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Introduction

LME generalization of a linear regression model:

y = Xβ +Zu+ ε, u ∼ N(0,G), ε ∼ N(0,R),

where

y is a vector of dependent variable observations,

X is a (N×p) matrix of “fixed effects” with N observations and p
predictor variables,

β is a vector of “fixed-effects” regression coefficients,

Z is a (N×s) design matrix for the s “random effects” u that are
complementary to β,

ε is the error term,

u and ε are assumed normally distributed and mutually independent,
with variance-covariance matrices G and R respectively.
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Introduction

Fixed effects: variables with expected impacts (effects) on the
dependent/response variable.

Essentially the same as explanatory variables in a standard linear
regression models.

Random effects: typically, grouping factors that we are trying to
control for.

RE are always categorical variables (R cannot treat continuous
variables as random effects).

Often, we are not interested in specific impacts of individual
random effects on the response variable – but we know RE might
be influencing the patterns we see & we want to control for such
processes.
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Introduction

LME generalization of a linear regression model – example:

yi = β0 + β1xi + εi.

If observations i = 1, . . . , N are organized into j = 1, . . . , J relevant
groups, and assuming there are random effects on both β-coefficients,
we may generalize the model into a LME (after re-arranging):

yij = (β0 + u0j) + (β1 + u1j)xij + εij ,

where the combined ij subscript refers to an ith observation that
belongs to a jth group.

In the LME model, u0j and u1j are stochastic deviations from
β-coefficients that are associated with a particular jth group. While
random effects may look like model coefficients, we are only interested
in estimating their variances.
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Introduction
Linear mixed effect model (LME) – data types:

Longitudinal data: repeated measurements are performed on each
individual unit. Several units are sampled. Number of observations may
differ across units.
yti - observation at time t for i-th individual.
yij - ith observation of jth individual (if time aspect not relevant).

Hierarchical data structures: data with two or more groups/levels of
observations. Number of observations may differ across units.
yij - observation for i-th company within j-th region.
yij - observation for i-th student within j-th class.

Combined: We can group observations at three levels (or more):
ytij - measurement at time period t, admin. region i within state j.

Note how indices are ordered (left to right) from individual to highest
level of aggregation. (alternative orderings exist in literature).
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Longitudinal data

N individual CS units are followed over time.

The observation set {yti,xti} denotes some ith individual observed
at a time period t. The number of observations in time may differ
among CS units and observations may occur at different time
points.

Example: For a medical study, we measure child’s weight (plus
other data) at birth and repeatedly over a period of one year. For
some yti observation, index t denotes days from birth. Due to
doctor visit scheduling, children are weighted at different t
“values”. Typically, the number of doctor visits (observations)
differs across children. Children in the study are born on different
dates (say, Jan 2015 - Oct 2019).

Example extends easily to economic environment
(we can follow newly founded companies, etc.).
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Hierarchical data structures

Nested/hierarchical structure of the LME model:

Individual units i (Level 1) are nested

within j groups (Level 2) with group-specific observation sizes nj .

One or more coefficient(s) can vary across groups
(“random effects).

LME: Longitudinal vs. hierarchical data structures:

Essentially, the same nesting/hierarchical framework applies to
longitudinal data and their LME-based analysis:

Observations at time t (Level 1) are nested
within j individual units (Level 2).
If appropriate, individual units can be nested in groups (Level 3) . . .
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Introduction

Mixed models are called “mixed”, because the β-coefficients are
a mix of fixed parameters and random variables

Terms “fixed” and “random” have specific meaning for LMEs:

A fixed coefficient is an unknown constant to be estimated.
A random coefficient varies from “group” to “group”.
By “group”, we mean Level 2 aggregation, if data have 2 levels.
- coefficients vary among schools (Level 2), not within school.
- coeffs. vary across individuals (Level 2), not over time (Level 1).

LME models can have some added complexity:
Multiple levels of nesting
Crossed random effects
Correlations between different random coefficients.

Random coefficients are not estimated, but they can be predicted.
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LME model example

Data:
London Education Authority Junior School Project dataset,
- we have 887 students (i) in 48 different schools (j),
- we want to predict 5th-year math scores.

We may start by ignoring the school grouping and any possible
regressors – we have a trivial model (single-mean model):

math5ij = β0 + εij , i = 1, . . . , nj , j = 1, . . . ,M, εij ∼ N(0, σ2
ε)

where M = 48 and nj differ among schools, math5ij is the
observed math score of i-th student at school j, β0 is the mean
math score across our population (being sampled) and εij is the
individual deviation from overall mean.

Population mean math score & the variance of ε are estimated by
taking their sample counterparts. Any “school effect” is ignored.
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LME model

The school effect (differences among schools) may be incorporated
in the model by allowing the mean of each school to be
represented by a separate parameter (fixed effect)

math5ij = β0j + εij , i = 1, . . . , nj , j = 1, . . . ,M, εij ∼ N(0, σ2
ε)

where β0j is the school-specific mean math score and εij is the
individual deviation from the school-specific mean.

R syntax: lm(math5 ∼ School-1, data=...)
⇒ M = 48 school-specific intercepts are estimated.

Using the terminology of LME, β0j are fixed. Hence:
Estimated intercepts only model (refer to) the specific
sample of schools, while -usually- the main interest is in the
population from which the sample was drawn.
OLS regression does not provide an estimate of the between-school
variability, which is also of central interest.
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LME model

Random effects approach: LME model can solve the above problem by
treating school effects as random variations around population mean.

Ordinary model (with fixed effects) can be reparametrized as:
yij = β0j + εij

yij = β0 + (β0j−β0) + εij ,

Random effect: u0j = β0j − β0 is the school-specific deviation from
overall mean β0. It can be used to replace the the fixed effect β0j :

u0j = β0j − β0 ⇒ β0j = β0 + u0j . Hence:
yij = β0 + u0j + εij .

u0j is a random variable, specific for the j-th school, with zero mean and
unknown variance σ2

u.
u0j is a random effect, associated with the particular sample units
(schools are selected at random from the population).
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LME model

LME model with random effects (on the intercept) is given as:

yij = β0 + u0j + εij , u0j ∼ N(0, σ2
u), εij ∼ N(0, σ2

ε),

and we assume u0j are iid and independent from εij .

Observations within the same school share the same random effect
u0j , hence are positively “correlated” with ICC = σ2

u /(σ2
u + σ2

ε)
(see ICC discussion on a separate slide).

This random effects model has three parameters: β0, σ
2
u and σ2

ε .
(regardless of M , the number of schools).

Note that the random effect u0j “looks like” a coefficient, but we
are only interested in estimating σ2

u.

However, upon observed data (and estimated model), we do make
predictions using fitted values of ûj .
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LME model

Exogenous regressors can be used in LMEs (like in LRMs).
For example, math5 grades depend on math3 (3rd year grades).

math5ij = (β0 + u0j) + β1 math3ij + εij

alternative notation:

math5ij = β0 + β1 math3ij + u0j + εij

alternative notation:

Level 1 : math5ij = β0j + β1 math3ij + εij

Level 2 : β0j = β0 + u0j

Intercept has a random effect, given the u0j element.
Slope of the regression line for each school is fixed at β1.
. . . math3 has a fixed effect.
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LME model: ICC

ICC: Intra class correlation in a LME regression model:

ICC = σ2
u

σ2
u + σ2

ε

Describes how strongly units in the same group are “correlated”.

While interpreted as a type of correlation, ICC operates on groups,
rather than paired observations.

See link for relation between ICC and actual correlation.
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LME model: ICC

ICC: Intra class correlation in a LME regression model:

ICC = σ2
u

σ2
u + σ2

ε

Example: math5ij = β0 + β1 math3ij + u0j + εij ,

where σ2
u = var(u0j) and σ2

ε = var(εij).

ICC: “correlation” between math5 observations (randomly chosen) within
a given school.

ICC has another useful interpretation: Say, ICC = 0.6 in our math5ij

example. Hence, differences between schools explain 60% of “remaining”
variance – i.e. after the variance explained by fixed effects (i.e. by
math3ij) is subtracted.
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LME model: random effects on intercept and slope

If teaching is different from school to school, it would make sense to have
different slopes for each of the schools.

Instead of using fixed effects on slopes (interaction terms math3:School),
we use random slopes: u1j = β1j − β1.

math5ij = (β0 + u0j) + (β1 math3ij + u1j math3ij) + εij ,

alternative notation:

math5ij = β0 + β1 math3ij︸ ︷︷ ︸
fixed

+u0j + u1j math3ij︸ ︷︷ ︸
random

+εij ,

We can test whether this extra complexity is justified.
u0j and u1j are often correlated, their independence can be tested.
Fitted values of math5ij can be produced, along with û0j and û1j .
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LME: matrix form re-visited

LME model:

y = Xβ +Zu+ ε u ∼ N(0,G) ε ∼ N(0,R),

where:
X is a (n×k) matrix, k is the number of fixed effects,
Z is a (n×p) matrix, p is the number of random effects,
G is a (p×p) variance-covariance matrix of the random effects,
R is a (n×n) variance-covariance matrix of errors.

Independence between u and ε is assumed,
Often, R = σ2

εIn is assumed,
G is diagonal if random effects are mutually independent.

Estimation: MLE, RMLE, penalized least squares
https://www.jstatsoft.org/article/view/v067i01/0
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LME: R syntax

For a single random effect (on the intercept):

{nlme} package:

lme( y ∼ x + z, random = ∼ 1 | g, data = df )

{lme4} package:

lmer( y ∼ x + z + ( 1 | g ), data = df )

where y is the response variable with predictors x and z,
and grouping factor variable g.
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LME: R syntax

For random effects on the intercept and x:

{nlme} package:

lme( y ∼ x + z, random = ∼ 1 + x | g, data = df )
lme( y ∼ x + z, random = ∼ x | g, data = df )

{lme4} package:

lmer( y ∼ x + z + ( 1 + x | g ), data = df )
lmer( y ∼ x + z + ( x | g ), data = df )
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LME: R syntax

For uncorrelated random effects on the intercept and x:

{nlme} package:

lme( y ∼ x + z, random = list ( g = pdDiag ( ∼ x ) ) ,
data = df )

{lme4} package:

lmer( y ∼ x + z + ( 1 | g ) + (0 + x | g) , data = df )
lmer( y ∼ x + z + ( x || g ) , data = df )

VŠE Praha (4EK417) Block 4 21 / 28



Complex LME models - brief outline

Different types of LME models exist:

LME models with (multilevel) nested effects,

LME models with crossed effects,

Complex behavior of the error term in LME models can be
addressed (heteroscedasticity and serial correlation).

LME models with non-Gaussian dependent variables
(binary, Poisson, etc.).
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LME models with multilevel nested effects

Multi-level model example: For 17 years, we follow a total of 86
individual states organized within 9 “global-level” regions (e.g. South
America, Europe, Middle East, etc.).

GDPtij represents individual GDP per capita measurements for:
t-th time period, e.g. with values (t = 2000, . . . , 2016).
i-th state nested within region j (i = 1, . . . ,Mj),
j-th region (j = 1, . . . , 9),

We fit GDP as a function of productivity P and unemployment U.
States are nested in regions, we have 2 levels of random intercepts:
u0i(j) for each state (within a region),
v0j for the regions,
random slopes can be added as well.

GDPtij = β0 + β1 Ptij + β2 Utij + u0i(j) + v0j + εtij .
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LME: R syntax

For intercept varying among g1 and g2 within g1:
For intercept & x varying among g1 and g2 within g1:

{nlme} package:

lme( y ∼ x + z, random = ∼ 1 | g 1 / g 2 , data = df )
lme( y ∼ x + z, random = ∼ x | g 1 / g 2 , data = df )

{lme4} package:

lmer( y ∼ x + z +( 1 | g 1 / g 2 ), data = df )
lmer( y ∼ x + z +( x | g 1 / g 2 ), data = df )
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LME models with crossed random effects

Crossed random effects example:

Grunfeld (1958) analyzed data on 10 large U.S. corporations,
collected annually from 1935 to 1954 to investigate how
investment I depends on market value M and capital stock C.

Here, we want random effects for a given firm and year.
We want the year effect to be the same across all firms,
i.e. not nested within firms.

Iti = β0 + β1 Mti + β2 Cti + u0i + v0t + εti.

where i = 1, . . . , 10 and
firms are followed over t = 1, . . . , 20 years.
(the usual “it” index ordering can be used as well)
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LME: R syntax

For intercept varying among g1 and g2

{lme4} package:

lmer( y ∼ x + z + ( 1 | g 1 ) + ( 1 | g 2 ), data = df )
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LME with heteroscedasticity and serial correlation

{nlme} package:

Heteroscedastic residual variance at level 1:

lme( y ∼ x + z, random = ∼ 1 | g ,
weights = varIdent ( form = ∼ 1 | g ) , data )

Autoregressive ar(1) residuals:

lme( y ∼ x + z, random = ∼ 1 | g ,
correlation = corAR1 ( form = ∼ time ) , data )

General residuals:

lme( y ∼ x + z, random = ∼ 1 | g ,
weights = varIdent ( form = ∼ 1 | g ) ,
correlation = corAR1 ( form = ∼ time ) , data )
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LME models – references, R packages

{lme4} package
https://www.jstatsoft.org/article/view/v067i01/0

{nlme} package
https://cran.r-project.org/web/packages/nlme/nlme.pdf

https://www.r-bloggers.com/2017/12/
linear-mixed-effect-models-in-r/

https://rpsychologist.com/r-guide-longitudinal-lme-lmer

Finch, Bolin, Kelley: Multilevel Modeling Using R (2014).
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