import argparse from torch.autograd import Variable from tqdm import tqdm from decoder import GreedyDecoder from data.data_loader import SpectrogramDataset, AudioDataLoader from model import DeepSpeech parser = argparse.ArgumentParser(description='DeepSpeech transcription') parser.add_argument('--model_path', default='models/deepspeech_final.pth.tar', help='Path to model file created by training') parser.add_argument('--cuda', action="store_true", help='Use cuda to test model') parser.add_argument('--test_manifest', metavar='DIR', help='path to validation manifest csv', default='data/test_manifest.csv') parser.add_argument('--batch_size', default=20, type=int, help='Batch size for training') parser.add_argument('--num_workers', default=4, type=int, help='Number of workers used in dataloading') parser.add_argument('--decoder', default="greedy", choices=["greedy", "beam"], type=str, help="Decoder to use") parser.add_argument('--verbose', action="store_true", help="print out decoded output and error of each sample") beam_args = parser.add_argument_group("Beam Decode Options", "Configurations options for the CTC Beam Search decoder") beam_args.add_argument('--beam_width', default=10, type=int, help='Beam width to use') beam_args.add_argument('--lm_path', default=None, type=str, help='Path to an (optional) kenlm language model for use with beam search (req\'d with trie)') beam_args.add_argument('--trie_path', default=None, type=str, help='Path to an (optional) trie dictionary for use with beam search (req\'d with LM)') beam_args.add_argument('--lm_alpha', default=0.8, type=float, help='Language model weight') beam_args.add_argument('--lm_beta', default=1, type=float, help='Language model word bonus (all words)') beam_args.add_argument('--label_size', default=0, type=int, help='Label selection size controls how many items in ' 'each beam are passed through to the beam scorer') beam_args.add_argument('--label_margin', default=-1, type=float, help='Controls difference between minimal input score ' 'for an item to be passed to the beam scorer.') args = parser.parse_args() if __name__ == '__main__': model = DeepSpeech.load_model(args.model_path, cuda=args.cuda) model.eval() labels = DeepSpeech.get_labels(model) audio_conf = DeepSpeech.get_audio_conf(model) if args.decoder == "beam": from decoder import BeamCTCDecoder decoder = BeamCTCDecoder(labels, beam_width=args.beam_width, top_paths=1, space_index=labels.index(' '), blank_index=labels.index('_'), lm_path=args.lm_path, trie_path=args.trie_path, lm_alpha=args.lm_alpha, lm_beta=args.lm_beta, label_size=args.label_size, label_margin=args.label_margin) else: decoder = GreedyDecoder(labels, space_index=labels.index(' '), blank_index=labels.index('_')) target_decoder = GreedyDecoder(labels, space_index=labels.index(' '), blank_index=labels.index('_')) test_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.test_manifest, labels=labels, normalize=True) test_loader = AudioDataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers) total_cer, total_wer = 0, 0 for i, (data) in tqdm(enumerate(test_loader), total=len(test_loader)): inputs, targets, input_percentages, target_sizes = data inputs = Variable(inputs, volatile=True) # unflatten targets split_targets = [] offset = 0 for size in target_sizes: split_targets.append(targets[offset:offset + size]) offset += size if args.cuda: inputs = inputs.cuda() out = model(inputs) out = out.transpose(0, 1) # TxNxH seq_length = out.size(0) sizes = input_percentages.mul_(int(seq_length)).int() decoded_output, _, _, _ = decoder.decode(out.data, sizes) target_strings = target_decoder.convert_to_strings(split_targets) wer, cer = 0, 0 for x in range(len(target_strings)): wer_inst = decoder.wer(decoded_output[0][x], target_strings[x]) / float(len(target_strings[x].split())) cer_inst = decoder.cer(decoded_output[0][x], target_strings[x]) / float(len(target_strings[x])) wer += wer_inst cer += cer_inst if args.verbose: print("Ref:", target_strings[x].lower()) print("Hyp:", decoded_output[0][x].lower()) print("WER:", wer_inst, "CER:", cer_inst, "\n") total_cer += cer total_wer += wer wer = total_wer / len(test_loader.dataset) cer = total_cer / len(test_loader.dataset) print('Test Summary \t' 'Average WER {wer:.3f}\t' 'Average CER {cer:.3f}\t'.format(wer=wer * 100, cer=cer * 100))