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Agenda

e What is wind resource assessment?
¢ How to measure the wind

e Predicting long-term wind speeds

e Predicting wind turbine power output



What is Wind Resource Assessment?
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Sounds good, but...

¢ How much power is in the wind?

e Will you be able to sell the generated electricity at a profit?

o A profit over the next 25 years?



-

Wind resource assessment to the rescue!

e Predict long-term behavior of the wind

e Predict power output of wind turbines

e Know if you will make a profit!



Wind Resource Assessment = @

e Building models of the physical world is exciting
e Uncertainty is not just a footnote
e Modern datascience is relatively new in the field

e Reduce emissions and slow global warming!



Predicting the Wind: A Data Science Problem!

e Getting wind data

e Cleaning wind data

e Analyzing wind data

e Building a model of the wind

e Predicting the wind and output of the wind farm

This is a typical data science workflow!



Getting Wind Data: Met Masts

e Met masts look like this:

e Measure the wind at different heights

e Have sensors for wind speed, wind direction, temperature, humidity, and precipitation



Analyzing Wind Data

Let's load data from a met mast and check it out!

In [1]: import pandas as pd
data = pd.read parquet('./data/met mast.parquet')

data.round(2) .head ()

Out[1]: spd_30 spd_45 spd 58 tmp dir
time
1999-12-31 16:00:00 3.39 3.73 3.84 12.37 243.68
1999-12-31 16:10:00 3.27 3.65 3.81 12.22 250.02
1999-12-31 16:20:00 3.31 3.63 3.80 12.12 252.29
1999-12-31 16:30:00 3.78 426 4.38 12.04 249.54
1999-12-31 16:40:00 3.96 4.38 4,52 11.99 254.50

Our met mast data show wind speed in m/s at 30, 45, and 58 m height, temperature in °C, and wind direction
in ©, in 10-minute intervals.

(These data are all artifical and | generated them in this notebook.)



http://localhost:8888/notebooks/data_acquisition/synthesizing_a_wind_speed_time_series.ipynb

Let's get a feel for the wind data by plotting them!

In [3]: # Plot wind speed time series
import brightwind as bw

anemometers = ['spd 30','spd 45', 'spd 58']
bw.plot timeseries (datal[anemometers])

Out[3]:
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..wow, that looks very messy!



Let's plot a single day to see more detail!

In [4]: bw.plot timeseries(data.loc['2019-03-11",anemometers])
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Observations: Wind speed varies a lot throughout the day. Higher height means higher wind speed.



Which direction does the wind come from? Let's plot a frequency rose ¥ !

In [5]: bw.freq table(data['spd 30'], data['dir'])

Outl[5]:
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Wind Data Analysis Takeaways

e Wind data = long time series
e Wind data looks messy
e There are domain-specific tools to structure and explore wind data (e.g. frequency roses)



From Measurement to Prediction: Building a Model

We want to predict how much energy a wind farm will likely produce in 25 years of operation.

e Problem:
= Only 2 years of met mast wind measurements to predict 25 years of wind
= With that little data we really don't know enough about how the wind will behave!

e Solution:

= Get more, longer-term data from other sources, covering as much time as possible

e Rationale:

= The more we know about the past, the better we can predict the future.



Section Overview

e How and where to get more long-term data

e Build asimple model to predict wind speeds

e Use a more advanced model from scikit-learn to predict wind speeds
e I[mprove models with wind energy domain knowledge

e [nvestigate how to score and compare wind speed models



Getting More, Long-Term Data

Popular data sources: Global climate models, measurements by third parties
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Leaflet | Map tiles by Stamen Design, under CC BY 3.0; Data by © OpenStreetMap, under CC BY SA.

Close to the Sandbox (blue): 4 climate model grid points (orange), 3 airport measurement stations (purple)



Let's load climate model (ERAS5) and airport station data!

In [6]: from pathlib import Path
import pandas as pd

1t data = {'erab 0': 'erab O.parquet',
'erab 1': 'erabd l.parquet',
'MYF': 'MYF 200001010000 202003070000.parquet’,
"NKX': 'NKX 200001010000 202003070000.parquet’',
"SAN': 'SAN 200001010000 202003070000.parquet'}

for name, file in 1t data.items():
1t data[name] = pd.read parquet (Path('./data/').joinpath(file))

1t data['erab 0'].head()

Out[o6]: spd dir tmp
time
1999-12-31 16:00:00 4.548827 249.010856 12.370013
1999-12-3117:00:00 3.981960 251.738388 11.915547
1999-12-31 18:00:00 2.607753 249.791620 11.245783
1999-12-31 19:00:00 1.559933 233.880179 9.782310
1999-12-31 20:00:00 1.359054 231.334928 10.454369

Climate models typically do not output wind speed at ground level and only have 1-hr resolution.

(This notebook shows how | downloaded ERA5 data and this notebook shows how | downloaded airport
station data.)



https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
http://localhost:8888/notebooks/data_acquisition/downloading_ERA5_data_in_python.ipynb
http://localhost:8888/notebooks/data_acquisition/download_and_preprocess_asos_data.ipynb

From Short-Term to Long-Term Data

Our challenges:

e Airport measurements are taken and climate models are calculated far from our site (the Sandbox).

e They have measurements in greater intervals than our met mast.

How much can we trust them to tell us about the wind characteristics at the Sandbox?



Let's plot met mast wind speed data against the data from the ERAS climate model!

In [7]: plot data = pd.concat([data['spd 58'].resample('1W') . .mean(), 1t data['era5 0']['spd'].resample('lW').mean()], axis=l)

plot data.columns = ['Measurement', 'LT Reference']
bw.plot timeseries (plot data, date from='2017")

Ooutl[7]:
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Good news: Despite being physically far away, there seem to be great similarities between the climate model
and the met mast data. (This is not always the case, but it is here to make this tutorial fun and easy.)



Problem: How do we exploit the similarities between references and met mast data to get an idea of what
our met mast data would have looked like if we had measured for 25 years?

Solution:

1. Build model describing relationship between measurement and references

2. Let model predict what long-term measurement would look like

Let's build a model!



A Simple Model: Orthogonal Least Squares

Orthogonal least squares: Draw a best-fit line between all timestamp-points of reference and met mast wind
speed that minimizes the orthogonal distance between line and timestamp-point

In [8]: from brightwind.analyse.correlation import OrthogonalleastSquares

# Resample to daily
data 1D = data.resample('1D') .mean ()
1t data 1D = 1t data['erad 0'].resample('1lD') .mean ()

ols model = OrthogonallLeastSquares (ref spd=lt data 1D['spd'],
target spd=data 1D['spd 58'],
averaging prd='1lD")

ols model.run()

{'"Num data points': 761,
'offset': 0.4891554630472556¢0,
'r2': 0.868274504271043¢0,
'slope': 0.7728460999482368}

It looks like we have a good amount of data (7k+ points) and a respectable R? 0f 0.89. Let's plot our line of
best fit!



In [9]: ols model.plot ()
out[9]:
91 — Predicted
Original
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Reference

There is some scatter but model fits the data quite well.



Problem:

e To make sense of the model in terms of how well it can predict wind speeds, we want to use it to
predict the wind speeds for the time period when we have met mast measurements and then compare

these measurements to the model's predictions.
e For this purpose, R? as error metric is inappropriate - it tells us nothing about wind speeds!

e (Interpretation of R? is also rather tricky for orthogonal least squares regression in general)

Solution:

Use RMSE (root mean square error) of predicted wind speed vs. actual measured wind speed as error metric!

In [10]: # Define scoring metric: RMSE
import numpy as np

def rmse (prediction, actual):
return np.sqrt (((prediction-actual) **2) .mean())

all predictions = {}
all scores = {}



Let's score the simple orthogonal least squares model using RMSE!

In [11]: prediction = (ols model.params['slope']l*1lt data 1D['spd']+ols model.params['offset'])
all predictions['simple'] = prediction
all scores['simple'] = rmse(prediction, data 1D['spd 58'])
print ('RMSE of simple model: {:.3f}'.format(all scores['simple']))

print ('"RMSE as % of wind speed mean: {:.Of}%'.format(all_scores['simple']/data_lD['spd_58'].mean()*lOO))

RMSE of simple model: 0.315
RMSE as % of wind speed mean: 115%

The RMSE is 11% of the wind speed. This is not really a good number. If we would build the project assuming
11% faster winds than we would actually have, we would have made a very expensive mistake.

So: How can we improve the model?

Let's learn about Physics!



Topography vs. Wind

e |[magine a wind gust enters picture on left as a vertical line.
e As gust moves over a hill from left to right, it accelerates towards the top and decelerates towards the
bottom (vertical line becomes diagonal).

e Position of hills relative to our site may influence expected wind speeds.



Elevation Map of Area Around the Sandbox

Leaflet | Map tiles by Stamen Design, under CC BY 3.0. Data by © OpenStreetMap, under ODbL.

We ommitted the scale, but it looks as if there are some elevation differences around the Sandbox.




How can we take advantage of the topographic information?

Let's try building models for different wind directions!

Rationale: We may find that there is more similarity in wind speeds between mast and reference in some
directions than in others.



A Better Model: Binned Orthogonal Least Squares

Our simple model - just binned in 12 direction sectors.

Quick remark: We use SciPy for building our model here instead of Brightwind, since | want to show you that
you can even analyze wind data with more common data science tools.

In [12]: # Bin data by direction
dir bins = pd.IntervalIndex.from breaks (np.linspace (0,360,13))

data 1D = data.resample('1D') .mean ()
1t data 1D = 1t data['era5 0'].resample('lD') .mean ()

1t data 1D['dir bin'] = pd.cut(lt data 1D['dir'], dir bins)
data 1D['dir bin'] = pd.cut(data 1D['dir'], dir bins)


https://www.scipy.org/
https://github.com/brightwind-dev/brightwind

In [13]: # Build binned orthogonal least squares model
from scipy.odr import ODR, Model, Data

def get data in dir bin(dir bin):
1t data in bin 1t data 1D['spd'][1lt data 1D['dir bin'] == dir bin]
data in bin = data 1D['spd 58'][data 1D['dir bin'] == dir bin]
return 1t data in bin, data in bin

def model fcn (B, x):
return B[O0]*x+B[1]

bin stats = {}

for bin nx, dir bin in enumerate (dir bins):
bin stats[bin nx] = {'n samples': None, 'betas': None, 'rmse': np.nan, 'predictions': None}
1t data in bin, data in bin = get data in dir bin(dir bin)

concurrent nxs = list(set(lt data in bin.index) .intersection(set(data in bin.index)))
bin stats[bin nx]['n samples'] = len(concurrent nxs)

if not concurrent nxs:
continue

result = ODR(Data(lt data in bin[concurrent nxs].values, data in bin[concurrent nxs].values), Model (model fcn),
betalO=[1., 0.5]).run()

bin stats[bin nx]['predictions'] = model fcn(result.beta, 1t data in bin)
bin stats[bin nx]['betas'] = result.beta
bin stats[bin nx]['rmse'] = rmse(bin stats[bin nx]['predictions'], data in bin)
all predictions['binned'] = pd.concat([bin stat['predictions'] for bin stat in bin stats.values()\
if bin stat['predictions'] is not None]) .sort index()
all scores['binned'] = np.nanmean([bin stat['rmse'] for bin stat in bin stats.values()])
print ('RMSE of binned model: {:.3f}'.format(all scores['binned']))

RMSE of binned model: 0.289



Scores so far

e RMSE of simple model: 0.315
e RMSE of binned model: 0.289
e Our binned model performs better already!



A More Advanced Model: RandomForestRegressor

Expectation: Random forest regressor captures nuances in relationship between reference and
measurement better than other models

Background: A random forest generates an estimate from multiple decision trees. Each tree only gets
trained on a subset of samples and features. This means that each tree has some "specialized" knowledge
about the data and can see a particular aspect of the data better than other trees. By combining the
predictions of all trees, a random forest can provide a relatively robust prediction.

Approach:

e Engineer features that model can pick up on

e Run the model


https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d

Feature Engineering

Let's come up with some (simple) features that the random forest can feed on.

In [14]: y = data 1D['spd 58']

# Get concurrent time steps
conc index = sorted(list(set(y.index) .intersection(lt data 1D.index)))

X = 1t data 1D.loc[conc index, ['spd', 'dir', 'tmp']].sort index()

# Rolling means
def make rolling(data, window width) :

rolling = data['spd'].rolling(window width) .mean ()
rolling = rolling.fillna(rolling.mean())
rolling.name = 'spd rolling {}'.format (window width)

return pd.concat ([data, rolling], axis=l)
X = make rolling(X, 3)
X = make rolling(X, 5)

# Date-based features to capture temporal patterns

X.loc[conc index, 'd'] = X.index.day
X.loc[conc index, 'm'] = X.index.month
X.head (3)
Out[14]: spd dir tmp spd_rolling_3 spd_rolling5 d m
time

2018-02-01 1.455543 173.896001 15.397280 3.040377 3.040787 1.0 20
2018-02-02 1.528880 168.001625 16.170596 3.040377 3.040787 20 20
2018-02-03 2.025680 251.970139 16.567941 1.670035 3.040787 30 20




Now that we have data with features, let's build 2 models: One model for which we will withhold some
validation data and, for comparison with the previous models, one model that uses all data.

In [15]: from sklearn.ensemble import RandomForestRegressor
from sklearn.model selection import train test split

X train, X val, y train, y val = train test split(X, y, test size=0.2, random state=42)
rf model = RandomForestRegressor (n estimators=100, oob score=True, random state=100, min samples leaf=10)

rf model.fit (X train, y train)

print ('RMSE (RF model, training set): {:.3f}'.format (rmse(rf model.predict (X train), y train)))
print ('RMSE (RF model, validation set): {:.Bf}'.format(rmse(rf_model.predict(X_val), y val)))
model = RandomForestRegressor (n estimators=100, oob score=True, random state=100, min samples leaf=10)

model.fit (X, V)

predictions = model.predict (X)

all predictions['forest'] = pd.Series (predictions, index=conc index) .sort index ()
all scores['forest'] = rmse(predictions, Vy)

print ('RMSE (RF model, all data): {:.3f}'.format(all scores['forest']))

RMSE (RF model, training set): 0.303
RMSE (RF model, wvalidation set): 0.330
RMSE (RF model, all data): 0.300

The RMSE is not too high and definitely within the range of the other models. Let's compare the models in
more detail.



Comparing the 3 Wind Speed Models

In [16]: from matplotlib import pyplot as plt

pd.DataFrame (all predictions) .loc['2018-04"':'2018-06"',:].plot(figsize=(25,5))
data 1D['spd 58'].loc['2018-04":"'2018-06"].plot(c="k',1lw=2, label='Target Mast')

plt.legend ()
plt.show ()
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All 3 models follow the target mast nicely. The forest model sometimes captures peaks better than other
models (Jun 18, May 6), but also occasionally has bigger misses (Apr 12, May 30).



Time for a direct score comparison! Remember: The lower the RMSE, the better the model.

In [17]: pd.Series(all scores) .plot.bar();
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Despite all the fanciness of the random forest model, it does not reach the score of our binned model. This
being said - an RMSE of 0.3 is still relatively high when measured in terms of wind speed.



An In-Depth Look at the Binned Model

When we built the binned model, we did not spend any time inspecting it. Let's do that now. We want to
understand how robust our model is. First, let's display the number of samples our model used per bin.

In [18]: bin wise params = pd.Series([stat['n samples'] for stat in bin stats.values ()], index=dir bins)
bin wise params.plot.bar (figsize=(15,5))
plt.grid()
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6 bins have under 25 samples. For predictions in these bins, the model is probably not very reliable.



It would be better to use our simple model for these cases, since we know that it has been trained on a lot of
data and performs reasonably well.

In [19]: betas = []

for beta, valid binned, bin in zip([stat['betas'] for stat in bin stats.values()],
[stat['n samples']>=25 for stat in bin stats.values()],
dir bins):

if not valid binned:
betas.append(np.asarray([ols model.params['slope'], ols model.params['offset']]))
print ('{}: Simple model'.format (bin ))

else:
betas.append (beta)
print ('{}: Bin-wise model'.format (bin ))

(0.0, 30.0]: Simple model
(30.0, 60.0]: Simple model
(60.0, 90.0]: Simple model
(90.0, 120.0]: Simple model
(120.0, 150.0]: Simple model
(150.0, 180.0]: Bin-wise model
(180.0, 210.0]: Bin-wise model
(210.0, 240.0]: Bin-wise model
(240.0, 270.0]: Bin-wise model
(270.0, 300.0]: Bin-wise model
(300.0, 330.0]: Simple model
(330.0, 360.0]: Simple model



Now that we have a more robust model, let's re-predict our time series and check our RMSE metric!

In [20]: bin rmses = []
bin predictions = []
for dir bin, beta in zip(dir bins, betas):
1t data in bin = 1t data 1D['spd'][1lt data 1D['dir bin'] == dir bin]
data in bin = data 1D['spd 58'][1lt data 1D['dir bin'] == dir bin]

bin prediction = model fcn(beta, 1t data in bin)
bin predictions.append(bin prediction)

bin rmse = rmse (bin prediction, data in bin)
bin rmses.append(bin rmse)

all predictions['binned fill simple'] = pd.concat (bin predictions) .sort index()
all scores['binned fill simple'] = np.nanmean (bin rmses)

print ('RMSE of binned with fill-in from simple model: {:.3f}'.format(all scores['binned fill simple']))

RMSE of binned with fill-in from simple model: 0.403

In [21]: pd.Series(all scores).sort values () .round(3)
Out[21]: binned 0.289

forest 0.300

simple 0.315

binned fill simple 0.403

dtype: floatoc4

It looks as if filling the gaps in the binned model had a very bad impact on our RMSE, making the new model
the worst-performing one. What is going on here?



We should look at the RMSE per bin to get a better picture of how which binned model is to blame for the
Increase in error.

In [22]: pd.DataFrame ({'rmse': bin rmses, 'n samples': [stat['n samples'] for stat in bin stats.values ()]},
index=dir bins) .plot.bar (subplots=True, figsize=(15,5));
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e We are getting the highest errors in the bins where we inserted the simple model.

mmm n_samples
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e But, if thereis nowind in those bins (= directions), the errors in those bins are not important!
e What we really need is a bin-weighted scoring metric!



Improved Scoring Metric: Bin-Weighted RMSE

First, we will calculate the weight we give to each bin. This is just proportional to the number of samples in
each bin.

In [23]: bin n samples = [stat['n samples'] for stat in bin stats.values|() ]
bin weights = pd.Series(bin n samples, index=dir bins)/np.sum(bin n samples)

Now we can build our scoring function!

In [24]: def rmse binned(prediction spd, reference spd, reference dir):
sgr errors = (prediction spd-reference spd) **2
welghts = bin welights|[reference dir]
error = np.sqrt (np.nanmean(sqr_ errors.values*weights.values))
return error



With the scoring function under our belt, let's calculate the bin-weighted RMSE for all of our models
predictions.

In [25]: all scores binned = {}
for model name, prediction spd in all predictions.items () :
data 1D['spd 58'][data 1D['dir bin'] == dir bin]
all scores binned[model name] = rmse binned(prediction spd, 1t data 1D['spd'], 1t data 1D['dir'])
pd.DataFrame ([all scores, all_scores_binned]).T.rename(columns={0: 'Unweighted', 1: 'Bin-Weighted'})\
.sort values ('Bin-Weighted') .style.bar (vmin=0, vmax=0.5, color='lightblue').format('{:.4f}")
Out[25]: Unweighted Bin-Weighted
binned_fill_simple 0.4026 0.1328
binned 0.2888 0.1347
simple 0.3152 0.1416
forest 0.2996 0.1807

The bin-weighted RMSE shows clearer differences between the models than the unweighted score:

e Our binned model that is using the simple model's information to fill in gaps scores best
e Our simple model performs worse than the binned models

e Our forest model performs poorly

So, after all, we should use our robust binned model to predict long-term wind speeds at our mast!



Predicting the Long-Term Wind Speed

Now we can predict the long-term wind speed at our site. This helps us to get a good idea of how much wind
energy we can potentially harvest if we build a wind turbine there.

Remember: We assume the wind in the future will behave like the wind in the past. To get to the long-term
wind speed, we take all predictions fromour bin fill simple model. To maximize accuracy, we

substitute it with actual measurements from our mast wherever possible.

In [26]: 1t speed at mast = all predictions|['binned fill simple']
1t speed at mast[data 1D['spd 58'].index] = data 1D['spd 58']

print ('Replaced {} model-predicted samples with measured samples from mast ({:.1%})."'\
.format (data 1D.shape[0], data 1D.shape[0]/1lt speed at mast.shape[0]))

Replaced 761 model-predicted samples with measured samples from mast (10.3%).

Let's summarize our long-term wind speed time series!

In [27]: print('Start: {:%Y-%m-%d}, Length: {:.0f} years, Avg. spd {:.2f} m/s'\
.format (1t speed at mast.index[0], lt_speed_at_mast.shape[O]/(365.25), 1t speed at mast.mean()))

Start: 1999-12-31, Length: 20 years, Avg. spd 2.86 m/s



A few words of caution about the long-term wind speed time series

e Wind speeds usually vary a lot over the day. Therefore, wind turbines produce most energy only
within a fraction of that 24 hour period.

e We produced a daily time series that does not reflect these wind speed changes during the day,
because we averaged hourly wind speeds over that 24 hour period.

e As aresult, we will not get realistic energy production numbers with this time series.

e Actual wind resource assessment is much more complicated than shown here.



From Wind Speed Measurement to Prediction: Takeaways

e |tiseasy tobuild asimple wind speed prediction model
e More advanced models perform not always better
e Domain knowledge can help a lot with finding the right model

e ..and with assessing model performance!



From Mast Height to Turbine Height

e We have: Long-term wind speed time series at 58 m height (height of the wind speed sensor on the
mast)
e We want: Long-term wind speed time series at height of turbine
e We need:
= [nformation about turbine height

= [nformation about how wind speed behaves with height

In this section: Very short and simplified version.



Turbine Height

e We arbitrarily choose Vestas V112 as turbine model.
e Hub height: 119 m (hub: "nose" of the turbine around which blades rotate)
e Turbine height: Hub height + elevation of land that turbine stands on (assume 100 m for all turbines)

e Mast height: Mast height + elevation of land that mast stands on (assume 80 m)



https://en.wind-turbine-models.com/turbines/7-vestas-v112-onshore

Shear: Behavior of Wind Speed with Height

We use the wind profile power law to scale mast wind speed to turbine height:

Burbine \
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h mast

Shear exponent: «


https://en.wikipedia.org/wiki/Wind_profile_power_law

Let's find the shear exponent by using brightwind's Shear.Average () method.

In [28]: anemometer heights = [30, 45, 58]
average shear = bw.Shear.Average (data[anemometers], anemometer heights)
print ('Shear exponent: {:.3}'.format (average shear.alpha))

Shear exponent: 0.19
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https://github.com/brightwind-dev/brightwind/

Apply Shear Law to Long-Term Time Series

Now that we know the shear exponent, we can calculate the long-term time series at turbine height.

In [29]: h turbine = 100.0 + 119.0
h mast = 80.0 + 58.0

1t speed at turbine = 1t speed at mast* (h turbine/h mast)**average shear.alpha

print ('On average, the wind is {:.1%} faster at the turbine height than at the measured height.' \
.format(lt_speed_at_turbine.mean()/lt_speed_at_mast.mean()—1))

On average, the wind is 9.1% faster at the turbine height than at the measured height.



Predicting Wind Turbine Power Qutput

We have come a long way. Now that we have a long-term wind speed time series at turbine height, we are
ready to predict turbine power output.



Power Curve

Power Curve: Turbine power output as function of wind speed. Let's plot the V112 power curve!

In [30]: power curve = pd.read csv('./data/vestas v112 power curve.csv', index col=0).iloc[:,0]
power curve.index.name = 'Wind Speed [m/s]'

power curve.plot(title='Vestas V112 Power Curve (Power Output in kW)', figsize=(15,5), ylim=(0,3500));

Vestas V112 Power Curve (Power Output in kW)
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Observations: Turbine only starts to produce power at about 2 m/s wind speed, power output is steady
between ca. 12 and 25 m/s.



Power Curve vs. Predicted Wind Speed

Now that we know how much power the V112 turbine produces by wind speed, let's see how our predicted
long-term wind speed fits into the picture.

In [53]: power curve.plot(title='Vestas V112 Power Curve (Power Output in kW) vs. Long-Term Wind Speed')
1t speed at turbine.plot.hist (secondary y=True, alpha=0.5, bins=20 , figsize=(15,5), label='long-term');

Vestas V112 Power Curve (Power Output in kW) vs. Long-Term Wind Speed
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Observations: Long-term wind speed is very small in comparison to what the turbine can handle, the V112
turbine is completely oversized for this site!



Calculating Power Output

Despite the V112 being so oversized, let's play around with the energy production numbers we would get if
we were to build this turbine. We want to get a "feel" for the power output and put it in the context of the
community around the Sandbox, our site.

In [78]: 1t power output np.interp (lt speed at turbine, power curve.index, power curve.values, left=0, right=0)

1t power output pd.Series (1t power output, index=lt speed at turbine.index)

time series duration years = 1t power output.shape[0]/(365.25)
output per year = lt power output.sum()/time series duration years
print ('Mean turbine output per year in kWh: {:,.0f}'.format (output per year))

Mean turbine output per year in kWh: 24,925

Almost 25 MWh! |s that a lot? Is that a little? Let's express this number in other terms:

In [79]: print ('@ Toastable toasts per day for 1 year: {:.0f}'.format (output per year/(3.5/60%1.2)/365.25))
print ('é® Full Tesla Model S charges per year: {:.0f}'.format (output per year/100))

J Toastable toasts per day for 1 year: 975
é& Full Tesla Model S charges per year: 249

That is a lot of toast and a good amount of electric car charges!



How Many Households Could We Power?

e 2017: The mean San Diego household consumed 5600 kWh of electricity (source: SDGE via Equinox

Project).
e The Sandbox ZIP code (92121) had 1677 households in 2010 (source: zip-codes.com).

In [97]: households per turbine = output per year/5600
pct of 92121 per turbine = households per turbine/1677

print ('With one badly-placed turbine, we could power {:.1f} San Diego households ({:.1%} of all around the Sandbox).'\
.format (households per turbine, pct of 92121 per turbine))

print ('With 377 badly-placed turbines, we could power {:.0f} San Diego households ({:.1%} of all around the Sandbox).'\
.format (households per turbine*377, pct of 92121 per turbine*377))

With one badly-placed turbine, we could power 4.5 San Diego households (0.3% of all around the Sandbox).
With 377 badly-placed turbines, we could power 1678 San Diego households (100.1% of all around the Sandbox).

Well, that looks like a dreadful scenario. But, gladly, our wind measurements are artificial. This means: We
don't really know how many turbines it would take to power San Diego households.

Clearly, using just these artificial data, building a wind turbine close to the Sandbox does not make sense.


https://sites.energycenter.org/equinox/dashboard/residential-electricity-consumption
https://www.zip-codes.com/zip-code/92121/zip-code-92121.asp

Net Capacity Factor (NCF)

Experts measure how well a turbine fits a wind speed distribution and electricity grid environment in terms
of net capacity factor (NCF).

This metric describes how much electricity the turbine will generate from the actual wind environment, in
comparison to how much it could theoretically generate, if the wind blew enough to make the turbine
generate its maximum power output all the time.

In [100]: ncf = output per year/(365.25*power curve.max ())
print ('The net capacity factor is {:.1%}.'.format (ncf))

The net capacity factor is 2.2%.

e This net capacity factor is really, really low! (Typical NCFs: 30% - 50%)
e We could place this turbine in way better spots!
e Nobody would build a turbine close to the Sandbox (given our artifical data)!



How "Valuable” Would our Power be?

e Challenge: Renewable energy is not (always) produced when needed
e Selling energy in high-demand hours can be more profitable vs. in low-demand hours

: Demand / : Demand minus solar and wind (Sell energy when this value is high at slightly
cheaper prices than fossil fuel power plants to make good profit.)

California hourly electric load vs.
load less solar and wind (Duck Curve)
for October 22, 2016
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Let's plot our diurnal profile to see if we would produce a good amount of electricty during these profitable
hours.

In [108]: measured data = data['spd 58'].resample('lh') .mean ()
measured data.groupby (measured data.index.hour) .mean () \
.plot (figsize=(15,5), title='Diurnal Power Production Profile', xlim=(0,23));
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Unfortunately, it looks as if we produce power right when a lot of solar power is in the grid, pushing
electricity prices down. Not every wind project is like this - sometimes wind speeds are high just as energy
demand peaks.



..but what would be a good spot for a wind turbine?

Although San Diego not being one of them, there are some good spots for wind turbines in California.

California - Annual Average Wind Speed at 80 m
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Analyzing Wind Data

* Met data: synthesizing_a wind speed time_series.ipynb

Getting Wind Data: Met Masts

e "Wind measurement tower, north of Mobridge, South Dakota" by Lars Plougmann is licensed under CC BY-SA 2.0
e "Yiwth 3b" by gvgoebel is licensed under CC BY-SA 2.0

Getting More, Long-Term Data

e ASOS data: download and preprocess asos data.ipynb

Topography vs. Wind

e Fluid animation comes from this video: https:/www.youtube.com/watch?v=-GIToNj-m4M

e Elevation map downloaded from here: http://www.sangis.org/download/index.html

Power Curve

e Vestas V112 Power Curve: en.wind-turbine-models.com/turbines/7-vestas-v112-onshore



http://localhost:8888/notebooks/data_acquisition/synthesizing_a_wind_speed_time_series.ipynb
https://www.flickr.com/photos/75062596@N00/8104180555
https://creativecommons.org/licenses/by-sa/2.0/?ref=ccsearch&atype=html
https://www.flickr.com/photos/37467370@N08/7676229992
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References (continued)

Calculating Power Output

e Toaster power consumption: energyusecalculator.com, assumed 1200 W for 3.5 minutes
e TeslaModel S 100 kWh battery: Wikipedia

How "Valuable" Would our Power be?

e Duck curve image from Wikimedia Commons

...but what would be a good spot for a wind turbine?

e California wind map from windexchange.energy.gov



http://energyusecalculator.com/electricity_toaster.htm
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