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Block 2: Spatial analysis & spatial models – Outline
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Introduction
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Introduction - spatial analysis
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Spatial analysis

Theory
Spatial statistics,

spatial econometrics,
assumptions & models.

Data
Macro/micro economics,
socio-demographics,

ecology, & other fields.

R
Syntax, libraries, data handling,

plotting, model estimation.

Spatial
info

Maps, spatial polygons,
spatial coordinates,

(specific type of data).
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Introduction - spatial analysis

Methods of quantitative spatial analysis:

Visualization
Maps, graphical display

Data exploration & descriptive methods
Tools to broadly look at spatial patterns
Spatial statistics (semivariogram)
Interpolation (inverse distance weights, krigging)

Econometric modeling
Fitting models, testing hypotheses, formalizing spatial dependence,
discerning spatial effects from other factor (e.g. macroeconomic)
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Introduction - spatial analysis

What are spatial data?

Data that are location speciffic and that vary in space.

Referenced by a spatial location s (usually 2D),
s = (x; y); x is longitude (easting) and y is latitude (northing).

May also be referenced by a zip code, county or state ID.

Data that are close together in space (time) are often more alike
than those that are far apart.

Tobler’s first law of geography:
“Everything is related to everything else, but near things are more
related than distant things.”
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History of spatial analysis: 1854 – London – cholera
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History of spatial analysis: 1854 – London – cholera
Dr. John Snow: Early spatial analysis

In August 1854, there was a major Cholera outbreak in the Soho
neighbourhood of London, UK. There were 127 cholera related
deaths around the area.
At the time, germ theory (microorganisms causing disease) was
not generally accepted. Dr. J. Snow was a MD, pioneer of germ
theory and a statistician.
Dr. John Snow spoke to local residents and mapped where cholera
cases occurred. As a result of his map, he was able to pinpoint the
public water pump on Broad Street as the source of contaminated
water causing the cholera outbreak.
Dr. Snow used statistics to find a relationship between water
sources and cholera cases and subsequently found out that the
waterworks company supplying water to Broad Street pump was
taking water from a sewage polluted area of the Thames river.
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History of spatial analysis: 1935 – field experiments
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History of spatial analysis: 1935 – field experiments
R.A. Fisher: Early spatial analysis

R.A. Fisher was probably the first to recognize implications of
spatial dependency for statistical analysis.
In his work on design of experiments in agricultural science, he
wrote (Fisher, 1935, p. 66):
“After choosing the area we usually have no guidance beyond the
widely verified fact that patches in close proximity are commonly
more alike, as judged by the yield of crops, than those which are
further apart.”
Observed spatial variability, i.e. field-to-field variability, was
largely due to physical properties of the soil and environmental
properties of the field. He avoided the confounding of treatment
effects with plot effect with the introduction of randomization.
Fisher’s solution was to eliminate spatial dependency bias by
localizing the crops under scrutiny into randomly assigned blocks.
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Spatial stochastic processes
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Measuring spatial variables

Spatial data: measurements and measurement scales
Generally, data vary continuously over space, but are
measured only at discrete locations.

To characterize spatial variables, spatial aggregation is necessary.
Aggregation of spatial variables may be just another source of bias
and potential data miss-manipulation
Summary values are influenced by shape and scale of spatial units.
Shape (administrative boundaries) may change over time.

Scale, consistency and relevance should be carefully considered
when collecting and analyzing spatial data

Spatio-temporal data:
Data that are location specific and repeated in time.
For each variable, observations have location, time and value.
Similar methods for analysis, with an added time dimension
(choice of sampling frequency, spatial panel data analysis)
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Measuring spatial distances

Distances (d) can be defined in a variety of ways, yet the following
technical conditions should always apply (invariant to spatial
translation, i.e. “shift”):

1 d(si, sj) = d(sj , si)
(symmetry)

2 d(si, si) = 0
(dist. between a point and itself is zero)

3 d(si, sj) ≤ d(si) + d(sj)
(triangle inequality; d(si) is the distance from origin)
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Measuring spatial distances
Euclidean distance, measured between two points in the “ordinary”
Euclidean space. In 2D, the Euclidean distance (L2 norm) is defined as

d(si, sj) =
√

(six − sjx)2 + (siy − sjy)2 ,

where the x and y subscripts handle planar coordinates. For smaller
distances, the computational simplicity is attractive.
Great circle distance - for larger distances, planar projection accumulates
non-negligible errors. The shortest path between two points on a sphere
(given their longitudes and latitudes):

d(si, sj) = 2r arcsin

√
sin2

(
φj − φi

2

)
+ cos(φi) cos(φj) sin2

(
lj − li

2

)
,

where r is the radius of the sphere, φ1 and φ2 are the latitudes of si and sj in
radians, li and lj are the longitudes (in radians). Its only an approximation
when applied to the Earth, which is not a perfect sphere (correct within a
0.5%; alternative: Vicenty’s formulae).
Manhatan distance - L1 norm, a function on a fixed grid.
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Spatial stochastic processes

For a generic location s given by a vector of d coordinates in a
d-dimensional Euclidean space, spatial stochastic process, i.e. “random
field”, Z(s) of a geo-located variable Z is often denoted as

Z(s) : s ∈ D ⊆ Rd .

Typically, d = 2 for most economic and econometric applications,
d = 3 is often used in fields such as geology or astronomy.

D is a fixed finite set of N spatial locations s1, s2, . . . , sN .

Individual si units are points in space (say, with GPS-based
latitude and longitude coordinates). Sometimes, such points can
be associated with non-zero surface area elements.
Much like in time-series analysis, the individual realizations of a
spatial stochastic process – random field – are often denoted
z(si) or, simply, zi.
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Spatial stochastic processes
Stationarity is a common assumption: a spatial process under scrutiny
repeats itself over the domain D. If we translate the entire set of
coordinates by h – a specific distance in a specified direction, the
stochastic process and its features remain unchanged.

Strong stationarity of a random filed: We start with a
finite-dimensional distribution:

Fs1,...,sm(z1, . . . , zm) = P [Z(s1) ≤ z1, Z(s2) ≤ z2, . . . , Z(sm) ≤ zm] .

Strong stationarity ↔ F is invariant under spatial translation h.
Unlike dij (Euclidean distance between two spatial units si and sj),
h is an orientated distance “shift” (spatial translation) vector.
For strong stationarity:

P [Z(s1) ≤ z1, Z(s2) ≤ z2, . . . , Z(sm) ≤ zm]
= P [Z(s1 + h) ≤ z1, Z(s2 + h) ≤ z2, . . . , Z(sm + h) ≤ zm] .
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Spatial stochastic processes
Weak stationarity (also called second order stationarity) assumes
that the first two moments exist, are invariant (and finite) and
covariance only depends on spatial translation (orientated distance) h:

E[Z(s)] = µ ,

var[Z(s)] = σ2 ,

cov[Z(s+ h), Z(s)] = C(s+ h, s) = C(h) .
As autocovariance is a function of h only (under weak st.),
for any spatial points si and sj such that si − sj = h, we can write:

cov [Z(si), Z(sj)] = C(si − sj) = C(h) .
Covariogram C(h) is the covariance between two spatial units,
separated by h. For h = 0, it simply describes variance:

cov [Z(s+ 0), Z(s)] = C(0) = var [Z(s)] .
Weak dependency: covariance disappears with growing distance:

C(h)→ 0 as ||h|| →∞
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Spatial stochastic processes
Intrinsic stationarity is less restrictive than weak (second order)
stationarity and it is defined in terms of first differences.
A spatial process is intrinsically stationary if the difference between
two observed spatial points is weakly stationary:

E[Z(s+ h)− Z(s)] = 0 ,
var[Z(s+ h)− Z(s)] = 2γ(h) ,

where 2γ(h) ≥ 0 is the variogram. Generally, 2γ(h) increases with
growing oriented distance h.
The two types of relaxed stationarity are related: weak stationarity
implies intrinsic stationarity but not vice versa. For weakly stationary
spatial processes (where E(Z(s+ h)) = E(Z(s)) = µ) the variogram
simplifies to:

2γ(h) = E
[
(Z(s+ h)− Z(s))2

]
,

i.e. to the expected squared difference between two observed
realizations of a spatial stochastic process.
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Spatial stochastic processes

Semivariogram is denoted as γ(h) and it equals to half the
variogram.
Since 2γ(h) is calculated as expectation of a square, γ(h) ≥ 0 for both
weakly and intrinsically stationary random fields.
Also, at h = 0, γ(0) = 0 because

E
[
(Z(si)− Z(si))2

]
= 0 for ∀ i .

Variogram (semivariogram) is a generalization of the covariogram C(h)
and under weak stationarity, the two functions are related by:

γ(h) = C(0)− C(h) .

If a stationary stochastic process has no spatial dependency at all
(i.e. C(h) = 0 for h 6= 0), the semivariogram is constant:
γ(h) = var[Z(s)] everywhere, except for h = 0, where γ(0) = 0.
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Spatial stochastic processes

Isotropic spatial process may be defined through a semivariogram:

γ(h) = γ(||h||) = γ(d).

Isotropy means that the semivariogram depends only on the distance d
between two points and not on direction.

The lack of isotropy – anisotropy – means the semivariogram depends
on direction as well as distance.

To assess and test anisotropy, we can estimate and plot directional
semivariograms (shown next).
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Spatial stochastic processes

Empirical semivariogram
To perform empirical analysis of distance-based data correlations, we
construct the so called empirical semivariogram. First, we divide the
distances observed over the domain D into K conveniently chosen
intervals:

I1 = (0, d1], I2 = (d1, d2], . . . , IK = (dK−1, dK ] .

Here, d1 is the maximum distance within the I1 interval and dK is the
maximum distance observed over the field of data.
The intervals can be proportional in terms of distance or in terms of
sets of observation pairs allocated to each interval (to adjust for
unevenly spaced observations).
Note that we use the isotropy simplification here: distances are
determined by d (distance magnitudes).
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Spatial stochastic processes

Empirical semivariogram is calculated using the following formula:

γ̂(dk) = 1
2N(dk)

∑
N(dk)

[Z(si)− Z(sj)]2 ,

where N(dk) is the number of distinct observation pairs in the interval
Ik and γ̂(dk) is the semivariogram estimate for its corresponding group
(interval) of distances.

Usually, we fit a convenient parametric function (exponential,
spherical, Gaussian, etc.) to the estimated γ̂(dk) values (shown next).

The main goal of empirical semivariogram construction is to estimate
and visualize the spatial autocorrelation structure of the observed
stochastic process.
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Empirical semivariogram
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Empirical semivariogram

Three main features of an estimated empirical semivariogram:
Nugget (nugget effect) describes the micro-scale variations or
measurement errors in data. Theoretically, at zero distance,
γ(0) = 0. However, two factors play a role here: First, γ(d1) is
estimated over the N(d1) set of pairs, i.e. for the first interval
where dij ∈ (0, d1]. Second, fitting the empirical semivariogram
curve to observed values often causes the non-zero nugget.

Sill amounts to limd→∞ γ(d). The sill corresponds to variance of
the stochastic field at distances where spatial dependency (which
reduces γ(d)) no longer applies. limd→∞ γ(d) = C(0) = var[Z(s)].

Range is the spatial distance (if any) beyond which the data are
not autocorrelated. In a way, range describes the strength of
spatial structure – based on where the semivariogram “reaches” its
asymptote (sill).
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Empirical semivariogram (fitting)
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Empirical semivariogram (directional semivariogram)
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Spatio-temporal stochastic processes

The above discussion can be generalized to accommodate processes
that are observed repeatedly over time.

Such observations usually exhibit both spatial and temporal
dependency and variability.

Given the frequency and density limitations of empirical measurements
in continuous space and time, we model our observations as
realizations of a spatio-temporal random function (random field)

Z(s, t), where (s, t) ∈ Rd× R ,

the spatio-temporal domain is indexed in space by s ∈ Rd and in time
by t ∈ R.

The separation between spatial and time dimensions is substantial,
which is reflected in the notation.
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Spatio-temporal stochastic processes

Weak and intrinsic stationarity concepts can be easily expanded from
spatial to spatio-temporal data.

For an intrinsically stationary process Z(s, t), spatio-temporal
semivariograms (STSV) is:

γ(h; t) = 1
2var [Z(s0 + h ; t0 + t)− Z(s0; t0)] , (h, t) ∈ Rd× R.

STSV does not depend on the selection of origin (s0, t0) ∈ Rd× R
(under intrinsic stationarity).

Also, for intrinsically stationary random fields Z(s, t), the STSV
γ(h; t) is non-negative and γ(0; 0) = 0.
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Empirical STSV (EU’s Unemp., NUTS0, 2002—2016)
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Data exploration & descriptive methods
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Interpolation

Inverse distance weighting (IDW): a deterministic method of
interpolation with a known scattered set of points.
Assigned values to unknown points are calculated with a weighted average of
the values available at the known points.
To find an interpolated value x0 at a given point s0 based on samples
xi = x(si) with i = 1, 2, . . . , N we use a IDW interpolating function:

x(s0) =


∑N

i=1
wi(s0)xi∑N

i=1
wi(s0)

, if d(s0, si) 6= 0 for all i

xi if d(s0, si) = 0 for some i

where wi(s0) = 1
d(s0,si)p , with s0, si being points on a map, d is their

corresponding distance, and p is a positive real number (power parameter).

Weight decreases as distance increases from the interpolated points.
High p assigns greater influence to closest values – with sufficiently high p,
IDW result may turn into a mosaic of tiles (a Voronoi-like diagram).
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IDW interpolation – illustration
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Krigging

developed by Daniel G. Krige (1919-2013)
(originally called “weighted moving averages” method)

Also known as BLUP (best linear unbiased prediction) in spatial
analysis and closely related to OLS estimation.

Interpolates values using the intensity and shape of the empirical
(semi)variogram. Results depend on the choice of fitting model
(Gaussian, spherical, exponential, etc.).

Returns observed values at sampling locations.

Uses neighborhood and/or distance search radius.

Provides standard errors of interpolated values.

Multiple approaches and generalizations exist (block krigging).
http://desktop.arcgis.com/en/arcmap/10.3/tools/
3d-analyst-toolbox/how-kriging-works.htm
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Krigging

Kriging

x(s0) =
∑N
i=1 λi x(si) s.t.

∑N
i=1 λi = 1.

In IDW, λi depend only on distance to the prediction location.

With krigging, λi depend on a fitted model to the measured
points, the distance to the prediction location, and the spatial
relationships among the measured values around the prediction
location.

Basically, krigging weights follow from the estimated empirical
semivariogram – see illustration on the next page (note how
ordering of the predicted/krigged values may influence results).
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Krigging – illustration
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Krigging

Ordinary kriging assumes constant (yet unknown) mean over the
neighborhood of s0.

Matrix form: x(s0) = λ′ x s.t. λ′1 = 1.
where λ′ = (λ1, . . . , λN ) and 1 is a vector of ones.

With krigging, we solve: minE
[
[x(s0)− λ′ x]2

]
s.t. λ′1 = 1.

Minimum variance of x(s0): σ2 =
∑N
i=1 λiγ(si, s0) + m

is obtained when
∑N
i=1 λiγ(si, sj) + m = γ(sj , s0) for all j.

Here, γ is the semivarogram, m is an additional LM parameter
(mean estimate) that ensures unbiasedness of the estimate.
For additional discussion and alternative estimation methods
(simple, universal krigging, etc.), see
https://en.wikipedia.org/wiki/Kriging
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Definition of neighbors

Fotheringham et al (2002): “Spatial dependency is the extent to
which the value of an attribute in one location depends on the
values of the attribute in nearby locations.”

Different definitions of spatial dependency are possible.

To discuss spatial dependency, spatial autocorrelation,
corresponding tests and spatial econometric models, we need to
formalize the concept of nearby locations – neighbors
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Definition of neighbors

Distance-based approach defines two units as neighbors if their
distance does not exceed some ad-hoc predefined threshold: τ .

Can generate “islands” (units with zero neighbors), if τ is low
compared to minimum distances among unit pairs.
Less suited for analysis of areas with uneven geographic density (of
measurements).

Centroids are used for measuring distances between units with
non-zero areas (e.g. regions)

Centroids can be purely geographical, “main” city locations,
population-weighted, transportation-weighted (highway/railway),
etc.
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Definition of neighbors

Figure: Plot for distance-based neighbors (NUTS2), maximum neighbor
distance threshold at 250 km
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Definition of neighbors

Contiguity-based approach spatial units (regions) are
neighbors if they share a common border (at least one point).

Generalized contiguity approach is based on the premise that
a “second order” neighbor is the neighbor of a first order neighbor
(the actual contiguous neighbor).
With this type of approach, we can define a maximum
neighborhood lag (order) to control for the highest accepted
number of neighbors traversed (not permitting cycles).
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Definition of neighbors

k Nearest neighbors (kNN)

For each spatial unit, we search for a preset number of k nearest units
that we define as its neighbors.

Solves for differences in areal densities (k neighbors are ensured for
each unit).

Usually leads to asymmetric spatial connectivity matrices. Useful
for some empirical applications, potentially flawed neighborhood
interpretation for others.

Illustration for k = 3 (neighbors only shown for 2 units to
illustrate asymmetry):
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Spatial connectivity matrix (C)
Regardless of the algorithm used for neighbor vs non-neighbor
categorization, any spatial structure may be formalized using
a connectivity matrix C:

C =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

 a 4-unit example (symmetric)

cij =
{

1 if i and j are neighbors,
0 if i and j are not neighbors.

Zeros on the diagonal – units are not neighbors to themselves.
Spatial connectivity matrix interpretation:

row/column 1: unit 1 is neigbor to units 2,3,4
row/column 2: unit 2 is neigbor to units 1,3 (not 4)
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Spatial weights matrix (W )

C =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

 → W =


0 1

3
1
3

1
3

1
2 0 1

2 0
1
3

1
3 0 1

3
1
2 0 1

2 0


Usually, W is row-standadrized (to unity): wij = cij∑N

j=1 cij

.

Connectivity indicators cij may be generalized prior to
standardization. Hence, instead of binary cij , we may use inverse
distances: linear, squared, . . . depending on the assumed decay in
spatial dependency over distance.

Validity of spatial prior information (neighborhood definitions,
decay patterns) will influence the outcome of subsequent analyses
(spatial dependency tests, spatial regression models).
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Spatial weights matrix (W )

W =


0 1

3
1
3

1
3

1
2 0 1

2 0
1
3

1
3 0 1

3
1
2 0 1

2 0


Each row of W “provides” weights for an expected value of an
observed spatial variable yi – weighted averages (fitted values) can
be calculated as ŷ = Wy. For example:

ŷ1 = 1
3y2 + 1

3y3 + 1
3y4

. . .

ŷ4 = 1
2y1 + 1

3y3

Observed values of variables can be used to predict corresponding
values for neighboring spatial units.
In this context, ŷi is often called spatial lag of yi.
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Moran’s plot
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Figure: Moran’s plot for unemployment rate, 2014, NUTS2 (AT, CZ, DE, HU,
PL, SK): observed values vs. spatial lags.
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Sample selection in spatial data analysis

Spatially autocorrelated processes are defined in terms of
individual units and their interactions with neighbors.

Clearly, we can only assess (“use”) the impact of neighboring units
if such units are part of our sample. Hence, in spatial
econometrics, we usually do not draw limited samples from a
particular area.

Instead, we work with data from adjacent units located in
unbroken (“complete”) study areas.

Otherwise, C and W matrices would be misleading and we could
not consistently estimate spatial interactions and effects.

Generally speaking, spatial analysis should include the whole
geographically defined area/region instead of using random
sampling (from a “population” of regions within the relevant area).
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Spatial dependency

Positive spatial autocorrelation occurs if high or low values
of a variable cluster in space.

For negative spatial autocorrelation, spatial units tend to be
surrounded by neighbors with very dissimilar observations.

Spatially random data lack any spatial pattern.

Sometimes, spatial dependency patterns are easy to discern
visually using choropleths.

However, a formal approach towards evaluation of spatial
dependency is often required.
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Spatial dependency

Model y = λWy + ε example:
(simulated y data, different λ values and iid residuals ε)

λ = 0.98 λ = 0 λ = − 0.99

(a) (b) (c)
(a) Strong positive spatial dependency in y, with λ→ 1.
(b) Spatially random process: λ = 0 → y = ε.
(c) Strong negative spatial dependency, (“rook” neighbors only).

VŠE Praha (4EK417) Block 2 50 / 121



Moran’s I

Measure of global spatial autocorrelation, overall clustering of data:

I = N

W
z′Wz(z′z)−1,

where
N is the number of spatial observations (units) of the variable
under scrutiny (say, y),

z is the centered form of y: zi = yi − ȳ.
(Note a recast: yi = β0 + zi. If SLRM is expanded by regressors,
Moran’s I can be applied to regression residuals).

The standardization factor W =
∑
i

∑
j wij corresponds to the sum

of all elements of the spatial weights matrix W .
For row-standardized W matrices, N

W = 1. Moran’s I can be used
with C matrices (binary, generalized) as well.
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Moran’s I

I = N

W
z′Wz(z′z)−1,

In most empirical circumstances, I ∈ [−1, 1]. Under the null hypothesis
of spatial randomness, Moran’s I is asymptotically normally
distributed with the following first two moments:

E(I) = − 1
N − 1 and var(I) = N2W1 −NW2 + 3W 2

(N2 − 1)W 2 ,

where W1 =
∑
i

∑
j(wij + wji)2 and W2 =

∑
i(
∑
j wij +

∑
j wji)2.

Normality assumption → calculate a z-score

z = I − E(I)√
var(I)

and test for statistical significance of Moran’s I: whether neighboring
units are more similar (I > E(I)) or more dissimilar (I < E(I)) than
they would be under the null hypothesis of spatial randomness.
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Local Moran’s I

Moran’s I yields only one statistic that summarizes the nature of
spatial dependency in the observed variable – it assumes
geographical homogeneity (stationarity) in the data.

If such assumption does not hold (spatial dependency varies over
space), then Moran’s I test loses power and the “global” statistic
is non-descriptive.

To address this problem, we can use Local Moran’s I statistic
(for row-standardized W ):

Ii = ziN

z′z
wiz .

The expected value of Local Moran’s I under the null hypothesis
of no spatial autocorrelation is: E(Ii) = −wi/(N − 1). Here, wi is
the sum of elements in the i-th row of W .
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Local Moran’s I

Ii = ziN

z′z
wiz .

Values of Ii > E(Ii) indicate positive spatial autocorrelation, i.e.
that the i-th region is surrounded by regions that, on average, are
similar to the i-th region with respect to the observed variable y.
Ii < E(Ii) would suggest negative spatial autocorrelation.
Significance of spatial dependency is then evaluated using var(Ii)
and the corresponding z-score.

We may see the global nature of Moran’s I from

I = 1
N

N∑
i=1

Ii .
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Geary’s C
Variance test similar (in principle) to the Durbin-Watson test statistic
for residuals’ autocorrelation in time-series regressions.

C = N − 1
2W

∑
i

∑
j wij(yi − yj)2∑
i(yi − ȳ)2 ,

where all elements follow from previous slides. Empirical Geary’s C
values range from 0 to 2. However, occurrences of C > 2 are possible.

Under the null of no spatial autocorrelation, first two moments are:

E(C) = 1 , var(C) = (N − 1)(2W1 +W2)− 4W 2

2(N + 1)W 2 ,

Positive spatial dependency: C < 1.
Negative spatial autocorrelation is reflected in C > 1.
z-transformation is asymptotically normally distributed.
Therefore, z(C) can be used for testing spatial randomness.
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Clusters – hotspots and coldspots

Getis’ G∗: spatial clusters and hotspot analysis

Clustering analysis by Getis can only be performed for positively
autocorrelated spatial data.

G∗i (τ) =
∑N

j=1 c
∗
ijyj∑N

j=1 yj

,

where c∗ij come from amended distance-based (arbitrary τ used)
connectivity matrix C∗ = C + IN ; i.e. yi observations enter G∗i (τ)
calculation. Observations of y are assumed to have a natural
origin and positive support.

G∗i (τ) is a local stastic, a proportion of the aggregated yj values
that lie within τ of i to the total sum of yj observations.

Alternatively, Getis’ statistic is calculated using C (not C∗) and
denoted Gi(τ)
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Clusters – hotspots and coldspots

If we observe high values of yj within distance τ of unit i, then
G∗i (τ) would be relatively high compared to its expected value
under the null hypothesis of full spatial randomness:

E [G∗i (τ)] = c∗i
N
,

where c∗i is the sum of elements of i-th row of C∗.
Also, under the H0 of spatial randomness, we can write

var [G∗i (τ)] = c∗i (N − c∗i )
N2(N − 1)

(
Y ∗i2

(Y ∗i1)2

)
,

where Y ∗i1 =
∑

j
yj

N and Y ∗i2 =
∑

j
y2

j

N − (Y ∗i1)2.
High positive z-score indicates “hotspot” (cluster of high values)
and vice versa. Critical values provided by Getis and Ord.
Say, for N = 100 and α = 5%, the z-scores would have to exceed
±3.289 for a statistically significant hot/cold spot.
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Clusters – hotspots and coldspots

Figure: Spatial clusters (hot and cold spots) of the municipalities in Serbia by
the level of average monthly net earning from 2001 to 2010
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Spatial regression models (CS data)
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Spatial regression models (CS data)

� Parametric models
Spatial dependency
is estimated (different
functional forms exist).

� Getis’ filter (“nonparametric”)
Spatial dependency is
removed from observed
variables (like s.a. in TS).

� Semiparametric approach
Observed variables are not
transformed, spatial
dependency is modelled
separately, using map
patterns/processes.

45

50

55

5 10 15 20 25

long

la
t

100

200

300

Relative 
GDP p. c., 
2016

Figure: Relative GDP per capita
(100 = EU avg.), 2016, NUTS 2.
Source: Eurostat (nama_10r_lfu3rt)
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Spatial regression models

Spatial regression models allow us to discern the influence of
geographic factors (spatial autocorrelation, spill-over effects) from
other relevant factors/variables – say, economic – that may be
subject to macroeconomic policy tools.

Observed data are characterized (indexed) by geographic location,
distances between geo-coded units play a crucial role.
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Spatial regression models
Spatial regression models – examples

House prices depend on utility-related variables (area in m2,
number of rooms/bedrooms, elevator, etc.). At the same time,
prices in a given area/neighborhood tend to be correlated –
usually, positive spatial autocorrelation is present.
Highway gas-stations’ revenues depend on distance from
a capital/major city (traffic intensities may be measured – or
proxied by distances).
Can be considered as a special case of one-dimensional spatial
dependency (distance measured along the highway route).
Increased policing activity in a given area (county) may decrease
local crime levels while causing increased illegal activities in
nearby counties – a negative spatial autocorrelation example.
Macroeconomic shocks (both positive and negative) may spill
more prominently among spatially close economies: we need to
account for such effects in econometric models.
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Spatial regression models

Spatial regression models – discussion

Great proportion of spatial effects (spatial dependencies) is closely
related to missing variables (significant yet often non-measurable)
for a regression model.
Spatial lag is a proxy variable for (potentially many) unobservable
factors. For example, using EU’s labor market and/unemployment
regression models:

Work commuting among regions/districts/states and the
problematic consistent measurements of this phenomenon.
Language, qualification and administrative barriers on labor
market.
Aerial distances vs. topology and transportation infrastructure.

Spatial models may provide a simple and interpretable tool for
analysis of macroeconomic (regional) dynamics.
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Spatial regression models – main motivations
Omitted variables motivation: discussed on previous slide.
Time-dependency: agents make decisions influenced by the
behavior of other agents in previous periods (state authorities may
set taxes that reflect policy actions taken by their neighbors in
previous periods).
Spatial heterogeneity motivation is largely based on panel data
methods and regression models. Spatially close units exhibit more
similar individual effects as compared to non-neighboring units.
Externalities-based motivation comes from a well-established
economic concept: individuals and regions may be subject to
positive/negative consequences of activities exercised by unrelated
third parties (heavy traffic, air pollution, etc.).
Model uncertainty motivation: spatial autocorrelation may be used
in circumstances where we face uncertainty in terms of specifying
a proper data generating process (DGP).

Note that motivations are not mutually exclusive.
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Spatial regression models

Generalized nesting spatial (GNS) model

y = λWy + αι+Xβ +WXθ + u ,
u = ρWu+ ε ,

where Wy is the spatial lag, WX is the spatial lag for regressor matrix
X and Wu describes spatial interactions (spatial lag) among
disturbance elements. Elements λ, ρ and θ are the spatial parameters,
estimated along with α and β.

Under the null hypothesis of no spatial dependency
(λ = ρ = 0 and θ = 0), GNS simplifies to

y = αι+Xβ + ε ,

Using apropriate null restrictions, GNS may be transformed to
different types of spatial models.
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Spatial regression models

Figure: The relationship between different spatial dependence models for
cross-sectional data (source: Elhorst, 2014). Note: this illustration is based on
a slightly modified notation of spatial parameters.
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Spatial lag model
By assuming spatial interactions in the dependent variable only,
(θ = 0 and ρ = 0), we simplify GNS into a spatial lag model (SLM):

y = λWy + αι+Xβ + ε .

The SLM specification is used commonly throughout empirical
literature, e.g. in models describing taxes imposed by governments.
Reduced form of SLM can be expressed as:

(IN − λW )y = αι+Xβ + ε ,

where IN is an (N×N) identity matrix and the RHS regression
coefficients explain the variability of individual yi observations that is
not explained spatially. Also, if the inverse to (IN − λW ) exists, we
can express DGP for y as

y = (IN − λW )−1(αι+Xβ + ε) .
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Spatial lag model

y = λWy + αι+Xβ + ε .

For each yi, the element SpatialLag(yi) = wiy enters the equation,
where wi is the i-th row of W .

For model stability, we assume λ ∈ (−1, 1).
(rule of thumb, see Elhorst, 2014, Spatial Econometrics; From
Cross-Sectional Data to Spatial Panels and the discussion provided
next).

Coefficients β, α and λ are estimated by MLE (if distributional
assumptions – e.g. normality of the error term – can be made).
Otherwise, GMM may be applied.

Coefficients β′ = (β1, . . . , βk) explain (ceteris paribus) variability
in y that is not explained spatially.
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Spatial Durbin model

If we drop the simplifying assumption θ = 0 from SLM, we get the
spatial Durbin model (SDM):

y = λWy + αι+Xβ +WXθ + ε .

For example, if yi describes household income in a region i, then such
income is influenced by incomes (say, wages) in neighboring regions
and by both “domestic” and neighboring rates of unemployment, labor
force productivities, etc.

By analogy to the SLM case – and given (IN − λW )−1 exists – we may
write the DGP as follows:

y = (IN − λW )−1(αι+Xβ +WXθ + ε) .
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Spatial error model

Spatial error model (SEM) is another frequently used specification of
the spatial model. SEM is obtained from the GNS model by assuming
λ = 0 and θ = 0. Hence, spatial interactions take place only among the
error terms:

y = αι+Xβ + u ,
u = ρWu+ ε .

Theoretical (macroeconomic) reasoning of the spatial dependency is
not required for SEMs – this approach can be used to model a situation
where endogenous variables are influenced by exogenous factors that
are omitted from the main equation and spatially autocorrelated.
Alternatively, unobserved shocks may follow spatial pattern(s).
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Spatial model stability conditions

1 Spatial matrix C is a non-negative matrix of known constants
with zeros on the diagonal (if this holds for C, it holds for the
row-standardized W as well).

2 Spatial weak dependency holds. Two alternative conditions: (a)
The row and column sums of C should be uniformly bounded in
absolute value as N (the number of observed units) goes to infinity.
(b) The row and column sums of C should not diverge to infinity
at a speed equal to or faster than the growth of sample size N .
Condition (b) is more general (relaxed) and (a) is its special case.

3 Matrices (IN − λW ) and (IN − ρW ) are non-singular. If the
underlying C matrix is symmetric and non-negative, this condition
is satisfied whenever λ and ρ lie within the (1/κmin, 1) interval,
where κmin denotes the smallest (most negative) real eigenvalue of
W and 1 is the largest eigenvalue for a row-standardized W.
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ML estimation of SLMs and SDMs

The RHS regressor element Wy in SLM or SDM is correlated with
the error term. Hence, OLS estimation of models with spatially
lagged endogenous variables is biased and inconsistent.

ML estimators for such models are consistent (other methods are
possible: GMM, 2SLS).

We use a slightly modified SDM notation to describe ML
estimator for both SLMs and SDMs, as their likelihood functions
coincide (SLM is a special case of SDM, with θ = 0 imposed).

First, we expand the DGP of SDM by iid normality assumption
for residuals:

y = (IN − λW )−1(αι+Xβ +WXθ + ε) ,
ε ∼ N(0, σ2

ε IN ) ,

where σ2
ε is the variance of ε.
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ML estimation of SLMs and SDMs

In y = (IN − λW )−1(αι+Xβ +WXθ + ε) , we use substitution
Z = [ι ,X ,WX] and δ = [α ,β ,θ]

′
.

We can re-arrange DGP of the SDM/SLM equation as:

y = (IN − λW )−1Zδ + (IN − λW )−1ε ,

ε ∼ N(0, σ2
ε IN ) .

The above substitution allows us to use a single likelihood function
for both SLM and SDM: for SDMs, we use Z = [ι ,X ,WX].
For SLMs, Z = [ι ,X] and analogous amendments are made to the
vector of parameters δ.
Note how our substitution transforms the original SDM model

y = λWy + αι+Xβ +WXθ + ε .

into

y = λWy +Zδ + ε → ε = y −Wy −Zδ.
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ML estimation of SLMs and SDMs

The log-likelihood function for the SLM (and SDM) model may be
outlined as

LL(λ, δ, σ2
ε) = −N2 log(πσ2

ε) + log |IN − λW | −
e
′
e

2σ2
ε

,

e = y − λWy −Zδ ,

where N is the number of spatial units, |IN − λW | is the
determinant of this N×N matrix and e is a vector of residuals.

Direct estimation (maximization) of the LL function is subject to
multiple computational issues. Alternative approach – by means
of iterating over concentrated log-likelihood functions – is used.
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ML estimation of SEMs

We add iid normality assumption to ε residuals of the SEM:

y = Xβ + (IN − ρW )−1ε ,

ε ∼ N(0, σ2
ε IN ) ,

where the intercept term has been incorporated into the Xβ
expression for simplicity.

Now, the log-likelihood function for SEMs has the form

LL(β, ρ, σ2
ε) = −N2 log(πσ2

ε) + log |IN − ρW | −
e
′
e

2σ2
ε

,

e = (IN − ρW )(y −Xβ) .

Again, for computational reasons, concentrated log-likelihood
functions are calculated iteratively to maximize LL function and
obtain parameter estimates and corresponding standard errors.
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ML estimation & testing of spatial models

LL functions for SDMs (SLMs) and SEMs may be amended to
accommodate binomial, count, multinomial and other dependent
variables (LeSage, Pace: Introduction to spatial econometrics).

Likelihood ratio (LR) test can be used to evaluate spatial model
specification (against non-spatial), through a set of conveniently chosen
restrictions leading to two alternative nested models:

LR = 2(Lur − Lr) ∼
H0

χ2
q ,

where Lur is the maximized LL function of the estimated spatial model.
The null hypothesis is used to enforce zero restriction on all parameters
describing spatial autocorrelation (λ, θ or ρ – given specification of the
unrestricted model) and Lr is the maximized LL of the non-spatial
model.

For spatial models, LR tests may be applied more generally (different
restrictions may be evaluated).
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SLM vs SEM specification tests

LM-based test for SEM specification evaluates the null hypothesis
of no spatial autocorrelation of residuals against the alternative of
SEM specification:

LM-SEM = 1
T

(
û
′
Wû

σ̂2

)2

∼
H0

χ2
1 ,

where σ̂2 is the estimated variance of residuals û and
T = tr(W ′

W+W 2) is trace of the matrix. Note that the
LM-SEM statistic is just a scaled version of Moran’s I.

The LM-SEM test is not robust against SLM specification (spatial
dependency in y).
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SLM vs SEM specification tests

The LM-SLM statistic is used in OLS-estimated linear models to
test H0 of spatial independence in y against the alternative of its
spatial autocorrelation (SLM):

LM-SLM = 1
N Jλ,β

(
û
′
Wy

σ̂2

)2

∼
H0

χ2
1 ,

where the term Jλ,β =
[
(WXβ̂)′M(WXβ̂) + T σ̂2

]
/Nσ̂2 is

calculated using the vector of OLS-estimated parameters β̂ and
the “residual maker” (orthogonal projection matrix)
M = IN −X(X ′X)−1X

′ .

The LM-SLM test is not robust against autocorrelated error term
(SEM-type).
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SLM vs SEM specification tests

The test for a spatial error process that is robust to local presence of
a spatial lag is given as:

RLM-SEM = 1
T − T 2(NJλ,β)−1

(
û

′
Wû

σ̂2 − T (NJλ,β)−1 û
′
Wy

σ̂2

)2

∼
H0

χ2
1,

where the subtraction of a correction factor that accounts for the local
misspecification (potentially omitted spatial lag process) is visible.

By RLM-SEM, we test the H0 of no spatial dependency in residuals
(OLS-estimated) against the alternative of SEM specification, while
controlling for possible local spatial lag (SLM process).
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SLM vs SEM specification tests

Test for a spatial lag process robust to local presence of spatial
error autocorrelation is defined as:

RLM-SLM = 1
N Jλ,β − T

(
û
′
Wy

σ̂2 − û
′
Wû

σ̂2

)2

∼
H0

χ2
1 .

Note:

Heteroskedasticity-robust versions of statistics LM-SEM and
LM-SLM are available.

Heteroskedasticity-robust versions of the RLM-SEM and
RLM-SLM tests are not easily accessible as accounting for
heteroskedasticity leads to highly non-linear expressions.
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Marginal effects in spatial models

In spatial models (SLM, SDM), there are two basic types of
marginal effects: direct and indirect effects.

Sometimes a third effect – total effect – is reported: a sum of the
previous two effects.

In presence of spatial autocorrelation among observed variables
(and for SDM), if a given explanatory variable in some i-th unit
changes, than not only the dependent variable in the i-th unit is
expected to change (direct effect) but also the dependent variables
in other units (neighbors of unit i) would change.

Such effect across spatial units is the indirect effect, sometimes
called “spillover”.
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Marginal effects in spatial models

Marginal effects can be conveniently illustrated using a slightly
modified GNS model:

y = (IN − λW )−1(Xβ +WXθ) + r ,

where r contains both the intercept and (potentially spatially
dependent) error term. Marginal effects for some arbitrary
regressor xk are given by a Jacobian matrix of first derivatives of
the expected values of y with respect to the explanatory variable:

∂E(y)
∂xk

=
(
∂E(y)
∂x1k

· · · ∂E(y)
∂xNk

)
=


∂E(y1)
∂x1k

· · · ∂E(y1)
∂xNk... . . . ...

∂E(yN )
∂x1k

· · · ∂E(yN )
∂xNk

 .
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Marginal effects in spatial models

After some re-arranging, we can write:

∂E(y)
∂xk

= (IN − λW )−1(INβk +W θk) .

For convenience and clarity, the RHS may also be re-written as:

∂E(y)
∂xk

= (IN − λW )−1


βk w12θk · · · w1Nθk

w21θk βk · · · w2Nθk
...

... . . . ...
wN1θk wN2θk · · · βk

 .

Recall that wij denotes element of the W matrix and wij > 0 if
two spatial units i and j are neighbors (and zero otherwise).
βk and θk are parameters of the GNS/SDM, corresponding to the
k-th regressor. The RHS is a N×N matrix.
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Marginal effects in spatial models

∂E(y)
∂xk

= (IN − λW )−1


βk w12θk · · · w1Nθk

w21θk βk · · · w2Nθk
...

... . . . ...
wN1θk wN2θk · · · βk

 .

Each diagonal element of the partial derivatives matrix represents
a direct effect and every off-diagonal element represents an
indirect effect.
Direct effects and indirect effects differ across spatial units. Each
element of the RHS matrix might be different.

Individual direct effects differ because the diagonal elements of
(IN − λW )−1 are different for each unit (given λ 6= 0).
Indirect effects are different because off-diagonal element of both W
and (IN − λW )−1 are different if λ 6= 0 and/or θk 6= 0.
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Marginal effects in spatial models

∂E(y)
∂xk

= (IN − λW )−1


βk w12θk · · · w1Nθk

w21θk βk · · · w2Nθk
...

... . . . ...
wN1θk wN2θk · · · βk

 .

In absence of spatial autocorrelation of y and xk, i.e. if both λ = 0
and θk = 0, then all off-diagonal elements equal zero. In this case,
indirect effects are not present. Also, direct effects are constant
(equal to βk) across all spatial units as (IN − λW )−1 simplifies to
IN if λ = 0.
The indirect effects that occur if θk 6= 0 and λ = 0 are referred to
as local effects. The name arises from the fact that such effect
only arise from the neighborhood of a given unit. For example, the
effect of xjk (k-th regressor for the j-th unit) on yi is nonzero only
if units i and j are neighbors (i.e. wij > 0). For non-neighboring
units, xjk has no effect on yi.
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Marginal effects in spatial models

∂E(y)
∂xk

= (IN − λW )−1


βk w12θk · · · w1Nθk

w21θk βk · · · w2Nθk
...

... . . . ...
wN1θk wN2θk · · · βk

 .

The indirect effects that occur if λ 6= 0 and θk = 0 are referred to
as global effects. The name comes from the fact that effects on
yi originate from units that lie within the neighborhood of i as
well as from units outside this neighborhood. Mathematically, this
is due to the fact that matrix (IN − λW )−1 does not contain zero
elements (given λ 6= 0) – even though W does contain (usually
many) zero elements.

For λ 6= 0 and θk 6= 0, both local and global indirect effect are
present and they cannot be separated from each other.
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Marginal effects in spatial models

∂E(y)
∂xk

= (IN − λW )−1


βk w12θk · · · w1Nθk

w21θk βk · · · w2Nθk
...

... . . . ...
wN1θk wN2θk · · · βk

 .

The presence or absence of spatial autocorrelation ρ in the error
term of GNS/SDM has no impact on the marginal effects: as we
take the first derivative of E(y) with respect to xk, the
r = (αι+ ρWu+ ε) element disappears because it is a “constant”.

Considering the complexity of marginal effects for one regressor,
the problem of presenting estimation output from a model with
multiple regressors may be severe: even if reliable estimates λ̂, β̂
and θ̂ are available, we have to deal with a N×N matrix of
marginal (direct and indirect) effects for each regressor.
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Marginal effects in spatial models

∂E(y)
∂xk

= (IN − λW )−1


βk w12θk · · · w1Nθk

w21θk βk · · · w2Nθk
...

... . . . ...
wN1θk wN2θk · · · βk

 .

Estimated marginal effects are usually presented in an aggregated form.
For each regressor, we usually report two (sometimes three) statistics:

Summary indicator for direct effects is calculated as the average of
all diagonal elements (of the Jacobian for a given regressor xk).

Indirect effect is reported as the average of row sums (or column
sums) for off-diagonal elements.

The above statistics are usually reported along with their
corresponding standard errors and statistical significance
indicators (p-values) – see Elhorst (2014) for technical discussion.
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Marginal effects in spatial models

∂E(y)
∂xk

= (IN − λW )−1


βk w12θk · · · w1Nθk

w21θk βk · · · w2Nθk
...

... . . . ...
wN1θk wN2θk · · · βk

 .

Total effect is just a sum of the direct and indirect impacts. Total
standard errors, z scores and significance levels are also calculated
by aggregating the underlying direct impacts and spillovers.
Motivation: in many empirical applications, the direct and
indirect effects may come with opposite signs. Therefore, at some
higher level of spatial aggregation, direct impacts and spillovers
could cancel out. For example, positive direct effects may come at
the “price” of equally prominent negative spillovers.
Total impacts are often reported along with their direct/indirect
constituents – even if there are no contradicting signs of
direct/indirect impacts.
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Marginal effects in spatial models

Sample output from a SLM (model with a single regressor).

Table: Estimated direct, indirect and total impacts

Mean Std. dev t-statistic
Direct effect 0.586 0.0148 39.6106
Indirect effect 1.084 0.0587 18.4745
Total effect 1.670 0.0735 22.7302
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Marginal effects & β-coefficients in SLMs

With SLM models y = (IN − λW )−1(Xβ) + r ,

marginal effect of xk simplifies to:

∂E(y)
∂xk

= (IN − λW )−1


βk 0 · · · 0
0 βk · · · 0
...

... . . . ...
0 0 · · · βk



= (IN − λW )−1(INβk)

The spatial multiplier matrix can be decomposed as:

(IN − λW )−1 = IN + λW + λW 2 + λW 3 + · · ·
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Marginal effects & β-coefficients in SLMs

By substituting (IN − λW )−1 = IN + λW + λW 2 + λW 3 + · · ·

into ∂E(y)
∂xk

= (IN − λW )−1(INβk):

1 First RHS item (INβk) represents the direct effects on a change in xk
only (this is the estimated βk coefficient).

2 Second RHS element (λWβk) represents indirect effects of first-order
neighbors only. Recall that W has zeros on the main diagonal.

3 Next element represents direct & indirect effects. Please note the second
order (feedback) direct effects: Say, units 1 and 2 are neighbors – there is
a feedback of impact going from 1 to 2 and back: [1→ 2→ 1]

4 The remaining RHS elements represent third-order and higher order
effects (direct and indirect). Overall, direct marginal effect is always
greater than βj (this does not depend on the sign of βj).
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Drawbacks of SLMs/SDMs/SEMs

In SDM/SLM, the ratio between direct and indirect effect for
a regressor xk is independent of βk. This is because the βk
coefficients cancel out in the numerator and denominator of such
ratio (direct/indirect effects).

This ratio depends only on the parameter λ and on the W matrix
specification.

Hence, direct/indirect effect ratio is the same for all regressors in
a given spatial model.

Unfortunately, this “behavior” (identical relative strengths of
direct and indirect effects for all regressors) seems rather
implausible in many types of empirical applications.
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Drawbacks of SLMs/SDMs/SEMs

W matrices cannot be estimated along with model parameters.

Rather, W needs to be specified prior to model estimation.

There is little theoretical background for choosing the “right”
W matrix specification.

As W matrix in a SLM/SDM/SEM changes, the estimated
parameters tend to change as well. Large changes to W may
cause large changes in estimated parameters.

The variety of available neighborhood definitions and
standardization methods implies that researchers usually evaluate
several alternative spatial structure settings in order to verify
model stability and robustness of the results.
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Robustness against changes in spatial structure

1 Start with a relatively sparseW distance matrix, that is generated
by using a restrictive (i.e. low) τ . Note that the threshold must be
high enough to ensure at least one neighbor for each spatial unit

2 Increase τ by some low amount (eg 10-km in NUTS2 units).
Estimate the model and record all relevant information.

3 Repeat step 2 until a some preset maximum τ is reached. Usually,
this would happen in one of the following manners: (a) “range” (as
in the semivariogram) is reached, (b) τ becomes so large that the
assumption of spatial weak dependency no longer applies, (c) We
have prior information limiting the plausible range of spatial
interactions.

4 Plot the estimated spatial parameters, direct and indirect effects
of interest and statistical significance data against the distance
thresholds used.

Analogous approach can be used for kNN, contiguity neighbors, etc.
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Spatial robustness – SLM illustration
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Spatial filtering and semiparametric models
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Spatial filtering and semiparametric models

Parametric methods are potentially not robust in a situation
where the model suffers from a simultaneous presence of different
sources of misspecification.
Unaccounted nonlinear relationship among spatially correlated
variables, spatially varying relationships (non-stationarity),
uncontrolled common factors (spatial and time-related) and other
instances of spatial heterogeneity can disrupt spatial dependencies
or even manifest themselves as such.

Spatial filtering may be used to remove global and/or local spatial
dependencies among geo-coded variables.

Spatial filtering does not rely on distributional assumptions and is
fairly robust to model misspecification.
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Spatial filtering and semiparametric models

Getis’ nonparametric filtering can be used to eliminate spatial
autocorrelation from observed data by “spatial demeaning”.
Based on Gi(τ) by Getis – only applicable for positive spatial
autocorrelation and positive support of the observed spatial
variables.

Moran eigenvector map (MEM) filtering can be used to preserve
some level of spatial properties within the model – it is a
semiparametric method.
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Getis univariate filtering

Approach based on Gi(τ) statistic by Getis:

Gi(τ) =
∑N
j=1 cij yj∑N
j=1 yj

, ; E [Gi(τ)] = ci
N
,

where ci is the sum of elements of i-th row of C
(note that C is used for filtering, not the C∗ = C + IN ).

Multiplicative transformation (filtering) of a spatial variable yi:

ÿi = E [Gi(τ)]
Gi(τ) · yi ,

where ÿi is the spatially filtered value of yi.
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Getis univariate filtering

ÿi = E [Gi(τ)]
Gi(τ) · yi ,

Corrects for positive spatial autocorrelation in observed data by
counterbalancing the clustering.

Filtering factor shrinks yi if the majority of observations yj within
the τ distance of unit i are above average.

Similarly, yi is inflated if neighboring observations feature
below-average values.

Simple and intuitive, yet positive support assumption can be a
limitation. Also, the process of setting τ is arbitrary (robustness
evaluation possible).
Univariate – to estimate models using filtered data, such as
ÿ = αι+ Ẍβ + ε , all variables have to be filtered individually.
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Moran’s eigenvector map (MEM) filtering

Econometric models are partitioned into two elements that are both
employed within the spatial regression:

Exogenous regressors (say, macroeconomic indicators)

Complementary spatial-filter variate (e.g. a MEM) describing
spatial dependency that would otherwise affect model’s residuals.

For MEM-based spatial filtering, all units need to be connected –
i.e. there has to be a “path” between any two regions, based on
connections (edges) between neighboring units. Hence, for spatial
filtering applications, τ value must not be lower than the longest
edge of a minimum spanning tree of a graph based on D (where
dij are distances between units). Maximum limit on τ also applies
(recall weak dependency assumptions).

VŠE Praha (4EK417) Block 2 102 / 121



Semiparametric model with MEM-filter

1 Use C to construct a double-centered connectivity matrix Ω:

Ω = (IN −
1
N
ιNι

′
N )C (IN −

1
N
ιNι

′
N ) ,

where IN is the identity matrix and ιN is a column vector of ones.
Double-centering standardizes C so that all rows and columns in
Ω add up to zero. C may be full rank (not guaranteed), Ω is
always rank deficient.

2 Calculate all distinct eigenvectors vi and eigenvalues κi for the
double-centered matrix Ω – by solving the characteristic equation
system (Ω− κ IN )v = 0. As Ω is a real symmetric matrix, all
distinct eigenvectors are orthogonal and linearly independent
(given rank-deficiency of Ω, some eigenvalues and eigenvectors are
duplicated).
MEM – convenient subset of eigenvectors v – can be used as a
synthetic explanatory variable in semiparametric regression.
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Semiparametric model with MEM-filter

4 Semiparametric model is established using a misspecification
paradigm and based on a regression model with spatially
autocorrelated disturbances:

y = Xβ + u ,
u = Eγ + ε ,

where u are the spatially autocorrelated disturbances that may be
decomposed into ε (white noise) and E: a set of missing
(unobservable) exogenous variables that follow common spatial
dependency pattern (C) and γ is a vector of parameters.

The Eγ term is based on approximation and it is not directly
comparable with the SEM parametric specification
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Semiparametric model with MEM-filter

5 Using a stepwise algorithm described next, the misspecification
term E is approximated by MEM – a convenient subset of Morans
eigenvectors

{v1, . . . ,vr} ≡ evec (Ω) ,

where r = rank(Ω) is the number of distinct eigenvectors of Ω.

We can approximate E by a parsimonious subset of eigenvectors v
such that M = {v1, . . . ,v`} where ` ≤ r.

Since spatial misspecification term E is correlated with X (at
least potentially), the explicit inclusion of proxy element (MEM)
M corrects for the bias in estimated coefficients β̂.
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Semiparametric model with MEM-filter

6 After substitution of E by M , we get

y = Xβ +Mγ + ε ,

where y is decomposed into a systematic component (featuring
X), stochastic spatial component and white-noise residuals.

For conveniently specified M , the stochastic spatial term Mγ̂
removes a significant portion of the mean squared error (MSE)
term, attributable to spatial autocorrelation

Hence, Mγ̂ is often referred to as spatial filter.

Filtering is fairly robust to model specification errors when
compared with fully parametric models.
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Semiparametric model with MEM-filter

Stepwise algorithm for choosing M :

We choose M so that the residuals ε̂ become spatially random
(independent with respect to the underlying spatial domain).

We aim to find a parsimonious, i.e. smallest possible subset of
eigenvectors v, leading to spatial independence of ε̂.

Stepwise regression approach is often used.

Stepwise algorithm often based on a modified Moran’s I
coefficient: Moran’s MC.
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Semiparametric model with MEM-filter
Stepwise algorithm for choosing M :

MCvi = N
ι′N Z ιN

v′iCvi ,

where Z is a distance-based similarity matrix with
[zij ] = 1− ( hij

max(hij))2. Individual zij vary between zero for
hij = max(hij) and 1 for hij = 0.
First eigenvector is selected by maximizing MCvi .
Using such vi as a starting eigenvector subset for M , equation
y = Xβ +Mγ + ε is estimated and residuals are evaluated for
spatial autocorrelation (e.g. using Moran’s I).
If residuals are spatially dependent, new eigenvector is added to
M using the same MC criterion, model is re-estimated and spatial
autocorrelation in residuals is tested again.
Eigenvectors are iteratively added to M , until spatial
autocorrelation in residuals ε̂ falls below a predetermined
threshold (e.g. 5 % significance level).
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Semiparametric model with MEM-filter
y = Xβ +Mγ + ε

Eigenvectors in M are mutually orthogonal and follow a strictly
decreasing sequence (along corresponding eigenvalues).

Each eigenvector explains a specific proportion of variance in
residuals of the model – the largest proportion of variance is
explained by the first eigenvector selected into M , the second
largest amount of variance is explained by the second eigenvector,
etc.

This leads to identical M matrices, obtained through forward and
backward stepwise selection methods.

Convenient linear combination of the above eigenvectors (i.e. Mγ̂)
is our spatial filter.

Often, we only take into account positive spatial autocorrelation:
only vi associated with positive κi are considered.
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Semiparametric model with MEM-filter

y = Xβ +Mγ + ε

Individual v elements of M bear the following interpretation:

MEMs – spaces spanned by single or multiple v eigenvectors –
with associated “large” positive eigenvalues κi represent
global-scale spatial trends (say, landscape-wide dynamics in
observed spatial data).

Eigenvectors with medium eigenvalues represent medium scale
dynamics.

Eigenvectors with small positive eigenvalues would represent small
scale dependencies (“local” patchiness).
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MEM - illustrative example
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Spatial panel models (parametric)
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Spatial panel models
For repeated geo-coded observations, spatial panel models depict
interactions among variables across spatial units and over time:

y = λ (IT ⊗W )y +Xβ + u ,
u = (ιT ⊗ IN )µ+ ε ,
ε = ρ (IT ⊗W ) ε+ υ ,

where y is a NT×1 column vector of dependent variable observations
(i = 1, 2, . . . , N , t = 1, 2, . . . , T and i is the “fast” index). W is a spatial
weights matrix and X is a (NT×k) matrix of exogenous regressors. Elements
IT and IN are identity matrices and ιT is a (T×1) vector of ones. Operator
⊗ is the Kronecker product. Elements of vector β as well as λ and ρ are
parameters of the model. The disturbance vector u (NT×1) is a sum of two
terms: the unobserved individual effects µ and spatially autocorrelated
innovations ε. The (N×1) vector µ holds time-invariant and spatially
uncorrelated individual effects. Innovations ε are spatially autocorrelated
with a spatial error autoregressive parameter ρ where |ρ| < 1. υ is a vector of
spatially independent innovations: υit ∼ IID

(
0, σ2

υ

)
.
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Spatial panel models

y = λ (IT ⊗W )y +Xβ + u ,
u = (ιT ⊗ IN )µ+ ε ,
ε = ρ (IT ⊗W ) ε+ υ ,

Spatial dependency tests (Moran’s I) for panel data are available.
By analogy to the GNS model (for CS data), the above
specification is simplified (restricted) before estimation.
Generally, β parameters do not constitute marginal effects –
direct/indirect effects have to be calculated (using the same
general approach as for CS data).
With “random effects” (RE) models, we assume that unobserved
individual effects µ are not correlated to other regressors of the
model.
For “fixed effects” (FE) models, some level of correlation between
individual effects and other regressors is acceptable.
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Spatial panel models

We shall briefly discuss three types of spatial panel models:

Fixed effects spatial lag model

Fixed effects spatial error model

Random effects spatial lag model
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Fixed effects spatial lag model

FE spatial lag model that does not feature spatial autocorrelation
in the error term can be written as

y = λ (IT ⊗W )y + (ιT ⊗ IN )µ+Xβ + υ ,

where υ is a vector of spatially independent and normally
distributed innovations.

First step in FE spatial lag model estimation: eliminating the
individual effects:

ÿ = λ (IT ⊗W ) ÿ + Ẍβ + ϋ ,

where ÿit = yit − ȳi, etc.

As individual effects are time-invariant, µ̈i = µi − µ̄i = 0
and µ disappears from equation.
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Fixed effects spatial lag model

y = λ (IT ⊗W )y + (ιT ⊗ IN )µ+Xβ + υ

FE spatial lag model is estimated by MLE method. For detailed
description, see Milo, Piras (2012)

Direct/indirect/total effects and their statistical significance is
calculated (bootstrapped standard errors) – see Milo, Piras (2012).

From estimated FE model, we can calculate individual effects:

µ̂i = 1
T

T∑
t=1

yit − λ̂
 N∑
j=1

wijyjt

− xitβ̂
 .

However, for short panels (N � T ), enough observations for
reliable µi estimation often do not accumulate.
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Fixed effects spatial error model

Spatial lag is absent in the FE spatial error model:

y = (ιT ⊗ IN )µ+Xβ + ε ,
ε = ρ (IT ⊗W ) ε+ υ .

Model is estimated by MLE (time-demeaning is used).

Coefficients β are the marginal effects here

Individual effects can be retrieved from the estimated model as

µ̂i = 1
T

T∑
t=1

(
yit − xitβ̂

)
,

and reliability issues for short panels (N � T ) apply.
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Random effects spatial lag model

Individual effects can be viewed as random and independent of
regressors – random effect (RE) model and RE estimator provide
efficient estimates. RE properties of µ:
µi ∼ IID

(
0, σ2

µ

)
; normality is often assumed.

Under RE assumptions, GNS panel model can be re-written as:

y = λ (IT ⊗W )y +Xβ + u ,

u = (ιT ⊗ IN )µ+
(
IT ⊗B−1

N

)
υ

where BN = (IN − ρW ) and error variance may be outlined as

var (u) = Ωu = σ2
µ

(
ιT ι
′
T ⊗ IN

)
+ σ2

υ

[
IT ⊗

(
B′NBN

)−1
]
.
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Random effects spatial lag model

y = λ (IT ⊗W )y +Xβ + u ,

u = (ιT ⊗ IN )µ+
(
IT ⊗B−1

N

)
υ

Model is estimated by MLE (iterative estimation involving
concentrated LL functions), see Milo, Piras (2012).

Direct/indirect/total effects can be calculated.

RE vs. FE: Generalized Hausman test can be applied:

H = NT
(
θ̂RE − θ̂FE

)′(
Σ̂RE − Σ̂FE

)−1(
θ̂RE − θ̂FE

)
∼
H0

χ2
k ,

where θ̂RE and θ̂FE are the RE and FE-based estimates, Σ̂RE and
Σ̂FE are corresponding variance-covariance matrices. Under H0
(RE assumptions hold), the test statistic is asymptotically
χ2-distributed with k d.f. (k is the number of regressors).
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Spatial analysis and regression models in R

{spdep} , {spatialreg} , {splm}
{spgwr} – spatial “local regression”, discussed in Block 3
{sf}, {sp}, {ggplot2}
{terra}, {raster} – raster data (remote sensing, etc.)
https://cran.r-project.org/web/views/Spatial.html
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