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1 Introduction

This report describes the framework developed to execute a Divide and Conquer (DAC) algorithm
over a given input, possibly exploiting the parallel resources, where a DAC algorithm is identified
by

• a divide function, which takes an problem and divides it into two or more (possibly easier)
sub-problems;

• a test function, which, given a (sub-)problem, determines whether it needs to be divided further;

• a conquer function that for a given (sub-)problem returns its solution;

• a combine function that combines the results of two or more sub-problems.

The framework was implemented in C++14, and the above functions must adopt the same interface
described in [1], which is the same provided by OpenMP, Intel TBB and FastFlow.

This report is organized as follows: section 2 will describe the structure of the model architecture,
section 3 will briefly analyze the expected performances of the proposed model, section 4 will provide
some details regarding its implementation and section 5 will show the results obtained adopting this
model to solve the mergesort and quicksort algorithms, and comparing them with the ones obtained
using other frameworks. Finally, section 6 adds a concluding remark.

2 Parallel Architecture Design

The core of the framework is the scheduler module (subsection 2.1), which is used to implement the
fork-join pattern [2]. Two schedulers are used to enqueue the fork and join tasks, respectively, where

• a fork task has as input a problem and a promise of its solution. It consists in executing the test
function over the given problem and, if it can be split, executes the divide function, otherwise
the conquer one. Then

– if the divide function was executed, assuming that the input was split in b sub-problems,
enqueues in the join scheduler a join task having as input b promises of the solutions of
the respective sub-problems and the same promise of the current fork task. Then, in the
fork scheduler, enqueues b − 1 fork tasks having each one a sub-problem and a promise
(one of the bs given to the join task) as input. The remaining sub-problem will be used as
continuation for the current fork task;

– else, if the conquer function was executed, set the promise value with its result.

1

mailto:fran.landolfi@gmail.com


• a join task has as input b promises of the results of b sub-problems and another promise. It exe-
cutes the combine function over the values contained in the future of each one of the b promises
(once they will be ready), then sets the other promise value with its result.

To solve a DAC problem, it is sufficient to schedule a fork task having as input the original prob-
lem and a promise which will eventually be updated with the final result. A thread (or worker) should
retrieve and execute tasks from the fork scheduler until it is empty, and only then start retrieving and
executing tasks from the join scheduler. Once also the join schduler becomes empty, the original
problem is solved.

Multiple threads can access these schedulers to retrieve a tasks, so it is crucial that the schedulers
implement some kind of synchronization mechanisms to solve conflicts between concurrent accesses.
Subsection 2.1 explains how this problem is tackled in the scheduler module, while subsection 2.2
shows how the two schedulers are combined together to form the final framework model.

2.1 The Scheduler

During the design of the scheduler module, there were taken into account the following three models:

1. a base model (Figure 1a), where the task were queued in a common (global) list. To retrieve a task,
each worker had to access the global list in mutual exclusion (i.e., using a mutex). Although
simple, due to this serialization of the accesses, this model can not scale up as the number of
workers increases.

2. to overcome the previous problem, it was also considered a work-stealing model [2] (Figure 1b),
where each worker has a local (but still synchronized) task queue. If a worker has no task in
its local list, it “steals” a task from another worker’s queue. To reduce the concurrent accesses,
each worker extracts from its local queue the top task (i.e., the last one inserted), while, when
in needs, it steals a job from the bottom of another random worker’s queue (i.e., the first en-
queued job), which, in the fork case, is expected to be more time consuming and to generate
more sub-forks to be scheduled locally1. This model achieves a good load-balancing between
threads, so that it is the model used to implement the map operation both in Intel Cilk Plus and
Intel TBB [2], but has the drawback that, when the remaining tasks are few and they are being
computed by some workers, the other ones stuck themselves in an active loop in which they
select random workers, try to steal a task and fail.

3. the proposed model (Figure 1c) tries to find a compromise between the previous two models.
Each worker owns a local queue, as in the work-stealing model, but, instead of “stealing” a
task from another thread when the local queue is empty, it actively “passes the buck” to the

1This does not work in the join case, since stealing a job form the bottom of the queue will lock the thread and possibly
produce a deadlock.
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Figure 1: Different models adopted to solve the Divide and Conquer problem using parallel threads.
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other threads when the size of the local queue is too large, according to a heuristic. In this
case, the worker extracts the bottom of its queue and inserts it in a global (synchronized) queue,
as in the base model. When a worker has no task left in its local queue, it search for it in the
global one. If also the global queue is empty, the worker halts until another worker inserts
a task or “wakes up“ all the other waiting workers after the last task was done. Differently
from the work-stealing model, the queue of each worker is purely local and not synchronized.
This model may achieve a good load-balancing, depending on the goodness of the heuristic
function. This will be explained further below and in section 3.

The heuristic function To measure whether the local queue has too many tasks with respect to the
remaining ones, the owner of the queue uses Pearson’s chi-squared test (χ2). More concretely, every
time a task is scheduled in its local queue, a worker of index w computes the remaining task to be
done, which are

R = |QG|+
n

∑
i=1
|Qi| ,

where QG is the global queue and Qi the local queue of the worker of index i. Then, if the observed
number of local tasks Ow = |Qw| are more then the expected Ew = 1

n R, it computes the local χ2
w value

as follows

χ2
w =

(Ow − Ew)2

Ew
+

(Ow − Ew)2

Ew

=
n
(
|Qw| − 1

n R
)2

R
+

n
(

R− |Qw| − n−1
n R

)2

(n− 1)R

=
n
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|Qw| − 1

n R
)2

R
+

n
( 1

n R− |Qw|
)2

(n− 1)R

=
n2(|Qw| − 1

n R
)2

(n− 1)R
.

If χ2
w ≥ χ2

max, where χ2
max is a user-defined value, the worker extracts a task from the bottom of the

local queue and re-schedules it in the global one.

Load-balancing As will be discussed later in section 3, the value of χ2
max regulates the load-balancing

of the scheduler. The user may set its value by choosing one of the following balancing policies:

• only_global: this option sets χ2
max = −1. Since χ2

w is always positive, every scheduled task
will end up in the global queue. This option makes the scheduler act as the base model.

• strong: this option sets χ2
max = 0.455. A worker will accept a scheduled task if the current

distribution is observable with probability2 higher than p = 0.5.

• strict: this option sets χ2
max = 3.841. A worker will accept a scheduled task if the current

distribution is observable with probability higher than p = 0.05.

• relaxed: this option sets χ2
max = 7.879. A worker will accept a scheduled task if the current

distribution is observable with probability higher than p = 0.005.

• only_local: this option sets χ2
max = +∞. Every scheduled task will remain in the local queue.

A task scheduled to a given worker will never be reassigned.

• best: this option sets χ2
max with a value that depends on the number of parallel processors. In

section 3 will be explained how this value is computed.
2This and every following p-value is evaluated using the chi-squared distribution with one degree of freedom, since we

are considering the event that a task may or may not be assigned to a given worker.
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Computing the number of remaining tasks Since the value R is computed every time a task is
being scheduled, it needs a (possibly synchronized) method to be computed fast and without creating
a bottleneck in the computation. To achieve this, the value of R is stored as an atomic and updated
every time a task is scheduled or completed. Its content does not need to be perfectly coherent with
the current status of the scheduler, since the value of χ2

w can be just a rough approximation (e.g., a
worker may compute χ2

w with an old version of R). The value of R needs instead to be up to date
when it comes to check whether all the remaining tasks have been executed. To do this, we need to
follow the following rules:

1. The value of R must be (atomically) increased only before the scheduling of a task, and

2. The value of R must be (atomically) decreased only after having executing a task.

Following the previous rules, it can be proved that, if R = 0, there is no task to be computed.

2.2 The Divide and Conquer Model

The final model of the framework is built using two instances of the scheduler described above: one
used for the fork tasks, and one used for the join tasks. Since the join tasks are data-dependent with
respect to their input, they need to be extracted following in reversed order of insertion.

The problem of task shuffling Using the heuristic load-balancing described above in the scheduler
dedicated to the join tasks may lead to a deadlock, as depicted in Figure 2. In the example, Q1, Q2, and
Q3 have, respectively, ta, tb, and tc, at their bottoms, with ta dependent on tb and tc, as in Figure 2a. At
some point in the execution, Q1 may get too much tasks and move ta to the global queue. Later, also
Q2 and Q3 may move tb and tc in the global queue, as in Figure 2b. This may happen for a number
of task greater than the number of workers, causing a deadlock.

Final model To solve this problem, the policy of the scheduler dedicated to the join task must be
only_local. This will cause each worker to execute the join tasks in reversed order with respect
to the forks the same worker have executed. The problem of this solution is that, the more the task
were unbalanced in the fork phase, the more they will be in the join one. The final model can be
synthesized as in Figure 3.

Other possible solutions To solve the problem of shuffling, using a std::priority_queue as
global queue and using as priority the depth of the recursion of the fork seemed not to solve com-
pletely the problem: testing the framework on unbalanced DAC algorithms as quicksort eventually
led to deadlocks.

Another possible solution that has yet to be tested is to optionally give higher priority to the
global queue instead of the local ones, so that a worker, to retrieve a job in its local queue, has first to
check whether the global queue is empty, making the model’s behavior resemble the one in the work
stealing model.

ta tb tc

QG Q1 Q2 Q3

(a) Before a rescheduling.

ta

QG Q1 Q2 Q3

tc

tb

(b) After a rescheduling.

Figure 2: A example of task shuffling.
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Figure 3: Divide and Conquer (DAC) model.

3 Performance Modeling

A time complexity analysis of the DAC parallel pattern over an ideal machine (with an infinite num-
ber of parallel processors) can be found in [2]. This analysis may also fit our model if we prove that
a worker, as it computes a fork, schedules its sub-forks in the global queue instead of the local one.
This is true if we set χ2

max such that, even assuming n− 1 tasks have been evenly distributed among
all the n workers, a busy worker that is about to schedule another task will give it to the global queue
instead. More concretely, given w the index of the worker which is about to schedule its second task
in its local queue, we have that

χ2
w =

(Ow − Ew)2

Ew
+

(Ow − Ew)2

Ew

=
(2− 1)2

1
+

(n− 2− (n− 1))2

n− 1

=
n

n− 1
.

Since as n → ∞, χ2
w → 1, if we set χ2

max ≤ 1, all workers will receive a task at the beginning of the
fork phase, whatever it is the number of processors.

Finite number of parallel processors If we relax the assumption of having an infinite number of
parallel processors, we may still refer back to the general case just noticing that the fork phase will
schedule the new sub-problems on the remaining free processors until every worker become busy, as
shown in Figure 4. Assuming the size of the sub-problems are the same for every parallel executor,
and that the new tasks will be spawned at regular intervals, the DAC computation will act as a serial
DAC algorithm with respect to a single worker, since every new task generated by the fork phase will
be scheduled in its local queue. As the local sub-problems are completed, a “reduced” join phase
concludes the global computation.

F F serial DAC computation J J

serial DAC computation

serial DAC computationF J

serial DAC computation

t
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Figure 4: Example of how the tasks may be distributed among different processors pi.
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Figure 5: Example of how the tasks may be distributed unevenly among different processors pi.

Unbalanced sub-problems If we relax the assumption of having uniform partitions of the problem
among the parallel executors, we may expect to observe an unbalanced number of tasks executed
among the workers. Moreover, since the join tasks will not be executed until all fork tasks have been
completed, some workers may remain idle as the number of remaining fork tasks reaches zero, as
depicted in Figure 5.

This problem is mitigated by the “buck-passing” of the workers done whenever the local queue
becomes relatively unbalanced. Lowering the value of χ2

max will increase the load-balancing among
the parallel workers but may also have an impact on the performances, in opposite ways. More
concretely,

• lower values of χ2
max will lead to a better load-balancing among parallel workers, at the cost of

having more tasks scheduled in the global (synchronized) queue, hindering the scalability of
the overall process;

• higher values of χ2
max will lead to a worse load-balancing among parallel workers, but also

making less tasks be scheduled in the global queue, allowing the process to scale up as the
number of processors increases.

Setting χ2
max = n

n−1 , where n is the number of parallel processors, will ensure that the first (and, ide-
ally, more time consuming) tasks will be scheduled in the global queue and then distributed evenly
among the workers, thus encouraging a better load-balancing, at least in the first part of the fork
phase. This is the value given by the best balancing policy option, which is set by default.

Notice that this value decreases with the number of parallel processor, which is counter-intuitive.
One may choose to set a higher (fixed) value of χ2

max, giving up the initial even distribution of the
tasks in order to achieve a better scalability.

4 Implementation Details

The framework is implemented in C++14, and it is composed by:

• a DAC class, which implements the solver for a given divide and conquer algorithm, as de-
scribed in subsection 2.2. This class has the same interface of the ones provided by Intel TBB
and OpenMP, except that the input, the output and the number of parallel workers have been
moved from the constructor to the DAC::compute method;

• a Scheduler class, which implements the scheduler module described in subsection 2.1. This
class also contains the following two inner (private) classes:

– a SyncJobList class, which implements a synchronized verison of std::list and con-
tains the number of remaining tasks to be computed;

– a Worker class, which manages the local queues of each parallel worker i.e., the schedul-
ing and retrieval of the tasks.
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5 Experiments

The framework was tested on the test cases provided by authors of [1]. In particular, the framework
was used to compute the mergesort and the quicksort algorithms over arrays randomly filled with
10M, 20M, 50M and 100M elements, with a base-case cutoff of 2000 elements, for which the problem
is solved with std::sort in both algorithms. The framework was compared with the ones provided
by Intel TBB, OpenMP and FastFlow. If not specified, the tests were executed on a Intel Xeon PHI
Knights Landing (KNL), over 2i processors for i = 0, . . . , 8. Each test was repeated 5 times and the
results depicted in the following images represent their average value.

Policy comparison As expected, by executing the tests adopting different balancing policies we
can observe changes in scalability: as shown in Figure 6, we can see that, increasing the number of
parallel workers, the test executed with relaxed policy overtakes the ones executed with strict
or strong policies, while showing worse results with fewer parallel workers. The best option
seems to achieve the best of both worlds, beating all other policy options up to 25 workers, where
the relaxed option shows the best results. The only_global option, instead, always showed the
worst results.

Queue sizes and concurrency Figure 7 shows the results obtained by executing the mergesort algo-
rithm with 4 workers and best policy option over an array of 1M elements on a Intel Core i7-8550U
processor, with details about the queue sizes, the value of χ2

w of each worker, and the time spent
scheduling or retrieving task in the global queue during the fork phase.

In the beginning of the execution (Figure 7a), the main thread (which will become later W3) sched-
ules the first original problem in the local queue of W0, which will eventually fall in the global queue
(near 35.9 ms), since3

χ2
0 = 4 ·

(
1− 1

4

)2

+
4
3
·
(
−3

4

)2

= 3 >
4
3
= χ2

max .

Then it start spawning the other three threads, which will become W0, W1, and W2. In this case, by
the time the three threads have been created, the main thread (now W3) has already retrieved the
first and unique task in the global queue, the same it had scheduled before4. The global queue is
now empty, and the other workers are waiting for a task to compute. In the meantime, W3 starts
to generate three forks, which will fall in the global queue and will be retrieved by W1, W0 and W2,
in this particular order. Then all threads start working on their local tasks, generating new forks at

3Actually, the scheduler always assumes that a worker is already working on an retrieved task (not present in its local
queue), summing 1 to |Qw|. This will produce a wrong result the very first time a task is scheduled, as shown in Figure 7b,
where χ2

3 > 3.
4This is a particular case, since the created threads may already work on the first task while the main thread continues

spawning.
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Figure 6: (left) Scalability of the mergesort algorithm, executed over an array of 10M elements, using dif-
ferent balancing policy options and (right) a detail of the previous figure. Both plots are in log-log scale.

7



regular intervals, preserving the load-balancing until after the 41st millisecond, but still accessing to
the global queue sporadically, as showed in Figure 7b. The global queue never stores more than two
tasks throughout the whole execution of the fork phase.

Performance and scalability Figure 8 shows the performance obtained with the proposed model
compared to the ones of the other frameworks. We can see that its trend is somewhat analogous to
the one obtained using Intel TBB in the execution of mergesort, reaching higher scalabilities than the
ones observed using OpenMP or FastFlow. Quicksort produced worse results, instead. This may be
caused by the nature of the algorithm: quicksort can produce uneven partitions of the problem in
input, and since the load-balancing is based on the number of tasks (not on the dimension of their
input), the resulting distribution can become highly unfair. Another side effect may be that, even
if the combine phase of the quicksort is almost non-existent, a large number of data-dependent join
tasks may force some worker to stay idle instead of computing other higher prioritized tasks. This
is worsened by the fact that, while in the fork phase the balancing is made “on the fly”, depending
instant by instant by the current size of the queues, the overall number of computed tasks done by a
single worker (which is the one that will be found in the join task queue), may be very much higher
than average.

6 Conclusions

Even without load-balancing during the join phase, this model seem to compete with the other tested
frameworks. Some improvements should be done in order to obtain better performances: besides the
ones already proposed in subsection 2.2, we should aim to a better heuristic that renounces to a good
load-balancing in order to achieve a better scalability with a higher number of parallel processors.
Another feasible heuristic may take in considerations also the number of total tasks computed by a
single worker, solving the problem of load-balancing in the join phase. These proposals are yet to be
implemented and will be left as future work.
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Figure 8: Completion time and scalability of the proposed framework, Intel TBB, OpenMP, and FastFlow.
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