
Predicting the Wind: Data Science in Wind Resource Assessment
– Self-study version –

, Data Scientist

2020-03-11,

Source Code:

Intended audience: Data analysts and data scientists who are interested in learning about how data science

techniques are applied in the wind energy domain.

Florian Roscheck

PyData San Diego Meetup

github.com/ rs/predicting_the_wind

https://www.linkedin.com/in/florianroscheck/
https://www.meetup.com/PyData-San-Diego/
https://github.com/flrs/predicting_the_wind

Agenda

What is wind resource assessment?

How to measure the wind

Predicting long-term wind speeds

Predicting wind turbine power output

What is Wind Resource Assessment?

Sounds good, but...

How much power is in the wind?

Will you be able to sell the generated electricity at a pro t?

A pro t over the next 25 years?

Wind resource assessment to the rescue!

Predict long-term behavior of the wind

Predict power output of wind turbines

Know if you will make a pro t!

Wind Resource Assessment = �

Building models of the physical world is exciting

Uncertainty is not just a footnote

Modern data science is relatively new in the eld

Reduce emissions and slow global warming!

Predicting the Wind: A Data Science Problem!

Getting wind data

Cleaning wind data

Analyzing wind data

Building a model of the wind

Predicting the wind and output of the wind farm

This is a typical data science work ow!

Getting Wind Data: Met Masts

Met masts look like this:

Measure the wind at different heights

Have sensors for wind speed, wind direction, temperature, humidity, and precipitation

Analyzing Wind Data

Let's load data from a met mast and check it out!

In [1]:

Our met mast data show wind speed in m/s at 30, 45, and 58 m height, temperature in °C, and wind direction

in °, in 10-minute intervals.

(These data are all arti cal and I generated them in .)this notebook

Out[1]: spd_30 spd_45 spd_58 tmp dir

time

1999-12-31 16:00:00 3.39 3.73 3.84 12.37 243.68

1999-12-31 16:10:00 3.27 3.65 3.81 12.22 250.02

1999-12-31 16:20:00 3.31 3.63 3.80 12.12 252.29

1999-12-31 16:30:00 3.78 4.26 4.38 12.04 249.54

1999-12-31 16:40:00 3.96 4.38 4.52 11.99 254.50

import pandas as pd

data = pd.read_parquet('./data/met_mast.parquet')

data.round(2).head()

http://localhost:8888/notebooks/data_acquisition/synthesizing_a_wind_speed_time_series.ipynb

Let's get a feel for the wind data by plotting them!

In [3]:

...wow, that looks very messy!

Out[3]:

Plot wind speed time series

import brightwind as bw

anemometers = ['spd_30','spd_45', 'spd_58']

bw.plot_timeseries(data[anemometers])

Let's plot a single day to see more detail!

In [4]:

Observations: Wind speed varies a lot throughout the day. Higher height means higher wind speed.

Out[4]:

bw.plot_timeseries(data.loc['2019-03-11',anemometers])

Which direction does the wind come from? Let's plot a frequency rose !

In [5]:

Out[5]:

bw.freq_table(data['spd_30'], data['dir'])

Wind Data Analysis Takeaways

Wind data = long time series

Wind data looks messy

There are domain-speci c tools to structure and explore wind data (e.g. frequency roses)

From Measurement to Prediction: Building a Model

We want to predict how much energy a wind farm will likely produce in 25 years of operation.

Problem:

Only 2 years of met mast wind measurements to predict 25 years of wind

With that little data we really don't know enough about how the wind will behave!

Solution:

Get more, longer-term data from other sources, covering as much time as possible

Rationale:

The more we know about the past, the better we can predict the future.

Section Overview

How and where to get more long-term data

Build a simple model to predict wind speeds

Use a more advanced model from scikit-learn to predict wind speeds

Improve models with wind energy domain knowledge

Investigate how to score and compare wind speed models

Getting More, Long-Term Data

Popular data sources: Global climate models, measurements by third parties

Close to the Sandbox (blue): 4 climate model grid points (orange), 3 airport measurement stations (purple)

Let's load climate model () and airport station data!ERA5

In [6]:

Climate models typically do not output wind speed at ground level and only have 1-hr resolution.

(shows how I downloaded ERA5 data and shows how I downloaded airport

station data.)

This notebook this notebook

Out[6]: spd dir tmp

time

1999-12-31 16:00:00 4.548827 249.010856 12.370013

1999-12-31 17:00:00 3.981960 251.738388 11.915547

1999-12-31 18:00:00 2.607753 249.791620 11.245783

1999-12-31 19:00:00 1.559933 233.880179 9.782310

1999-12-31 20:00:00 1.359054 231.334928 10.454369

from pathlib import Path

import pandas as pd

lt_data = {'era5_0': 'era5_0.parquet',

 'era5_1': 'era5_1.parquet',

 'MYF': 'MYF_200001010000_202003070000.parquet',

 'NKX': 'NKX_200001010000_202003070000.parquet',

 'SAN': 'SAN_200001010000_202003070000.parquet'}

for name, file in lt_data.items():

 lt_data[name] = pd.read_parquet(Path('./data/').joinpath(file))

lt_data['era5_0'].head()

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
http://localhost:8888/notebooks/data_acquisition/downloading_ERA5_data_in_python.ipynb
http://localhost:8888/notebooks/data_acquisition/download_and_preprocess_asos_data.ipynb

From Short-Term to Long-Term Data

Our challenges:

Airport measurements are taken and climate models are calculated far from our site (the Sandbox).

They have measurements in greater intervals than our met mast.

How much can we trust them to tell us about the wind characteristics at the Sandbox?

Let's plot met mast wind speed data against the data from the ERA5 climate model!

In [7]:

Good news: Despite being physically far away, there seem to be great similarities between the climate model

and the met mast data. (This is not always the case, but it is here to make this tutorial fun and easy.)

Out[7]:

plot_data = pd.concat([data['spd_58'].resample('1W').mean(), lt_data['era5_0']['spd'].resample('1W').mean()], axis=1)

plot_data.columns = ['Measurement', 'LT Reference']

bw.plot_timeseries(plot_data, date_from='2017')

Problem: How do we exploit the similarities between references and met mast data to get an idea of what

our met mast data would have looked like if we had measured for 25 years?

Solution:

1. Build model describing relationship between measurement and references

2. Let model predict what long-term measurement would look like

Let's build a model!

A Simple Model: Orthogonal Least Squares

Orthogonal least squares: Draw a best- t line between all timestamp-points of reference and met mast wind

speed that minimizes the orthogonal distance between line and timestamp-point

In [8]:

It looks like we have a good amount of data (7k+ points) and a respectable of 0.89. Let's plot our line of

best t!

{'Num data points': 761,

 'offset': 0.48915546304725566,

 'r2': 0.8682745042710436,

 'slope': 0.7728460999482368}

from brightwind.analyse.correlation import OrthogonalLeastSquares

Resample to daily

data_1D = data.resample('1D').mean()

lt_data_1D = lt_data['era5_0'].resample('1D').mean()

ols_model = OrthogonalLeastSquares(ref_spd=lt_data_1D['spd'],

 target_spd=data_1D['spd_58'],

 averaging_prd='1D')

ols_model.run()

In [9]:

There is some scatter but model ts the data quite well.

Out[9]:

ols_model.plot()

Problem:

To make sense of the model in terms of how well it can predict wind speeds, we want to use it to

predict the wind speeds for the time period when we have met mast measurements and then compare

these measurements to the model's predictions.

For this purpose, as error metric is inappropriate - it tells us nothing about wind speeds!

(Interpretation of is also rather tricky for orthogonal least squares regression in general)

Solution:

Use RMSE (root mean square error) of predicted wind speed vs. actual measured wind speed as error metric!

In [10]: # Define scoring metric: RMSE

import numpy as np

def rmse(prediction, actual):

 return np.sqrt(((prediction-actual)**2).mean())

all_predictions = {}

all_scores = {}

Let's score the simple orthogonal least squares model using RMSE!

In [11]:

The RMSE is 11% of the wind speed. This is not really a good number. If we would build the project assuming

11% faster winds than we would actually have, we would have made a very expensive mistake.

So: How can we improve the model?

Let's learn about Physics!

RMSE of simple model: 0.315

RMSE as % of wind speed mean: 11%

prediction = (ols_model.params['slope']*lt_data_1D['spd']+ols_model.params['offset'])

all_predictions['simple'] = prediction

all_scores['simple'] = rmse(prediction, data_1D['spd_58'])

print('RMSE of simple model: {:.3f}'.format(all_scores['simple']))

print('RMSE as % of wind speed mean: {:.0f}%'.format(all_scores['simple']/data_1D['spd_58'].mean()*100))

Topography vs. Wind

Imagine a wind gust enters picture on left as a vertical line.

As gust moves over a hill from left to right, it accelerates towards the top and decelerates towards the

bottom (vertical line becomes diagonal).

Position of hills relative to our site may in uence expected wind speeds.

Elevation Map of Area Around the Sandbox

We ommitted the scale, but it looks as if there are some elevation differences around the Sandbox.

How can we take advantage of the topographic information?

Let's try building models for different wind directions!

Rationale: We may nd that there is more similarity in wind speeds between mast and reference in some

directions than in others.

A Better Model: Binned Orthogonal Least Squares

Our simple model – just binned in 12 direction sectors.

Quick remark: We use for building our model here instead of , since I want to show you that

you can even analyze wind data with more common data science tools.

SciPy Brightwind

In [12]: # Bin data by direction

dir_bins = pd.IntervalIndex.from_breaks(np.linspace(0,360,13))

data_1D = data.resample('1D').mean()

lt_data_1D = lt_data['era5_0'].resample('1D').mean()

lt_data_1D['dir_bin'] = pd.cut(lt_data_1D['dir'], dir_bins)

data_1D['dir_bin'] = pd.cut(data_1D['dir'], dir_bins)

https://www.scipy.org/
https://github.com/brightwind-dev/brightwind

In [13]:

RMSE of binned model: 0.289

Build binned orthogonal least squares model

from scipy.odr import ODR, Model, Data

def get_data_in_dir_bin(dir_bin):

 lt_data_in_bin = lt_data_1D['spd'][lt_data_1D['dir_bin'] == dir_bin]

 data_in_bin = data_1D['spd_58'][data_1D['dir_bin'] == dir_bin]

 return lt_data_in_bin, data_in_bin

def model_fcn(B, x):

 return B[0]*x+B[1]

bin_stats = {}

for bin_nx, dir_bin in enumerate(dir_bins):

 bin_stats[bin_nx] = {'n_samples': None, 'betas': None, 'rmse': np.nan, 'predictions': None}

 lt_data_in_bin, data_in_bin = get_data_in_dir_bin(dir_bin)

 concurrent_nxs = list(set(lt_data_in_bin.index).intersection(set(data_in_bin.index)))

 bin_stats[bin_nx]['n_samples'] = len(concurrent_nxs)

 if not concurrent_nxs:

 continue

 result = ODR(Data(lt_data_in_bin[concurrent_nxs].values, data_in_bin[concurrent_nxs].values), Model(model_fcn),

 beta0=[1., 0.5]).run()

 bin_stats[bin_nx]['predictions'] = model_fcn(result.beta, lt_data_in_bin)

 bin_stats[bin_nx]['betas'] = result.beta

 bin_stats[bin_nx]['rmse'] = rmse(bin_stats[bin_nx]['predictions'], data_in_bin)

all_predictions['binned'] = pd.concat([bin_stat['predictions'] for bin_stat in bin_stats.values()\

 if bin_stat['predictions'] is not None]).sort_index()

all_scores['binned'] = np.nanmean([bin_stat['rmse'] for bin_stat in bin_stats.values()])

print('RMSE of binned model: {:.3f}'.format(all_scores['binned']))

Scores so far

RMSE of simple model: 0.315

RMSE of binned model: 0.289

Our binned model performs better already!

A More Advanced Model: RandomForestRegressor

Expectation: Random forest regressor captures nuances in relationship between reference and

measurement better than other models

Background: A generates an estimate from multiple decision trees. Each tree only gets

trained on a subset of samples and features. This means that each tree has some "specialized" knowledge

about the data and can see a particular aspect of the data better than other trees. By combining the

predictions of all trees, a random forest can provide a relatively robust prediction.

Approach:

Engineer features that model can pick up on

Run the model

random forest

https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d

Feature Engineering

Let's come up with some (simple) features that the random forest can feed on.

In [14]:

Out[14]: spd dir tmp spd_rolling_3 spd_rolling_5 d m

time

2018-02-01 1.455543 173.896001 15.397280 3.040377 3.040787 1.0 2.0

2018-02-02 1.528880 168.001625 16.170596 3.040377 3.040787 2.0 2.0

2018-02-03 2.025680 251.970139 16.567941 1.670035 3.040787 3.0 2.0

y = data_1D['spd_58']

Get concurrent time steps

conc_index = sorted(list(set(y.index).intersection(lt_data_1D.index)))

X = lt_data_1D.loc[conc_index,['spd', 'dir', 'tmp']].sort_index()

Rolling means

def make_rolling(data, window_width):

 rolling = data['spd'].rolling(window_width).mean()

 rolling = rolling.fillna(rolling.mean())

 rolling.name = 'spd_rolling_{}'.format(window_width)

 return pd.concat([data, rolling], axis=1)

X = make_rolling(X, 3)

X = make_rolling(X, 5)

Date-based features to capture temporal patterns

X.loc[conc_index,'d'] = X.index.day

X.loc[conc_index,'m'] = X.index.month

X.head(3)

Now that we have data with features, let's build 2 models: One model for which we will withhold some

validation data and, for comparison with the previous models, one model that uses all data.

In [15]:

The RMSE is not too high and de nitely within the range of the other models. Let's compare the models in

more detail.

RMSE (RF model, training set): 0.303

RMSE (RF model, validation set): 0.330

RMSE (RF model, all data): 0.300

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import train_test_split

X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)

rf_model = RandomForestRegressor(n_estimators=100, oob_score=True, random_state=100, min_samples_leaf=10)

rf_model.fit(X_train, y_train)

print('RMSE (RF model, training set): {:.3f}'.format(rmse(rf_model.predict(X_train), y_train)))

print('RMSE (RF model, validation set): {:.3f}'.format(rmse(rf_model.predict(X_val), y_val)))

model = RandomForestRegressor(n_estimators=100, oob_score=True, random_state=100, min_samples_leaf=10)

model.fit(X, y)

predictions = model.predict(X)

all_predictions['forest'] = pd.Series(predictions,index=conc_index).sort_index()

all_scores['forest'] = rmse(predictions, y)

print('RMSE (RF model, all data): {:.3f}'.format(all_scores['forest']))

Comparing the 3 Wind Speed Models
In [16]:

All 3 models follow the target mast nicely. The forest model sometimes captures peaks better than other

models (Jun 18, May 6), but also occasionally has bigger misses (Apr 12, May 30).

from matplotlib import pyplot as plt

pd.DataFrame(all_predictions).loc['2018-04':'2018-06',:].plot(figsize=(25,5))

data_1D['spd_58'].loc['2018-04':'2018-06'].plot(c='k',lw=2, label='Target Mast')

plt.legend()

plt.show()

Time for a direct score comparison! Remember: The lower the RMSE, the better the model.

In [17]:

Despite all the fanciness of the random forest model, it does not reach the score of our binned model. This

being said – an RMSE of 0.3 is still relatively high when measured in terms of wind speed.

pd.Series(all_scores).plot.bar();

An In-Depth Look at the Binned Model

When we built the binned model, we did not spend any time inspecting it. Let's do that now. We want to

understand how robust our model is. First, let's display the number of samples our model used per bin.

In [18]:

6 bins have under 25 samples. For predictions in these bins, the model is probably not very reliable.

bin_wise_params = pd.Series([stat['n_samples'] for stat in bin_stats.values()], index=dir_bins)

bin_wise_params.plot.bar(figsize=(15,5))

plt.grid()

It would be better to use our simple model for these cases, since we know that it has been trained on a lot of

data and performs reasonably well.

In [19]:

(0.0, 30.0]: Simple model

(30.0, 60.0]: Simple model

(60.0, 90.0]: Simple model

(90.0, 120.0]: Simple model

(120.0, 150.0]: Simple model

(150.0, 180.0]: Bin-wise model

(180.0, 210.0]: Bin-wise model

(210.0, 240.0]: Bin-wise model

(240.0, 270.0]: Bin-wise model

(270.0, 300.0]: Bin-wise model

(300.0, 330.0]: Simple model

(330.0, 360.0]: Simple model

betas = []

for beta, valid_binned, bin_ in zip([stat['betas'] for stat in bin_stats.values()],

 [stat['n_samples']>=25 for stat in bin_stats.values()],

 dir_bins):

 if not valid_binned:

 betas.append(np.asarray([ols_model.params['slope'], ols_model.params['offset']]))

 print('{}: Simple model'.format(bin_))

 else:

 betas.append(beta)

 print('{}: Bin-wise model'.format(bin_))

Now that we have a more robust model, let's re-predict our time series and check our RMSE metric!

In [20]:

In [21]:

It looks as if lling the gaps in the binned model had a very bad impact on our RMSE, making the new model

the worst-performing one. What is going on here?

RMSE of binned with fill-in from simple model: 0.403

Out[21]: binned 0.289

forest 0.300

simple 0.315

binned_fill_simple 0.403

dtype: float64

bin_rmses = []

bin_predictions = []

for dir_bin, beta in zip(dir_bins, betas):

 lt_data_in_bin = lt_data_1D['spd'][lt_data_1D['dir_bin'] == dir_bin]

 data_in_bin = data_1D['spd_58'][lt_data_1D['dir_bin'] == dir_bin]

 bin_prediction = model_fcn(beta, lt_data_in_bin)

 bin_predictions.append(bin_prediction)

 bin_rmse = rmse(bin_prediction, data_in_bin)

 bin_rmses.append(bin_rmse)

all_predictions['binned_fill_simple'] = pd.concat(bin_predictions).sort_index()

all_scores['binned_fill_simple'] = np.nanmean(bin_rmses)

print('RMSE of binned with fill-in from simple model: {:.3f}'.format(all_scores['binned_fill_simple']))

pd.Series(all_scores).sort_values().round(3)

We should look at the RMSE per bin to get a better picture of how which binned model is to blame for the

increase in error.

In [22]:

We are getting the highest errors in the bins where we inserted the simple model.

But, if there is no wind in those bins (= directions), the errors in those bins are not important!

What we really need is a bin-weighted scoring metric!

pd.DataFrame({'rmse': bin_rmses, 'n_samples': [stat['n_samples'] for stat in bin_stats.values()]},

 index=dir_bins).plot.bar(subplots=True,figsize=(15,5));

Improved Scoring Metric: Bin-Weighted RMSE

First, we will calculate the weight we give to each bin. This is just proportional to the number of samples in

each bin.

In [23]:

Now we can build our scoring function!

In [24]:

bin_n_samples = [stat['n_samples'] for stat in bin_stats.values()]

bin_weights = pd.Series(bin_n_samples, index=dir_bins)/np.sum(bin_n_samples)

def rmse_binned(prediction_spd, reference_spd, reference_dir):

 sqr_errors = (prediction_spd-reference_spd)**2

 weights = bin_weights[reference_dir]

 error = np.sqrt(np.nanmean(sqr_errors.values*weights.values))

 return error

With the scoring function under our belt, let's calculate the bin-weighted RMSE for all of our models'

predictions.

In [25]:

The bin-weighted RMSE shows clearer differences between the models than the unweighted score:

Our binned model that is using the simple model's information to ll in gaps scores best

Our simple model performs worse than the binned models

Our forest model performs poorly

So, after all, we should use our robust binned model to predict long-term wind speeds at our mast!

Out[25]: Unweighted Bin-Weighted

binned_ ll_simple 0.4026 0.1328

binned 0.2888 0.1347

simple 0.3152 0.1416

forest 0.2996 0.1807

all_scores_binned = {}

for model_name, prediction_spd in all_predictions.items():

 data_1D['spd_58'][data_1D['dir_bin'] == dir_bin]

 all_scores_binned[model_name] = rmse_binned(prediction_spd, lt_data_1D['spd'], lt_data_1D['dir'])

pd.DataFrame([all_scores, all_scores_binned]).T.rename(columns={0: 'Unweighted', 1: 'Bin-Weighted'})\

 .sort_values('Bin-Weighted').style.bar(vmin=0, vmax=0.5, color='lightblue').format('{:.4f}')

Predicting the Long-Term Wind Speed

Now we can predict the long-term wind speed at our site. This helps us to get a good idea of how much wind

energy we can potentially harvest if we build a wind turbine there.

Remember: We assume the wind in the future will behave like the wind in the past. To get to the long-term

wind speed, we take all predictions from our bin_fill_simple model. To maximize accuracy, we

substitute it with actual measurements from our mast wherever possible.

In [26]:

Let's summarize our long-term wind speed time series!

In [27]:

Replaced 761 model-predicted samples with measured samples from mast (10.3%).

Start: 1999-12-31, Length: 20 years, Avg. spd 2.86 m/s

lt_speed_at_mast = all_predictions['binned_fill_simple']

lt_speed_at_mast[data_1D['spd_58'].index] = data_1D['spd_58']

print('Replaced {} model-predicted samples with measured samples from mast ({:.1%}).'\

 .format(data_1D.shape[0], data_1D.shape[0]/lt_speed_at_mast.shape[0]))

print('Start: {:%Y-%m-%d}, Length: {:.0f} years, Avg. spd {:.2f} m/s'\

 .format(lt_speed_at_mast.index[0], lt_speed_at_mast.shape[0]/(365.25), lt_speed_at_mast.mean()))

A few words of caution about the long-term wind speed time series

Wind speeds usually vary a lot over the day. Therefore, wind turbines produce most energy only

within a fraction of that 24 hour period.

We produced a daily time series that does not re ect these wind speed changes during the day,

because we averaged hourly wind speeds over that 24 hour period.

As a result, we will not get realistic energy production numbers with this time series.

Actual wind resource assessment is much more complicated than shown here.

From Wind Speed Measurement to Prediction: Takeaways

It is easy to build a simple wind speed prediction model

More advanced models perform not always better

Domain knowledge can help a lot with nding the right model

...and with assessing model performance!

From Mast Height to Turbine Height

We have: Long-term wind speed time series at 58 m height (height of the wind speed sensor on the

mast)

We want: Long-term wind speed time series at height of turbine

We need:

Information about turbine height

Information about how wind speed behaves with height

In this section: Very short and simpli ed version.

Turbine Height

We arbitrarily choose as turbine model.

Hub height: 119 m (hub: "nose" of the turbine around which blades rotate)

Turbine height: Hub height + elevation of land that turbine stands on (assume 100 m for all turbines)

Mast height: Mast height + elevation of land that mast stands on (assume 80 m)

Vestas V112

https://en.wind-turbine-models.com/turbines/7-vestas-v112-onshore

Shear: Behavior of Wind Speed with Height

We use the to scale mast wind speed to turbine height:

Shear exponent:

wind pro le power law

https://en.wikipedia.org/wiki/Wind_profile_power_law

Let's nd the shear exponent by using Shear.Average() method.brightwind's

In [28]:

Shear exponent: 0.19

anemometer_heights = [30, 45, 58]

average_shear = bw.Shear.Average(data[anemometers], anemometer_heights)

print('Shear exponent: {:.3}'.format(average_shear.alpha))

https://github.com/brightwind-dev/brightwind/

Apply Shear Law to Long-Term Time Series

Now that we know the shear exponent, we can calculate the long-term time series at turbine height.

In [29]:

On average, the wind is 9.1% faster at the turbine height than at the measured height.

h_turbine = 100.0 + 119.0

h_mast = 80.0 + 58.0

lt_speed_at_turbine = lt_speed_at_mast*(h_turbine/h_mast)**average_shear.alpha

print('On average, the wind is {:.1%} faster at the turbine height than at the measured height.' \

 .format(lt_speed_at_turbine.mean()/lt_speed_at_mast.mean()-1))

Predicting Wind Turbine Power Output

We have come a long way. Now that we have a long-term wind speed time series at turbine height, we are

ready to predict turbine power output.

Power Curve

Power Curve: Turbine power output as function of wind speed. Let's plot the V112 power curve!

In [30]:

Observations: Turbine only starts to produce power at about 2 m/s wind speed, power output is steady

between ca. 12 and 25 m/s.

power_curve = pd.read_csv('./data/vestas_v112_power_curve.csv', index_col=0).iloc[:,0]

power_curve.index.name = 'Wind Speed [m/s]'

power_curve.plot(title='Vestas V112 Power Curve (Power Output in kW)', figsize=(15,5), ylim=(0,3500));

Power Curve vs. Predicted Wind Speed

Now that we know how much power the V112 turbine produces by wind speed, let's see how our predicted

long-term wind speed ts into the picture.

In [53]:

Observations: Long-term wind speed is very small in comparison to what the turbine can handle, the V112

turbine is completely oversized for this site!

power_curve.plot(title='Vestas V112 Power Curve (Power Output in kW) vs. Long-Term Wind Speed')

lt_speed_at_turbine.plot.hist(secondary_y=True, alpha=0.5, bins=20 , figsize=(15,5), label='long-term');

Calculating Power Output

Despite the V112 being so oversized, let's play around with the energy production numbers we would get if

we were to build this turbine. We want to get a "feel" for the power output and put it in the context of the

community around the Sandbox, our site.

In [78]:

Almost 25 MWh! Is that a lot? Is that a little? Let's express this number in other terms:

In [79]:

That is a lot of toast and a good amount of electric car charges!

Mean turbine output per year in kWh: 24,925

 Toastable toasts per day for 1 year: 975

 Full Tesla Model S charges per year: 249

lt_power_output = np.interp(lt_speed_at_turbine, power_curve.index, power_curve.values, left=0, right=0)

lt_power_output = pd.Series(lt_power_output, index=lt_speed_at_turbine.index)

time_series_duration_years = lt_power_output.shape[0]/(365.25)

output_per_year = lt_power_output.sum()/time_series_duration_years

print('Mean turbine output per year in kWh: {:,.0f}'.format(output_per_year))

print(' Toastable toasts per day for 1 year: {:.0f}'.format(output_per_year/(3.5/60*1.2)/365.25))

print(' Full Tesla Model S charges per year: {:.0f}'.format(output_per_year/100))

How Many Households Could We Power?

2017: The mean San Diego household consumed 5600 kWh of electricity (source:

).

The Sandbox ZIP code (92121) had 1677 households in 2010 (source:).

SDGE via Equinox

Project

zip-codes.com

In [97]:

Well, that looks like a dreadful scenario. But, gladly, our wind measurements are arti cial. This means: We

don't really know how many turbines it would take to power San Diego households.

Clearly, using just these arti cial data, building a wind turbine close to the Sandbox does not make sense.

With one badly-placed turbine, we could power 4.5 San Diego households (0.3% of all around the Sandbox).

With 377 badly-placed turbines, we could power 1678 San Diego households (100.1% of all around the Sandbox).

households_per_turbine = output_per_year/5600

pct_of_92121_per_turbine = households_per_turbine/1677

print('With one badly-placed turbine, we could power {:.1f} San Diego households ({:.1%} of all around the Sandbox).'\

 .format(households_per_turbine, pct_of_92121_per_turbine))

print('With 377 badly-placed turbines, we could power {:.0f} San Diego households ({:.1%} of all around the Sandbox).'\

 .format(households_per_turbine*377, pct_of_92121_per_turbine*377))

https://sites.energycenter.org/equinox/dashboard/residential-electricity-consumption
https://www.zip-codes.com/zip-code/92121/zip-code-92121.asp

Net Capacity Factor (NCF)

Experts measure how well a turbine ts a wind speed distribution and electricity grid environment in terms

of net capacity factor (NCF).

This metric describes how much electricity the turbine will generate from the actual wind environment, in

comparison to how much it could theoretically generate, if the wind blew enough to make the turbine

generate its maximum power output all the time.

In [100]:

This net capacity factor is really, really low! (Typical NCFs: 30% - 50%)

We could place this turbine in way better spots!

Nobody would build a turbine close to the Sandbox (given our arti cal data)!

The net capacity factor is 2.2%.

ncf = output_per_year/(365.25*power_curve.max())

print('The net capacity factor is {:.1%}.'.format(ncf))

How "Valuable" Would our Power be?

Challenge: Renewable energy is not (always) produced when needed

Selling energy in high-demand hours can be more pro table vs. in low-demand hours

Blue: Demand / Orange: Demand minus solar and wind (Sell energy when this value is high at slightly

cheaper prices than fossil fuel power plants to make good pro t.)

Let's plot our diurnal pro le to see if we would produce a good amount of electricty during these pro table

hours.

In [108]:

Unfortunately, it looks as if we produce power right when a lot of solar power is in the grid, pushing

electricity prices down. Not every wind project is like this – sometimes wind speeds are high just as energy

demand peaks.

measured_data = data['spd_58'].resample('1h').mean()

measured_data.groupby(measured_data.index.hour).mean()\

 .plot(figsize=(15,5), title='Diurnal Power Production Profile', xlim=(0,23));

...but what would be a good spot for a wind turbine?

Although San Diego not being one of them, there are some good spots for wind turbines in California.

References

(unless noted above)

Analyzing Wind Data

Met data:

Getting Wind Data: Met Masts

 by Lars Plougmann is licensed under

 by gvgoebel is licensed under

Getting More, Long-Term Data

ASOS data:

Topography vs. Wind

Fluid animation comes from this video:

Elevation map downloaded from here:

Power Curve

Vestas V112 Power Curve:

synthesizing_a_wind_speed_time_series.ipynb

"Wind measurement tower, north of Mobridge, South Dakota" CC BY-SA 2.0

"Yiwth_3b" CC BY-SA 2.0

download_and_preprocess_asos_data.ipynb

https://www.youtube.com/watch?v=-GIToNj-m4M

http://www.sangis.org/download/index.html

en.wind-turbine-models.com/turbines/7-vestas-v112-onshore

http://localhost:8888/notebooks/data_acquisition/synthesizing_a_wind_speed_time_series.ipynb
https://www.flickr.com/photos/75062596@N00/8104180555
https://creativecommons.org/licenses/by-sa/2.0/?ref=ccsearch&atype=html
https://www.flickr.com/photos/37467370@N08/7676229992
https://creativecommons.org/licenses/by-sa/2.0/?ref=ccsearch&atype=html
http://localhost:8888/notebooks/data_acquisition/download_and_preprocess_asos_data.ipynb
https://www.youtube.com/watch?v=-GIToNj-m4M
http://www.sangis.org/download/index.html
https://en.wind-turbine-models.com/turbines/7-vestas-v112-onshore

References (continued)

Calculating Power Output

Toaster power consumption: , assumed 1200 W for 3.5 minutes

Tesla Model S 100 kWh battery:

How "Valuable" Would our Power be?

Duck curve image from

...but what would be a good spot for a wind turbine?

California wind map from

energyusecalculator.com

Wikipedia

Wikimedia Commons

windexchange.energy.gov

http://energyusecalculator.com/electricity_toaster.htm
https://en.wikipedia.org/w/index.php?title=Tesla_Model_S&oldid=973551445
https://upload.wikimedia.org/wikipedia/commons/a/ab/Duck_Curve_CA-ISO_2016-10-22.agr.png
https://windexchange.energy.gov/maps-data/12

