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Variable selection in a linear model: We build on results in compressive sensing for graph-sparse data. Since we don't have the ground truth subgraphs for the real Ovarian
B (X 9*) [Huang, Zhang, Metaxas, 2011], [Hegde, Indyk, Schmidt, 2015] Cancer data, we generate synthetic data by this procedure:
y = 0 1. Determine 1 and X from real Ovarian Cancer Proteomics data.
Data matriy X ¢ R — We introduce Graph-Sparse Logistic Regression (GSLR). 2. Sample from multivariate N (i, 33)
ata matrix X € R" . S
’ . » Gradient descent on logistic loss. 3. Sample perturbation vector x:
» Unknown parameters 6" € R . Efficient projections onto the graph sparse set scheme 1: x, = N(0, O'g) it p € KEGG, 0 otherwise
» Binary labels y € {0,1}" . 5 | scheme 2: x, = N (%0, Ug) if p € KEGG, 0 otherwise
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» 0 : R — R is the logistic function o(x) 4. Translate “positive” samples by perturbation vector

1. function GSLR(X, y, G, s, n, k)
This work: our goal is to select a graph-sparse set of variables. 2 (lg;gt f(X,y,0) be the logistic loss.
- - . 3; 0
— Statistical efficiency: fewer variables for same error. . for i< 0.... k—1do
— Interpretability: graph-structure in many applications. - (9:1:+1 0 _ 7 - VI(X,y, @I)
_ 6 0t < Pe o(0'1) > Graph-sparse projection
Graph sparsity ok |
» Every variable (parameter index) corresponds to a node. : return
» Selected variables form a connected subgraph. \\\ X5
X
Efficient Graph-Sparse Projections
| ] | Since we know the perturbation vector, we know the ground truth!
Projection problem: Given b € R? and a graph-sparse set G, find We can then evaluate algorithms on the feature selection task.
x : o
Graph-sparse Not graph-sparse (1" = arg min H b bQH ' :
QcG Experimental Results

We benchmark GSLR against the LASSO by how many of the truly
“perturbed” features each uses in its support.

Motivation: graph-structed data in biology

Protein expression data with a protein-protein interation network.
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We solve approximate versions of the projection problem via
Graphical . : : .
o e features reductions to the prize-collecting Steiner tree problem (PCST).
Graph given by prior know|edge from b|o|ogy Objective of PCST: Given a graph with edge costs ¢ and node
o @ o prizes m, find a subtree T minimizing ¢(T)+=(T). =« T e
6(74 %\ ATG12
f\ We then use our technique on real Ovarian Cancer data, and find that
7\ e the su hosen by GSLR is qualitativel i
pport chosen by IS qualitatively superior.
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Conclusion

Source code and experimental code at
https:/ /github.com /fraenkel-lab/gslr
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Mo o Future Work: Benchmark against related approaches which
/ — Nearly-linear time approximate projections. incorporate the feature graph.
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https://github.com/fraenkel-lab/gslr

