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Block 3 – Model selection – Outline

1 Model selection
Theoretical approach: specific-to-general, general-to-specific
Stepwise model selection

2 Model selection & regularization
Penalized regression
Dimension reduction: PCR & PLS

3 Moving beyond linearity
QREG - quick repetition
Polynomial and step regression
Regression splines and smoothing splines
Local regression
Generalized Additive Models (GAM)
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Theoretical basis for model selection algorithms
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Alternative approaches to econometric modeling

Simple-to-general approach

Traditional approach to econometric modeling

Starts with formulation of the simplest model consistent with the
relevant economic theory.

If this initial model proves unsatisfactory, it is improved in some
way – adding or changing variables, using different estimators etc.
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Alternative approaches to econometric modeling

Criticism of the simple-to-general approach

Revisions to the simple model are carried out arbitrarily and
simply reflect investigator’s prior beliefs: danger of always finding
what you want to find.

It is open to accusation of data mining: researchers usually
presents just the final model (true significance level is
problematic).
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Alternative approaches to econometric modeling

General-to-specific approach

Professor Hendry, London School of Economics
started this approach in the 80ies.

It starts with formulation of a very general and maybe quite
complicated model.

Starting model contains a series of simpler models, nested within
it as special cases.

These simpler models should represent all the alternative economic
hypotheses that require consideration.
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Alternative approaches to econometric modeling

General-to-specific approach

General model must be able to explain existing data and be able
to satisfy various tests of misspecification.

What follows is simplification search (testing-down procedure).
Through parameter restrictions, we test nested models against the
containing model. If the nested model does not pass the tests, we
can reject the whole branch of sub-nested models.

If we find more non-nested models satisfying tests, we can
compare those (using information criteria, etc.).
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Alternative approaches to econometric modeling

Advantages of the general-to-specific approach

“Data mining” present in this approach is transparent (for all to
see) and it is carried out in a systematic manner that avoids worst
data mining problems.

Researcher usually reports both the initial general model and all
steps involved so it is possible to get some idea about the true
significance levels.

Supporters of this approach stress the importance of both testing
final models against new data and the ability of the model to
provide adequate out-of-sample forecasts.
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Model selection basics - repetition from previous courses
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Variance vs. Bias trade-off - repetition
Population equation example: y = sin(x) + u
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Train sample & Test sample - repetition

Suppose we fit a model f̂(x) to some training data Tr = {yi,xi}n1 and
we wish to see how well it performs.

We could compute MSE over Tr:

MSETr = 1
n

∑
i∈Tr

[
yi − f̂(xi)

]2
When searching for the “best” model by minimizing MSE, the above
statistic would lead to over-fit models.

Instead, we should (if possible) compute the MSE using fresh test
data Te = {yi,xi}m1 :

MSETe = 1
m

∑
i∈Te

[
yi − f̂(xi)

]2
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Variance vs. Bias trade-off - repetition
E(MSE0) = var(f̂(x0)) + [Bias (f̂(x0))]2 + var(ε0)

This is an illustration, var(ε0) not shown explicitly.
(lies at the /asymptotic/ minima of Variance and Bias2)

Variance refers to the amount by which f̂(x0) would change if we
estimate it using different training data sets.
Bias is introduced by approximating real-life DGP by simple model.
Derivation of the formula is complex, see eg. information here
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k-Fold Cross Validation - repetition

Training error (MSETr) can be calculated easily.
However, MSETr is not a good approximation for the MSETe
(out-of sample predictive properties of the model).
Usually, MSETr dramatically underestimates MSETe.

Cross-validation is based on re-sampling (similar to bootstrap).

Repeatedly fit a model of interest to samples formed from the training
set & make “test sample” predictions, in order to obtain additional
information about predictive properties of the model.
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k-Fold Cross Validation - repetition

In k-Fold Cross-Validation (kFCV), the original sample is
randomly partitioned into k roughly equal subsamples
(divisibility).
Of the k subsamples, a single subsample is retained as the test
sample, and the remaining (k − 1) subsamples are used as training
data.
The cross-validation process is then repeated k times (the k folds),
with each of the k subsamples used exactly once as the test sample.
The k results from the folds can then be averaged to produce a
single estimation – the cross-validated error.
k = 5 or k = 10 is commonly used.
Sometimes, kFCV process is repeated (R-times – say, 100) to get
distribution of the cross-validated error term.
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k-Fold Cross Validation - repetition

kFCV example for CS data & k = 5:
(random sampling, no replacement)

In TS, a similar “Walk forward” test procedure may be applied.
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k-Fold Cross Validation - repetition

CV(k) = 1
k

k∑
s=1

MSEs ,

where:
CV(k) is the k-fold CV estimate,
k is the number of folds used (e.g. 5 or 10),
MSEs = 1

ms

∑
i∈Cs

(yi − ŷi)2

ms and Cs refer to test sample observations for each
of the kFCV steps.

As we evaluate predictions from two or more models,
we look for the lowest CV(k).
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Comparison of estimation methods / models
Comparison of models/methods (besides kFCV methods ):

Mallow’s Cp = 1
n

(RSS + 2dσ̂2),

AIC = 1
nσ̂2 (RSS + 2dσ̂2),

BIC = 1
n

(RSS + log(n)dσ̂2),

where d is the number of regressors and n is the sample size.
Model selection: find a model where a statistic is minimized.
log(n) > 2 (n>7) ⇒ generally, BIC penalizes complexity more.
When comparing models, AIC ∝ Cp;
AIC and BIC may contradict
If σ̂2 is an unbiased estimate of σ2, then Cp is an unbiased
estimate of test MSE (training error is adjusted by a factor
proportional to the number of basis functions used).
Sometimes, models are selected using Cp (AIC ) instead kFCV.
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Model selection algorithms
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Model selection algorithms - Introduction

Subset Selection: We identify a subset of the p predictors that
we believe to be related to the response. We then fit a model using
least squares on the reduced set of variables.

Shrinkage: We fit a model involving all p predictors, but the
estimated coefficients are shrunken towards zero relative to the
least squares estimates. This shrinkage (also known as
regularization) has the effect of reducing variance and can also
perform variable selection.

Dimension Reduction: We project the p predictors into a
M -dimensional subspace, where M < p. This is achieved by
computing M different linear combinations, or projections, of the
variables. Then these M projections are used as predictors to fit
a linear regression model by least squares.
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Model selection algorithms - Subset selection

1 Best subset selection

2 Forward stepwise selection

3 Backward stepwise selection

4 Algorithms combining Forward and Backward stepwise selection

5 Comparison & computational complexity of methods
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Best subset selection

For a dataset containing the dependent variable yi and p exogenous
variables (potential regressors/predictors):

1 LetM0 denote the null model, which contains no predictors.
Say, yi = β0 + ui
This model simply predicts the sample mean for y.

2 For k = 1, 2, . . . , p:
(a) Fit all

(
p
k

)
models that contain exactly k predictors.

(b) Choose the best among these
(
p
k

)
models and call itMk.

Here, best is defined as having smallest RSS or highest R2.
3 Select a single best model amongM0, . . . ,Mp, using

crossvalidated prediction error, Cp, AIC,BIC or adj. R2.

Note:
(p
k

)
= p!

k!(p−k)! ;
∑p
k=1

(p
k

)
= 2p
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Forward stepwise selection

1 LetM0 denote the null model, which contains no predictors.
Say, yi = β0 + ui

2 For k = 0, 1, . . . , (p− 1):
(a) Consider all (p− k) models that augment the (previous set of)

predictors inMk with one additional predictor.
(b) Choose the best among these (p− k) models, and call itMk+1.

Here, best is defined as having smallest RSS or highest R2.
3 Select a single best model from amongM0, . . . ,Mp, using

crossvalidated prediction error, Cp, AIC,BIC or adj. R2.
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Backward stepwise selection

1 LetMp denote the full model, which contains all p predictors.
Say, yi = β0 + β1xi1 + · · ·+ βpxip + ui

2 For k = p, (p− 1), . . . , 1:
(a) Consider all k models that contain all but one of the predictors in
Mk, for a total of (k − 1) predictors.

(b) Choose the best among these k models, and call itMk−1.
Here, best is defined as having smallest RSS or highest R2.

3 Select a single best model from amongM0, . . . ,Mp, using
crossvalidated prediction error, Cp, AIC,BIC or adj. R2.
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Computational complexity of methods

Computational complexity:

Forward stepwise and Backward stepwise selection:
Greedy algorithms.
[1 + p(p+ 1)/2] ≈ p2 models need to be estimated and evaluated.
Computationally feasible even for high p values (large sets of
potential regressors).

Best subset selection
2p models to be estimated and evaluated.
For large p, enormous search space can lead to over-fitting and
high variance of the coefficient estimates.

Forward & Backward stepwise [and their hybrid combinations] tends to
do well in practice (are efficient algorithms), yet they do not guarantee
finding the best possible model out of all 2p possible models.
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Parameter shrinkage methods
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Parameter shrinkage methods

Subset selection:
Subset of predictors is retained, the rest is discarded.
Generates interpretable models.
Selection is a discrete process: variables are either retained or
discarded.
Predictions based on models with different regressor-sets often
exhibits high variance.

Shrinkage methods
“Selection” is more continuous – do not suffer as much from high
variability.
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Parameter shrinkage methods

Ridge regression and LASSO regression

With OLS estimator, computing the inverse value (X ′X)−1 can
fail / be problematic if (X ′X) is singular or nearly singular.

One way out of this situation is to abandon the requirement of an
unbiased estimator. Hoerl and Kennard (1970) proposed to address
instability in OLS estimator by by adding a small constant value λ to
the diagonal entries of the matrix (X ′X) before taking its inverse.

Ridge/LASSO: alternative to stepwise selection, we can fit a model
containing all p predictors using a shrinkage method that constrains or
regularizes the coefficient estimates and/or that shrinks the coefficient
estimates towards zero.

It may not be immediately obvious why such constraints or shrinkage
should improve the fit – details discussed next.
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Ridge regression
Consider a LRM: y = f(x1, x2, . . . , xp)

OLS can be used to estimate β̂ = (β̂0, β̂1, . . . , β̂p)′ by minimizing the
RSS:

min:
β

RSS =
n∑
i=1

yi − β̂0 −
p∑
j=1

β̂jxij

2

Ridge regression β̂ estimates are the values that minimize:

min:
β

 n∑
i=1

yi − β̂0 −
p∑
j=1

β̂jxij

2

+ λ

p∑
j=1

β̂2
j

 =

RSS + λ

p∑
j=1

β̂2
j

 ,

where λ > 0 is a tuning parameter, determined separately,
and ridge-estimated βj coefficients – while not unbiased – retain their
interpretation as marginal effects.
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Ridge regression

min:
β

 n∑
i=1

yi − β̂0 −
p∑
j=1

β̂jxij

2

+ λ
p∑
j=1

β̂2
j


Seeks βj estimates that fit the data well, by making the RSS
small.

Shrinks regression coefficients by imposing penalty on their size.
The ridge coefficients minimize a penalized RSS

λ ≥ 0 is a complexity parameter – controls the amount of
shrinkage: larger value of λ → greater amount of shrinkage.

(λ
∑p
j=1 β̂

2
j ) is a shrinkage penalty.

It is small when β̂1, . . . , β̂p are close to zero and/or λ is small.
High λ shrinks β̂j towards zero and towards each other.
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Ridge regression

min:
β

 n∑
i=1

yi − β̂0 −
p∑
j=1

β̂jxij

2

+ λ
p∑
j=1

β̂2
j


With many correlated variables in a LRM (i.e. under
multicollinearity), OLS-estimated coefficients can become poorly
determined and exhibit high variance.

A wildly large positive coefficient on one variable can be canceled by
a similarly large negative coefficient on the correlated regressor(s).
Even with small sampling changes, such coefficients may change
dramatically (even in sign).

By imposing a ridge penalty (size constraint on the coefficients),
this problem is alleviated.

For predictive properties, selecting a good value for λ is critical;
cross-validation is used.
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Ridge regression - example

Ridge regression example output:
coefficient estimates are plotted as a function of λ.
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Ridge regression

The standard OLS coefficient estimates are scale equivariant:
multiplying xj by a constant c simply leads to a scaling of the
least squares coefficient estimates by a factor of 1/c.

Regardless of predictor scaling, (β̂jxij) will remain the same.

In contrast, the ridge regression coefficient estimates can change
substantially when multiplying a given predictor (or other
predictors!) by a constant, due to the sum of squared coefficients
term in the penalty part of the ridge regression objective function.

Therefore, it is best to apply ridge regression after standardizing
the predictors, using the formula:

x̃ij = xij√
1
n

∑n
i=1(xij − xj)2

hence s.d.(x̃j) = 1 ; j = 1, 2, . . .
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Ridge regression - final remarks

min:
β

 n∑
i=1

yi − β̂0 −
p∑
j=1

β̂jxij

2

+ λ
p∑
j=1

β̂2
j


Ridge solutions are not equivariant under scaling of the inputs,
so we standardize the inputs before estimation
(this just recaps previous page).

The intercept β0 has been left out of the penalty term.
Penalization of the intercept would make the procedure depend
on the origin chosen for y.

Ridge penalty shrinks coefficients towards zero (except β̂0).
Coefficients of correlated variables are shrunk toward each other.
(See chapter 3 of ESLII for detailed technical discussion.)
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Ridge regression - final remarks

For LRM, RSS and OLS may be easily written in matrix form as:
RSS(OLS) = (y −Xβ)′(y −Xβ)

β̂OLS = (X ′X)−1X ′y

For ridge regression, this may be re-written as
RSS(λ) = (y −Xβ)′(y −Xβ) + λβ′β

β̂ridge = (X ′X + λIp)−1X ′y

With the choice of quadratic penalty β′β, the ridge regression solution
is again a linear function of y.

Ridge method adds a positive constant to the diagonal of (X ′X)
before inversion. This makes the problem non-singular, even if (X ′X)
is not of full rank (perfect multicollinearity, p > n, p� n).

This was the main motivation for ridge regression when it was first
introduced in statistics (Hoerl and Kennard, 1970)
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LASSO regression

Ridge regression has one empirical disadvantage: unlike subset
selection, which will generally select models that involve just a
subset of the variables, ridge regression will include all p predictors
in the final model (with potentially small but nonzero β̂j values).

The LASSO is a relatively recent alternative to ridge regression
that overcomes this disadvantage. The LASSO coefficients, β̂L
estimates are the values that minimize the penalized RSS:

min:
β

 n∑
i=1

yi − β̂0 −
p∑
j=1

β̂jxij

2

+ λ
p∑
j=1
|β̂j |


again, λ > 0 is a tuning parameter, determined separately (kFCV).
In statistical parlance, the LASSO uses an `1 (pronounced “ell 1”)
penalty instead of an `2 penalty. The `1 norm of a coefficient
vector is given by ‖β‖1 =

∑
|β|.
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LASSO regression - example

LASSO regression example output:
coefficient estimates are plotted as a function of λ.
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LASSO regression

LASSO: Least Absolute Shrinkage and Selection Operator

As with ridge regression, LASSO shrinks the coefficient estimates
towards zero.

In the case of the LASSO, the `1 penalty has the effect of forcing
some of the coefficient estimates to be exactly zero when the
tuning parameter λ is sufficiently large (see ISLR textbook).

Much like stepwise model selection, the LASSO regression
performs variable selection.

LASSO yields sparse models - that is, models that involve only
a subset of the variables.

As in ridge regression, selecting a good value of λ for the LASSO
is critical; cross-validation is used.
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Ridge & LASSO - discussion

Neither ridge regression nor the LASSO will universally dominate
the other.

In general, one might expect the LASSO to perform better when
the response is a function of only a relatively small number of
predictors.

However, the number of predictors that is related to the response
is never known a priori for real data sets.

CV can be used in order to determine which approach is better on
a particular data set.
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Ridge & LASSO - λ selection

Cross-validation is used to determine λ, as follows:

1 We choose a grid of λ values and compute the cross-validation
error rate for each value of λ.

2 We select the tuning parameter λ, for which the cross-validation
error is smallest.

3 Finally, the model is re-fit using all of the available observations
and the selected value of the tuning parameter λ.

The above steps 1 and 2 can be performed for both ridge and LASSO.
. . . cross-validation errors are compared to select “best” λ
. . . and to choose between ridge and LASSO.
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Elastic net regression (penalty)

min

 n∑
i=1

yi − β̂0 −
p∑
j=1

β̂jxij

2

+ λ
p∑
j=1

(
α|βj |+ (1− α)β̂2

j

)
LASSO penalty (for α = 1) encourages sparse solutions (in terms of
coefficients), yet it is somewhat indifferent to the choice among a set of
strong but correlated regressors.

Ridge penalty (for α = 0) shrinks coefficients of correlated variables
toward each other, no sparse solution effect.

Elastic net penalty (for 0 < α < 1) is a compromise (combined
method). The second term of the penalization element encourages highly
correlated features to be averaged, while the first term encourages a
sparse solution in the coefficients of these averaged features.

Minimizer follows from Zou and Hastie, (2005). Other penalty
specifications are possible (e.g. general λ1 and λ2 can be applied).
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Elastic net regression (penalty)

min

 n∑
i=1

yi − β̂0 −
p∑
j=1

β̂jxij

2

+ λ
p∑
j=1

(
α|βj |+ (1− α)β̂2

j

)
The elastic net penalty can be used with any linear model
(LM, GLM), in particular for regression or classification.
Logit (GLM/MLE) example of elastic net penalty generalization:
max

β

[∑n

i=1(yi log[G(xiβ)]+(1−yi) log[1−G(xiβ)])− λ
∑p

j=1

(
α|βj |+(1−α)β̂2

j

)]
Parameter α determines the relative mix of ridge and LASSO
penalties. It is set prior to model estimation.

CV can be used to chose α and λ.
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High dimensionality & dimension reduction methods
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Principal component vs. Factor analysis

PCA vs FA – quick overview:

Principal component analysis involves extracting linear
composites of observed variables. We use PCA to reduce
a dataset of correlated observed variables to a smaller set of
important independent composite variables.

Factor analysis is based on a formal model predicting observed
variables from theoretical latent factors. We use FA for
testing/estimating a theoretical model of latent factors causing
observed variables.

The following discussion uses PCA-based approach.
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Dimension reduction methods

Stepwise regression, ridge and LASSO involve fitting linear
regression models (by OLS or by parameter shrinkage) using the
original predictors: x1, x2, . . . , xp.

Dimension reduction methods
Transform the predictors and then fit a least squares model using
the transformed variables:

1 Principal components analysis (PCA): data (pre)processing,
feature extraction – dimension reduction with minimized
information loss. PCA output can be used in supervised methods
of analysis (OLS).

2 Principal component regression (PCR): In the LRM, the
potentially many correlated original variables are replaced with a
small set of principal components that capture their joint variation.
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Principal component analysis (PCA)

PCA produces a low-dimensional representation of a dataset. It
finds a sequence of linear combinations of the variables that have
maximal variance and are mutually uncorrelated.

Apart from producing derived variables for use in supervised
learning problems, PCA also serves as a tool for data visualization.

Suppose we have a (n×p) dataset X. Since we are mainly
interested in variance here, we can assume that each of the
variables in X has been centered to have mean zero
(all column-means of X are zero). If necessary, centering of X is
straight-forward and can be performed easily.

Typically, empirical analyses (in R and elsewhere) would also
involve variable standardizing/scaling to var(xj) = 1.
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PCA motivation & example

Consider a linear regression model:

Sales← f(Ad Spending, Population)

Say, Ad Spending and Population observations across CS units
(cities) are highly correlated.
Using a “composite” regressor can improve prediction properties, if
the composite is chosen well.

Principal components are convenient linear combinations of
regressors (conserve variance and are mutually orthogonal).

With matrix X consisting of two variables, we can produce two
principal components.
Total variance in X equals total variance in principal components.
Ideally, most of the variance would be concentrated in the first
principal component and we would be able to ignore the second
component with minimum loss to predictive properties.
This can generate benefit in terms of the Variance vs. Bias trade-off.
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PCA motivation & example

Sample dataset with 2 variables: Green line (NOT an OLS line)
indicates the first principal component, Z1. Along Z1, data varies the
most (out of all directions possible). Blue dashed line indicates Z2

(most variability orthogonal to Z1).
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PCA motivation & example

Sample dataset with 2 variables:
Z1 minimizes the squared perpendicular distances to observed data.

Data vary most along Z1 (data most spread-out along Z1).
Values of zi1 ∈ Z1 and zi2 ∈ Z2 are shown as distances from “zero”

(blue dot). Right panel/plot: rotation of the left panel.
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PCA motivation & example

Sample dataset with 2 variables: First principal component is shown
(on the x-axis) against Population and Ad Spending variables.

Strong correlation is apparent in both plots, → Z1 summarizes both
series well and can be used as a single composite predictor for Sales

(instead of the two observed regressors).
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PCA motivation & example

Sample dataset with 2 variables: Second principal component is shown
(on the x-axis) against Population and Ad Spending variables.
There is little relationship between Z2 and the two regressors.

Hence, Z1 apparently summarizes both (strongly correlated) regressors
well enough.

VŠE Praha (4EK417) Block 3 50 / 112



Principal component analysis (PCA)

1st principal component vector z1 of a set of centered variables
x1,x2, . . . ,xp (all n×1) is the normalized linear combination:

z1 = φ11x1 + φ21x2 + · · ·+ φp1xp

that has the largest variance. Hence, we solve:

maximize
φ11,...,φp1

1
n

n∑
i=1

 p∑
j=1

φj1xij

2

s. t.
p∑
j=1

φ2
j1 = 1 (1)

The φj1 elements φ11, . . . , φp1 are loadings of the first principal
component and they make up the first principal component
loading vector, φ1 = (φ11, φ21, . . . , φp1)′.∑p
j=1 φ

2
j1 = 1 is the normalization condition: sum of squares of

loadings is equal to one. Otherwise, setting |φj1| arbitrarily large
leads to arbitrarily large variance.
(1) is solvable by linear algebra (singular-value decomposition)
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Principal component analysis (PCA)

By solving (1), we obtain the linear combination of the sample
variables of the form:

zi1 = φ11xi1 + φ21xi2 + · · ·+ φp1xip ; i = 1, . . . , n.

z1 = (z11, z21, . . . , zn1)′ is the first principal component.

Since each of the xj variables has mean zero, so does z1

Hence, the sample variance of z1 can be calculated as 1
n

∑n
i=1 z

2
i1.
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Principal component analysis (PCA)

The loading vector φ1 with elements φ11, φ21, . . . , φp1 defines a
direction in variable space (column space of X), along which the
data vary the most.

The second principal component is the linear combination of
x1, . . . ,xp that maximizes variance among all linear combinations
that are uncorrelated with z1. Hence, we add orthogonality
condition to (1) and repeat the optimization.

The second principal component z2 and its elements
z12, z22, . . . zn2 take the form:

zi2 = φ12xi1 + φ22xi2 + · · ·+ φp2xip ; i = 1, . . . , n.

where φ2 = (φ12, φ22, . . . , φp2)′ is the second principal component
loading vector.
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Principal component analysis (PCA)

Constraining z2 to be uncorrelated with z1 is equivalent to
constraining the direction φ2 to be orthogonal (perpendicular) to
the direction φ1.

Subsequent principal components:

For a sequence of additional z2, z3, . . . principal components, we
solve (1) while adding orthogonality condition with respect to all
preceding principal components.

Important geometrical interpretations to principal components
apply – direction of the first principal component is given by the
first eigenvector of the covariance matrix of variables in X.
(see ISLR textbook or Cross Validated).
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Principal component analysis (PCA)
Proportion of variance explained by principal components

To understand the “strength” of each principal component, we
calculate the proportion of variance explained by each component.

Total variance present in a data set (assuming X matrix
(n×p) of centered variables xj with mean zero) is defined as:

p∑
j=1

var (xj) =
p∑
j=1

1
n

n∑
i=1

x2
ij

Variance explained by the m-th principal component is:

var (zm) = 1
n

n∑
i=1

z2
im

∑p
j=1 var (xj) =

∑M
m=1 var (zm), where M = min(n− 1, p).

i.e. if all PC are used, they explain 100 % of variance in X.
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Principal component analysis (PCA)

Proportion of variance explained (PVE)

PVE of the m-th principal component zm lies between 0 and 1
and it is defined as:

PVEm =
∑n
i=1 z

2
im∑p

j=1
∑n
i=1 x

2
ij

.

Also,
M∑
m=1

PVEm = 1 ,

i.e. PVEs sum to 1 and we can display & interpret cumulative
PVEs.
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Principal component analysis (PCA)
R example:
pca1 = princomp(x, scores=TRUE, cor=TRUE) # x has 7 columns
summary(pca1)

## Importance of components:
## Comp.1 Comp.2 Comp.3 Comp.4
## Standard deviation 1.9036937 1.0423367 0.81837919 0.75632747
## Proportion of Variance 0.5177214 0.1552094 0.09567779 0.08171875
## Cumulative Proportion 0.5177214 0.6729308 0.76860854 0.85032729
## Comp.5 Comp.6 Comp.7
## Standard deviation 0.64958592 0.56978592 0.54871770
## Proportion of Variance 0.06028027 0.04637943 0.04301302
## Cumulative Proportion 0.91060756 0.95698698 1.00000000

The number of components is also the number of variables (if n > p).
Proportion of variance: Eg. if PVE1 = .52, z1 explains 52% of variance in X.
Cumulative Proportion: PVE by zm and previous components.
Standard deviation = eigenvalues
How many components to use in PCR? Choose the components with
eigenvalues equal or higher than 1. (or use cross-validation)
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Kaiser-Meyer-Olkin (KMO) statistic
PCA can perform a compression of the available information (reduce
dimension) only if we can “reject” independence (orthogonality) among
variables xj in X. Individual KMO (for j-th variable):

KMOj =
∑
i 6=j r

2
ij∑

i 6=j r
2
ij +

∑
i 6=j a

2
ij

; KMOj ∈ 〈0, 1〉

Overall KMO:

KMO =
∑
j

∑
i 6=j r

2
ij∑

j

∑
i 6=j r

2
ij +

∑
j

∑
i 6=j a

2
ij

; KMO ∈ 〈0, 1〉

where:
{rij} = R, which is a correlation matrix (here, i, j denote variables),
{aij} = A, which is a partial correlation matrix (partial correlations
represent the direct interactions between two variables, with the
indirect effects of all remaining variables removed)
aij = − vij√

vii·vjj
where {vij} = V = R−1
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Kaiser-Meyer-Olkin (KMO) statistic
KMO description

KMO compares correlations between variables against their partial
correlations.
If partial correlations aij are near zero, PCA can perform
efficiently, because the variables are highly related and KMO ≈ 1.
If KMO is low (KMO ≈ 0), PCA is not relevant.
In empirical applications, PCA is gerally not usefull if KMO < 0.5.

KMO-based variable selection:

Overall KMO should be .60 or higher (ideally over 0.90).
If it is not, drop the variables with the lowest individual KMOj

values, until overall KMO rises above .60.
This approach requires that we start with multiple
variables/regressors in our dataset; at least p > 5 .
Alternative: Bartlett’s test in R: cortest.bartlett() in {psych}.
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Principal component regression (PCR)

If we have many correlated original variables as regressors in a LRM,
we can replace them with a small set of principal components that
capture their joint variation.

3 Variance-Bias tradeoff benefits

7 PCR-based models unsuitable for parameter interpretation
(no reasonable scale on the zm vectors).
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Principal component regression (PCR)

Using PCA, we linearly transform our dataset of predictors
x1,x2, . . . ,xp into z1, z2, . . . ,zM variables where M < p.
The PCA transformation can be outlined as follows:

zm = Xφm where zim =
p∑
j=1

φjm xij , (2)

for some constant parameters φm1, . . . , φmp.
Now, we can use OLS to fit a LRM:

yi = θ0 +
M∑
j=1

θmzim + εi, (3)

Note that in model (3), the regression coefficients are given as
θ0, . . . , θM . If the constants φ1m, φ2m, . . . , φpm are chosen wisely
(PCA), then such dimension reduction approaches can often
outperform OLS regression in terms of CV errors, etc.
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Principal component regression (PCR)

Note: from equation/definition (2), we can write

M∑
m=1

θmzim =
M∑
m=1

θm

p∑
j=1

φjmxij =
p∑
j=1

M∑
m=1

θmφjmxij =
p∑
j=1

βjxij

where

βj =
M∑
m=1

θmφjm. (4)

Therefore, model (3) can be thought of as a special case of the
original linear regression model.
Dimension reduction serves to constrain the estimated βj
coefficients, since now they must take the form (4).
This approach can have significant benefits in terms of
bias-variance tradeoff.
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Principal component regression (PCR)

PCR: algorithm

First, we apply principal components analysis (PCA) to find
suitable linear combinations of predictors for use in our regression.

The first principal component is the (normalized) linear
combination of the regressors that has the largest variance.

The second principal component has largest variance, subject to
being uncorrelated with the first.

And so on.

Dependent variable is then regressed on few principal components,
rather than many original regressors.

The optimum number of principal components can be assessed
using cross validation.
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Principal component regression (PCR)

Sample data, selection of the number of components.
In this particular illustration, PCR would provide little improvement

over OLS (this may happen often for n� p datasets).
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Principal component regression (PCR)

PCR: potential problems

PCA identifies linear combinations (directions) that best represent
the predictors x1,x2, . . . ,xp.
These directions are identified in an unsupervised way, since the
response y is not used to help determine the principal component
directions. i.e. the response does not supervise the identification of
the principal components.
PCR suffers from a potentially serious drawback: there is no
guarantee that the directions that best explain the predictors will
also be the best directions to use for predicting the response.

Potential solutions to the problem:
Partial least squares (ISLR, ch. 6.3.2)
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Partial least squares (PLS)

VŠE Praha (4EK417) Block 3 66 / 112



Partial least squares (PLS)

Much like with the PCR method, in PLS we also search for
convenient (aggregating) linear combinations of regressors in
matrix X.

PLS is not scale-invariant, so we assume each xj regressor is
standardized – much the same way as in PCR.

PLS, unlike PCR, uses supervised identification of the
components: both X and y are used when searching for linear
combinations of regressors.

PLS-based linear combinations of xj (“directions”) not only
approximate the original (correlated) data in X, but are also
related to the response y.
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Partial least squares (PLS)

First component for PLS:

zPLS
1 = Xψ1 where zPLS

i1 =
p∑
j=1

ψj1xij

and coefficients ψj1 are calculated in two steps:

1 Use OLS to estimate slope-coefficients ψj1 of the “simple”
linear regressions y ← xj .
Here, j = 1, . . . , p : separate SLRMs are estimated and
corresponding ψ slope-coefficients are recorded.

2 Standardize the ψj1 coefficients so that
∑p
j=1 ψ

2
j1 = 1.

Note that with PLS, highest weights are on variables (xj) that are
most related to the response (individually).
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Partial least squares (PLS) – illustration
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Sample dataset with 2 variables: The first PLS direction (component) –
solid line – is shown. Compare to the PCA first component – dotted

line (follows from previous example).
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Partial least squares (PLS)

Second component for PLS:

1 We regress each variable on zPLS
1 and take residuals

(x1 ← zPLS
1 and save OLS residuals ẍ1; repeat for x2, etc.)

Individual ẍj residuals can be interpreted as the “remaining”
information of xj that is not explained by the first PLS direction
(component).

2 Compute zPLS
2 using the orthogonalized data (Ẍ),

the same way as the first component.
(Run all y ← ẍj regressions and standardize coefficients).

By analogy to PCA, this (PLS) procedure can be repeated for all
subsequent components.
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Partial least squares (PLS)

The supervised dimension reduction in PLS can reduce bias
(compared to PCR).

However, it can also increase variance of predictions. Hence, the
benefits of using PLS over PCR can be outweighted by drawbacks
(kFCV may be used to compare the two methods).

PCR/PLS – detailed technical description and estimation algorithm:
({pls} package manual)
(The Elements of Statistical Learning, ch. 3.5.1—3.5.2)
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Moving beyond linearity
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Moving beyond linearity

Different approaches are discussed (from simple to more complex),
QREG is included mostly for reference.

Quantile regression (quick repetition)

Polynomial and step (piecewise-constant) regression

Regression splines

Smoothing splines

Local regression

Generalized Additive Models (GAM)
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QREG - quick repetition

Quantile regression estimates the relationship between regressors
and a specified quantile of dependent variable.

One important special case of quantile regression is the least
absolute deviations (LAD) estimator, which corresponds to fitting
the conditional median of the response variable (q = 1

2).

QREG (LAD) estimator can be motivated as a robust alternative
to OLS (with respect to outliers).

Linear programming can be used for finding QREG estimates
(Koenkerr and Bassett (around 1980).

QREG-based predictions: Conditional quantiles (expected values)
can be produced.

To optimize prediction properties, QREG may be combined with
parameter-shrinkage methods (LASSO, ridge).
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Quantile regression (QREG)

For LRMs, the q-th quantile regression estimator βq minimizes:

min:
β̂q

Qn(β̂q) =
n∑

i: ei≥ 0
q|yi − xiβ̂q| +

n∑
i: ei < 0

(1− q)|yi − xiβ̂q|,

where ei = (yi − xiβ̂q).

We use the notation β̂q to make clear that different choices of q
lead to different β̂.
Slope of the loss function Qn is asymmetrical
(around ei = 0).
The loss function is not differentiable (at ei = 0)
→ gradient methods are not applicable
(linear programming can be used).
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Quantile regression example

Example 7.10 (Greene): Income Elasticity of Credit Cards Expenditure

CCexpend ← log(INCOME) + AGE + #DEPENDANTS
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Polynomial regression

Standard way to apply LRMs in situations where the relationship
between a regressor and a dependent variable is non-linear.

Simple linear regression model

yi = β0 + β1xi + ui,

is replaced by a polynomial function (linear in parameters):

yi = β0 + β1xi + β2x
2
i + β3x

3
i + · · ·+ βdx

d
i + ui.

This approach extends easily to logistic regression models if yi is
binary (applies to count and similar LDVs by analogy):

Pr(yi = 1|xi) = exp(β0 + β1xi + β2x
2
i + β3x

3
i + · · ·+ βdx

d
i )

1 + exp(β0 + β1xi + β2x2
i + β3x3

i + · · ·+ βdx
d
i )
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Polynomial regression (LRM & logit examples)

Wage ← Age 1[Wage>250] ← Age
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Polynomial regression

Often, we are not interested in exact values of coeffcients.
Usually, we seek to obtain “good” fitted values for some x0:
f̂(x0) = β̂0 + β̂1x0 + β̂2x

2
0 + · · ·+ β̂dx

d
0

and we study the general prediction properties (variance, bias)
of f̂(x0).

Choice of d: fix d at some low value (4 at most),
or use cross-validation to choose d.

Potential problem with predictions based on polynomial regressors:
notoriously bad tail behavior – not suitable for extrapolation.

We can use polynomials for several separate regressors in a LRM:
we just stack the variables into one X matrix (see GAMs next).
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Step (piecewise-constant) regression

Polynomial regression function imposes a global structure on the
non-linear function.

Instead, we can use a step function where a continuous regressor x
is broken into different bins and we fit a different constant for each
bin (regressor is transformed into an ordered categorical variable).

Alternatively, we select adequate (ad-hoc) cutpoints c1, c2, . . . , cK
for a continuous regressor x and construct K + 1 dummy variables:

C0(X) = 1[X < c1],
C1(X) = 1[c1 ≤ X < c2],

...
CK−1(X) = 1[cK−1 ≤ X < cK ],
CK(X) = 1[cK ≤ X]
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Step (piecewise-constant) regression

Next, we use C0(X), C1(X), C2(X), . . . , CK(X) to fit LRM:

yi = β0 + β1C1(xi) + β2C2(xi) + · · ·+ βKCK(xi) + ui.

C0 is excluded from the model to avoid perfect multicolinearity.
Exclusion is arbitrary – any of the dummies may be excluded.
Alternatively, we may include all dummies and drop β0.

Again, this approach extends easily to logistic regression models if
yi is binary (applies to count and similar LDVs by analogy):

Pr(yi = 1|xi) = exp[β0 + β1C1(xi) + β2C2(xi) + · · ·+ βKCK(xi)]
1 + exp[β0 + β1C1(xi) + β2C2(xi) + · · ·+ βKCK(xi)]

.
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Piecewise-constant regression (LRM & logit examples)

Wage ← Age 1[Wage>250] ← Age
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Step (piecewise-polynomial) regression
Combines polynomial regression with step (piecewise) regression.

Piecewise-polynomial regression:
Fit separate (low-degree) polynomials over different regions of X
(instead of one high-degree polynomial over the entire range of X).

Example: piecewise cubic polynomial with a single knot (cutpoint) c1:

yi =


β01 + β11xi + β21x

2
i + β31x

3
i + ui if xi < c1;

β02 + β12xi + β22x
2
i + β32x

3
i + ui if xi ≥ c1.

Here, we fit two different polynomials to the data.
For K knots (cutpoints), we fit K + 1 different polynomials.
Different d are possible: d = 1 → piecewise linear function.
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Step (piecewise-polynomial) regression

Example: piecewise cubic polynomial with one knot:

Wage ← Age
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7 Fitted curve non-continuous
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Regression splines - motivation
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Regression splines – motivation
Piecewise linear regression with one knot at c1:
(fitted values: the line is not continuous at c1)
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yi =


β01 + β11xi + ui if xi < c1;

β02 + β12xi + ui if xi ≥ c1.
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Regression splines

Piecewise linear “continuous” regression with one knot at c1:
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“Continuity” can be easily imposed as follows:

yi = β0 + β1xi + β2{1[xi > c1](xi − c1)}+ ui
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Regression splines – linear splines
Linear spline: generalize previous example to multiple knots.
Fit regression line in each region of the predictor space, requiring
“continuity” in each knot. Regression model with K knots
ξk, k = 1, . . . ,K can be represented using basis functions as follows:

yi = β0 + β1 b1(xi) + β2 b2(xi) + · · ·+ βK+1 bK+1(xi) + ui

where bk are the basis functions:
b1(xi) = xi ,
b2(xi) = (xi − ξ1)+ = 1[xi > ξ1](xi − ξ1)},
b3(xi) = (xi − ξ2)+ ,
etc.

The (xi − ξk)+ means the positive part of the difference.
With linear splines, each knot only adds one estimated parameter
to the estimation, i.e. K+2 d.f. are used (compare to
non-continuous piecewise linear regression: 2K d.f. used).
Basis functions (notation) will be useful in subsequent discussion.
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Regression splines – cubic splines

By analogy to linear splines, we can construct cubic splines as follows:

yi =


β01 + β11xi + β21x

2
i + β31x

3
i + ui if xi < c1;

β02 + β12xi + β22x
2
i + β32x

3
i + ui if xi ≥ c1.

Is non-continuous, 8 parameters estimated

Cubic spline with one knot at c1:

yi = β0 + β1xi + β2x
2
i + β3x

3
i + β4(xi − c1)3

+ + ui

“Continuous”, only 5 parameters estimated
(with continuity restriction imposed)
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Cubic splines - one knot
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Regression splines – cubic splines
Cubic spline with knots ξk, k = 1, . . . ,K is a piecewise cubic
polynomial with continuous derivatives up to order 2 at each knot.

Again we can represent this model with truncated power basis
functions:

yi = β0 + β1 h1(xi) + β2 h2(xi) + · · ·+ βK+3 hK+3(xi) + ui

where:
h1(xi) = xi ,
h2(xi) = x2

i ,
h3(xi) = x3

i ,
h4(xi) = (xi − ξ1)3

+ , / note: h4 = h[k=1]+3,
h5(xi) = (xi − ξ2)3

+ , / generally: hk+3 for k = 1, . . . ,K,
...

hK+3(xi) = (xi − ξK)3
+ .
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Regression splines – cubic splines

Cubic splines use 4 +K d.f.

Cubic spline has continuous derivatives up to order 2 at each knot.
d-spline (degree-d spline) has continuous derivatives up to degree
d− 1 at each knot.

Cubic spline popularity is based on human perception: this is the
lowest-order spline where knot-discontinuity is not visible to the
human eye.

Unfortunately, d-splines (incl. cubic splines) tend to have high
variance at the outer range of the predictor (i.e. when X is very
low or very high). Possible solution: use “natural splines” with
additional boundary constraints.
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Regression splines – natural splines
Natural cubic spline: a cubic regression spline with additional
boundary constraints:

For a cubic spline regression model y ← x with K knots,
f(X) is required to be linear for X ≤ ξ1 and for X > ξK .
Additional restrictions free 4 d.f. (compared to cubic spline),
so we use K d.f. for estimation.
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Regression splines – natural splines

A natural cubic spline with K knots is represented by K basis functions.
General notation for natural cubic splines with with knots ξk, k = 1, . . . ,K:

yi = β1 N1(xi) + β2 N2(xi) + β3 N2+[k=1](xi) + · · ·+ βK N2+[k=K−2](xi) + ui

where:
N1(xi) = 1 ,
N2(xi) = xi ,
N2+k(xi) = dk(X)− dK−1(X) , applies to all k = 1, . . . ,K−2.
...
NK(xi) = dK−2(X)− dK−1(X) , (note that NK = N2+[k=K−2]),

where dk(X) = (X−ξk)3
+− (X−ξK)3

+
ξK − ξk .

All basis functions N1, . . . , NK have 2nd and 3rd derivatives
equal to zero for X < ξ1 and for X ≥ ξK .
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Regression splines – natural splines

Example: For K=4 and using the truncated power bases of cubic
splines (X − ξk)3

+ , we can write:

yi = β1N1(xi) + β2N2(xi) + β3N3(xi) + β4N4(xi) + ui

where:
N1(xi) = 1 (β1 is the intercept),
N2(xi) = xi ,
N3(xi) = d1(X)− d3(X),
N4(xi) = d2(X)− d3(X)

and dk(X) = (X−ξk)3
+− (X−ξK)3

+
ξK − ξk

.
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Regression splines – knot selection

Where should we place the knots?

Specify the number of knots and use uniformly distributed
quantiles.

1 knot: at median, 2 knots: at q0.33 and q0.66 , etc.
Optimum number of knots can be determined by kFCV.

Spline function is most flexible in regions that contain a lot of
knots. Hence:

Place more knots in regions where we assume the function
may vary most rapidly.
Place fewer knots where the function seems more stable.
Ad-hoc and potentially misleading approach.
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Smoothing splines – overview

Smoothing splines – alternative to cubic & natural splines.
Essentially, a penalized natural cubic spline with (up to) N knots
(knot is placed at each unique observation of regressor.)

Search for a function g(x) that minimizes RSS and is smooth.

min : RSS(g, λ) =
n∑
i=1

[yi − g(xi)]2 + λ

∫
g′′(t)2dt

∑n
i=1[yi − g(xi)]2 is a loss function, makes g(x) fit the data.

g(x) can be any function for which the second term is defined.

λ
∫
g′′(t)2dt penalizes high variability in g(x).

λ is a penalty term. For λ→∞, smoothing splines lead to OLS fit.
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Smoothing splines – overview

min : RSS(g, λ) =
n∑
i=1

[yi − g(xi)]2 + λ

∫
g′′(t)2dt

g′(t) is the first derivative, measures slope of g(t) at t.
g′′(t) indicates 2nd derivative and corresponds to the amount
by which the slope is changing.

g′′(t) is a measure of “roughness” of g(t) around t.
it is large (in absolute value) if g(t) is “wiggly” near t,
it is zero if g(t) is a straight line around t.∫
g′′(t)2dt is a specific measure of the total change in g′(t)

over the entire range.
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Smoothing splines – overview

min : RSS(g, λ) =
n∑
i=1

[yi − g(xi)]2 + λ

∫
g′′(t)2dt

While g can be any function, it may be shown that RSS(g, λ) has
an explicit & unique minimizer: natural cubic spline with (up to)
N knots at unique values of xi, i = 1, 2, . . . , N .

With a suitable λ parameter, the model is not overparameterized:
effective degrees of freedom used for estimation (dfλ) decrease
from N (unique values) to 2 as λ increases from 0 to ∞.

Cross-validation can be used to find λ with the lowest
cross-validated RSS.

For technical discussion of smoothing splines, see (ESL, ch. 5.4).
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Smoothing splines – overview
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Note that df in the legend refer to (dfλ) used by the estimation.
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Local regression

Another approach for fitting flexible (non-linear) functions.
For a given target point x0, regression is fit using nearby
observations only.

Local regression example (artificial data)
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Legend: orange: local regression, blue: DGP, yellow bell: weight of observations used in regression.
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Local regression algorithm
Local regression at X = x0

1 Gather the fraction s = k/n of training points whose xi
are closest to x0.

2 Assign a weight Ki0 = K(xi, x0) to each point in this
neighborhood, so that the closest point has the highest weight
and vice versa. All but the nearest k neighbors get zero weights.

3 Fit weighted least squares regression of yi on xi by finding β
parameters that minimize the following expression:

min :
n∑
i=1

Ki0(yi − β0 − β1xi)2 .

4 Fitted value at x0 is given by f̂(x0) = β̂0 + β̂1x0 .

⇒ repeat for all x ∈ X observations in the dataset.
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Local regression: choices to be made

Functional form in Step 3 (constant, linear, quadratic, etc.).
Fraction s = k/n controls flexibility of fit (CV can be used).
Weighting function Ki0 must be defined:

Ki0 =
{

(1− |u|3)3 |u| < 1
0 |u| ≥ 1

, where |u| =

∣∣∣∣∣∣ d(xi, x0)
max
i∈K0

d(xi, x0)

∣∣∣∣∣∣
is the R-default tricube kernel before normalization,
where K0 denotes a set of k closest observations xi around x0
and d(·) is “distance” (difference) between two x observations.

Other kernels: for Epanechnikov, substitute (1− |u|3)3 by (1− u2), etc.
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Local regression

Local regression – discussion

Local regression can be generalized to models with multiple
regressors: the model is global in some regressors and local in
others (say, time). Such model adapts to the most recently
gathered observations.

Local regression can be generalized to neighborhoods of higher
dimensions (say, over X1 and X2). However, this approach does
not extend easily to higher dimensions (beyond 3 or 4).
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Generalized Additive Models (GAM)

So far, polynomial and step regression, splines and local regression
have been discussed as univariate regression models with yi ← f(xi).

GAMs extend multivariate LRMs by allowing non-linear functions
& smoothers in each variable, while maintaining additivity (and ceteris
paribus interpretation for each regressor).

Multiple-regressor LRM:

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + ui

can be generalized to a GAM:

yi = α+ f1(xi1) + f2(xi2) + · · ·+ fp(xip) + ui

where each fj(xij) is representing some convenient function of x:
piecewise constant, linear, polynomial, spline, etc.
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GAM example

wage = α+ f1(year) + f2(age) + f3(education) + ui

where f1 and f2 are smoothing splines and f3 is a step function

(education is a qualitative variable with five levels).
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As we hold age and education fixed, wage increases approx. linearly with year.
If we fix year and education, wage tends to be highest for intermediate
values of age and lowest for the very young and very old workers.
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GAM estimation (backfitting)

yi = α+ f1(xi1) + f2(xi2) + · · ·+ fp(xip) + ui

fj functions are -some- smooth (“nonparametric”) functions.
With smoothing splines, we do not use an expansion of basis
functions for estimation (i.e. constituent elements used in some
matrix of regressors X).
Instead, we fit all p functions “simultaneously”, using a scatterplot
smoother (e.g. smoothing spline, local regression, etc.) along with
a backfitting algorithm.
Say, we use cubic smoothing splines for all regressors. The
penalized RSS (PRSS) can be specified as:

PRSS(α, f1, . . . , fp,λ) =
n∑
i=1

yi − α− p∑
j=1

fj(xij)

2

+
p∑
j=1

λj

∫
f ′′j (tj)2dtj ,

where λj ≥ 0 and PRSS is used for estimaton (described next).
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GAM estimation (backfitting)

yi = α+ f1(xi1) + f2(xi2) + · · ·+ fp(xip) + ui

Backfitting algorithm for GAMs

1 Initialize: α̂ = 1
n

∑n
i=1 yi and f̂j ≡ 0, ∀i, j.

2 Cycle: j = 1, 2, . . . , p, 1, 2, . . . , p, . . .

(a) f̂j ← Sj
[{
yi − α̂−

∑
k 6=j f̂k(xik)

}n
1

]
(backfitting step)

(b) f̂j ← f̂j − 1
n

∑n
i−1 f̂j(xij) (mean centering of estimated function)

until functions f̂j change less than a prespecified threshold.
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GAM estimation (backfitting)

Backfitting algorithm for GAMs

Each of the fj functions is a cubic spline (with knots at each
unique value of xj and dfλ).

Without further restrictions, solution is non-unique – constant α is
non-identifiable as we can add/subtract any constant to each of
the fj functions.

This is solved in Step 1 (i.e. by setting α̂ = mean(yi) and f̂j ≡ 0).

Step 2 (a) applies a cubic smoothing spline Sj to the Xj regressor
while fixing all other f̂k at their current estimates when computing
the

{
yi − α̂−

∑
k 6=j f̂k(xik)

}n
1
term.

Step 2 (b) is technical – it adjusts for rounding errors in the
algorithm (in theory, fit to a mean-zero response has mean zero).
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Generalized Additive Models (GAM)

3 GAM backfitting can accommodate regression/natural splines,
piecewise and local regression and even interaction terms in the
fj functions.

3 GAMs extend easily to logistic regression models if yi is binary
(applies to count and similar LDVs by analogy):

log
(

pi
1 + pi

)
= α+ f1(year) + f2(age) + f3(education) + ui

where pi = P (wagei > 250 | yeari, agei, educationi).

3 Individual fj in GAMs can be very flexible – we do not have to
manually try different transformations for each regressor.

3 Non-linear fits can produce more accurate predictions.
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Generalized Additive Models (GAM)

3 As GAMs are additive, they provide intuitive interpretation.

3 Also, GAMs provide useful representation for statistical inference.

3 For each regressor, smoothness of fj can be represented by
(effective) df used.

7 Additive nature of GAMs may lead to missing important
interactions.

3 However, low-dimensional interactions can be included manually;
e.g. by adding some fjm(Xj , Xm) term into the model.
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Final note

For a detailed technical discussion of the topics covered in Block 3,

you may consult e.g.: The Elements of Statistical Learning
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https://web.stanford.edu/~hastie/ElemStatLearn/


Final note

John von Neumann: “With 4 parameters, I can fit an elephant
and with 5, I can make him wiggle his trunk.”

Drawing an elephant with four complex parameters
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https://fermatslibrary.com/s/drawing-an-elephant-with-four-complex-parameters
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