Skip to content

Latest commit

 

History

History
189 lines (138 loc) · 5.96 KB

README.rst

File metadata and controls

189 lines (138 loc) · 5.96 KB

yajwI'

yajwI' is a Klingon NLP toolkit that includes basic tokenization, morphological analysis and POS tagging.

It heavily uses the boQwI' dictionary.

Installation

yajwI' requires Python 3.8 or newer.

It can be installed from PyPI:

pip install yajwiz

Updating and using the boQwI' dictionary

When yajwI' is first imported, it will download a copy of the boQwI' dictionary. After this the update_dictionary() function must be called whenever the dictionary needs to be updated. The function will check for updates and install them.

The downloaded dictionary can be accessed through the load_dictionary() function.

>>> import yajwiz
>>> yajwiz.update_dictionary()
>>> dictionary = yajwiz.load_dictionary()
>>> dictionary.version
'2021.03.18a'

Tokenization

The library includes very simple tokenization.

>>> import yajwiz
>>> yajwiz.tokenize("Hegh neH chav qoH. qanchoHpa' qoH, Hegh qoH.")
[('WORD', 'Hegh'), ('SPACE', ' '), ('WORD', 'neH'), ('SPACE', ' '), ('WORD', 'chav'), ('SPACE', ' '), ('WORD', 'qoH'), ('PUNCT', '.'), ('SPACE', ' '), ('WORD', "qanchoHpa'"), ('SPACE', ' '), ('WORD', 'qoH'), ('PUNCT', ','), ('SPACE', ' '), ('WORD', 'Hegh'), ('SPACE', ' '), ('WORD', 'qoH'), ('PUNCT', '.')]

Morphological analysis

The yajwiz.analyze function parses a word and returns a list of possible parses and a lot of extra information.

>>> yajwiz.analyze("yInwI'")
[{'BOQWIZ_ID': 'yIn:n',
  'BOQWIZ_POS': 'n:klcp1',
  'LEMMA': 'yIn',
  'PARTS': ['yIn:n', "-wI':n"],
  'POS': 'N',
  'SUFFIX': {'N4': "-wI'"},
  'UNGRAMMATICAL': 'ILLEGAL PLURAL OR POSSESSIVE SUFFIX',
  'WORD': "yInwI'",
  'XPOS': 'N',
  'XPOS_GSUFF': 'N'},
 {'BOQWIZ_ID': 'yIn:v',
  'BOQWIZ_POS': 'v:t_c,klcp1',
  'LEMMA': 'yIn',
  'PARTS': ['yIn:v', "-wI':v"],
  'POS': 'V',
  'SUFFIX': {'V9': "-wI'"},
  'WORD': "yInwI'",
  'XPOS': 'VT',
  'XPOS_GSUFF': "VT.wI'"}]

Currently the analyzer is very permissive and does allow using wrong plurals and possessive suffixes (eg. yInwI' instead of yInwIj). It will try to mark this kind of errors with 'UNGRAMMATICAL': True. It detects the following errors:

  • Using -pu', -wI', -lI', etc. when the noun is not a person noun
  • Using -Du' when the noun is not a body part
  • Using -vIS without using -taH
  • Using -lu' with an illegal verb prefix
  • Using intransitive verbs with prefixes indicating object
  • Using -ghach without any other verb suffix
  • Using aspect suffix with -jaj

There is also a simpler function yajwiz.split_to_morphemes, that returns a set of tuples of strings (usually there will be only one tuple in the set):

>>> yajwiz.split_to_morphemes("yInwI'")
{('yIn', "-wI'")}

List of Parts of Speech

XPOS Explanation
VS Stative verb
VT Transitive verb
VI Intransitive verb
VA Transitive and intransitive verb
V? Verb with unknown transitivity
NL Person noun
NB Body part noun
PRON Pronoun (including 'Iv and nuq: it is a noun that can function as a copula)
NUM Number
N Other noun
ADV Adverb
EXCL Exclamation
CONJ Conjunction
QUES Question word (other than 'Iv and nuq)
UNK Unknown

Grammar checker

yajwI' can be used to find common grammar errors. You can either use the method yajwiz.grammar_check or the following command line interface:

python -m yajwiz.grammar_check file.txt

CONLL-U files and POS tagger

CONLL-U files are a popular data format for storing annotated linguistic data.

yajwI' can generate CONLL-U files filled with morphological information (it does not support dependency parsing).

Below is an example script that first parses a text without a trained POS tagger, then trains a POS tagger with it and finally parses the text with the tagger and saves the result to a CONLL-U file.

import yajwiz

with open("prose-corpus.txt", "r") as f:
    text = f.read()

conllu = yajwiz.text_to_conllu(text)

tagger = yajwiz.Tagger()
tagger.train(yajwiz.conllu_to_tagged_list(conllu))

conllu = yajwiz.text_to_conllu(text, tagger)

with open("prose-corpus.conllu", "w") as f:
    f.write(conllu)

Without a trained POS tagger, ambiguous words will be left without a tag:

# Hegh neH chav qoH.
1   Hegh    _       _       _       _       _       _       _       _
2   neH     _       _       _       _       _       _       _       _
3   chav    _       _       _       _       _       _       _       _
4   qoH     qoH     NOUN    N       _       _       _       _       _
5   .       .       PUNCT   PUNCT   _       _       _       _       _

# qanchoHpa' qoH, Hegh qoH.
1   qanchoHpa'      qan     VERB    V?.pa'  Person=3|ObjPerson=3,0  _       _       _       SuffixV3=-choH|SuffixV9=-pa'
2   qoH     qoH     NOUN    N       _       _       _       _       _
3   ,       ,       PUNCT   PUNCT   _       _       _       _       _
4   Hegh    _       _       _       _       _       _       _       _
5   qoH     qoH     NOUN    N       _       _       _       _       _
6   .       .       PUNCT   PUNCT   _       _       _       _       _

After training the tagger, it will take the "best guess" when deciding the POS.

# Hegh neH chav qoH.
1   Hegh    Hegh    VERB    VT      Person=3|ObjPerson=3,0  _       _       _       _
2   neH     neH     ADV     ADV     _       _       _       _       _
3   chav    chav    VERB    VT      Person=3|ObjPerson=3,0  _       _       _       _
4   qoH     qoH     NOUN    N       _       _       _       _       _
5   .       .       PUNCT   PUNCT   _       _       _       _       _

# qanchoHpa' qoH, Hegh qoH.
1   qanchoHpa'      qan     VERB    V?.pa'  Person=3|ObjPerson=3,0  _       _       _       SuffixV3=-choH|SuffixV9=-pa'
2   qoH     qoH     NOUN    N       _       _       _       _       _
3   ,       ,       PUNCT   PUNCT   _       _       _       _       _
4   Hegh    Hegh    VERB    VT      Person=3|ObjPerson=3,0  _       _       _       _
5   qoH     qoH     NOUN    N       _       _       _       _       _
6   .       .       PUNCT   PUNCT   _       _       _       _       _

In this example the tagger made a mistake: it classified the first Hegh as VT, although it should be N. I don't have a correctly tagged corpus, so evaluating the tagger is currently impossible. :(

Copyright

yajwiz (c) 2020 Iikka Hauhio

This program a uses the boQwI' dictionary (data.json) that is licensed under the Apache License 2.0.

The Python files are also licensed under the Apache License 2.0. See the LICENSE file for more details.