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Smart Domain

• Object-Oriented Approach (No service)


• Model as fully connected object graph (Not disconnected aggregation)


• Directly map to RESTful API(with HATEOAS)


• Act as an abstraction layer to hide implementation details 


• Consistent between conceptual model/model/api



• Entity is not about value, but 
about identity and association
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lossless representation model
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Smart Domain

• Smart domain providers an 
abstraction for API: navigation of 
the graph


• Root entity as Root 
Resource(JAX-RS)


• Association as Sub-Resource


• Connected Entity as Sub-
Resource of association 
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Smart Domain

• Smart domain providers an 
abstraction for API: navigation of 
the graph


• Smart domain provides an 
abstraction for lifecycle 


• Different implementations of 
association 


• Aggregation is an 
implementation detail

In Memory

From Database

From API



• Two layers architecture
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• Two layers architecture


• Domain layers: define the 
entities and the associations 
between entities 


• Integration layers: provides 
implementation of 
associations


• API layers: provides API based 
on the graph navigation defined 
in domain layer
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Accounting Domain Model
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Accounting Domain Model - Lifecycle
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Demo project

• https://github.com/Re-engineering-Domain-Driven-Design/Accounting


