
Xu Hao

Smart Domain Architecture 
Pattern
Re-engineering DDD



Smart Domain

• Object-Oriented Approach (No service)


• Model as fully connected object graph (Not disconnected aggregation)


• Directly map to RESTful API(with HATEOAS)


• Act as an abstraction layer to hide implementation details 


• Consistent between conceptual model/model/api



• Entity is not about value, but 
about identity and association

Smart Domain
Entity 

Identity Value Association



• Entity is not about value, but 
about identity and association


• Can be mapped easily as a 
lossless representation model

Smart Domain
Entity 

Identity Value Association

URI: /entities/{entity-id}



• Entity is not about value, but 
about identity and association


• Can be mapped easily as a 
lossless representation model


• Association is an abstraction 
mechanism for connections

Smart Domain
Entity 

Identity Value Association

URI: /entities/{entity-id}



• Entity is not about value, but 
about identity and association


• Can be mapped easily as a 
lossless representation model


• Association is an abstraction 
mechanism for connections


• Association is an abstraction 
mechanism for lifecycle

Smart Domain
Entity 

Identity Value Association

URI: /entities/{entity-id}



Smart Domain

• Smart domain providers an 
abstraction for API



Smart Domain

• Smart domain providers an 
abstraction for API: navigation of 
the graph


• Root entity as Root 
Resource(JAX-RS)


• Association as Sub-Resource


• Connected Entity as Sub-
Resource of association 

/customers/{id}

orders

{order-id}

payments

payments

{payment-id}



Smart Domain

• Smart domain providers an 
abstraction for API: navigation of 
the graph


• Smart domain provides an 
abstraction for lifecycle 

/customers/{id}

orders

{order-id}

payments

payments

{payment-id}



Smart Domain

• Smart domain providers an 
abstraction for API: navigation of 
the graph


• Smart domain provides an 
abstraction for lifecycle 


• Different implementations of 
association 


• Aggregation is an 
implementation detail

In Memory

From Database

From API



• Two layers architecture


• Domain layers: define the 
entities and the associations 
between entities 

Smart Domain



• Two layers architecture


• Domain layers: define the 
entities and the associations 
between entities 


• API layers: provides API based 
on the graph navigation 
defined in domain layer

Smart Domain
API expose graph navigation



• Two layers architecture


• Domain layers: define the 
entities and the associations 
between entities 


• Integration layers: provides 
implementation of 
associations


• API layers: provides API based 
on the graph navigation defined 
in domain layer

Smart Domain
API expose graph navigation



Accounting Domain Model

Customer Account

TransactionSource Evidence

Sales Settlement

1 1..*

1 1..*

1

*

1

*



Accounting Domain Model - Association

Customer Account

TransactionSource Evidence

Sales Settlement

1 1..*

1 1..*

1

*

1

*

CustomerAccounts

CustomerSourceEvidences AccountTransactions

SourceEvidenceTransactions

Customers



Accounting Domain Model - API

Customer Account

TransactionSource Evidence

Sales Settlement

1 1..*

1 1..*

1

*

1

*

CustomerAccounts

CustomerSourceEvidences AccountTransactions

SourceEvidenceTransactions

Customers

/customers accounts{customer-id} {account-id}

source-evidences transactions

transactions

{transaction-id}



Accounting Domain Model - Lifecycle

Customer Account

TransactionSource Evidence

Sales Settlement

1 1..*

1 1..*

1

*

1

*

CustomerAccounts

CustomerSourceEvidences AccountTransactions

SourceEvidenceTransactions

Customers

{account-id}

Database

Memory



Demo project

• https://github.com/Re-engineering-Domain-Driven-Design/Accounting


