MOTORA_CURR_SPD Periodic notifcations are sent indicating
the current speed of motor channel A

0x08 PFX_NOTIFICATION_MOTORA_STOP A notification is sent when motor channel
A stops

0x10 PFX_NOTIFICATION_MOTORB_CURR_SPD Periodic notifcations are sent indicating
the current speed of motor channel B

0x20 PFX_NOTIFICATION_MOTORB_STOP A notification is sent when motor channel
B stops

0x40 PFX_NOTIFICATION_TO_BLE Instructs the PFx Brick to send notifica-
tions to the Bluetooth LE interface

0x80 PFX_NOTIFICATION_TO_USB Instructs the PFx Brick to send notifica-
tions to the USB interface

For example, if a BLE connected host wants to receive notifications for audio stop events and motor
channel A and B speed changes, then the command message would be as follows:

0 1

0x60 0x55

to disable notifications completely, the following command message is used:
0 1

0x60 0x00

PFx Brick USB & BLE Host ICD Rev 3.37 113

8 MEMORY MAP

8 Memory Map

The PFx Brick has non-volatile flash memory storage used to store its configuration and audio files.
Typically, the PFx Brick can come configured with 4, 8, or 16 MBytes of flash storage. This is parti-
tioned into the following regions:

4 MB 8 MB 16 MB

Address Memory Space Address Memory Space Address Memory Space

0x000 000 File system 0x000 000 File system 0x000 000 File system

...

0x3FB FFF 0x7FB FFF 0xFFB FFF

0x3FC 000 FAT Sector Map 0x7FC 000 FAT Sector Map 0xFFC 000 FAT Sector Map

0x3FD FFF 0x7FD FFF 0xFFD FFF

0x3FE 000 FAT Directory 0x7FE 000 FAT Directory 0xFFF 000 FAT Directory

0x3FE FFF 0x7FE FFF 0xFFE FFF

0x3FF 000 Config space 0x7FF 000 Config space 0xFFF 000 Config space

0x3FF 1FF 0x7FF 1FF 0xFFF 1FF

0x3FF 200 Event LUT 0x7FF 200 Event LUT 0xFFF 200 Event LUT

0x3FF 9FF 0x7FF 9FF 0xFFF 9FF

0x3FF A00 Reserved 0x7FF A00 Reserved 0xFFF A00 Reserved

0x3FF FFF 0x7FF FFF 0xFFF FFF

PFx Brick USB & BLE Host ICD Rev 3.37 114

9 FLASH MEMORY FILE SYSTEM

9 Flash Memory File System

Themajority of the capacity of PFx Brick flashmemory is dedicated to storing a simple block-oriented
file system. This file system allows files of any content to be transfered to and from the connected
USB host. The primary function of this file system is to store audio files; however, it is general
purpose enough to be used for storage of any file type for future applications.

Access to the file system is provided by a set of conventional file I/O methods such as open, close,
read, write, etc. Before any file can be accessed, it must be opened. This will ensure that pointers to
the file data content for read and write operations are initialized to a known state. Open files must
also be closed when the host has completed any read or write tasks. This ensures any buffered
data is safely committed back to the file system and the state of file handles and directories remain
consistent.

The details of allocating files across the flash memory is completely abstracted and managed by the
file system. The file system automatically allocates space for new files, performs garbage collec-
tion on freed/deleted files, pre-erases blocks of flash memory for instant allocation, and arbitrates
access to the flash memory from all sources.

9.1 Flash Directory Structure

A file system directory contains a list of the files stored as well as several fields of meta data asso-
ciated with each file. The format of individual flash directory entries is as follows:

0 1 2 3 4 5 6 7 8 9

File ID[15:0] Flags First
Sector[15:0] File size[31:0]

10 11 12 13 14 15 16 17 18 19

User
Attributes[15:0] User Data1[31:0] User Data2[31:0]

20 21 22 23

CRC32[31:0]

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Left justified 32 character filename UTF-8 encoded

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

Left justified 32 character filename UTF-8 encoded

9.1.1 File ID

The File ID is a unique identifier which is used to identify and distiguish files. It can have any value
in the range 0x0000 to 0x7FFE. An identifier value of 0xFFFF signifies an empty directory entry.
Note: that all file access commands described in this ICD use the lower 8-bits of the File ID only.
The File ID is stored as a 16-bit value; however, access requests are made using the lower 8-bits.

PFx Brick USB & BLE Host ICD Rev 3.37 115

9.1 Flash Directory Structure 9 FLASH MEMORY FILE SYSTEM

Therefore, File ID values should be specified as values between 0x00 and 0xFE. The use of the full
16-bits of File ID may be exploited in future applications.

9.1.2 Flags

The Flags field is used internally within the file system during file operations and is not normally
useful to connected host applications.

9.1.3 First Sector

The First Sector field points to the location in flash memory of the first sector of the associated
file’s payload data. This sector location is also used by the file system as a pointer to the beginning
of File Allocation Table (FAT) sector chain belonging to the file. Sectors are nominally 4096 byte
containers and file data is stored in an integral number of these 4k sectors.

9.1.4 File Size

The File Size reports the total number of bytes contained in the file.

9.1.5 User Attributes

The User Attributes field stores file specific meta data as follows:

0123456789101112131415

File Format[15:8] User defined[7:0]

The upper byte stores the File Format identifier. Rather than using a typical dotted string extension
to the filename, the file format can be optionally stored in the User Attributes[15:8] field using
a code which maps the file format. The current list of defined file format extensions are as follows:

Value Definition Value Definition

0x00 WAV 0x10 TXT

0x01 FLAC 0x11 HEX

0x02 MP3 0x20 ZIP

0x03 OGG 0x21 GZ

0x04 AU 0x50 IMG

0x05 GSM

PFx Brick USB & BLE Host ICD Rev 3.37 116

9.1 Flash Directory Structure 9 FLASH MEMORY FILE SYSTEM

The user defined bits of User Attributes can be used by the host application and firmware in any
agreed upon way. Currently, the User Attributes field has definitions when associated with WAV
files and with text files used for scripting.

WAV File User Attributes

Currently, for the storage of audio WAV files the User Attributes[7:0] bits have the following
definitions:

01234567

Reserved Loop Type Loop Index Sample
Size

Sample
Rate

where:

Bit Definition

0 Sample rate : 0=22.050 kHz, 1=11.025 kHz

1 Sample size : Quantization 0=16 bits per sample, 1=8 bits per sample

4:2 Loop Index when Loop Type[1:0] is not zero

6:5 Loop Type where

01 = Fixed motor/engine loop sound at power notch

10 = Accelerating motor sound between power notches

11 = Decelerating motor sound between power notches

A more detailed description of setting these file attributes for use with motor speed indexed sound
effects can be found in Sound F/X Notes in the Action Encoding section.

Script File User Attributes

When a text file is specifically intended to be used for scripting, then an optional value of 0x80 can
be assigned to the User Attributes field. This is not strictly required for execution of script files;
however it can be a useful marker for host applications to easily distinguish ordinary text files from
script files.

9.1.6 User Data1/2

The User Data1 and User Data2 fields are user defined 32-bit containers for any meta data that ei-
ther the host or firmware application needs to store conveniently with the file directory entry. These
fields are currently defined when used to store audio WAV files as follows:

Field Definition

User Data1 Number of sample bytes in audio WAV file starting at data chunk offset

User Data2 Offset in bytes from the start of the file to sample byte data

Note that the PFx Brick firmware automatically fills the contents of User Attributes, User Data1,
and User Data2 automatically when a WAV audio file is written to the file system.

PFx Brick USB & BLE Host ICD Rev 3.37 117

9.2 File System Access Commands 9 FLASH MEMORY FILE SYSTEM

9.1.7 CRC32

The CRC32 field is a 32 bit hash code automatically generated by the PFx Brick after a file has been
written to the file system. This hash code is automatically computed along the entire stream of data
bytes of the file. This code can be a useful integrity check of the data that is actually written to
the file system. It can also be used loosely as a unique hashing code to verify the identity of a file;
however, CRC32 codes are prone to “code collision” for hashing purposes when a large number of
files need to be compared.

9.1.8 Filename

The filename field can be used to store a filename containing up to 32 UTF-8 characters. The file-
name is not used for file directory lookup as with other traditional file systems; rather the File ID
field is used for lookup.

9.2 File System Access Commands

The file system is accessed by the host with a group of commands supporting many of the conven-
tional file access tasks. Files are accessed by first opening a handle to a file specified by its unique
File ID. When a handle has been obtained, read and write operations may be performed on the file.
Finally, after file I/O has been completed, the file handle can be closed. Note that the file handle is
not a physical token which is passed to the host, it is effectively a virtual state. When a handle is
opened, the PFx file system initializes read and write pointers to a file and applies any subsequent
read or write requests to the requested file. It will continue in this state until the handle is closed.
The handle is logically associated with the USB interface instance that the host uses to connect to
the PFx Brick. There can be up to 4 USB HID interface sessions available and one virtual file handle
is associated with each USB HID interface. Connecting with multiple interface sessions allows for a
potential increase in transfer bandwidth between the PFx Brick and the host.

The PFX_CMD_FILE_OPEN command opens a virtual file handle to a file for host file I/O. If the specified
file does not exist, then it is created by reserving a directory entry for the file and empty storage
sectors are allocated for the file. Unlike other file systems, the creation of a new file requires that
the file size be known in advance for pre-allocation of sectors in the FAT.

Another consideration when using the file system is that files are currently “Write Once Only”. That
is, when a file is written, it must not be changed. If changes are required, then the file should be
deleted and a new file created to replace it. This differs from other file systems that support arbi-
trary write access modes to a file. The reason for this restriction relates to the requirement of flash
memory to be erased before it can be written. The file system performs routine garbage collection
by pre-erasing all memory sectors that have been marked as “free”. This lets the file system easily
pre-allocate new files immediately for writing. It is possible that the file system may evolve with ad-
ditional buffering capabilities to support more arbitrary file write schemes; however, this will come
at the cost of additional complexity and performance. Nonetheless, despite this restriction, files can
be written in any arbitrary sequence of full sectors as long as they are written one time and as one
complete sector. Furthermore, write operations should be performed monotonically in increasing
byte order. These considerations will likely not be restrictive since files are typically written sequen-
tially from the beginning. Lastly, read operations have absolutely no restrictions in terms of size and
sequence. Any number of bytes can be read in random access fashion.

The USB host commands to access the file system are summarized as follows (details for each
command can be found in the Host Command Messages reference section):

PFx Brick USB & BLE Host ICD Rev 3.37 118

9.2 File System Access Commands 9 FLASH MEMORY FILE SYSTEM

Command Definition

PFX_CMD_FILE_OPEN Open virtual file handle

PFX_CMD_FILE_CLOSE Close file handle

PFX_CMD_FILE_READ Read data from file to host

PFX_CMD_FILE_WRITE Write host data to file

PFX_CMD_FILE_SEEK Move file pointer to a specified byte offset with re-
spect to the beginning of a file

PFX_CMD_FILE_DIR Query the file system for directory information or
make changes to directory data

PFX_CMD_FILE_REMOVE Remove a file from the file system

PFX_CMD_FILE_FORMAT_FS Erase all files and reinitialize the file system directory
and file allocation table

PFX_CMD_FILE_GET_FS_STATE Reports low-level status information on the file sys-
tem

PFx Brick USB & BLE Host ICD Rev 3.37 119

10 PRODUCT ID CODES & DESCRIPTORS

10 Product ID Codes & Descriptors

Part
Number

Product Descriptor Description

0x1201 PFx Brick alpha First pre-production prototype PFx Brick with 2x motor
channels (using the DRV8839), 8x light channel with dis-
crete pico light connectors, and sound.

0x1202 PFx Brick beta Second pre-production prototype PFx Brick with 2x motor
channels (using the DRV8835), 8x light channels on the
standard 10-pin lighting dock connector, and sound.

0x1203 PFx Brick gamma Third pre-production prototype with 2x motor channels
(using the DRV8833), 8x light channels on the standard
10-pin lighting dock connector, and sound.

0x1204 PFx Brick delta IR Fourth pre-production prototype with 2x motor channels
(using the DRV8833), 8x light channels on the standard
10-pin lighting dock connector, and sound.

0x9204 PFx Brick delta Fourth pre-production prototype with 2x motor channels
(using the DRV8833), Bluetooth interface, 8x light chan-
nels on the standard 10-pin lighting dock connector, and
sound.

0x2204 PFx Brick IR 4 MB Production version of the 4 MB PFx Brick IR with 2x motor
channels, 8x light channels, and sound.

0x2208 PFx Brick IR 8 MB 8 MB PFx Brick IR

0x2216 PFx Brick IR 16 MB 16 MB PFx Brick IR

0xA204 PFx Brick 4 MB Production version of the 4MB PFx Brick with Bluetooth in-
terface, 2x motor channels, 8x light channels, and sound.

0xA208 PFx Brick 8 MB 8 MB PFx Brick

0xA216 PFx Brick 16 MB 16 MB PFx Brick

0x1701 PFXLite alpha Pre-production economy PFx Brick with light f/x only (8x
channels with 10-pin dock connector). It has no plastic
enclosure, but has stud mounting holes for integration
into a model.

0x2702 PFXLite Production economy PFx Brick with light f/x only.

0x1401 PFx Brick Pro alpha Pre-production PFx Brick with 4x motor channels, 8x light
channels, and sound.

0x2404 PFx Brick Pro 4 MB Production 4 MB PFx Brick with 4x motor channels, 8x
light channels, and sound.

0x2408 PFx Brick Pro 8 MB 8 MB PFx Brick Pro

0x2416 PFx Brick Pro 16 MB 16 MB PFx Brick Pro

PFx Brick USB & BLE Host ICD Rev 3.37 120

11 STATUS CODES

11 Status Codes

Code MNEMONIC

0x00 PFX_STATUS_NORMAL

0x33 PFX_STATUS_NORMAL_PENDING

0x55 PFX_STATUS_SERVICE

0x53 PFX_STATUS_SERVICE_PENDING

0x5B PFX_STATUS_SERVICE_BUSY

PFx Brick USB & BLE Host ICD Rev 3.37 121

12 ERROR CODES

12 Error Codes

Several USB commandmessages include status feedback bytes whichmay report error or status con-
ditions. Note that there are some error codes which can refer to more than one condition; however,
these codes are used in different contexts and therefore will not conflict. For example, some codes
reported by the PFX_CMD_GET_STATUS message will be different than the PFX_CMD_FILE_OPEN
message. The error codes are summarized as follows:

Code MNEMONIC

0x00 PFX_ERR_NONE

0x00 PFX_ERR_VERIFY_PASS

0x01 PFX_ERR_VERIFY_FAIL

0x00 PFX_ERR_TRANSFER_REQUEST_OK

0x02 PFX_ERR_TRANSFER_FILE_EXISTS

0x03 PFX_ERR_TRANSFER_TOO_BIG

0x04 PFX_ERR_TRANSFER_INVALID

0x04 PFX_ERR_SPKR_SHORTCIR_FAULT

0x06 PFX_ERR_TRANSFER_CRC_MISMATCH

0x08 PFX_ERR_DAC_OVERTEMP_FAULT

0x0B PFX_ERR_BLE_FAULT

0x05 PFX_ERR_TRANSFER_FILE_NOT_FOUND

0x06 PFX_ERR_TRANSFER_CRC_MISMATCH

0x07 PFX_ERR_TRANSFER_BUSY_WAIT

0x08 PFX_ERR_TRANSFER_LUT_FULL

0xFF PFX_ERR_TRANSFER_ERROR

0x80 PFX_ERR_UPGRADE_FAIL

0x0A PFX_ERR_TRAP_BROWNOUT_RST

0x10 PFX_ERR_TRAP_CONFLICT

0x20 PFX_ERR_TRAP_ILLEGAL_OPCODE

0x40 PFX_ERR_TRAP_CONFIG_MISMATCH

PFx Brick USB & BLE Host ICD Rev 3.37 122

12 ERROR CODES

File system access commands have a several error response codes usually passed back as a status
byte in a response packet. These error codes are summarized as follows:

Status Code Description

0x00 PFX_ERR_NONE file system operation ok

0xF0 PFX_ERR_FILE_SYSTEM_ERR overall file system error

0xF1 PFX_ERR_FILE_INVALID file request was invalid or file is invalid

0xF2 PFX_ERR_FILE_OUT_OF_RANGE file access request is outside of file size

0xF3 PFX_ERR_FILE_READ_ONLY file creation or write access denied

0xF4 PFX_ERR_FILE_TOO_BIG requested file creation is too big

0xF5 PFX_ERR_FILE_NOT_FOUND requested file ID is not found

0xF6 PFX_ERR_FILE_NOT_UNIQUE requested file creation ID is already used

0xF7 PFX_ERR_FILE_LOCKED_BUSY file system is locked or busy

0xF8 PFX_ERR_FILE_SYSTEM_FULL file system full

0xF9 PFX_ERR_FILE_SYSTEM_TIMEOUT file access operation time out

0xFA PFX_ERR_FILE_INVALID_ADDRESS file system request resulted in an invalid memory
address

0xFB PFX_ERR_FILE_NEXT_SECTOR file system FAT points to an invalid sector

0xFC PFX_ERR_FILE_ACCESS_DENIED file system operation denied or prohibited

0xFF PFX_ERR_FILE_EOF file access has reached the end of the file

PFx Brick USB & BLE Host ICD Rev 3.37 123

	Introduction
	PFx Brick USB HID Device Class
	PFx Brick Vendor and Product ID (VID/PID)
	Message Packet Format

	Bluetooth Low Energy
	Message Packet Format

	Host Command Messages
	!PFXCMDGETICDREV!
	!PFXCMDGETSTATUS!
	!PFXCMDSETFACTORYDEFAULTS!
	!PFXCMDGETCONFIG!
	!PFXCMDSETCONFIG!
	!PFXCMDGETCURRENTSTATE!
	!PFXCMDGETNAME!
	!PFXCMDSETNAME!
	!PFXCMDGETEVENTACTION!
	!PFXCMDSETEVENTACTION!
	!PFXCMDTESTACTION!
	!PFXCMDSENDEVENT!
	!PFXCMDINCVOLUME!
	!PFXCMDDECVOLUME!
	!PFXCMDSETAUDIOEQ!
	!PFXCMDLOADFIRMWAREFILE!
	!PFXCMDLOADFIRMWAREDATA!
	!PFXCMDLOADFIRMWAREDONE!
	!PFXCMDREADBOOTCONFIG!
	!PFXCMDREBOOT!
	!PFXCMDFILEOPEN!
	!PFXCMDFILECLOSE!
	!PFXCMDFILEREAD!
	!PFXCMDFILEWRITE!
	!PFXCMDFILESEEK!
	!PFXCMDFILEDIR!
	!PFXCMDFILEREMOVE!
	!PFXCMDFILEFORMATFS!
	!PFXCMDFILEGETFSSTATE!
	!PFXCMDRUNSCRIPT!
	!PFXCMDSTATUSLED!
	!PFXCMDWRITESPI!
	!PFXCMDREADSPI!
	!PFXCMDWRITEI2C!
	!PFXCMDREADI2C!
	!PFXCMDREADFLASH!
	!PFXCMDGETIRRXSTATUS!
	!PFXCMDGETBTSTATUS!
	!PFXCMDSETBTPOWER!
	!PFXCMDSENDBTUART!
	!PFXCMDRECEIVEBTUART!
	!PFXCMDSETNOTIFCATIONS!
	!PFXMSGNOTIFICATION!

	Scripting Actions
	Loading Scripts
	Executing Scripts
	Event/Action Script Execution
	ICD Message

	Script Syntax
	Comments
	Keywords
	Numeric Values
	Strings

	Command Reference
	Examples

	Event/Action Data Structures
	Event Encoding
	Action Encoding
	!COMMAND!
	!MOTORACTIONID!
	!MOTORMASK!
	!MOTORPARAMx!
	!LIGHTFXID!
	!LIGHTFXID! Single Light Actions
	!LIGHTOUTPUTMASK!
	!LIGHTPFOUTPUTMASK!
	!LIGHTPARAMx! Single Light Actions
	!LIGHTFXID! Combination Light Actions
	Combination Light F/X Notes
	!LIGHTPARAMx! Combination Light Actions
	!LIGHTPARAMx! Definitions
	!SOUNDFXID!
	!SOUNDFILEID!
	Sound F/X Notes
	!SOUNDPARAMx!
	!SOUNDPARAMx! Definitions

	Notifications
	Memory Map
	Flash Memory File System
	Flash Directory Structure
	File ID
	Flags
	First Sector
	File Size
	User Attributes
	User Data1/2
	CRC32
	Filename

	File System Access Commands

	Product ID Codes & Descriptors
	Status Codes
	Error Codes

