
Graph-Sparse Logistic Regression

Alexander LeNail1, Ludwig Schmidt2, Jonathan Li1, Tobias Ehrenberger1, Karen Sachs1, Stefanie Jegelka2, Ernest Fraenkel1

1MIT BE, 2MIT CSAIL

Problem Setup

Variable selection in a linear model:

y = σ(X θ∗)

I Data matrix X ∈ Rn×d

I Unknown parameters θ∗ ∈ Rd

I Binary labels y ∈ {0, 1}n
I σ : R→ R is the logistic function σ(x) = 1

1+e−x

This work: our goal is to select a graph-sparse set of variables.

→ Statistical efficiency: fewer variables for same error.

→ Interpretability: graph-structure in many applications.

Graph sparsity
I Every variable (parameter index) corresponds to a node.

I Selected variables form a connected subgraph.

Graph-sparse Not graph-sparse

Motivation: graph-structed data in biology

Protein expression data with a protein-protein interation network.
Gene or Protein Expression

Patients Labels

Graphical structure 
over features

Graph given by prior knowledge from biology:

Approach

We build on results in compressive sensing for graph-sparse data.

[Huang, Zhang, Metaxas, 2011], [Hegde, Indyk, Schmidt, 2015]

→ We introduce Graph-Sparse Logistic Regression (GSLR).

I Gradient descent on logistic loss.

I Efficient projections onto the graph sparse set.

1: function GSLR(X , y , G , s, η, k)
2: Let f (X , y , θ) be the logistic loss.
3: θ̂0 ← 0
4: for i ← 0, . . . , k − 1 do
5: θ̃i+1 ← θ̂i − η · ∇f (X , y , θ̂i)
6: θ̂i+1 ← PG ,s(θ̃

i+1) . Graph-sparse projection

7: return θ̂k

Efficient Graph-Sparse Projections

Projection problem: Given b ∈ Rd and a graph-sparse set G, find

Ω∗ = arg min
Ω∈G

‖b − bΩ‖ .

3 5

7

2

6

8

1
0

Input

3 5

7

2

6

8

1
0

Output

We solve approximate versions of the projection problem via
reductions to the prize-collecting Steiner tree problem (PCST).

Objective of PCST: Given a graph with edge costs c and node
prizes π, find a subtree T minimizing c(T ) + π(T ).

7 6

2

5

4

1

8
3

1

2

3
4

5
6

7

8
9

10

11

Input

7 6

2

5

4

1

8
3

1

2

3
4

5
6

7

8
9

10

11

Output

→ Nearly-linear time approximate projections.

Experimental Setup

Since we don’t have the ground truth subgraphs for the real Ovarian
Cancer data, we generate synthetic data by this procedure:
1. Determine µ and Σ from real Ovarian Cancer Proteomics data.
2. Sample from multivariate N (~µ,Σ)
3. Sample perturbation vector ~x :

scheme 1: ~xp = N (0, σ2
p) if p ∈ KEGG, 0 otherwise

scheme 2: ~xp = N (±σp, σ2
p) if p ∈ KEGG, 0 otherwise

4. Translate “positive” samples by perturbation vector

x1

x2

P

Since we know the perturbation vector, we know the ground truth!
We can then evaluate algorithms on the feature selection task.

Experimental Results

We benchmark GSLR against the LASSO by how many of the truly
“perturbed” features each uses in its support.

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

We then use our technique on real Ovarian Cancer data, and find that
the support chosen by GSLR is qualitatively superior.

Conclusion

Source code and experimental code at
https://github.com/fraenkel-lab/gslr

Future Work: Benchmark against related approaches which
incorporate the feature graph.

https://github.com/fraenkel-lab/gslr

