DISS. ETH N° 25135

OPTIMIZATION-BASED MOTION PLANNING
FOR LEGGED ROBOTS

A thesis submitted to attain the degree of
DOCTOR OF SCIENCES of ETH ZURICH
(Dr. sc. ETH Zurich)

presented by

ALEXANDER W. WINKLER

M. Sc. in ME, Karlsruhe Institute of Technology
born on August 20, 1988

citizen of Germany

accepted on the recommendation of

Prof. Dr. Jonas Buchli (ETH Zurich), examiner
Prof. Dr. Marco Hutter (ETH Zurich), co-examiner
Dr. Nicolas Mansard (LAAS-CNRS), co-examiner

2018

ASADRL
gt

Agile & Dexterous Robotics Lab

Institute for Robotics and Intelligent Systems
ETH Zurich

Switzerland

L{3SL

Robotic Systems Lab

Institute for Robotics and Intelligent Systems
ETH Zurich

Switzerland

Robotic Systems Lab

ETH:zurich

© 2018 Alexander W. Winkler. All rights reserved.

Abstract

Legged machines have the potential to traverse terrain that wheeled robots cannot. These
capabilities are useful in scenarios such as stairs in homes or debris-filled disaster scenes,
such as earthquake areas. This thesis develops one of the algorithms necessary to achieve
such a task, a motion-planner, which translates a high-level task into a desired motion-plan
for a legged robot to execute.

A core difficulty in legged locomotion is that a forward body movement cannot be directly
generated, but results from contact forces between the end-effectors and the environment.
Furthermore, there are various physical restrictions on the contact forces that can be gen-
erated. These can make hand-crafting valid motions for all the interdependent quantities
such as body motion, end-effector motion and contact forces tedious and even infeasible
for complex tasks. Alternatively, Trajectory Optimization can be utilized to generate mo-
tions in a more general, automated way. Only a high-level task is specified, while the
algorithm determines the motions and forces taking into account the physical restrictions
of legged locomotion. This approach is attractive because once the problem has been prop-
erly modeled, the algorithm would, in an ideal case, produce motions for any high-level
task, solving legged locomotion planning on a general level.

This thesis presents approaches to transcribe, using e.g. collocation, the legged locomotion
problem into a mathematical optimization problem, then solvable by off-the-shelf software.
The three developed motion-planning algorithms generate motion-plans for increasingly
complex terrains and tasks. Simulation and experiments on the quadruped robots Hy(Q
and ANYmal verify the physical correctness of the motion-plans.

The final formulation and main contribution of this thesis holistically determines the gait-
sequence, step-timings, footholds, contact forces, swing-leg motions and 6-dimensional
body motion, given a desired goal state and 2.5D height map of the non-flat terrain. We
model the robot as a single rigid body (SRBD) controlled by the contact forces at the end-
effectors. Our novel phase-based parameterization of end-effector motion and forces allows
optimizing over the discrete gait sequence using only continuous decision variables. The
algorithm efficiently generates highly dynamic motion-plans with flight-phases for legged
systems, such as monopeds, bipeds, and quadrupeds.

Zusammenfassung

Laufroboter haben das Potenzial Gelidnde zu iiberwinden, welches fiir rollende Roboter
nicht zu bewdéltigen ist. Diese Fahigkeiten sind hilfreich in Szenarien wie beispielsweise
Treppen in Hausern oder Katastrophengebieten, gefiillt mit unstrukturiertem Gero6ll. Die-
se Dissertation présentiert einen der notwendigen Algorithmen um solche Aufgaben aus-
zufithren. Der entwickelte Bewegungsplanner generiert aus einer Aufgabenbeschreibung
einen gewiinschten Bewegungsablauf, der von einem Roboter ausgefithrt werden kann.

Eine der grundlegenden Schwierigkeiten der Fortbewegung auf Beinen ist, dass eine Vor-
wartsbewegung des Korpers nicht direkt, sondern durch die Kontaktkrafte zwischen den
Endeffektoren und der Umgebung generiert werden kann. Zudem gibt es grosse Einschrén-
kungen, welche Kontaktkréafte physikalisch erzeugt werden kénnen. Diese machen es miih-
sam und fiir komplexere Bewegungen gar unmoglich, physikalisch korrekte Bewegungen fiir
all diese abhidngigen Elemente (Koérperbewegung, Endeffektorbewegung, Kontaktkrifte)
manuell zu generieren. Stattdessen kann Trajektorienoptimierung solche Bewegungspla-
ne auf eine generellere, automatisiertere Art erzeugen. Eine grobe Aufgabenbeschreibung
wird vom Algorithmus in Bewegungen und Krafte umgewandelt, die den physikalischen
Gesetzen der Fortbewegung auf Beinen entsprechen. Dieser Ansatz ist attraktiv, da so-
bald das Problem einmal korrekt modelliert ist, der Algorithmus im Idealfall in der Lage
sein sollte, Bewegungen fur beliebige Aufgabenbeschreibungen zu generieren und damit die
Bewegungsplanung fiir Laufroboter grundlegend zu 16sen.

Diese Dissertation prasentiert Ansétze um das Problem der Fortbewegung auf Beinen als
ein mathematisches Optimierungsproblem zu formulieren, welches dann von existierender
Software gelost werden kann. Die drei entwickelten Algorithmen generieren Bewegungspla-
ne fiir Gelande und Aufgabenbeschreibung mit kontinuierlich wachsender Schwierigkeit.
Die physikalische Richtigkeit der generierten Bewegungsplane ist durch Simulationen und
Experimente auf den vierbeinigen Robotern HyQ und ANYmal verifiziert.

Der finale Algorithmus, und der Hauptbeitrag dieser Thesis, generiert die Schrittfolge,
Schrittzeiten, Fusspositionen, Kontaktkrafte, Beinbewegungen und 6-dimensionale Kor-
perbewegung, von einer gewuneschten Zielposition und einer 2.5D Geldnde Représenta-
tion. Unsere neuartige, phasenbasierte Parametrisierung der Endeffektorbewegung und
Kontaktkrafte ermoglicht die Optimierung der diskreten Schrittfolge durch nur kontinu-
ierlichen Entscheidungsvariablen. Wir modellieren den Roboter als einen einzelnen, star-

i

ren Korper, beeinflusst durch die Kontaktkréifte an den Endeffektoren. Der Algorithmus
generiert hochdynamische Bewegungsplédne mit Flugphasen fiir eine Vielzahl von Laufma-
schinen mit ein, zwei, oder vier Beinen.

1ii

Acknowledgments

I would like to thank my supervisor Jonas for giving me the opportunity to pursue a Ph.D.
at the Agile and Dexterous Robotics Lab. He created a mindset in the entire lab with
a progressive long-term vision that greatly inspired my research. In this environment, I
was able to pursue my ideas while receiving his valuable input pointing me in promising
directions. I would also like to thank Marco for serving on my Ph.D. committee and giving
me the opportunity to work at the Robotics Systems Lab. It’s been very exciting getting
to know such a great team and robot. Thanks also goes to Nicolas for also serving on my
PhD committee and taking the time to attend and review this thesis.

The work in this thesis would not have been possible without the invaluable input from
all the great colleagues and friends at ADRL that I've had the pleasure to interact with. I
want to thank Farbod, Diego, and Michael for their close collaboration with many fruitful
discussions and inspiring ideas. Thanks also goes to Markus, Tim, Thiago, Johannes, Edo,
Manu, Kusi, Lukas, Julio, Peng, Martina, Nitish, Simon, and Asutosh for an exciting time
at work and afterward. I also want to thank the great team at RSL for creating such a
welcoming working environment. Special thanks to Dario, Marko, Ruben, Jan, Lorenz,
Péter, and Christian for a productive but also fun time in room H301. I am also grateful
to Claudio and Ioannis for giving me the opportunity to discover such an exciting field as
legged robots at IIT.

Finally, I want to also thank all my other friends I met along the way, in Reddinge,
Eschdringe, Karlruhe, Lafayette, Genova, Ziirich and elsewhere. You have each made this
journey an unforgettable experience. Last, but not least, I want to thank my amazing
family, especially my parents and brother. You have been such a supportive stronghold
and I am forever grateful to have you in my life.

Aox

June 26, 2018

Funding This research has been funded through a Swiss National Science Foundation Professorship
awarded to Jonas Buchli and the National Centre of Competence in Research Robotics (NCCR Robotics).

This work has also been conducted as part of ANYmal Research, a community to advance legged robotics.

v

Contents

Introduction

1.1 The bigger picture
1.2 Dynamic models for legged systems
1.3 Physics of legged locomotion
1.4 Traditional legged locomotion planning
1.5 Trajectory optimization Lo
Contributions

2.1 Relevant publicationso
2.2 Capability metrics of motion-planning algorithms
2.3 State-of-the-art motion-planning algorithms
2.4 List of contributions oL

Paper I: Simultaneous foothold and body optimization

3.1 Introduction e
3.2 Approach
3.3 Results.
3.4 Conclusions e e

Paper II: Vertex-based ZMP constraints

4.1 Introduction
4.2 Method
4.3 TImplementation
4.4 Tracking the motion L
4.5 Results
4.6 Conclusion

Paper III: Gait and trajectory optimization

5.1 Introduction
5.2 Trajectory optimization formulation
5.3 Robot model
5.4 Contact model
5.5 Results
5.6 Conclusion

© 0 W N =

13
13

16
19
21

Contents

6 Conclusions and outlook

6.1 Summary

6.2 Future directions

A Appendix

A.1 Derivation of SRBD from Centroidal Dynamics

A.2 Derivation of LIPM from SRBD
A.3 Derivation of Capture Point

A.4 Dynamic constraint

A.5 Hermite parameterization00

A.6 FEuler angles and rates to angular velocities

Bibliography

Curriculum Vitae

List of publications

List of software

vi

70
70

71

72
72

73
74

75
75
75

78

Symbols

r Center of Mass position
0 Base orientation

w Base angular velocity

Pi End-effector position

f; End-effector force

A End-effector load value
¢ End-effector contact flag

AT; End-effector phase duration
Center of Pressure

NLP decision variables
Support polygon

Range of motion

Friction cone

Set of stance timings

Total duration of motion
Terrain normal vector

Terrain tangent vector
System dynamics function
Full robot state

Floating-base pose

Joint angles

Joint torques

Joint space inertia matrix
Generalized forces (Centrifugal, Coriolis, Gravity)
Joint selection matrix
Centroidal Momentum matrix
Inertia matrix

HPpUuEZ92200HTE NOYIIYET

vii

Acronyms

CD Centroidal Dynamics
CMA-ES Covariance Matrix Adaptation Evolution Strategy
CMM Centroidal Momentum Matrix

CoM Center of Mass

CoP Center of Pressure

CpP Capture Point

DDP Differential Dynamic Programming

DoF Degrees of Freedom

iLQG Iterative Linear Quadratic Gaussian Regulator
IMU Inertial Measurement Unit

1P Interior Point Method

LCP Linear Complementary Problem

LIPM Linear Inverted Pendulum Model
MICP Mixed Integer Convex Programming

MIP Mixed Integer Programming

MPC Model Predictive Control

NEE Newton-Euler Equations

NLP Nonlinear Programming Problem
oC Optimal Control

ODE Ordinary Differential Equation

QP Quadratic Program

RBD Rigid Body Dynamics

SLQ Sequential Linear Quadratic Programming
SQP Sequential Quadratic Programming
SRBD Single Rigid Body Dynamics

TO Trajectory Optimization

ZMP Zero Moment Point

viil

Preface

This doctoral thesis is written as a cumulative dissertation, which means it is based on
three articles published in international, peer-reviewed journals (RA-L) and conferences
(ICRA). The corresponding chapters 3, 4, 5 are therefore the main contributions of this
thesis and copies of these articles, in which mainly the notation across articles has been
unified. Chapter 2 extracts the specific contributions of each paper and compares them
to each other as well as to the state-of-the-art and chapter 1 gives a general introduction
to legged locomotion.

X

Introduction

Robots have started to become commonplace in today’s society. We are starting to get
accustomed to robots vacuuming our floors, or drones recording us from the sky. We are
beginning to give cars more and more autonomy and letting go of the steering wheel on
the high way. Fully autonomous cars are just around the corner; steering wheels replaced
by sensors, algorithms and actuators.

Despite having seen great technological improvement for flying and rolling robots, one
mode of transport has not yet made the jump to mainstream: legged locomotion. Although
actively pursued in research, legged robot performance has not yet come close to their
biological counterparts. This discrepancy is unfortunate since legged locomotion has a
variety of advantages over flying or rolling.

One significant advantage is that no continuous path between start and goal must exist,
as is necessary for rolling machines. Discrete positions to place the feet suffice to move
around. This capability enables legged systems, like humans, to climb stairs and ladders,
traverse debris in earthquake areas or work underground in highly unstructured terrain.
Furthermore, legged machines use the environment to move around, which usually enables
larger payloads with less effort compared to flying machines.

These capabilities of legged machines have the potential to benefit society. Humans are
living longer, and with that, the demand for caretakers is rising. Walking robot nurses
would have the ability to move freely in a house with stairs and steps and interact with
the elderly. In dangerous situations such as burning buildings, earthquake-struck houses
or nuclear disasters, legged robots instead of humans, could be sent to check for and rescue
survivors or perform other tasks that require physical interaction. Furthermore, machines
that walk can also be used in symbiosis with humans, e.g., help paralyzed patients regain
mobility. These exoskeletons could replace a restrictive wheelchair and increase the quality
of life for the paralyzed.

1.1. The bigger picture

Plan S Act

* Sense

-€

Figure 1.1: Individual capabilities to generate motions for autonomous systems. This
thesis introduces an algorithm to plan physically feasible motions for legged robots. These
can subsequently be executed using a tracking controller or embedded into an MPC formu-
lation [1]. Images by [2].

1.1 The bigger picture

Now that the benefits of legged locomotion have been motivated, it is reasonable to ask
what is missing on the technological side to create systems that can move using legs.
Such a complex task requires various capabilities shown in Fig. 1.1 that must interact to
generate, e.g., a walking motion. The following describes the responsibilities of the three
components Sense, Act and, as the focus of this thesis, Plan.

Sense The first task of an “autonomous agent” is to perceive its environment. To retain
balance while walking, the robot relies on an IMU and state estimation to determine its
global position and how its body is oriented. It needs to know what terrain obstacles lie
in front of it that should be avoided. Streams coming from cameras or laser scanners must
be analyzed to build an accurate map of the environment.

Act After the environment and the own state is perceived, a motion is planned (explained
in next paragraph) that is subsequently executed on the robot. This execution (“acting”)
includes applying torque to the joints to generate a movement of the system. This requires
high-quality hardware and software to work reliably. The software calculates the correct
motor current (or hydraulic valve opening) to create, or “track”; a desired torque. We also
place motion tracking controllers into this category, which are responsible for generating
appropriate joint torques to follow a given motion plan. These must continuously observe
the current state of the robot and adapt the joint torques accordingly. This problem of
generating torques for floating-base systems to achieve a desired motion or acceleration
has been widely studied, and many useful solutions exist. Most approaches are based
on using the Rigid Body Dynamics (RBD) while enforcing additional constraints [3] or
directly tracking the planned end-effector forces [4].

(Re-)plan The link between the sensing of the environment and the execution of a
motion is called motion-planning. If the entire loop in Fig. 1.1 is repeated sufficiently

1.2. Dynamic models for legged systems

fast and the plan is produced by the optimization of the robot dynamics, the method
is termed Model Predictive Control (MPC). This frequent re-optimization is attractive,
as without any additional methods the system gains a variety of reactive capabilities.
These capabilities, including recovery from slipping and external pushes or re-planning
if the motion is not executing as predicted, are crucial to deploy robots in real-world
environments.

However, a critical building block included in all MPC structures is the motion planning
performed in every loop of Fig. 1.1. If the motion-plan is already physically infeasible,
it is impossible for even the best controllers or an MPC structure to execute it. As we
will explain next, the range of possible motions for legged systems is strongly restricted.
Therefore, coming up with a physically feasible motion-plan that respects all these restric-
tions is far from trivial. The main result and focus of this thesis is such a motion-planning
algorithm for legged robots. The equally important tasks of robustly tracking these mo-
tions or designing high-performance hardware to enable this are outside the scope of this
thesis.

The rest of this chapter recapitulates essential theory related to legged locomotion. We
introduce different ways to model the dynamics of a legged machine, highlight distinctive
physical constraints present when walking on legs, briefly explain how locomotion planning
is traditionally solved and why Trajectory Optimization (TO) might be a useful tool for
this task.

1.2 Dynamic models for legged systems

A variety of mathematical models can be used to design efficient algorithms for legged
locomotion planning. A motion plan is considered physically correct according to a given
model, if the modeling equations are fulfilled at all times. These models quantify the
relationship between an input u to the current state x of the system, and the resulting
change of state x. This can be modeled by the Ordinary Differential Equation (ODE)

x(t) = F(x(t), u(t)). (1.1)

The following introduces different dynamic models to represent legged robots and high-
lights which assumptions are necessary for their physical correctness. These represen-
tations vary by how many dimensions the state x represents, what physical quantity is
considered as the input u and how this input affects the motion defined by F. Models
are merely approximations of the actual physics and vary by how many assumptions they
require. In the following, the models with the least assumptions are introduced first and
assumptions are continuously added to derive simplified dynamic representations.

1.2. Dynamic models for legged systems

Rigid Body Dynamics (RBD) Single Rigid Body Dynamics (SRBD) Linear Inverted Pendulum (LIPM)

Figure 1.2: Visual representations of the dynamic modeling equations that can be used
to approximate the physics of the quadruped robot HyQ[5] pushing off its hind legs.

1.2.1 Rigid Body Dynamics

One possibility to model a system is through each of its rigid bodies. Rigid in this context
implies that

Assumption A1l (RBD). Bodies do not deform when forces are applied.

With this assumption, the system in Fig. 1.2 can be fully described through the generalized
coordinates q = [q] q]]" € SE(3) x R" ', which holds the position and orientation of the
base, as well as the angle of each joint. By viewing a robot as a collection of rigid bodies
connected through actuated joints we can derive a relationship between the torque 7 € R"
acting at each joint and the corresponding motion as

M(q)§ +h(q,q) =S+ J(q)"f, (1.2)

where M € R(6+)x(6+7) ig the joint-space inertia matrix, h € R+ is the effect of Centrifu-
gal, Coriolis and gravity terms, ST = [0,,%6 Inxn]T is a Selection Matrix which applies the
torque 7 to only the n joint rows and the Jacobian J maps forces f = [f],... £I']7 € R%™
at the n; end-effectors to 6 + n dimensional generalized forces.

We can split (1.2) into 6 unactuated (u) and n actuated (a) rows [6]. The unactuated rows
correspond to the equations for the base, and the other rows describe the joint motions.

M. ()4 + hu(q,q) = Ju(q)'f (1.3a)
M., (q)q + ha(q,q) = 7 + Ju(q)'f, (1.3b)

The unactuated subsystem (1.3a) mathematically shows that a torque 7 cannot directly
influence the base motion of, e.g., a humanoid. Differently stated, there exists no motor

LR™ describes a vector of real numbers R, but not necessarily a vector space.

1.2. Dynamic models for legged systems

for this virtual six Degrees of Freedom (DoF) torso joint. The feet have to push off the
ground in the opposite direction to achieve forward motion. This contact force can be
generated through the motors in the leg joints, however, they only indirectly actuate the
torso, or base. The base is considered unactuated and we talk about a floating-base system.
This unactuated subsystem can be used to verify that the relation between external forces
f and the system’s accelerations q are physically correct.

Once these two quantities are determined, ensuring the relationship defined by the ac-
tuated subsystem (1.3b) is trivial. Since there exists a torque-generating motor for each
robot joint, this subsystem is fully determined. Just as for a fixed-based manipulator, it
is always possible to choose appropriate torques 7 to fulfill these actuated equations.

If torque limits are large enough, this can justify disregarding the actuated subsystem dur-
ing motion-planning. By doing so, we can eliminate n equations as well as the dependency
on the joint torques in the planning problem, without sacrificing generality or accuracy.
We can shift the emphasis to the six rows representing the unactuated dynamics, as done
n [7]-[9]. These crucial dynamics for legged locomotion can also be described as shown
in the following.

1.2.2 Centroidal Dynamics

By expressing the change of momentum in a frame anchored at the current Center of Mass
(CoM) r, also called centroid, we can rewrite the dynamics expressed in (1.3a) as

o . mg+ Y
Al +Aa = [{n e

This formulation is called Centroidal Dynamics (CD) [10]. The Centroidal Momentum
Matrix (CMM) A € R®(+") maps the velocities, and therefore momentum, of each
individual body into a common reference frame, expressed at the CoM. The gravity accel-
eration is given by g, the mass of the entire robot by m, the position of each end-effector
1 is denoted as p; and the force acting there is given by f;. The left-hand side denotes
the change of momentum d(AQ), which must be equal to the sum of external forces and

dt
moments on the right-hand side.

(1.4)

These six equations relate the change of linear and angular momentum of all rigid bodies
projected into the CoM with the external forces. This system of equations is under-
determined with respect to the accelerations ¢, just as (1.3a). Given an input force f,
there exist multiple physically feasible ways the system can evolve. This ambiguity makes
the equation more suitable for verification whether a specific state is physically correct
than for forward simulation. Also, (1.4) depends on the joint state, which contributes
to the nonlinearity of the system. The following introduces a way to eliminate the joint
dependency through additional assumptions.

1.2. Dynamic models for legged systems

1.2.3 Single Rigid Body Dynamics

To remove the dependency on the joint angles in (1.4), while keeping the dynamics ap-
proximately correct, the following assumptions additional to Al are necessary:

Assumption A2 (NEE). Momentum produced by the joint velocities is negligible.

Assumption A3 (NEE). Full-body inertia remains similar to the one in nominal joint
POSition.

This might be reasonably assumed for robots in which the base makes the largest con-
tribution to the total mass of the robot, e.g. HyQ [5], ANYmal [11], MIT Cheetah [12],
Spot-Mini [13] and Cassie [14]. From their negligible limb masses follows that (i) even
fast limb motion does not contribute significantly to the momentum of the system and
(ii) their position does not influence the full-body inertia. Another case that might justify
these assumptions is a robot that has significant limb masses and inertia, but these move
very slow and stay close to their nominal configurations. This could, for instance, be a
humanoid robot such as HRP-2 [15], when its slow steps do not significantly influence the
momentum and its short steps with the resulting similar joint configurations also barely
change the full-body inertia.

With these assumptions (1.4) can be simplified as shown in Appendix A.1. By separating
the linear and angular parts we get the Newton-Euler Equations of a single rigid body,
the Single Rigid Body Dynamics (SRBD)

mf:mg—l—ifi (1.5a)
=1
1(0)6 + wxI(@)w = 3 £% (r — py), (1.5b)
=1

where r is the CoM, 0 is the base orientation and w the angular velocity of this combined
rigid body (see Fig. 1.2). The combined mass all the limbs and base is given by m and
I(0) € R**3 is the full-body inertia of all individual limbs in nominal joint configuration
combined, with respect to a frame anchored at the CoM and whose axis are parallel to
the inertial frame (see Appendix A.1).

Through the additional assumptions, we sacrifice some accuracy of the dynamic represen-
tation, however, we gain full independence of the joint angles. This allows us to express
the dynamics in (1.5) purely through Cartesian coordinates and rotations in 3-dimensional
space. This eliminates the nonlinearity introduced by the joint angles. Additionally, in
legged locomotion, it is often less critical how exactly the joints of a leg are oriented, as
long as the foot is at a specified position. If we neglect the joint motions’ effects on the
dynamics, we can completely decouple robot-dependent joint kinematics from the general
physical legged locomotion problem. This allows a simpler formulation of the physical
laws and constraints of legged locomotion and has been used in [16], [17].

1.2. Dynamic models for legged systems

Assumption A2 and A3 might seem overly strong, yet approaches using the Linear Inverted
Pendulum Model (LIPM) are also making these assumptions (and more) and have shown
to be sufficiently accurate for a variety of use-cases [18]-[21]. Therefore, this model lies
somewhere in-between the CD and the LIPM regarding complexity as well as accuracy. It
retains the 6-dimensional base motion as well as the individual contact forces. However,
the cross products still introduce nonlinearity, which cannot be handled in, e.g., Quadratic
Program (QP) constraints. This nonlinearity is eliminated with further assumptions as
seen in the following.

1.2.4 Linear Inverted Pendulum Model

The starting point for the LIPM in Fig. 1.2 are the SRBD. In order to remove the nonlin-
earity introduced by the cross product, the following assumptions additional to A1, A2,
A3 are necessary:

Assumption A4 (LIPM). CoM height r, is constant.
Assumption A5 (LIPM). Angular velocity w and acceleration w of the base are zero.

Assumption A6 (LIPM). Footholds are at constant height p,.

With these assumptions Appendix A.2 simplifies equation (1.5a) to the form

o A2 Mg S fi Die mg
=t Ty)T g e T Pea); 1.6
mr, Z:z:l f T T, — P, <Tz Z;nil ») A (T.r pC’x) ()

where x indexes the horizontal motion (y accordingly), h is the walking height of the robot
and p., the x-position of the Center of Pressure (CoP), which is manipulated through the
vertical contact forces f; . and the position p;, of the feet. This model describes how
the position of the CoP linearly affects the horizontal CoM acceleration. It can be solved
analytically and efficiently and has therefore been used in a variety of approaches [20],
[22]-[24].

The disadvantages of this model are the restrictive assumptions A4, A5, A6 made for the
model to be valid. For more complex motions it could be essential to reorient the body
to reach specific footholds, accelerate vertically to jump, or place feet at different heights
to cross uneven terrain. Furthermore, the input to this system is the CoP created by a
combination of the vertical components of each individual contact force. This abstraction
loses critical information about the vertical force at each foot, as well as ignores their
tangential components. The 3-dimensional forces at each foot, however, are the crucial
elements that move the floating base and are subject to a variety of constraints (e.g.,
friction cone). By summarizing them into the CoP, relevant information is lost which can
make it difficult to model many of the characteristics of legged locomotion.

Some extensions to mitigate some of these restrictions imposed by the LIPM have been
developed, e.g., [25]. Another option if the LIPM is too restrictive for a specific use-case

1.3. Physics of legged locomotion

(and nonlinearity of the formulation can be tolerated) is to directly use more general for-
mulations such as the full RBD (1.2) or the SRBD (1.5). These are still only approximate
models, but rely on fewer assumptions and sometimes make it easier to recognize the
underlying physical principles.

A summary of the different dynamic models described previously and what characterizes
their state and input can be seen in Table 1.1.

Table 1.1: Dynamic models for legged robots and their relation to (1.1). Only the position
components are listed, although x includes both position and velocity.

F State x Input u Assumptions

Rigid Body Dynamics (RBD)

(1.2) ap,q; T, f Al
Centroidal Dynamics (CD) (1.4

(1.5

(1.6

)

) 4,9 f; Al
Single Rigid Body Dynamics (SRBD))
Linear Inverted Pendulum Model (LIPM))

r, 0, Pi f, Al,AQ,A3
Tx, /ry pC A17A2,A37A47A6

1.3 Physics of legged locomotion

Since the reaction forces with the environment are the main way to move a floating-base
system, we will now have a closer look at these forces with the goal of more precisely
defining the legged locomotion problem.

A commonly seen floating-base system is a wheeled vehicle as seen in Fig. 1.3. The system
cannot be directly accelerated forward, but the torque applied to the wheels creates a
reaction force between the tires and the asphalt, which moves the car forward. The
vertical forces always balance the weight of the car, so planning or control in this direction
is not required. Steering is achieved by creating lateral forces at the front wheel by turning
them.

The drone in Fig. 1.3 moves due to the thrust forces created by each rotor. These thrust
forces can be controlled through the rotor velocities to move the 6-dimensional base in a
desired way. This is not trivial since the forces can only act in normal direction, pushing
up- or downwards depending on the rotor’s rotational direction. Fortunately, forces can
still be created at all times, independent of where the system is in the environment.

What complicates the control of legged systems compared to rolling cars or flying drones,
are the various restrictions on the achievable reaction forces. These force restrictions,
which consequently also limit the possible base motions, are:

e Forces can only be created when a foot is touching the environment. This restricts
where the forces can act to the surface of the terrain and nowhere else. This is in
contrast to drones, which can always exert a force at the center of their rotors by
spinning them, independent of the terrain.

1.4. Traditional legged locomotion planning

N

Figure 1.3: Floating-base systems for which the base cannot be directly actuated. Algo-
rithms for the control of self-driving cars [206] and drones [27] are quite mature, whereas
those for legged robots, such as quadrupeds [28] or bipeds [29], are still an open research
question. The difficulty to control legged systems comes largely from the various restric-
tions for the creation of external forces.

e For locomotion without slipping, the locations of the force is unmovable. To generate
a force at a different location, we must accept a duration during which no force is
possible to re-position the foot. While taking this step, the leg typically does not
significantly contribute to moving the base. This abrupt loss of control of such a
switching system is a substantial restriction that does not affect drones or cars.

e Physically it is only possible to create forces that push into the ground, and not pull
on it. This is why our heels cannot pull us back upright once we leaned too far past
the tip of our toes. The unilateral forces make many base accelerations physically
impossible.

e Tangential forces, the driving forces that move the body forward, must remain inside
the friction cone. We can only create larger tangential forces by simultaneously
increasing the normal force (Coulomb friction). This however also affects the body
acceleration in normal direction.

These strong restrictions and their effect on the base motion is what makes legged loco-
motion so difficult from a planning and control point of view.

1.4 Traditional legged locomotion planning

Previously, we introduced the dynamic models and physical restrictions that characterize
legged locomotion. In the following, we will briefly explain existing approaches to control
legged robots and discuss which aspects could be improved.

To traverse any terrain, it is helpful to know where to step. Since foothold selection is a
difficult problem, a variety of heuristics is often used for simplification: (i) Footholds are
often categorized as good if they are on flat ground so slipping can be avoided, (ii) they
do not have any high obstacles nearby that the foot can collide with and (iii) they guide

1.5. Trajectory optimization

the robot to a desired goal. This selection of appropriate footholds and step timings given
a height-map of the terrain is usually the first stage for traditional legged locomotion
planning. Expressed in terms of the previously introduced restrictions, this predefines
where (footholds) and when (step timings) external forces can act.

Only after these force locations have been predetermined a body motion is found that can
be created with the available forces. A common approach [22] is to model the robot as a
LIPM, and find a motion for which the CoP is always inside the area of the feet in contact
(support area). This is an alternative way to enforce that only pushing forces are required
to generate this body motion.

Once footholds and a base motion-plan have been found, the goal is to apply this to a
physical system. This requires the generation of the appropriate joint torques to track
the reference motions. This is often done by solving the RBD model (1.2) for those joint
torques that track the planned accelerations (Inverse Dynamics), subject to additional
constraints [3].

Limitations

This partitioning of the problem into solvable subtask is sensible, but also has its limita-
tions. For instance, the separation between foothold and body motion planning can limit
performance. The footholds specify where the contact forces are allowed to be applied.
Afterwards a physically correct body motion must be determined using these possibly
suboptimal contact locations. However, for complex motions, it can be challenging to se-
lect these locations without taking into account the dynamics of how the generated forces
affect the base. This close coupling hints towards finding a solution for the feet and the
base motion simultaneously to generate more complex motions.

Furthermore, more complex motions and terrains might require the base to reorient itself,
jump vertically and place feet at different heights. This violates the assumptions underly-
ing the LIPM (1.6), possibly necessitating a different representation of the dynamics. Since
many of these LIPM restrictions come from the abstraction of the contact forces into the
CoP, a dynamic representation that directly takes forces as input might be more appropri-
ate (Table 1.1). The constraints on precisely these contact forces are after all an integral
part of legged locomotion as explained in Section 1.3. Direct modeling of forces requires
a higher-dimensional model, as well as a way to represent the complex interplay between
floating-base accelerations, external forces and various constraints on these. Since hand-
designing all these different quantities in a coherent way becomes increasingly difficult, we
will next have a look at mathematical optimization to outsource this complexity.

1.5 Trajectory optimization

Generating motions for dynamic systems subject to a variety of physical constraints has
been studied in the field of Trajectory Optimization (TO). Our goal is to reduce the amount

10

1.5. Trajectory optimization

of hand-crafted components by leveraging these numerical optimization techniques. There
exist different methods to formulate such a TO problem, namely Dynamic Programming
using the Bellman Optimality Equation, indirect using the Maximum Principle and direct
methods. For a complete overview as well as detailed information on TO methods see
[30]-[32].

We will focus on direct methods, in which the continuous time TO problem is transcribed to
a Nonlinear Programming Problem (NLP) affected by a finite number of decision variables
as

mina(w) subject to b(w) =0, c(w)=0. (1.7)

A solver attempts to find the variables w that minimize the cost a, while fulfilling the
equality b = 0 and inequality ¢ > 0 constraints. After formulating the problem in this
way, it can be solved with a variety of methods for mathematical optimization, using eg. an
Interior Point Method [33] or Sequential Quadratic Programming (SQP) [34] implemented
by off-the-shelf solvers such as IPOPT [35] or SNOPT [30].

The appeal of TO is that once the physics have been appropriately modeled, the algorithm
can produce motions for a wide variety of tasks, solving legged locomotion planning on
a more general level. Therefore, capturing the physically relevant quantities of legged
locomotion through the quantities w,a, b, c is a more precise formulation of the goal of
this thesis.

A main objective for all these approaches is to satisfy the dynamics ODE (1.1). The
following explains two common ways to transcribe a continuous TO problem into the
discrete form in (1.7). These methods are independent of the problem of legged locomotion
and applicable to a variety of dynamical systems.

1.5.1 Sequential methods

An intuitive way to transcribe the continuous TO problem into a finite dimensional NLP is
single shooting. Only the continuous input u(t) is parameterized through a set of discrete
variables, e.g., polynomial coefficients w. This input is applied to the dynamic system (1.1)
and the states x(t) are forward simulated using an ODE solver. The NLP solver verifies if
the resulting states fulfill the specified equality (b) and inequality (c) constraints, such as
e.g. reach a goal or avoid high velocities. If this is not the case, the parameters w describing
the input trajectory are adapted based on gradient information and the dynamic system
is simulated (forward integrated) again. This method continuously “shoots” the dynamics
forward until input parameters are found for which the states evolve according to the cost
and constraints.

The advantages of this method are that it can make use of adaptive, error-controlled ODE
solvers. These can change their integration step-size depending on the current dynam-
ics, thereby avoiding unnecessary calculation and reducing computation time. Also, the
problem stays relatively small, since only the control trajectory is optimized. The disad-
vantages are that the state trajectory cannot be initialized directly, as only the often less

11

1.5. Trajectory optimization

intuitive input variables are available. Furthermore, unstable systems can be difficult to
handle, since small modifications of the input can have large effects on the state x later
in the trajectory [30], [32].

The duration of the shooting intervals can be reduced to avoid the trajectory becoming
unstable. One approach to accomplish this is multiple shooting, which strings together
multiple shots from optimized starting values. To produce a continuous final trajectory,
the NLP enforces that each shot ultimately ends up at the starting state of the next. This
formulation increases the sparsity of the problem, as well as convergence and stability
since inputs in one shot do not directly influence the trajectory of the next shot.

There also exists a different way to parameterize the problem, which does not require the
use of an ODE solver altogether and will be presented in the following.

1.5.2 Simultaneous methods

If the decision variables w parameterize the input u(t) and state x(t¢) over time, the
method is classified as a simultaneous method. In this case, the system dynamics are not
enforced by forward integration, but through equality constraints in b(w). The solver
varies the state x(¢) and input u(¢) trajectory simultaneously while trying to enforce the
system dynamics relationship (1.1) between them at specified times.

This requires pre-specifying the times at which the dynamic constraint is enforced, and is
computationally expensive to be changed during the iterations if a different accuracy is
required (as opposed to adaptive step-size ODE solvers). On the positive side, since the
state trajectory is part of the decision variables, an initial motion can be easily set. Also,
due to the decoupling between state and input, changes in the input only affect the state
at that time instance, while future states remain unaffected. This characteristic, which
is reflected in the sparse structure of the Jacobian, increases the robustness of the solver
towards unstable systems [30], [32], [37].

Due to these advantages, all the TO approaches presented in this thesis use variants of the
simultaneous method to formulate problem (1.7). They vary in which DoF of the system
are optimized, what dynamic model is used and how the legged locomotion constraints
are formulated.

12

Contributions

The main result of this thesis is a motion-planning algorithm for legged robots. This
thesis is based on three published papers [17], [38], [39], each with their dedicated chapter
(3, 4, 5). This chapter starts by motivating and summarizing each paper, then defines a
set of metrics to compare motion-planning algorithms, subsequently presents a variety of
state-of-the-art approaches, and concludes by summarizing the contributions of this thesis.

2.1 Relevant publications

The following lists the published papers and summarizes the motivation and contributions
of each. It highlights which capabilities might be desirable for an algorithm for legged
locomotion planning, and how these were gradually added. Each specific contributions is
denoted by (Cx).

Paper I

Alexander W. Winkler, Farbod Farshidian, Michael Neunert, Diego Pardo, Jonas
Buchli. Online Walking Motion and Foothold Optimization for Quadruped Locomo-
tion. In IEEE International Conference on Robotics and Automation (ICRA), pp.
5308-5313, 2017.

13

2.1. Relevant publications

Motivation

Traditional motion planning for legged robots separates the foothold planning from the
body-motion planning [18]. This keeps each sub-problem tractable, but also necessitates
heuristics to link the two. For instance, when planning footsteps to reach a goal state,
a maximum step-length is often set. A more accurate formulation would be to limit the
distance between the base and each foot. However, since the footholds are traditionally
planned before the position of the base is known, this heuristic maximum step length must
be used. We attempt to minimize the use of heuristics such as maximum or nominal step
length since these are often approximations of actual physical laws and become increas-
ingly difficult to determine for more complex motions. Typically, since these values are
not precisely known, they are set more on the conservative side. The sum of all these
conservative approximations then limits the achievable motions.

Contribution

To reduce heuristics, we optimize over the footholds and the body motion simultaneously.
This makes the constraint that keeps the CoP inside the area of the stance feet nonlinear
and requires an NLP, as opposed to a traditional QP, to solve the problem. This additional
complexity however also allows us to create arbitrarily oriented support areas exactly where
they are needed for the CoM to stably reach a commanded goal (C1). Additionally, we
show that despite the nonlinearity of the problem, the solution time remains in the order
of milliseconds.

Paper 11

Alexander W. Winkler, Farbod Farshidian, Diego Pardo, Michael Neunert, Jonas
Buchli. Fast Trajectory Optimization for Legged Robots using Vertex-based ZMP
Constraints. In Robotics and Automation Letters (RA-L), pp. 2201-2208, 2017.

Motivation

In the previous paper, we demonstrate that it is possible to find the footholds and body
motion simultaneously, thereby reducing heuristics compared to a decoupled footstep plan-
ner. One limitation of the approach is that it can only generate motions for quadruped
robots with three or more legs on the ground. However, in many biological gaits, there
are often only one or two legs in contact at a given time. Since our previous formulation
requires support areas, these point- and line-contacts cannot be modeled. Typically such
more dynamic motions are generated using Capture Point [40] approaches — determining
where to step to upright a LIPM. If however a slower, statically stable gait is desired,

14

2.1. Relevant publications

the approach is switched to one using the Zero Moment Point (ZMP) with support areas.
This “either-or” prohibits the mixing of motions, where the gait cannot be precisely cat-
egorized, e.g., limping, trot with a slight overlap of stance phases. However, specifically
these non-traditional gaits might be required for more complex environments in which
legged robots can demonstrate their advantages over wheeled systems.

Contribution

Working towards a unified motion-planning algorithm, this paper introduces a TO formu-
lation where the CoP is viewed as input and the support areas as input bounds, which
can be modified through the optimized foothold locations (C2). This formulation gener-
alizes the traditional ZMP planning, so the Capture Point (CP) is the solution of our TO
problem for a specific case (CoP on point-foot). In our formulation, the CP and ZMP
approaches differ through the shape of the support areas. To represent the line-contacts
present in, e.g., quadruped trotting, we introduce a vertex-based representation of the
support areas (C3). This formulation allows treating arbitrarily oriented point-, line- and
area-contacts uniformly. It also eliminates the need to order contact points in a specific
way before calculating the support edges. Through this general TO formulation, as well
as the vertex-based ZMP-constraint representation, we can efficiently generate motions
such as quadrupedal walking, trotting, bounding, pacing, combinations and transitions
between these, limping, bipedal walking and push-recovery with a single algorithm.

Paper 111

Alexander W. Winkler, C. Dario Bellicoso, Marco Hutter, Jonas Buchli. Gait and
Trajectory Optimization for Legged Systems through Phase-based Endeffector Pa-
rameterization. In Robotics and Automation Letters (RA-L), pp. 1560-1567, 2018.

Motivation

The above approaches combine and optimize over many of the relevant quantities of legged
locomotion. However, they are both based on the LIPM model, controlled by the position
of the CoP. This helpful simplification of the dynamics reaches its limits as motions and
terrains become more complex. Some motions might require reorienting the body to
reach specific footholds, accelerate vertically to jump, or place feet at different heights
when crossing uneven terrain, which however violates the assumptions of the LIPM. Other
limitations come from abstracting the individual 3D contact forces into CoP. Some of the
characteristic constraints in legged locomotion (Section 1.3) can only be modeled if the
contact forces are explicitly represented in the optimization problem. Finally, our previous
papers fix the order and duration of each step. Especially for more complex, non-flat

15

2.2. Capability metrics of motion-planning algorithms

terrain, a suitable order can be difficult to determine beforehand. Therefore, it would be
useful if the motion-planning algorithm could find the optimal step sequence and durations
autonomously.

Contribution

In this paper we replace the LIPM model with the 6D SRBD (1.5) and the CoP with
the 3D contact forces of each end-effector. This model allows reformulating concepts
such as support-area constraints into unilateral contact forces, which can be more directly
connected to underlying physical laws. Since the forces are part of the optimization prob-
lem, friction constraints can also be directly formulated. Kinematic limits we previously
expressed as 2D surface patches are now constrained by 3D cubes. Since the CoP is not
defined for zero forces, the LIPM could not be used to generate motions with flight-phases.
However, the SRBD handle the contact forces directly and therefore generate valid accel-
erations also for flight-phases and other vertical motions (C4). To allow the algorithm
to choose the optimal gait and step durations, we introduce a novel phase-based foot
parameterization (C5). This avoids Mixed Integer Programming (MIP) and Linear Com-
plementary Problem (LCP) constraints, keeping the optimization variables continuous and
allowing the NLP solver to simultaneously optimize the gait and motion.

2.2 Capability metrics of motion-planning algorithms

Significant work has been done in the field of motion planning. Before comparing ap-
proaches, we define metrics by which to evaluate the abilities of motion planning algo-
rithms. The following lists five criterion that in combination could be used to compare
the capabilities of various motion-planning algorithms. The individual importance of each
criterion might vary depending on the application, however, they all influence the evalua-
tion.

Which components are optimized?

By solving different aspects of the legged locomotion problem separately, constraints be-
tween them cannot be directly formulated. The conservative heuristics can limit the range
of achievable motions. Therefore, defining as little as possible a-priori, giving the algorithm
the most freedom in how to complete a specified task, is often favorable.

The components we view as critical to legged locomotion are summarized in Table 2.1.
Firstly, it is helpful that the entire 6-dimensional base motion is optimized, allowing tilting
the body to reach specific footholds or jumping vertically to cross a gap. Furthermore, we
emphasized the tight connection between footholds and base motion in Section 1.4, which
suggests it is beneficial to optimize them simultaneously. By concurrently also generating
the motion of the swing-leg, the range of motion constraints and obstacle avoidance can

16

2.2. Capability metrics of motion-planning algorithms

be directly taken into account. Finally, an algorithm that also determines the number of
steps, their order (gait) and the duration of each step to best achieve a given task might
allow a broader range of motions to be generated.

How difficult are the shown tasks and terrain?

The quality of a motion-planning algorithm can also be evaluated based on the difficulty
of the terrain or task for which it finds a solution. Unfortunately, there exists no stan-
dardized scenarios and terrains which all algorithms attempted to solve. Therefore, we
make the assumption that the motions shown in the accompanying videos are the most
complex ones the algorithm is capable of producing with reasonable tuning effort. In this
category, we therefore only evaluate the algorithms’ quality based on the motions pre-
sented. A more difficult motion or task might include not just area, but also point- and
line-contacts, whether the terrain is non-flat or the surface non-horizontal, if flight-phases
with no contacts with the environment emerged, whether the contact points can slide as
in skating, whether impulsive contacts with the environment are handled correctly or if
the algorithm is able to generate motions for robots of various morphologies.

How reliable are solutions found?

A factor that is more difficult to quantify is how reliable the algorithm finds a solution to
multiple sensibly proposed tasks without requiring retuning. We propose the three levels,
low, medium and high.

Low — Depending on the given task, a variety of parameters have to be tuned or modified
specially for this situation to make the algorithm produce feasible motion-plans. If a
different terrain or gait is desired, a new set of parameters is required. Often, motion-
planning algorithms with, e.g., hand-tuned hint-costs, that guide the algorithm into a
particular direction fall into this category. Algorithms very sensitive to the stiffness and
damping of the soft contact model could belong here as well. Finally, some multi-staged
optimizations that require the number of stages to be set with specific objectives depending
on the task specifications could be considered less reliable.

Medium — Given a feasible task, the algorithm often directly generates a valid motion
plan. Sometimes a few algorithm parameters have to be slightly adapted, or the initial-
ization modified to aid convergence. Then, however, even noticeable changes of the task
specifications, goal or the terrain shape can be dealt with by the algorithm.

High — Given a feasible task, the algorithm generates a motion-plan with the default pa-
rameters. Even if the goal is changed, the terrain adapted, or the initial position modified
a motion plan is reliably found with the same structure and default parameters.

17

2.2. Capability metrics of motion-planning algorithms

How long does it take to find a solution?

Another important factor for motion-planning can be how long it takes for the algorithm to
generate a plan. The longer this takes, the longer the robot has to “think” before reacting
to unknown situations. To deploy robots in real-world scenarios and allow the robot to
react to slippage and external pushes, it is helpful to keep the computational time as short
as possible (e.g. 100 ms MPC loop). Although the computation times are strongly affected
by the initialization, discretization of the problem and the type of robot and task, a rough
time-range to solve a specific task, e.g., 1s time-horizon, 4-step quadruped motion, can
already be revealing.

How are the motion-plans verified?

The quality of a motion-planning algorithm is also determined by the physical correctness
of its produced motion-plan. This verification can be done, ordered from most permissive
to strict, through pure visualization, simulation or robot experiments.

Visualization — The most permissive form of verification is visually observing whether a
motion-plan appears physically correct. This ensures that no grand modeling mistakes
have been made and the rules of physics are at least approximately respected. However,
these played-back motions only enforce those physical constraints that are also modeled
in the problem. Contact forces could still be produced in the air, or inconsistent body
accelerations can be generated, which cannot always be detected through visual inspection.

Simulation — A stricter form of verification is sending the motion-plan as a reference
to a physics-based simulator, e.g., Gazebo [41], and either directly applying the torques
or using a tracking controller to generate these. The robot and contact model in the
physics simulator should be unknown (independent) to the algorithm. This ensures that
trajectories are not just played back with the same, possibly false, physical assumptions.
Motion-planning algorithms subjected to this type of verification can generally be regarded
as of higher quality, since successful execution proves that the rules of physics implemented
in the independent simulator have been correctly modeled in the algorithm and that there
exists a tracking controller that can execute these motion-plans.

Ezperiment — The ultimate verification is executing the motion plan on a physical system.
Sensor noise, model mismatches, and imperfect force tracking pose a variety of additional
problems. While verification by simulation relies on the approximated physics of the
simulator, the physics in the world are correct by definition. This type of verification not
only proves that the motion-plan is physically correct, but also that it is robust against
the above imperfections and that there exists a controller that can track the plan on the
physical system.

18

2.3. State-of-the-art motion-planning algorithms

2.3 State-of-the-art motion-planning algorithms

Each of our three papers begins by reviewing the state-of-the-art and placing the contri-
butions in the overall context. This section is meant as an additional resource, comparing
mostly the final version of our algorithm introduced in Chapter 5 to existing approaches.
Table 2.1 shows an overview of the capabilities of the motion-planning algorithms devel-
oped in this thesis. The following highlights some other approaches capable of producing
high-quality motions.

There exists a variety of successful work using the LIPM as a model to generate motion-
plans [22], [40], [42]. In [21], [24] the authors optimize the motion-plan in an MPC fashion,
resulting in a controller that can react to disturbances and handle model inaccuracies.
Foothold selection and body motion generation are decoupled to obtain this speed. The
approach presented by [43] combines the planar foothold selection and lateral CoM motion
generation in the same online optimization problem. The nonlinear extension of this work,
while still using the LIPM, permits to find also the optimal orientations for biped feet,
avoids obstacles, and still runs online on an HRP-2 [15], [44]. Such a combined optimization
of footholds and body motion is also shown in [45] using direct collocation with an SQP
solver.

To eliminate some of the restrictions imposed by the LIPM, a variety of successful work for
humanoid robots was developed using models such as the CD or the full RBD. Foothold and
body motion planning are often decoupled to make the problem more tractable. Multiple-
Shooting is used to generate and execute stair climbing using hand-rail support on a
physical biped [46]. The approaches by [9], [47] successfully generate a variety of motions
for a biped robot. This is achieved by optimizing a robot base path first and then finding
static equilibrium configurations, creating an interactive multi-contact planning algorithm.
These configurations are then used to generate physically feasible motions-plans using a

CD model.

Similarly, physically correct motion-plans can also be generated by alternating between
finding the robot momentum from a given kinematic motion-plan and then optimizing
the corresponding contact forces and locations to fulfill the CD [6], [8], [48]. A similar
approach to separate the problem is to alternately optimize the footholds and then the
body motion and forces coherent with the CD [49]. The contact schedule and patches are
either fixed or optimized separately. They show motion-plans for a full humanoid robot,
including joints, and demonstrate how to track them efficiently.

Approaches based on dynamic programming, such as Differential Dynamic Programming
(DDP) [50], [51], Iterative Linear Quadratic Gaussian Regulator (iLQG) [52], [53] and
Sequential Linear Quadratic Programming (SLQ)) algorithms can also be used to generate
optimal motion-plans. Application of this work to humanoids has been done by [54]
extended by [55]-[57] to additionally allow state and input constraints and efficiently
optimize motion-plans for switched systems, such as a quadruped robot. The hybrid
model can also be handled using projected dynamics [58] together with Collocation [59]

19

2.3. State-of-the-art motion-planning algorithms

as shown by [60]. This method demonstrates a variety of impressive dynamic motions,
such as walking, trotting and jumping with impulse forces on a physical quadruped robot.
Because of the way this method treats switched systems it requires specifying the contact
sequence in advance.

Since predefining the contact schedule in advance can restrict the achievable motions,
algorithms that automatically determine this have been developed. Some approaches [55],
[61], [62] tackle this by fixing only the contact sequence, but allowing the optimization to
eliminate specific phases by setting their duration to zero. Others encode the notion of
taking a step through binary variables [63]. The gait sequence, together with CD), is then
solved using Mixed Integer Convex Programming (MICP). These motions-plans have been
verified on a quadruped robot walking up inclined terrain and steps.

There exist further methods giving the optimizer full freedom to choose the contact sched-
ule and timings by minimizing a cost function. Optimization methods like CMA-ES are
then used to determine the controller parameters that generate the motion with lowest
cost [64]-[66]. While the motion-plans can be quite sophisticated, this stochastic, and
not gradient-based optimization technique can be slow in finding a solution. Other ap-
proaches based on the SLQ) algorithm generate motions-plans for a wide range of systems
quick enough to be used in an MPC control loop [57], [67], [68]. Motion generation in an
MPC fashion using direct collocation and a SRBD model is also used in [16]. Another al-
gorithm that produces highly complex motions, including multiple interacting robots with
legs and arms was developed by [69]. This approach uses a full RBD model and minimizes
the cost function using a Quasi-Newton method. Since these approaches are mostly based
on a cost function, instead of hard constraints, they can require careful tuning of weighting
parameters to achieve convergence for more complex tasks.

Another way to represent the legged locomotion problem is through a combination of
cost and hard LCP constraints which model the contact with the environment. These
successful approaches generate dynamic motion-plans that optimize also over the gait and
step timings using the CD or the full RBD [7], [70], [71]. They directly include joint limits
and other constraints in the optimization problem and show a variety of motions, including
flight-phases. From a more critical standpoint, this modeling of the contact through an
LCP can be computationally expensive, which might be mitigated through our phase-based
end-effector parameterization. While this allows optimizing the step sequence efficiently,
it also requires fixing the number of steps in advance, which the above algorithms can
automatically discover.

Each of these approaches has their advantages and disadvantages. To compare different
motion-planning algorithms, it is useful to evaluate them based on all criteria mentioned
in Section 2.2, namely (i) which components are optimized (ii) how difficult are the shown
tasks (iii) how reliable are solutions found (iv) how long does it take to find a solution
(v) have they been verified in simulation and on a physical robot. For example, predefining
the contact schedule in advance, or determining the footholds separately can be restrictive
for more complex motions, but might be sufficient for a large set of tasks. The same holds
for the used dynamic model, where the LIPM might be a good approximation for some

20

2.4. List of contributions

motions, but challenging to use for non-flat terrain and motions which require substantial
adaptations of the body orientation. Furthermore, some use-cases might require more
sophisticated motion-plans at the cost of longer computational time, while others demand
quick re-planning in more simple environments.
depends on the use-case, Table 2.1 lists merely the capabilities of our algorithm. This
permits point-by-point comparison of those individual criteria relevant to the desired task.

Since the weighting of these criteria

Table 2.1: Capabilities (2.2) of our developed motion-planning algorithms.

Paper I Paper 11 Paper III
Dynamic model (accuracy) LIPM (1.6) LIPM (1.6) SRBD (1.5)
Optimized components
Base motion 2D 2D 6D
Footholds 2D 2D 3D
Step sequence X X v
Step timing X X v
Contact force X X v
Swingleg motion X X v
Number of steps X X X
Difficulty of shown task
Point- and line contacts X v v
Non-flat terrain X X v
Inclined terrain X X v
Flight-phases X X v
Sliding contacts X X X
Impulses X X X
Number of end-effectors 4 4 1,2, 4
Reliability high high medium
Computation Time' 3ms 35ms 100 ms
Verification? 100 E 50E, 0S 10E, 20S

2.4 List of contributions

The specific contributions of this thesis mentioned in Section 2.1 are summarized below.

C1. Simultaneous foothold and CoM motion optimization to generate walking of the
quadruped robot Hy(Q. This enables to create and shift arbitrarily oriented support poly-
gons to aid the CoM to reach a desired goal state, without the need of an explicit footstep

planner [38].

IPlanning a flat ground, 1s-horizon, 4-foothold motion for a quadruped.
ZPercent of all visualized motions shown in Experiments (E) and simulation (S).

21

2.4. List of contributions

C2. Reformulation of the traditional ZMP-based legged locomotion problem into a stan-
dard TO formulation with the CoP as input and support-areas as modifiable input con-
straints. This permits easier comparison with existing methods in the TO domain [39].

C3. A vertex-based representation of the support-area constraint, which can treat point-,
line-, and area-contacts uniformly. This allows generating non-traditional or mixtures
of gaits (e.g., limping, walk-trot combinations), laying the foundation to traverse more
complex terrains when appropriate footholds become sparse [39].

C4. Automatic generation of flight-phase motions using the SRBD. These emerge natu-
rally whenever the terrain (e.g. a gap) or task specifications require it [17].

C5. Automatic gait discovery by a novel phase-based parameterization of end-effector
motion and forces. This allows to keep the optimization variables continuous, while opti-
mizing a discrete gait sequence [17].

C6 (Main). An algorithm utilizing all the above to efficiently generate motion-plans for
legged robots determining gait, step-timings, footholds, contact forces, swing-leg motions
and 6D body motion with flight-phases over non flat-terrain [72].

22

Paper I: Simultaneous foothold and
body optimization

Alexander W. Winkler, Farbod Farshidian, Michael Neunert, Diego Pardo, Jonas
Buchli. Online Walking Motion and Foothold Optimization for Quadruped Locomo-
tion. In IEEE International Conference on Robotics and Automation (ICRA), pp.
5308-5313, 2017.

Abstract We present an algorithm that generates walking motions for quadruped robots
without the use of an explicit footstep planner by simultaneously optimizing over both
the CoM trajectory and the footholds. Feasibility is achieved by imposing stability con-
straints on the CoM related to the Zero Moment Point and explicitly enforcing kinematic
constraints between the footholds and the CoM position. Given a desired goal state, the
problem is solved online by a Nonlinear Programming solver to generate the walking mo-
tion. Experimental trials show that the algorithm can generate walking gaits for multiple
steps in milliseconds that can be executed on a physical quadruped robot.

Paper: https://doi.org/10.1109/ICRA.2017.7989624
Video: https://youtu.be/EBW31pritB8
Code: https://github.com/ethz-adrl/towr/tree/0.3.0-icral?

23

https://doi.org/10.1109/ICRA.2017.7989624
https://youtu.be/EBW3lpr1tB8
https://github.com/ethz-adrl/towr/tree/0.3.0-icra17

3.1. Introduction

3.1 Introduction

The task of controlling a legged system seems trivial at first sight, as humans can walk
with ease. However, making machines replicate this seemingly easy task is difficult, as
demonstrated by the results of the DARPA Robotics Challenge. One limitation is that
the underactuated base of legged systems cannot be directly controlled. Additionally, the
contact forces with the ground used to generate movement of the base are restricted to
pushing motions (unilateral forces) and must lie inside the friction cone.

Optimization has been successfully used in legged locomotion to generate such motions
(see Fig. 3.1). It allows a high-level specification of a desired task and the specific motions
of the joints to be generated by a mathematical program. Some of the approaches are
based on TO, e.g. transformation of a continuous time Optimal Control (OC) problem
into a discrete mathematical optimization problem and solved with off-the-shelf solvers
([7], 19], [37], [70], [73]-[75]). Other approaches solve the OC problem directly through
efficient solvers based on Dynamic Programming [55], [67]. These formulations are power-
ful since they can deal with nonlinear dynamics and constraints and directly produce the
optimal inputs 7 to the system. Some frameworks, originating more from the graphics
community, directly formulate a mathematical optimization problem that generates the
required motions [61], [64], [66], [69], [76].

All these successful approaches can generate complex motions for a variety of systems.
However, their use to control real systems is not straight-forward. This is partially due to
the discrepancy between the underlying rigid body dynamics model and the real robot,
which makes it difficult to apply the optimized inputs to the real system directly. Ad-
ditionally, for high dimensional systems such as legged robots, the resulting optimization
problems are often difficult and time-consuming to solve. As they are commonly solved
offline, this limits their use for real robots in which continuous re-planning and adapting
to unknown disturbances is necessary.

A traditional way to reduce the complexity of walking motion generation is to decompose
the problem into distinct sub-problems [18], [20], [77], [78] as seen in Fig. 3.1. Contact
locations are often chosen by a heuristic planner which tries to roughly approximate a
path towards the goal. Given these fixed footholds, a stable CoM trajectory is found and
then tracked by a low-level controller that generates the inputs 7 to the system to execute
the walking motion.

Given a set of steps to execute, the generation of the CoM trajectory uses the ZMP [79]
stability criteria: The acceleration of the CoM must be chosen so that the generated ZMP
always lies inside the convex hull of the feet in contact. Since the footholds are already
given, this optimization has a much smaller search space than full-body optimizations and
is easier to solve. This approach is used by [22] to develop a Linear Quadratic Regulator
using a preplanned ZMP trajectory for a bipedal robot. In [18] this idea is extended by not
specifying the ZMP trajectory to follow in advance, but formulating the stability criteria as
a constraint and then solving the QP for the ZMP and CoM trajectory together. However,

24

3.1. Introduction

User pm,y pway e
Input Footholds CoM }WController

Full-Body Optimization

Figure 3.1: Different approaches to solve a legged locomotion task: The traditional ap-
proach consists of finding footholds, a CoM trajectory and a controller that produces the
control inputs T to track this motion. Full-body Optimization combines these modules, di-
rectly producing the inputs to the system. The approach presented in this paper combines
the foothold selection and ColM trajectory optimization, but leaves the generation of control
inputs to the full-body controller.

in this approach, the footholds must still be known in advance (e.g., by a footstep planner),
since otherwise, the stability constraint is non-linear.

The drawback of these hierarchical approaches is that they decouple two inherently con-
nected quantities: the foothold and the body movement. The contact forces and locations
are the cause of the body movement, therefore specifying them beforehand based on some
heuristics strongly restrains the feasible motions.

To mitigate this, approaches that optimize over both these quantities together have been
proposed in [43], [80]. These successful approaches, however, require that the orientation of
the support polygon edges is fixed in advance. This is a reasonable assumption for bipeds
in single support phase, as the orientation of the feet might not be of high importance.
However, for point feet quadruped robots the orientation of the support polygons change
with every step.

3.1.1 Contribution

The novelties of this paper are simultaneous foothold and CoM motion optimization to
generate quadrupedal walking, while explicitly enforcing kinematics limits (see Fig. 3.1).
This enables to create and shift arbitrarily oriented support polygons to aid the CoM to
reach a desired goal state, without the need of an explicit footstep planner. Additionally,
since the generation of the full-state inputs are left to the controller, the optimization
problem stays reasonably small to allow for online optimization in milliseconds. We show
that the generated motions can be successfully executed on the quadruped robot seen in
Fig. 3.2.

25

3.2. Approach

f’l"
P —T—>%m
Q
rgz
h
- e r
Y /:« 25 py? p5”

Figure 3.2: A quadruped robot modeled as a cart-table. The position of the cart corre-
sponds to the CoM and the width of the cart base (base of support) to the distance between
the footholds. The quantity to control the motion of the system is the position (ZMP) p.,
angle and magnitude |f| of the resultant contact force £ (red). The white triangle shows
the base of support while swinging the right-hind leg.

3.2 Approach

In order to understand the important connection between footholds and the CoM motion
and the reasoning in optimizing these together, we briefly recap the physical aspects of
legged locomotion, then present the formulation of the developed framework and describe
the components.

3.2.1 An abstracted view of legged locomotion

Consider a robot modeled as a cart-table as seen in Fig. 3.2. By applying torque 7 in
the joints, reaction forces can be generated in the footholds. The resulting force f is the
equivalent force that has the same effect as the combination of the individual contact
forces and directly influences the acceleration of the CoM. The difficulty in the control of
legged system arises from the constraints on this resulting contact force. First, the force
cannot pull, but only push into the ground (unilateral constraints). Secondly, a resulting
force can never act outside of the footholds pj and pj that are producing it. Assuming
sufficient friction, the resulting contact force is constrained by p? € [pf, p{] and f* > 0.

The Euler equation of motion around p7 of the resultant contact force with no change in
angular momentum can be stated as

P = (r® —p?). (3.1)

26

3.2. Approach

m7y
rfinal

' Inverse Tff

Phase o] "/ [Full Body Zref_ Dynamics |}
Planner Mapper T Feedback | *} 7

pm7y ..
) e Aref =" Controller |7,

i

. z,y A
r*Y Y Py 1,9

Figure 3.3: The complete pipeline from planning to executing optimal walking motions:
A Phase Planner decides on the amount and sequence of steps, an NLP then solves the
optimization problem that is then mapped to the full dimensions of the system by the Full
Body Mapper and ultimately executed on the system by the low-level controller.

It can be seen that this equation is only influenced by the position p? of the resulting
contact force, not its magnitude. To walk at a constant height the above equation with
7#* = 0 must hold. In this case, the position p. of the resulting contact force is called
the ZMP or Center of Pressure (CoP). When more acceleration is desired, the distance
between the resultant contact force and the CoM must increase as well to keep the system
from rotating around the foothold. If the desired acceleration is too large, the resultant
contact force would have to act outside the base of support of the cart table pZ & [pf, p{],
which is physically not possible. This implies the gait is not dynamically balanced and

the system is starting to fall with #* # 0. There are two ways to avoid this:

1. Restrict the CoM acceleration #*¥, so that it can be generated by a resultant contact
force inside the base of support.

2. Modify the base of support to accommodate the CoM acceleration. This requires
shifting the footholds p®¥ to create the support base exactly where it is needed to
generate the current body acceleration.

It becomes clear that the body acceleration and the footholds are strongly connected, the
footholds serving as an aid to allow the CoM to move where it desires. The following
describes the developed framework that finds optimal solutions for these two inherently
connected quantities together.

3.2.2 Overview

The developed framework as seen in Fig. 3.3 takes as input the current state and a desired
goal state to create full-body states to execute a walking motion for a legged robot. It
is composed of a Phase Planner that decides on the amount and sequence of steps (not
their location), a NLP solver that produces a CoM motion plan and footholds, a Full

27

3.2. Approach

Body Mapper that maps the Cartesian output of the NLP to a full-body (base and joints)
motion of the robot and finally a controller that generates the required torques to track
the motion.

The complete motion is divided into separate phases, within which the feet in contact do
not change (Fig. 3.4). The leg to use to establish contact p;? is determined by the Phase
Planner. For quadrupedal walking, a standard sequence to follow is the lateral sequence
walk left hind — left front — right hind — right front. Depending on the distance to the
goal and the maximum step length the planner adds n steps following this sequence, or
none if the distance is close enough to only move the body. Each of these phases j is
therefore represented by a fixed set of legs in contact, e.g., in phase 3: {LH, LF, RF}, and
the duration 7} of each phase. Additionally, the initial position of the legs in contact is
also given and cannot be altered.

In order to generate the continuous CoM motion through optimization, we must first
parametrize it by a finite number of decision variables. We therefore represent each phase
j as a polynomial defined as

xT 5
x r 7
rjy(t’aj) = lry] = Z a;it, (3'2)
k=0

where the values in xy-direction are parametrized by a fifth-order polynomial with coeffi-
cients a;; € R? and the complete phase polynomial by a; € R'2. This gives the optimizer
enough freedom to shape the motion to respect the imposed constraints. As motivated
previously, the optimizer is also able to modify the position of the m footholds of each
step defined as

pi’ = |p p?]T-

Given the n phases, the solver optimizes over the decision variables to find the optimal
motion and m footholds, minimizing a performance criteria while fulfilling equality and
inequality constraints. This can be stated as the NLP

find ay,...,a,, pi’,...,pY
subject to (3.6),(3.7), (3.8)
aj,...,a, = argmin(3.3).

The following describes the constraints (3.6), (3.7), (3.8) and cost (3.3) necessary to gen-
erate the walking motions.

3.2.3 Performance criteria

The CoM should accelerate as little as possible during the motion, as introduced in [18].

This facilitates tracking, reduces required joint torques and energy consumption and pro-
duces more natural looking motions. Therefore, the total xy-acceleration for all phases j

28

3.2. Approach

Figure 3.4: The structure of the planned motion. The boxes symbolize contact of the
respective leg, left-front (LF), right-front (RF), left-hind (LH), right-hind (RH). The gray
boxes are the fized initial contacts at the start of the motion. The optimizer finds the best
positions for the m = 3 contacts p;¥ shown in blue, as well as the n = 5 CoM polynomials.

(see Fig. 3.4) is given by

Ja) =3 a4 e a (3.3)

3.2.4 Dynamic feasibility constraint

To ensure that the planned motion is dynamically feasible, we impose constraints between
the CoM motion and the footholds as first introduced in [18]. For each stance we represent
the base of support by the convex hull of the current footholds. Each of the edges of the
convex hull, represented by a line, is defined as 0 = [x Y 1} n. For example, the edge e

defined by the footholds p¥ and p5” is calculated by

n 1 p?{ - pg
ne= |0 = | p5—pi (3.4)
d, pipy — p5pY

where d is the distance between the footholds (Euclidean norm). In order to satisfy (3.1)
without resorting to vertical ¢* accelerations, the ZMP must be inside the convex hull
P(p¥) of the current footholds, so

piY = r*U(a) g—i"%) € P(p™). (3.5)

29

3.2. Approach

In the one-dimensional case this reduces to pi < 2z* < pj. For two dimensions, the
constraint translates to being on the inside of each line composing the convex base of
support.

However, the cart-table model does not adequately capture the dynamics of the real sys-
tem. To account for this, we require the ZMP to stay away from the edge of the support
polygon by a margin m. Since the line equation is normalized and represents the orthog-
onal distance of a point (x,y) to the line, including this margin, is straightforward. This
condition that depends both on the CoM and the footholds is evaluated at every discrete
time t. For every edge of the current support polygon, the nonlinear inequality constraint

pelt] pYlt] 1] me>m (3.6)

must hold. This equation highlights the strong interconnection between the location of
footholds, which affect the line coefficients and the acceleration of the CoM that affects
the location of the ZMP. Both of them can be used to ensure stability according and are
optimized simultaneously in our formulation.

3.2.5 Kinematic reachability constraint

The previous constraint gives the optimizer the possibility to either adapt the CoM ac-
celerations to ensure stability or modify the footholds to respect this constraint. This
flexibility increases the range of possible motions, but also necessitates the additional
kinematic constraints that the desired foothold must be reachable with the leg from the
current CoM position.

Apart from the walking height h and the mass m of the system, the algorithm so far
does not need any additional knowledge about the actual system that is being controlled.
This constraint, however, is specific to the kinematics of each system. The farther the
quadruped in Fig. 3.2 moves its CoM towards py, the more the leg at p; must extend to
remain in contact. At some point, the difference between p; and r is too large and exceeds
the kinematic range of the robot. To ensure reachability, we check at every discrete time
tr how far each foothold is from its nominal stance position Zp?¥ of the respective leg,

expressed in the frame attached to the robots CoM. The constraint for each foothold at
time ¢ is then formulated as

0<\

p;Y —r™[t] — Bpx’ynomH2 <r (3.7)

This restricts the foothold to deviate less that a radius r from its nominal position. The
value for this allowable deviation can be approximated using Inverse Kinematics: The
limits of the joints can be mapped to Cartesian space Gmar > (Z,Y)mas t0 obtain an
approximation for r. Again, the interconnection between the CoM and the foothold shows
itself. This enables the optimizer to explicitly respect kinematics limits by knowing the
actual CoM position, without resorting to heuristics used in many footstep planners.

30

3.2. Approach

3.2.6 CoM continuity and goal constraints

We ensure continuous position and velocity at the phase junctions as well as equality with
the initial and final conditions. This enables smooth motions between phases, starting
the optimization from the current robot state and handling user specified goal states.

T
Combining the CoM position and velocity as x = {r“”y I"”"y} , the equality constraints of
the NLP can be stated as

X1 (0) = Xinitial
xj(Tj) = Xj+1<0), for j =]., .o, (38)
Xn(Tn) = Xfinal-

3.2.7 Mapping CoM and footholds to full-body states

The results of the reduced dimension optimization are now mapped back to the full body
state. The base state is reconstructed using the optimized CoM motion r*¥, assuming
that the origin of the base frame is located at the CoM of the robot. Using the constant
base height h and zero orientation, the 6 degrees of freedom base state is set to

Dores () = [0 0 0 vo(t) (1) h] . (3.9)

The joint state of the stance legs can be constructed through each foothold, a predefined
polynomial swingleg trajectory and the base position using Inverse Kinematics

Qjres (t) = IK(apref (1), P™Y). (3.10)

Combining the above, the optimized full body state for the controller to track is given by

qref(t> = [qb,ref(t) Qj,ref<t)}T- (311)

3.2.8 Tracking the planned motion

As can be seen from Fig. 3.3 the optimization framework produces desired full body ac-
celerations q,.s for the controller to follow. The inverse dynamics controller is responsible
for generating required joint torques 7T to create a given acceleration. This is done based
on the rigid body dynamics model of the system

M(q)éer + Cla,q) = S + J.(q)"f, (3.12)

with the joint space inertia matrix M, the effect of Coriolis forces on the joint torques C,
the selection matrix S which prohibits from actuating the floating base state directly and
the contact Jacobian J. which maps Cartesian contact forces f to joint torques. Although

31

3.3. Results

(3.6) ensures that the required contact forces f to produce §,.r are physically feasible, the
actual value is not a part of the optimization. This prohibits from solving the underde-
termined system of equations directly for 7 and f. However, by knowing which feet are in
contact we can calculate a projection operator P =1 — J1J. [58], [81]. With this we can
eliminate the contact forces f from (3.12) and calculate the required joint torques through

T = (PST)* P(Mg,.s + C). (3.13)

There always exist discrepancies between the used models (cart-table model, inverse dy-
namics model) and the real system. To cope with these, it is essential to incorporate
feedback into the control loop. We do this by adding an operational space [82] PD con-
troller on the base position and velocity and a low gain PD controller on the joint positions
and velocities for more accurate reference tracking.

3.3 Results

3.3.1 PC and robot hardware

We use the Interior Point (or Barrier) method solver Ipopt [35] to solve the NLP. The solver
first finds values for the decision variables that satisfy all constraints and then gradually
increases the importance of the performance metric to obtain optimal solutions. The
results were obtained using C++ Code on an Intel Core i7/2.8 GHz Quadcore Laptop. The
Jacobian of the constraints and the gradient of the cost function are provided analytically,
which is essential for performance. Ipopt iteratively approximates the Hessian of the
Lagrangian through the quasi-Newton L-BFGS algorithm.

We evaluate the performance of this locomotion framework on the hydraulically actuated
quadruped robot HyQ [5]. The robot weighs approximately 75 kg, is fully torque controlled
and equipped with precision joint encoders and an Inertial Measurement Unit (IMU).
State estimation is performed on board, fusing IMU and joint encoder values [83]. The
lowest level torque control loop runs at 1000 Hz, while new position, velocity, and torque
references are set at 250 Hz. The rigid body dynamics model (3.12) was generated with
[84].

3.3.2 Experiments

We demonstrate the performance and robustness of the locomotion framework through
a consecutive run of walking motions to different goal positions. For close goal positions
the phase planner determines no steps are necessary, so only the CoM is shifted to the
commanded positions. The other motions each require various optimized motions (forward
walk, sideways walk) to reach the target. The time discretization to enforce the dynamics
in (3.6) is 0.2s, whereas kinematic reachability (3.7) is enforced every 0.3s. We insert an

32

3.3. Results

Table 3.1: Results of the online optimization for various tasks

Walking Direction

Stance Side Forward Backward

Goal x,y [cm] 0,0 0,15 40,-20 -30,0
Footholds/Steps 0 4 8 8
Planning horizon [s] 1.5 4.3 7.1 7.1
Optimization Variables 12 68 124 124
Constraints 92 211 327 327
[terations 2 28 29 29
Objective value 0.09 04 0.9 1.59
Nonzeros in Jacobian 708 1756 2844 2844
Solving Time [ms] 3 58 72 75

initial stance phase of Ty=1.5s to allow sufficient time to shift the body before taking the
first step. For all tasks, the step duration is T; = 0.7 s, the walking height is h~=0.58 m and
a margin of m=8 cm to reduce the size of the support polygons is specified. We initialize
the solver with the robot standing in default stance for the duration of the trajectory.

A quantitative summary of the optimization results for the performed tasks can be seen in
Table 3.1 and a visualization of the optimized footholds and body trajectory for walking
0.5m forward is shown in Fig. 3.5. Additionally, the reader is strongly encouraged to
view the accompanying video at https://youtu.be/EBW31pr1tB8, as it provides the most
intuitive way to judge the performance of our framework.

3.3.3 Discussion

The following section analyzes the experimental results, highlighting some features of the
proposed framework.

3.3.3.1 Footstep selection towards goal

As observed in the tasks, the user specifies only the goal state. This high-level input is the
actual relevant information, as it is often of secondary importance with which footsteps
the robot reaches this goal. The only reason the footsteps follow the direction of the goal
is because the system knows it needs to move the body there (3.8), but has to maintain
stability (3.6) while staying within the kinematic range of the legs (3.7). By not fixing the
footsteps beforehand, we allow the optimizer to modify the base of support as needed to
perform the desired motion. This allows to perform the side-, diagonal- and backwards-
motions without any hand-tuned estimations of where to best place the feet.

33

https://youtu.be/EBW3lpr1tB8

3.3. Results

Figure 3.5: 8-step quadruped walking motion from left to right to move the ColM to
a goal at r=0.5m. The colors of the CoM trajectory correspond to the swingleg at that
time, gray symbolizes a four-leg support (stance) phase. The initial stance is shown by
the squares, the optimized footholds by the circles. The two support areas for swinging the
right-front green leq and then the left-hind blue leg are shown. The corresponding ZMP (red
dots) stays inside these areas by a margin of m=8cm. It can be seen that by manipulation
of the acceleration, the ZMP accumulates towards the center of support polygons for each
phase. Additionally, the footholds automatically extend towards the defined goal position
in order to create appropriate support areas for the Coll.

3.3.3.2 Explicitly enforcing kinematic limits

In traditional approaches, the footsteps are decided by a footstep planner that for instance
tries to keep the step length bounded or the footholds close to an estimated position of the
CoM. However, the actual CoM is only discovered subsequently, when these fixed foothold
locations are fed to a CoM planner. This decoupling makes it impossible for the footstep
planner to be sure to have chosen footsteps within the kinematic range of the robot. An
essential benefit of this approach is that it can explicitly enforce this constraint (3.7), as
it combines footstep and CoM optimization. This is demonstrated in the in the video,
showing that the chosen footsteps never overextend the legs.

3.3.3.3 Online optimization

The optimization of a reduced dimensional model allows us to obtain solving times of
magnitudes lower than most full-body optimization approaches. As seen in Table 3.1 we
can generate 7s body trajectories in less than 100ms, even though the constraints are
nonlinear due to the combined optimization. This is shown in the video by specifying a
new goal position on-the-fly and the robot almost immediately starting to approach it.

34

3.4. Conclusions

This online planning is an essential factor in controlling real systems, where plans have
to be frequently adjusted to account for changing environments or inaccurate execution.
The very short solving times demonstrate that the presented framework can be used in a
Model-Predictive Control fashion in the future.

3.4 Conclusions

We presented an approach for online and simultaneous optimization of two core and very
connected components of locomotion, namely footholds and CoM motion. The results show
that our online optimization provides a variety of feasible walking motions for a quadruped
to execute. It is important to note that the demonstrated motions can also be achieved by
more hand-tuned traditional ways of specifying footsteps and body movements. However,
the generality of the presented approach and its more complete view on the problem has
considerable potential for extension and future work.

As the optimization problem is formulated as an NLP, it is possible to include various types
of optimization variables, costs and constraints into the formulation (linear, quadratic,
nonlinear, etc.). This allows us to optimize also over the remaining degrees of freedom
of the body or the phase durations. Using the body orientation, for instance, can help
in reaching footholds that otherwise exceed the range of motion. Adapting the phase
durations will allow the optimizer to take quicker steps when required (e.g., when pushed).
Another feature to be explored is the inclusion of terrain costs such as slope and height
deviation in the performance criteria. This can allow the robot to navigate over uneven and
challenging terrain, selecting those footholds with the lowest cost to generate steps to take
the robot to a desired goal state. Finally, the speed of the optimization makes it possible
to re-plan the motions in a Model-Predictive Control fashion at nearly the control loop
frequency. Walking to defined goal states as well as recovering from unexpected external
pushes or changes in the environment can all emerge from the same controller.

35

Paper 1I: Vertex-based ZMP
constraints

Alexander W. Winkler, Farbod Farshidian, Diego Pardo, Michael Neunert, Jonas
Buchli. Fast Trajectory Optimization for Legged Robots using Vertex-based ZMP
Constraints. In Robotics and Automation Letters (RA-L), pp. 2201-2208, 2017.

Abstract This paper combines the fast ZMP approaches that work well in practice with
the broader range of capabilities of a Trajectory Optimization formulation, by optimizing
over body motion, footholds and Center of Pressure simultaneously. We introduce a vertex-
based representation of the support-area constraint, which can treat arbitrarily oriented
point-, line-, and area-contacts uniformly. This generalization allows us to create motions
such as quadrupedal walking, trotting, bounding, pacing, combinations and transitions
between these, limping, bipedal walking and push-recovery all with the same approach.
This formulation constitutes a minimal representation of the physical laws (unilateral
contact forces) and kinematic restrictions (range of motion) in legged locomotion, which
allows us to generate diverse motions in less than a second. We demonstrate the feasibility
of the generated motions on a physical quadruped robot.

Paper: https://doi.org/10.1109/LRA.2017.2723931

Video: https://youtu.be/5WLeQMBuv30
Code: https://github.com/ethz-adrl/towr/tree/0.5.0-rall7

36

https://doi.org/10.1109/LRA.2017.2723931
https://youtu.be/5WLeQMBuv30
https://github.com/ethz-adrl/towr/tree/0.5.0-ral17

4.1. Introduction

4.1 Introduction

Planning and executing motions for legged systems is a complex task. A central difficulty
is that legs cannot pull on the ground, e.g., the forces acting on the feet can only push
upwards. Since the motion of the body is mostly generated by these constrained (=uni-
lateral) contact forces, this motion is also restricted. When leaning forward past the tip
of your toes, you will fall, since your feet cannot pull down to generate a momentum that
counteracts the gravity acting on your CoM. Finding motions that respect these physical
laws can be done by various approaches described in the following.

A successful approach to tackle this problem is through full-body TO, in which an optimal
body and end-effector motion plus the appropriate inputs are discovered to achieve a high-
level goal. This was demonstrated by [7], [55], [60], [67], [69], [70], [73], [85] resulting in an
impressive range of motions for legged systems. These TO approaches have shown great
performance, but are often time-consuming to calculate and not straight-forward to apply
on a real robot. In [64] the authors generate a wide range of quadruped gaits, transitions
and jumps based on a parameterized controller and periodic motions. While the resulting
motions are similar to ours; the methods are very different: While our approach is based
on TO with physical constraints, [64] optimizes controller parameters based mainly on
motion capture data.

Previous research has shown that to generate feasible motions to execute on legged sys-
tems, non-TO approaches also work well, although the motions cannot cover the range of
the methods above. One way is to model the robot as a LIPM and keep the ZMP [79]
inside the convex hull of the feet in stance. This approach has been successfully applied to
generate motions for biped and quadruped walking [9], [18], [20], [22], [77], [78]. However,
these hierarchical approaches use predefined footholds, usually provided by a higher-level
planner beforehand that takes terrain information (height, slope) into account. Although
this decoupling of foothold planning and body motion generation reduces complexity, it
is unnatural, as the primary intention of the footholds is to assist the body to achieve a
desired motion. By providing fixed foot-trajectories that the body motion planner can-
not modify, constraints such as stability or kinematic reachability become purely the re-
sponsibility of the lower-level body motion planner, artificially constraining the solution.
A somewhat reverse view of the above are Capture Point (CP) [40] approaches, which
have been successfully used to generate dynamic trotting and push recovery motions for
quadruped robots [19], [86]. A desired body motion (usually a reference CoM velocity) is
given by a high-level planner or heuristic, and a foothold/CoP trajectory must be found
that generates it.

Because of the dependency between footholds and body motion, approaches that optimize
over both these quantities simultaneously, while still using a simplified dynamics model,
have been developed [38], [44], [61], [80], [87], [88]. This reduces heuristics while increasing
the range of achievable motions, but still keeps computation time short compared to full
body TO approaches. These approaches are most closely related to the work presented in
this paper.

37

4.1. Introduction

The approaches [44], [80], [87], [88] demonstrate impressive performance on biped robots.
One common difficulty in these approaches, however, is the nonlinearity of the CoP con-
straint with respect to the orientation of the feet. In [80], [88] the orientation is either
fixed or solved with a separate optimizer beforehand. In [44] the nonlinearity of this con-
straint is accepted and the resulting nonlinear optimization problem solved. However,
although the orientation of the individual feet can be optimized over in these approaches,
a combined support-area with multiple feet in contact is often avoided, by not sampling
the constraint during the multi-support phase. For biped robots neglecting the constraint
in the double-support phase is not so critical, as these take up little time during normal
walking. For quadruped robots, however, there are almost always two or more feet in
contact at a given time, so the correct representation of the dynamic constraint in this
phase is essential.

We, therefore, extend the capabilities of the approaches above by using a vertex-based
representation of the CoP constraint, instead of hyperplanes. In [89] this idea is briefly
touched; however, the connection between the corners of the foot geometry and the convex-
ity variables is not made and thereby the restriction of not sampling in the multi-support
phase remains. Through our proposed formulation, single- and multi-stance support areas
can be represented for arbitrary foot geometry, including point-feet. Additionally, it allows
representing arbitrarily oriented 1D-support lines, which wasn’t possible with the above
approaches. Although not essential for biped walk on non-point feet, it is a core necessity
for dynamic quadruped motions (trot, pace, bound). This is a reason why ZMP-based
approaches have so far only been used for quadrupedal walking, where 2D-support areas
are present.

The approach presented in this paper combines the LIPM-based ZMP approaches that are
fast and work well in practice with the broader range of capabilities of a TO formulation.
A summary of the explicit contributions with respect to the papers above are:

e We reformulate the traditional ZMP-based legged locomotion problem [22] into a
standard TO formulation with the CoP as input, clearly identifying state, dynamic
model and path- and boundary-constraints, which permits easier comparison with
existing methods in the TO domain. Push recovery behavior also naturally emerges
from this formulation.

e We introduce a vertex-based representation of the CoP constraint, instead of hyper-
planes. which allows us to treat arbitrarily oriented point-, line-, and area-contacts
uniformly. This enables us to generate motions that are difficult for other ZMP-based
approaches, such as bipedal walk with double-support phases, point-feet locomotion,
various gaits as well as arbitrary combinations and transitions between these.

e Instead of the heuristic shrinking of support areas, we introduce a cost term for
uncertainties that improve the robustness of the planned motions.

We demonstrate that the problem can be solved for multiple steps in less than a second to
generate walking, trotting, bounding, pacing, combinations, and transitions between these,

38

4.2. Method

limping, biped walking and push-recovery motions for a quadruped robot. Additionally,
we verify the physically feasibility of the optimized motions through demonstration of
walking and trotting on a real 80 kg hydraulic quadruped.

4.2 Method

4.2.1 Physical model

We model the legged robot as a Linear Inverted Pendulum Model (LIPM), with its CoM
r=(r,,c,) located at a constant height h. The touchdown position of the pendulum with
the ground (also known as ZMP or CoP) is given by p.=(pcs,Pey) as seen in Fig. 4.1.
The CoM acceleration ¥ is predefined by the physics of a tipping pendulum

H =Flou) = l(r - pi)gh_1‘| : (4.1)

The second-order dynamics are influenced by the CoM position r, the CoP p. and gravity
g. This model can be used to describe a legged robot since the robot can control the
torques in the joints, thereby the contact forces and through these the position of the
CoP. Looking only at the x-direction (left image in Fig. 4.1), if the robot decides to lift
the hind leg, the model describing the system dynamics is a pendulum in contact with
the ground at the front foot p¥, so p.=p™ =(p,, p,)*. Since this pendulum is nearly
upright, the CoM will barely accelerate in x; the robot is balancing on the front leg.
However, lifting the front leg can be modeled as placing the pendulum at p. = p**, which
is strongly leaning and thereby must accelerate forward in x. By distributing the load
between the legs, the robot can generate motions corresponding to a pendulum anchored
anywhere between the contact points, e.g., p. € P (see Fig. 4.1). Therefore, the CoP p,
is considered the input to the system and an abstraction of the joint torques and contact
forces.

4.2.2 Trajectory Optimization problem
We want to obtain the inputs u(¢) that generate a motion x(¢) from an initial state xq to

a desired goal state x7 in time T for a robot described by the system dynamics F(x,u),
while respecting some constraints h(x,u) < 0 and optimizing a performance criteria J.

39

4.2. Method

LH LF

Pc

Figure 4.1: Modeling of a quadruped robot by a LIPM with the right-front p®f and
left-hind p™ legs in contact. Through joint torques the robot can control the center of
pressure p. and thereby the motion of the CoM ¥. However, p. can only lie inside the
convez hull (green line) of the contact points.

This can be formulated as a continuous-time TO problem

find x(t),u(t), forte[0,T] (4.2a)
subject to x(0) —x9 =0 (given initial state) (4.2b)
x(t) — F(x(t),u(t)) =0 (dynamic model) (4.2¢)
h(x(t),u(t)) <0 (path constraints) (4.2d)

x(T) —xpr =0 (desired final state) (4.2¢)
x(t),u(t) = argmin J(x,u). (4.2f)

The dynamics are modeled as those of a LIPM (4.1), whereas the state and input for the
legged system model are given by

T

x(t) = [r i plal,...,pVv, anf] (4.3)

u(t) = pe, (4.4)

which includes the CoM position and velocity and the position and orientation of the ng

feet. The input u(t) to move the system is the generated CoP p., abstracting the usually
used contact forces or joint torques.

4.2.3 Specific case: Capture Point
We briefly show that this general TO formulation, using the LIPM model, also encompasses
Capture Point methods to generate walking motions. Consider the problem of finding the

position to step with a point-foot robot to recover from a push. With the initial position
ro and the initial velocity ¥y generated by the force of the push we have xo=(rg,). The

40

4.2. Method

robot should come to, and remain, at a stop at the end of the motion, irrespective of where
and when, so we have ry_,,,=0. We parametrize the input by the constant parameter
u(t)=pe.o, as we only allow one step with a point-foot. We allow the CoP to be placed
anywhere, e.g. no path constraints (4.2d) and do not have a preference as to how the
robot achieves this task, e.g. J(x,u)=0.

Such a simple TO problem can be solved analytically, without resorting to a mathematical
optimization solver (see Appendix A.3). The point on the ground to generate and hold
the CoP in order to achieve a final steady-state maintaining zero CoM velocity becomes

u(t) = peo = ro + \/ hg~'1o. (4.5)

This is the one-step Capture Point (CP), originally derived by [40] and the solution of our
general TO formulation (4.2) for a very specific case (e.g one step/control input, zero final
velocity).

4.2.4 General case: legged locomotion formulation

Compared to the above example, our proposed formulation adds the capabilities to rep-
resent motions of multiple steps, time-varying CoP, physical restrictions as to where the
CoP can be generated and preferences which of the feasible motions to choose. This TO
formulation is explained on a high-level in the following, corresponding to Fig. 4.2, whereas
more specific details of the implementation are postponed to the next section.

4.2.4.1 Unilateral forces

We differentiate between the CoP p. and the feet positions p/, which only coincide for
a point-foot robot with one leg in contact. The footholds affect the input bounds of u.
We use u to control the body, but must at the same time choose appropriate footholds to
respect the unilateral forces constraint. Traditional ZMP approaches fix the footholds pf
in advance, as the combination of both the CoP p. and the footholds make this constraint
nonlinear. We accept this nonlinearity and the higher numerical complexity associated
with it. This gives us a much larger range of inputs u, as we can “customize” our bounds
P by modifying the footholds according to the desired task. Therefore, the first path
constraint of our TO problem is given by

hi(x(t),u(t)) <0 < p.€ P, ol), (4.6)

where P represents the convex hull of the feet in contact as seen in Fig. 4.2 and ¢/ €
{0,1} € Z is the indicator if foot f is in contact.

We implement this convex hull constraint by weighing the vertices (corners) of each foot
in contact. This extends the capabilities of traditional representations by line segments
(hyperplanes) to also model point- and line-contacts of arbitrary orientation. We use

41

4.2. Method

Figure 4.2: Querview of the TO problem: A point-foot quadruped robot trotting forward
in z-direction, first swinging right-front and left-hind legs f € {RF, LH}, then left-front
and right-hind f € {LF, RH}. The CoM motion r, (black line) is generated by shifting
the CoP p..(t) (red dots). However, p., can only lie in the conver hull P (green area)
of the legs in contact at that time t. Additionally, the position of each leg p! must always
be inside its range of motion R (gray areas for front and hind legs) relative to the Coll.
The optimization problem consist of varying the position of the footholds p! € R, to allow
inputs p., € P that drive the robot from an initial position v, to a desired goal position
ryrin time T'.

predefined contact sequences and timings ¢/ (t), to only optimize over real-valued decision
variables w € R and not turn the problem into a mixed-integer NLP. Simply by adapting
this contact schedule ¢/(t), the optimizer generates various gaits as well as combinations
and transitions between these, for which previously separate frameworks were necessary.

4.2.4.2 Kinematic reachability

When modifying the footholds to enclose the CoP, we must additionally ensure that these
stay inside the kinematic range R of the legs (Reachability). This constraint that depends
on both the CoM r and foothold positions p/ is formulated for every leg f as

hy(x(1) <0 < p/eR(x). (4.7)

Allowing the simultaneous modification of both these quantities characterizes the legged lo-
comotion problem more accurately and reduces heuristics used in hierarchical approaches.

42

4.3. Implementation

4.2.4.3 Robust motions

With the above constraints, the motion will comply with the physics and the kinematics
of the system. This feasible motion is assuming a simplified model, a perfect tracking con-
troller and an accurate initial state. To make solutions robust to real-world discrepancies
where these assumptions are violated, it is best to avoid the borders of feasible solutions,
where the inequality constraints are tight (h=0). This can be achieved by artificially
shrinking the solutions space by a stability margin (e.g. h<m). For legged locomotion,
this is often done by shrinking the support area to avoid solutions were the CoP is placed
at the marginally-stable border [18].

We do not restrict the solution space, but choose the more conservative of the feasible mo-
tions through a performance criteria Jy. This soft constraint expresses “avoid boundaries
when possible, but permit if necessary”. The robot is allowed to be at marginally stable
states, but since there are many uncertainties in our model and assumptions, it is safer
to avoid them. This cost does not require a hand-tuned stability margin and the solution
can still be at the boundaries when necessary. However, especially for slow motions (e.g.,
walking) where small inaccuracies can accumulate and cause the robot to fall, this cost
term is essential to generate robust motions for real systems.

4.3 Implementation

There exist different methods to solve Optimal Control problems (4.2), namely Dynamic
Programming (Bellman Optimality Equation), indirect (Maximum Principle) and direct
methods [30]. In direct methods, the continuous time TO problem is represented by a finite
number of decision variables and constraints and solved by a nonlinear programming solver.
If the decision variables w fully describe the input u(¢) and state x(t) over time, the method
is further classified as a simultaneous direct method, with flavors Direct Transcription and
Multiple Shooting. In our approach we chose a Direct Transcription formulation, e.g.
optimizing state and controls together. This has the advantage of not requiring an ODE
solver, constraints on the state can be directly formulated and the sparse structure of
the Jacobian often improves convergence. The resulting discrete formulation to solve the
continuous problem in (4.2) is given by

find W= (W,, W,, W)
subject to (4.20), (given initial state)
(4.10), (4.12), (4.15), (4.19) (dyn./path constraints)
(4 2e), (desired final state)
= arg min(4.21), (robustness cost)

where w, are the parameters describing the CoM motion, w, the feet motion (swing and
stance) and w,, the position of the CoP. This section describes in detail how we parametrize

43

4.3. Implementation

the state (w,, w,) and input w,, formulate the constraints and defined the cost (4.21).

4.3.1 Center of Mass motion

This section explains how the continuous motion of the CoM can be described by a finite
number of variables to optimize over, while ensuring compliance with the LIPM dynamics.

4.3.1.1 Center of Mass parametrization

The CoM motion is described by a spline, strung together by n quartic-polynomials as

x(t) = ligg] =2, l(t_f’f)] ai(t—tr) + [af)’“] (4.8)
W, = [8170,...73174,...,8.”70,...,&”,4} s (49)

with coefficients ay,; € R? and ¢, describing the global time at the start of polynomial k.

We ensure continuity of the spline by imposing equal position and velocity at each of the
n—1 junctions between polynomial k and k+1, so x[t;,,] = x[t},]. Using T}, = txy1—1
we enforce

lﬂ ap T} + [38,0] = [a’““’o] : (4.10)

Pt Ak+1,1

4.3.1.2 Dynamic constraint

In order to ensure consistency between the parametrized motion and the dynamics of the
system (4.1), the integration of our approximate solution #(¢) must resemble that of the
actual system dynamics, so

/ M) dt ~ / MRy (x(1), u(t)) dt. (4.11)

tr tr
Simpson’s rule states that if #(¢) is chosen as a 2"¥-order polynomial (which is why r(t)
is chosen as 4"-order) that matches the system dynamics Fy at the beginning, the center

and at the end, then (4.11) is bounded by an error proportional to (tx; — tx)*. Therefore
we add the following constraints for each polynomial

i[t] = Fa(x[t],ult]), Vte {t, B 0} (4.12)

(see Appendix A.4 for a more detailed formulation). By keeping the duration of each
polynomial short (~50ms), the error of Simpson’s integration stays small and the 4-
order polynomial solution r(t) is close to an actual solution of the ODE in (4.1).

44

4.3. Implementation

This formulation is similar to the ”collocation” constraint [59]. Collocation implicitly
enforces the constraints (4.12) at the boundaries through a specific parametrization of
the polynomial, while the above formulation achieves this through explicit constraints in
the NLP. Reversely, collocation enforces that ag(tt) = 1(t) through the explicit constraint,
while our formulation does this through parametrization in (4.8).

4.3.2 Feet motion

4.3.2.1 Feet parametrization

We impose a constant position p/ € R? and orientation af € R if leg f is in stance.
We use a cubic polynomial in the ground plane to move the feet between two consecutive
contacts

Pf(t) _ & ag,i i
o) -2 i eer)
where (t— t,) is the elapsed time since the beginning of the swing motion. The vertical
swingleg motion does not affect the NLP and is therefore not modeled. The coefficients
a;; € R? and bs; € R are fully determined by the predefined swing duration and the
position and orientation of the enclosing contacts {pf; Lo } and {pf 1 of +1}' Therefore
the continuous motion of all ny feet can be parametrized by the NLP decision variables

1 nf
W],

(4.14)

Where Wg = {p{,&{, o« ,pflS,O{f]

s

are the parameters to fully describe the motion of a single leg f taking n, steps.

4.3.2.2 Range-of-Motion constraint

To ensure a feasible kinematic motion, we must enforce p/ € R(r), which is the gray area in
Fig. 4.3. We approximate the area reachable by each foot through a rectangle [—r®¥ r*¥],
representing the allowed distance that a foot can move from its nominal position pJ,,,
(center of gray area). The foothold position for each foot f is therefore constrained by

—r" < p/[t] —r[t] - pl,, <1 (4.15)

Contrary to hierarchical approaches, this constraint allows the optimizer to either move
the body to respect kinematic limits or place the feet at different positions. A constraint
on the foot orientation can be formulated equivalently.

45

4.3. Implementation

RL

o)\R
RoM Left Foot (L) \ /
i /\p

.)\3

\ .
Al .

L RoM Right Foot(R)

Figure 4.3: Top-down view of a biped for both feet in contact at p¥,pl € R inside
the range of motion R (gray), which moves with the CoM position. For square feet with
corners v, rotated by a, the support area is shown by P (light green area). This is the
area to which the CoP u is constrained. If the biped controls its CoP to lie on the tip of the
right foot, the corresponding corner carries all the load (A} = 1.0), while the other seven
lambdas are zero. In case of point-feet the support area is simply a straight line between
p’ and p*.

4.3.3 Center of Pressure motion

To represent the continuous CoP trajectory, we parameterize it through the load carried by
each end-effector. This parametrization is used to formulate a novel convexity constraint
based on vertices instead of hyperplanes. Finally, this section introduces a cost that keeps
the CoP from marginally stable regions and improves the robustness of the motion.

4.3.3.1 Center of Pressure parametrization

The CoP p.(t) is not parametrized by polynomial coefficients or discrete points, but by
the relative load each corner of each foot is carrying. This load is given by

(1) = [N @), X (@]

(4.16)
where X () = [M(t),..., M (t)] € [0,1]™

n, represents the number of vertices/corners of foot f. For the square foot in Fig. 4.3, four
lambda values represent one foot and distribute the load amongst the corners. These mul-
tipliers represent the percentage of vertical force that each foot is carrying, e.g. |Af ()], =
0.9 implies that leg f is carrying 90% of the weight of the robot at time ¢. Using these

46

4.3. Implementation

values, the CoP is parameterized by

Nf ny

pe(t) = D > M) () + R(a (t))vo), (4.17)

f=1v=1

where R(a’) € R?*? represents the rotation matrix corresponding to the optimized rota-
tion o/ of foot f (4.13). v, represents the fixed position (depending on the foot geometry)
of corner v of the foot expressed in the foot frame. For a point-foot robot with v,=0,
(4.17) simplifies to p. = X2, A p/.

We represent A(t) for the duration of the motion by piecewise-constant values A; = A(t;)
discretized every 20 ms, resulting in n, nodes. Therefore the CoP p. can be fully param-
eterized by w, and the additional NLP decision variables

W = [A (4.18)

4.3.3.2 Unilateral forces constraint

We represent the essential input constraint (4.6), which ensures that only physically fea-

sible forces inside the convex hull of the contacts are generated, for i =1,...,n, as
[All, =1, (4.19a)
0 < Mt < /[t (4.19D)

where ¢/ € {0,1} €Z is the indicator if foot f is in contact. The constraints (4.17) and
(4.19a) allow p. to be located anywhere inside the convex hull of the vertices of the current
foot positions, independent of whether they are in contact. However, since only feet in
contact can carry load, (4.19b) enforces that a leg that is swinging (¢/ =0) must have all
the corners of its foot unloaded. These constraints together ensure that the CoP lies inside
the green area shown in Fig. 4.3.

4.3.3.3 Robust walking cost

To keep the CoP away from the edges of the support-area we could constrain A/ of each
leg in stance to be greater than a threshold, causing these legs in contact to never be
unloaded. This conceptually corresponds to previous approaches that heuristically shrink
support areas and thereby reduce the solution-space for all situations. We propose a
cost that has a similar effect but still permits the solver to use the limits of the space if
necessary.

The most robust state to be in, is when the weight of the robot is equally distributed

47

4.4. Tracking the motion

X 1 T
= i ;5 ,4;

Qjref /4 , T

.j.refi\, ~ Joint FB |2

Yiref Aj,ref

= > +
NLP A, st Inverse |_% Robot
\ Dynamics| 7
\

X0 q7q

Figure 4.4: The controller that generates the required torques to execute a planned motion.
Given the current state of the system Xo and a user-defined goal state xr, the optimizer
generates a reference motion. We augment this reference through a body feedback acceler-
ation based on how much the body deviates from the desired motion. Inverse dynamics is
used to generate the torques to achieve the reference base and joint accelerations.

amongst all the corners in contact, so

() = (4.20)

where n,(t) = n, Y7L, ¢/ (t) is the total number of vertices in contact at time ¢, predefined
by the contact sequence ¢(t). This results in the CoP to be located in the center of the
support areas. The deviation of the input values from the optimal values A* over the entire
discretized trajectory (4.18) is then given by

Ny

Ta(wa) = D 1Ix = Al (4.21)
i=1

For a support triangle (A{*:%) this cost tries to keep the CoP in the center and for a
line (AJ*=1) in the middle. For quadruped walking motions this formulation generates a
smooth transition of the CoP between diagonally opposite swing-legs, while still staying
away from the edges of support-areas whenever possible.

4.4 'Tracking the motion

The motion optimization part of our approach is mostly robot independent. The only
robot specific information needed to run the framework is the robot height, the number
of feet, their geometry, and their kinematic range. For execution, however, the optimized
motion must be translated into joint torques 7 using a fully-body dynamics model. This
section discusses this generation summarized by Fig. 4.4.

48

4.4. Tracking the motion

4.4.1 Generating full-body reference accelerations

The 6-DoF base pose is reconstructed using zero desired orientation (in Euler angles x,y,z),
the optimized CoM motion r (assuming the geometric center of the base coincides with
the CoM), and the constant base height h as

Qier() =00 0 rut) 1) B].

In order to cope with uncertainties it is essential to incorporate feedback into the control
loop. We do this by adding an operational space PD-controller on the base that creates
desired 6D base accelerations according to

Apref = Qo7 + Kp(dp — dpres) + Ka(dy — Qo res)-

The derivate of the pose, the base twist ¢, € R® represents the base angular and linear ve-
locities and @y, ¢ is the optimized CoM acceleration from the NLP. This controller modifies
the planned body motion if the current state deviation from the reference state.

In order to obtain the desired joint accelerations that correspond to the planned Cartesian
motion of the feet we can use the relationship p(¢t) = J q+Jq, where q, g € R6"" represent
the full body state (base + joints) and J = [J b J j] € R37%(6+n) the Jacobian that maps
full-body velocities to linear foot velocities in world frame. Rearranging this equation, and
using the Moore—Penrose pseudoinverse J;“, gives us the reference joint acceleration

élj,ref = Jj+ (p - Jq - Jbe,ref) . (422)

4.4.2 Inverse Dynamics

The inverse dynamics controller is responsible for generating required joint torques T to
track the reference acceleration @, ¢, which is physically feasible based on the LIPM model.
This is done based on the rigid body dynamics model of the system, which depends on
the joint torques, but also the unknown contact forces. To eliminate the contact forces
from the equation, we project it into the space of joint torques by P =1 — J1J., where
J7 is the contact Jacobian that maps Cartesian contact forces to joint torques [58], [81].
This allows us to solve for the required joint torques through

T = (PS")* P(Mg,.; + C), (4.23)

where M is the joint space inertia matrix, C the effect of Coriolis forces on the joint
torques and S the selection matrix which prohibits from actuating the floating base state
directly. We found it beneficial to also add a low-gain PD-controller on the joint position
and velocities. This can mitigate the effects of dynamic modeling errors and force tracking
imperfections.

49

4.5. Results

4.5 Results

We demonstrate the performance of this approach on the hydraulically actuated quadruped
robot HyQ [5]. The robot weighs approximately 80 kg, moves at a height of about 0.6 m
and is torque controlled. Base estimation [83] is performed on-board, fusing Inertial Mea-
surement Unit (IMU) and joint encoder values. Torque tracking is performed at 1000 Hz,
while the reference position, velocity and torque set-points are provided at 250 Hz. The
C++ dynamics model is generated by [84].

4.5.1 Discussion of generated motions

This section analyses the different motions generated by changing the sequence and timings
of contacts ¢(t). There is no high-level footstep planner; the footholds are chosen by the
optimizer to enable the body to reach a user-defined goal state xp. The results were
obtained using C++ code interfaced with Interior Point Method (Ipopt [35]) or Sequential
Quadratic Programming (Snopt [36]) solvers on an Intel Core i7/2.8 GHz Quadcore laptop.
The Jacobians of the constraint and the gradient of the cost function are provided to the
solver analytically, which is essential for performance. We initialize the decision variables
w with the quadruped standing in default stance for a given duration. The shown motions
correspond to the first columns (e.g. 16 steps) in Table 4.1. The reader is encouraged to
view the video', as it very intuitively demonstrates the performance of this approach.
Apart from the basic gaits, the video shows the capability of the framework to generate
gradual transitions between them, bipedal walking, limping and push-recovery.

4.5.1.1 Walk

Fig. 4.5(a) shows a walk of multiple steps, with the two support areas highlighted for
swinging RF—LH. The effect of the cost term J, is visible, as the CoP is accumulated
away from the support area borders by left-right swaying of the body. Only when switching
diagonally opposite legs the CoP lies briefly at the marginally stable border, but then
immediately shifts to a more conservative location. Without the cost term, the CoM
motion is a straight line between xy and xr, causing the real system to fail.

4.5.1.2 Trot

Fig. 4.5(b) shows a completely different pattern of support areas and CoP distribution.
During trotting only line-contacts exist, so the possible places to generate the CoP is
extremely restricted compared to walking. Notice how the CoP lies close to the CoM
trajectory during the middle of the motion, but deviates quite large back/forward during
the start/end of the motion (e.g., the robot pushing off from the right-front (green) leg

1Video of generated motions: https://youtu.be/5WLeQMBuv30.

20

https://youtu.be/5WLeQMBuv30

4.6. Conclusion

Table 4.1: Specs of the NLP for 16- and j-step motions
(16 steps, 1m) | (4 steps, 0.2m)

Walk Trot Pace Bound
Horizon T' [s] 6.4 | 1.6 2.410.6 3.20.8 3.20.8
Variables [-] 646 | 202 387 | 162 1868 | 728 1868 | 728
Constraints [-] 850 | 270 548 | 255 2331|939 2331 | 939
tpe1 — tx [s] 0.1 0.05 0.02 0.02
Cost term Jx - - -

Time Ipopt [s] 0.25|0.06 0.02]0.01 0.21]0.12 0.17 | 0.04
Time Snopt [s] 0.35]0.04 0.04]0.01 0.54]0.18 0.42]0.29

in the second to last step). This is because the distance between the CoP and the CoM
generates the acceleration necessary for starting and stopping, whereas in the middle the
robot is moving with nearly constant velocity.

4.5.1.3 Pace/Bound/Biped Walk

Specifying legs on the same side to be in contact, with a short four-leg transition period
between them produces the motion shown in Fig. 4.5(c). This can also be viewed as a biped
walking with line-feet (e.g., skis), with the constraint enforced also during the double-
stance phase. The first observation is the sideways swaying motion of the CoM. This is
necessary because the support areas do not intersect (as in the trot) the CoM trajectory.
Since the CoP always lies inside these left and right support areas, they will accelerate the
body away from that side until the next step, which then reverses the motion. We found
that the LIPM model with fixed zero body orientation does not describe such a motion
very well, as the inherent rotation (rolling) of the body is not taken into account. To also
demonstrate these motions on hardware, the LIPM model must be extended by the angular
body motion. Specifying the front and hind legs to alternate between contact generates
a bound Fig. 4.5(d). The lateral shifting motion of the pace is now transformed to a
forward-backward motion of the CoM due to support areas. In case of an omnidirectional
robot, a bounding gait can merely be considered a side-ways pace.

4.6 Conclusion

This paper presented a TO formulation using vertex-based support-area constraints, which
enables the generation of a variety of motions for which previously separate methods were
necessary. In the future, more decision variables (e.g., contact schedule, body orientation,
foothold height for uneven terrain), constraints (e.g., friction cone, obstacles) and more

ol

4.6. Conclusion

sophisticated dynamic models can be incorporated into this formulation. Additionally, we
plan to utilize the speed of the optimization for MPC.

o2

4.6. Conclusion

| ® - me ® ® @
.. >,
~ S
))
° ° s e o e
| -
(a) Quadruped Walk: swinging one leg at a time.
e e
e e
] - ©® me -
Z
~ - \
e e
e e
" e - = - e
(b) Quadruped Trot: swinging diagonally opposite legs.
e
[|
® o
=
® [J
o
e
] * T (] T 1
e e
e
= e ® .- ° N

(d) Quadruped Bound: swinging front, then hind legs.

Figure 4.5: Top-down view of the generated motions for a quadruped robot moving from
left to right, swinging the legs f left-hind (blue), left-front (purple), right-hind (brown),
right-front (green) in the sequence shown. The initial stance is shown by the squares, the
optimized steps by the circles. The ColM motion r(t) is shown by the solid line, where the
color corresponds to the swingleg(s) at that moment. If all legs are in contact, the ColM
motion and corresponding CoP are shown in gray. The support area for each phase is
shown by the transparent areas. The optimized CoP positions p.(t) that drive the system
are shown in red and always lie inside the support area.

23

Paper I1I: GGait and trajectory
optimization

Alexander W. Winkler, Farbod Farshidian, Diego Pardo, Michael Neunert, Jonas
Buchli. Fast Trajectory Optimization for Legged Robots using Vertex-based ZMP
Constraints. In Robotics and Automation Letters (RA-L), pp. 2201-2208, 2017.

Abstract We present a single Trajectory Optimization formulation for legged locomo-
tion that automatically determines the gait-sequence, step-timings, footholds, swing-leg
motions and 6D body motion over non-flat terrain, without any additional modules. Our
phase-based parameterization of feet motion and forces allows optimizing over the discrete
gait sequence using only continuous decision variables. The system is represented using
a Single Rigid Body Dynamics (SRBD) model that is influenced by the feet’s location
and forces. We explicitly enforce friction cone constraints, depending on the shape of the
terrain. The NLP solver generates highly dynamic motion-plans with full flight-phases
for a variety of legged systems with arbitrary morphologies in an efficient manner. We
validate the feasibility of the generated plans in simulation and on the quadruped robot
ANYmal. Additionally, the entire software TOWR used to generate these motions is made
freely available.!

Paper: https://doi.org/10.1109/LRA.2018.2798285
Video: https://youtu.be/0jE46GqzxMM
Code: https://github.com/ethz-adrl/towr/tree/1.1.0

!The dynamic model described in Section 5.3.2 has been slightly adapted to conform to the terms, e.g.
SRBD, used in this thesis.

o4

https://doi.org/10.1109/LRA.2018.2798285
https://youtu.be/0jE46GqzxMM
https://github.com/ethz-adrl/towr/tree/1.1.0

5.1. Introduction

Figure 5.1: Motions produced by the solver TOWR [72] for single-legged hoppers, bipeds
and quadrupeds seen in video at https://youtu.be/0jE4A6GqzxMM.

5.1 Introduction

Planning physically feasible motions for legged systems is difficult. A core difficulty is
that base movement cannot be directly generated but results from contact of the feet
with the environment. Therefore, the generated forces acting at these contact points must
be carefully planned to achieve a desired behavior. Unfortunately, there are substantial
restrictions on these forces, e.g. a force can only be generated if the foot is touching the
environment or feet can only push into the ground, not pull on it.

Due to the complexity of these restrictions, hand-crafting valid trajectories for all these
interdependent quantities (body, feet, forces) is tedious. Instead, TO [31] can be used to
generate motions in a more general, automated way. The user specifies only the high-level
task, while the optimizer determines the motions and forces given these locomotion specific
restrictions. The research problem is how to transcribe this continuous-time optimization
problem into one with a finite number of decision variables and constraints to be solvable
by a NLP solver. This approach is attractive, because once the problem has been appro-
priately modeled, the program would, in an ideal case, produce motions for any high-level
task, solving legged locomotion planning on a general level.

5.1.1 Related Work

In the following, we categorize existing approaches to legged locomotion by their used
physical model and by which aspects of the motion (e.g., body height and orientation,
step sequence, timings) are fixed in advance and which are determined by an optimizer.

5.1.1.1 Dynamic Models

There exist a wide variety of approaches using the LIPM model, that optimize only over
the CoM position, while using predefined footholds and step timings. By modeling the
robot as an inverted pendulum, the position of the CoP, or Zero Moment Point (ZMP)
[79], can be used as a substitute for the contact forces and is used to control the motion
of the CoM. This fast and efficient approach has been successfully applied in bipedal and

95

https://youtu.be/0jE46GqzxMM

5.1. Introduction

quadrupedal locomotion on real hardware [20], [22], [23], [78]. This demonstrates that
even such drastic model simplifications can be valid and useful. However, imposing where
these contact forces will be acting (by predefining the footholds) strongly restricts the
possible base motions. A slight relaxation is to still define when each foot is in contact,
but allow the algorithm to determine the best location for the foothold. Together with a
simplified model, this results in a very fast solver that can also be used online [38], [39]. It
is also possible to adapt step timings or foothold locations for robust real robot execution.
Many other variations of using these simplified models to generate impressive results have
been shown by [19], [44], [61], [62], [65], [80], [88], [90].

To generate more complex motions, involving vertical movement and changes in body ori-
entation, a more sophisticated dynamics model becomes necessary. The (6+n)-dimensional
full rigid-body dynamics consider the mass and inertia of each link and defines the relation
between joint torques and base- and joint-accelerations. This model takes into account
changing CoM positions and inertia properties based on leg configurations and Coriolis
forces generated by leg motions and has been used by [55], [60], [64], [73].

Another common dynamic model used in TO is the Centroidal dynamics [10], which
projects the effects of all link motions onto the 6-dimensional base. The idea is that once
a physically correct motion for the unactuated base has been found, the leg torques can be
readily calculated using standard, fully-actuated inverse dynamics. The input that drives
this system is the contact forces, as opposed to the CoP in the LIPM or the joint torques
in the full rigid-body dynamics model. Variations of this model have been successfully
used by [8], [9], [46], [49] to optimize for a wide variety of dynamic motions for biped
robots, including demonstrations on real bipeds.

Common to all these approaches is that some part of the motion is specified before-
hand. The different levels include specifying (i) only order of feet in contact (ii) order and
times when each foot is in contact (iii) order, times and position of each foot in contact.
This decoupling can increase optimization speed; however, it often introduces handcrafted
heuristics to link these separated problems. These can become hard to tune for more com-
plex problems and often limit the range of achievable motions. The following discusses
approaches how (i)—(iii) can be automatically determined.

5.1.1.2 Contact Schedule Optimization

Before searching for the optimal forces at a given time, it is necessary to know if a foot is
touching the environment and therefore can even exert any force. This reasoning about
which of the feet should be in contact at a given time, or stated differently, when it is
necessary to generate forces at which foot is the problem of finding a “contact schedule”.

Since feet are modeled as discrete variables Z (e.g. left-foot, right-foot), Integer Pro-
gramming can be used to optimize the contact-schedule and footholds, independent from
the dynamics of the system [49], [91], [92]. While this decoupling increases speed and
allows quick solutions for each separate problem, it also necessitates heuristics that limit

o6

5.2. Trajectory optimization formulation

the range of achievable motions. Additionally, Integer Programming becomes computa-
tionally expensive as the number of decision variables increases. Another conventional
approach is to use a soft-contact model, which approximates the inherently hard contact
surfaces as spring-damper systems [67]. The downside to this approach is that these vir-
tual spring-damper models must be very stiff to most accurately resemble the real surface.
These abrupt changes in force from a foot hitting this stiff surface hinder convergence
of the optimizer. To avoid this, the problem can also be solved by formulating a LCP,
which enforces that either the foot is zero distance from the contact surface (touching the
environment), or the force is zero [7], [69], [70]. These approaches produced impressive
results and are closest to the work presented in this paper.

5.1.2 Contributions

We extend the above works with a single TO formulation for legged locomotion that
automatically determines the gait-sequence, step timings, footholds, swing-leg motions,
6D body motion and required contact forces over non-flat and inclined terrain. No prior
footstep planning is necessary since our formulation directly generates the complete motion
given only a desired goal position and the number of steps. We directly enforce friction
constraints, which allow the algorithm to use inclined surfaces in physically feasible ways
to complete desired tasks. Our algorithm extends existing algorithms that have the above
capabilities in the following ways:

1. We generate motions for multiple steps in only a few seconds while still optimizing
over the gait sequence. This is due to our novel phase-based parameterization of
the feet and forces that keep the optimization variables continuous, and thereby the
problem solvable by an NLP solver.

2. Our NLP formulation can automatically generate motions with full-flight phases,
which are essential for highly dynamics motions.

5.2 Trajectory optimization formulation

The complete TO formulation presented in this paper can be seen in Fig. 5.2. The initial
and desired final state of the system, the total duration 7" and the amount of steps n,; per
foot ¢ is provided. With this information the algorithm finds a trajectory for the linear
CoM position r(t), its orientation @(t), the feet motion p;(t) and the contact force f;(t) for
each foot, while automatically discovering an appropriate gait pattern defined by AT; ;.

To ensure physically correct behavior, a simplified Centroidal dynamics model is used that
relates feet position and forces with the CoM motion. Additionally, kinematic restriction
between base and foot position are enforced in Cartesian space. This robot model is
explained in Section 5.3.

57

5.2. Trajectory optimization formulation

T=F(r,py,....f,...) (dynamic model

find r(t) € R® (CoM linear position)
0(t) e R? (base Euler angles)

for every foot 7 :
ATiq..., AT, . €R (phase durations)
pi(t, AT;,...) €ER? (foot position)
f;(t, AT, ,,...) €R? (force at foot)
s.t. [r,0](t=0) = [ro, O0] (initial state)
r(t=T) =r, (desired goal)
)

.4

for every foot 7 :

pi(t) € Ri(r,0), (kinematic model)
if foot 4 in contact :
pi(teC)=0 (no slip)
pi(t € C) = hierrain(P;”) (terrain height)
f;(teC) -n(p;Y) >0 (pushing force)
fi(t € C;) € Fpu,n,p;?) (friction cone)
if foot ¢ in air :
f(t¢C)=0 (no force in air)
Z?isl’iA'j}i_,- =T (total duration)

Figure 5.2: Decision variables and constraints defining the legged locomotion TO prob-
lem. The brown quantities show those aspects of the formulation that are related to en-
vironmental contact (Section 5./), while the other rows apply in general to floating base
systems.

o8

5.3. Robot model

Independent from the base motion and dynamics, there are various restrictions on feet
motions and forces described in Section 5.4. To ensure that feet do not slip and forces
are produced only when touching the terrain, additional constraints are necessary. We
introduce a novel parameterization of the variables based on each foot’s swing and stance
durations AT; ;, which allows to automatically determine the gait sequence and timings.

The presented NLP formulation allows generating dynamic motions with full flight-phases
for systems with various numbers of feet in just a few seconds. It can handle non-flat
terrain, e.g., walking over stairs and jumping over gaps. In Section 5.5 we analyze se-
lected motions, as well as validate the feasibility of the generated motion plans on a real
quadruped.

5.2.1 Parameterization of optimization quantities

The 6D base motion is represented by the linear CoM position r(t) € R3, while the
orientation is parameterized by Euler angles 6(t) € R3. We use fourth-order polynomials
of fixed durations strung together to create a continuous spline and optimize over the
polynomial coefficients. For each foot’s motion p;(t) € R?, we use multiple third-order
polynomials per swing-phase, and a constant value € R3 for the stance phase. For each
foot’s force profile f;(t) € R3, multiple polynomials represent each stance phase, and zero
force is set during swing-phase. The duration of each phase, and with that the duration
of each foot’s polynomial, is changed based on the optimized phase durations AT ; € R.
Since the decision variables fully describe both the input (forces) and the state evolution
(base and feet motion), the optimization can be considered a “simultaneous direct” method
(as, e.g., Collocation) [30].

5.3 Robot model

5.3.1 Kinematic model

Instead of directly constraining joint angles, as is done in full-body joint-space TO, we
consider how the joint limits constrain the Cartesian foot position. We approximate each
foot’s workspace by a cube of edge length 2b (see Fig. 5.3), centered at the nominal
position of each foot P, relative to the CoM. We assume the joint limits are not violated
if every foot 7 lies inside a cube, given by

pi(t) € R;(r,0)

i(t) —r(@)] —pil <b,

o RO (5:1)

where R(0) is the rotation matrix from the world frame to the base frame. This condition
is enforced at regularly sampled states along the trajectory.

29

5.3. Robot model

p].' .ﬁl Pa R4

f3

Figure 5.3: The robot model known by the optimizer. The robot kinematic model is
conservatively approrimated by keeping the respective foot p; inside the range of motion
R; of each foot. The dynamics are approximated by a single rigid-body with mass m and
inertia I located at the robots CoM (Centroidal dynamics). This can be controlled by the
contact forces f; of the feet in contact with the environment while keeping these forces
inside the friction cone. The gray overlayed ANYmal model [11] is only for visualization
and not known by the optimizer.

5.3.2 Dynamic model

If we restrict the base orientation to be fixed, @(t) = 0, as well as the walking height to
remain constant, r,(t) = h, it is possible to represent the system as a LIPM, driven by
the CoP p, as ¥y = (rzy, — Pc)gh~'. However, keeping the base at a constant height and
orientation restricts the range of achievable motions, especially on rough terrain where
some footholds can only be reached when also tilting the base. Additionally, by replacing
the effect of individual contact forces with a single CoP, important information is lost,
e.g., keeping each individual force inside the corresponding friction cone cannot be enforced
anymore. Finally, situations with all feet in the air cannot be represented with this model,
as a CoP p. must always exist. For the above reasons, we decide this model is not
expressive enough to represent the motions we wish to generate.

Another possibility is using the accurate joint-space RBD (Section 1.2.1), applying joints

60

5.3. Robot model

torques as input. However, the main difficulty of legged locomotion remains in finding
a physically feasible motion for the under-actuated base given the locomotion specific
restrictions seen in Fig. 5.2. These physical constraints can be most intuitively expressed
in Cartesian-, not joint-space, as they relate to the environment. Once a physically feasible
motion for the base has been found the joint torques can easily be obtained using inverse
dynamics.

We choose to remain in Cartesian space since this allows to formulate the relevant variables
and constraints in a more simple way and model the legged robot using Single Rigid Body
Dynamics (SRBD) (see Fig. 5.3). The CoM linear and angular w acceleration are
determined by

= i fi(t) —

Lo (t) + w(t) x Lw(t Zf = pi(t)),

(5.2)

where m is the mass of the robot, n; the number of feet, g is the gravity acceleration and
w(t) represents the angular velocity that can be calculated from the optimized Euler angles
6(t) and rates O(t) (see Appendix A.6). We use a combined rotational inertia I € R3*3
calculated for the robot in nominal joint configuration. This assumes that either the limb
masses are negligible compared to the torso or that the limbs do not move significantly
or quickly from their default pose. These assumptions make the dynamics of the robot
independent of the joint configuration and express them solely in Cartesian space. For the
presented robots and motions the above assumptions introduce only negligible modeling
error while keeping the formulation simpler and the solver fast. For more information on
this model, see Section 1.2.3.

To ensure physical behavior of the motion, we enforce (5.2) at regular time intervals along
the trajectory. Additionally, we constrain the acceleration at the junction between two
base polynomials to be equal, as jumps in acceleration would imply jumps in force or foot
position, which we do not allow.

5.3.3 Contact independent dynamic model

Until now, the dynamic model (5.2) can just as well represent a flying drone. What makes it
specific to legged systems is that the restriction on the forces and feet positions abruptly
change depending on whether a foot is in contact with the environment or not. These
discretely switching contact configuration and therefore discretely switching constraints
are difficult to handle. For example, NLP formulations don’t naturally allow constraints
to merely be turned on or off arbitrarily during the iterations. This is why the sequence
and duration of contacts are often specified in advance when using an NLP to solve the
legged locomotion problem.

To partially simplify the problem, the robot model can be viewed independently from
concepts such as contacts or phases and the discontinuities can be handled where they

61

5.4. Contact model

actually occur — in the individual foot motion and forces. As a consequence of treating
every foot separately, concepts that described multiple feet at once, such as phases or
contact configurations can be simplified to binary in contact or not.

The following section does not include any robot dependent quantities (kinematic, dy-
namic) anymore, nor is it dependent on the base motion. From now on each foot is
treated separately and is only affected by the terrain and the physical constraints coming
from non-slip, frictional contact of rigid bodies.

5.4 Contact model

In this section, we first explain how arbitrary gaits can be generated by modifying the
duration of each individual foot’s swing and stance phase. We then describe how we
exploit this knowledge to formulate an NLP with continuous optimization variables, that
is still able to optimize over the gait sequence. Finally, we describe how we model the
physical constraints between the terrain and the foot motion and forces.

5.4.1 Contact schedule optimization

A biped walk can be characterized by phases (L, R, D, F') as seen in Fig. 5.4. If the
number of possible phases is low, these can possibly be predefined in a sensible, intuitive
way for a given task. However, as the number of contact points increases (e.g., quadruped,
bipeds with hands, allowing other body parts in contact), it becomes highly complicated
to determine which of feet € Z should make contact in what order to achieve a desired
task.

However, we can observe that more than two phases only exist when viewing multiple feet
simultaneously. When looking at a single-legged hopper, there exist ezactly two phases
— a contact phase C and a flight phase. Furthermore, these two phases always alternate:
After the foot is in contact, it will be in a flight phase, then again in contact, etc.

Analogously, we can view multi-legged robots as having independent feet, each alternating
between contact and flight. What varies to generate the different gaits are the durations
of each foot’s swing and stance phase. Figure 5.4 shows that solely by changing the phase
durations AT; ; € R of the right foot, a completely different gait can be generated. Since
the phase durations are continuous, these can be readily optimized by NLP solvers and
Integer Programming can be avoided.

62

5.4. Contact model

=

AT

)

ATl,g

ATy 3

i

AT 4

3

ATQ 1

AT272

ATy 3

3

R

L

R

D

L

R |

F

IR

D

R

D

AT171

ATl’g

AT 3

AT1’4

R

ATQ’Q

AT2’3

ATor]

Figure 5.4: Two different contact schedules for a bipedal robot. L = left foot in contact,
R = right foot in contact, D = both feet standing, F' = flight phase. The change of gait
is achieved solely by adapting the stance durations (red delimiters) of the right foot.

5.4.2 Feet motion and forces parameterization

To exploit this regularity, each dimension of the quantities p;(t),f;(¢) is described by
alternating sequences of constant values and cubic polynomials
(5.3)

$(t> = ap + ait + a2t2 + a3t3, a; = f(AT,QJ(),jfo, Xy, x1>

as shown in Fig. 5.5. Instead of optimizing over polynomial coefficients, we use the value
x and derivative & at the end-points (“nodes”) and its duration AT to fully define each
polynomial (see Appendix A.5). This so-called “Hermite” parameterization is more intu-
itive, since the optimization variables directly describe the state. Furthermore, the node
used as the end of the previous polynomial can also be used as the starting node of the
next, which ensures continuous foot velocity and force changes over the trajectory.

In Fig. 5.5 we use three polynomials of equal duration AT;;/3 to represent each swing
phase of the foot motion and each stance phase of the foot force. These can represent
typically varying force and motion profiles while still keeping the problem as small as
possible. The other phases are represented by a constant value for a duration of AT; ;.
We predefine the maximum number of steps n,; each foot can take. Note that this is not
a strong restriction, as phase durations can always be set close to zero if fewer steps are
required.

The times at which foot 7 is in contact for the s time are given by

Cio = {t|0<t—XEJAT; < AT}

j=1

(5.4)

This uses the intuition that every new foothold s is preceded by exactly two phases j (swing
and stance). The set of all times that foot i is in contact is denoted by C; = Us>{C; .

The individual polynomials carry information about whether they represent a swing or

63

5.4. Contact model

pi(t)

e

ATi,l

stance
t e Ci,l

— o e mm mm o o e mm mm) mm o

_ @ _@®
Figure 5.5: Phase-based parameterization of foot i’s motion p; and force f;. Fach phase
(swing or stance) is represented by either a constant value or a sequence of cubic polynomi-
als with continuous derivatives at the junctions. The optimizer is able to modify the phase
durations AT, ;, thereby changing the shape of the functions. Performing this for all feet
allows to generate arbitrary gait patterns, while still using continuous decision variables

AT,

stance phase, and this never changes. However, the algorithm still has the flexibility
to change the contact state at a given time by adapting the relevant phase durations
and thereby make this time fall onto a polynomial of different contact state. Therefore,
by changing these durations, all contact schedules/gaits can be generated. Since we are
changing the durations, we must ensure that the total duration of each foot’s motion and
force spline ends at the specified total time. Therefore, we have the additional constraint
for every foot i that AT;y + -+ AT 0,,, =T

With this parameterization we directly impose that a foot in contact does not slip, more
specifically, that the velocity of the foot motion during stance phase is zero. This is not
a constraint of the optimization problem, but is ensured directly by our parameterization
through a single, constant position variable p; s as

pi(t S C@S) =0 & pi(t S Ci75) = pi,s = const. (55)

If a foot is not in contact, no force can be produced. Therefore, we set each constant value

64

5.4. Contact model

representing the force in the flight-phase to zero as
fi(t ¢ C;) = 0. (5.6)

The above restrictions (5.5), (5.6) are handled before starting the optimization and are
equivalent to the LCP constraint p;(¢)f;(t) = 0 used in other TO formulations with auto-
matic gait discovery. However, instead of checking this conditions at every sampling time
t along the trajectory during the optimization, our phase-duration based optimization al-
lows us to predefine this condition a-priori. This simplifies the problem for the solver and
decreases computation time.

As seen in Fig. 5.5, we additionally ensure that the foot motion and force profiles are
smooth at phase junctions (continuously differentiable) and thereby easier for the gradient-
based solver to handle. Physically this is not required as contact with the environment
can be impulsive, which abruptly zeros the foot velocity and spikes the contact force.

5.4.3 Terrain height constraint

A foot is only in contact if it is touching the terrain. Therefore, the height of the foot
during contact must match the terrain at that 2D foot position p;% = (pf,,p/;). The
continuous height map herrain(x,y) can be either manually specified if the objects in
the environment are known or be generated from stereo camera data. We constrain the
variable representing the constant foothold height of foot ¢ during stance phase s by

pf(t € Ci,s) = pf,s = hterrain(p;'vg)' (57)

5.4.4 Stance force constraints

For physically correct locomotion it is necessary that forces can only push into the contact
surface, and not pull on it. For flat ground and an LIPM model this can be equivalently
formulated as keeping the CoP inside the area spanned by the feet in contact. Since our
formulation has explicit values for the contact forces we can directly constrain these as
falt € Cis) = £1(t)n(piY) > 0, (5.8)

where n(z,y) denotes the normal vector defining the slope of the terrain at position x, y.
The scalar product extracts the component of the force that is orthogonal to the terrain.

T
For flat ground, n(z,y) = [O 0 1} and the constraint simplifies to f*(¢) > 0.

It follows from Coulomb’s law that pushing stronger into a surface allows exerting larger
side-ways forces without slipping. This is equivalent to keeping tangential forces fi1, fi2

inside the friction cone defined by the friction coefficient p as y/f2 + f& < pfn. We
approximate this friction cone by a friction pyramid, enforcing an upper and lower bound
for the force in both tangential directions t;,t,. This pyramid approximation introduces

65

5.5. Results

only negligible error but linearizes this constraint, simplifying the problem for the NLP
solver. The constraint is given by

_an <f{t1,t2} < :ufn

& T Ot i) < pf (On(p).

5.5 Results

This section discusses the variety of motions generated with the presented algorithm for a
single-legged hopper, a biped robot and the quadruped robots ANYmal [11] and HyQ [5].
First, the motion plans, fulfilling all the specified physical constraints, are analyzed and
discussed. Secondly, we demonstrate a subset of motions in the realistic physics simulator
Gazebo as well as on the quadruped robot ANYmal [11].

This requires a controller that can reliably track the generated motion-plans by incorpo-
rating current sensor data to calculate the appropriate joint torques. This is not a trivial
task, and just as much a research topic as generating the plans. Our controller solves a
hierarchy of tasks using optimization to most accurately track the plans and is described in
detail in [21]. In simulation, we demonstrate highly dynamic and full-body walking, trot-
ting, pacing and galloping, all produced by the same method and tracked with the same
controller. Additionally, we show that despite model mismatches, sensor noise, torque
tracking inaccuracies and delays the motion plans are robust enough to be tracked on a
real system. A quadruped trot and walk with optimized full 6D-body motion and directly
planned contact forces are executed on a real system. These examples are another form
of validation that our formulation produces motion plans that are physically feasible.

The accompanying video® shows a visualization of the generated motion plans using inverse
kinematics and simulation and real robot experiments. The biped gap crossing example
below can be seen in the video at 01:09 and is shown in Fig. 5.6. The motions are optimized
with TOWR [72] and visualized with Xpp [93], which also provide ROS bag files of some
optimized motions.

5.5.1 Example: biped gap crossing

5.5.1.1 Dynamic consistency

A main focus in TO is to generate motions plans that are physically feasible. For shooting
methods that optimize only over the inputs and integrate to get the state the dynamics
are always fulfilled. For the used simultaneous method the dynamic constraint (5.2) is
enforced only at discretized times (red nodes). We therefore calculate the true base vertical
acceleration 7, = m~(ff + f3) — g (black dashed line) from (5.2) using the optimized

2Video of generated motions: https://youtu.be/0jE46GqzxMM.

66

https://youtu.be/0jE46GqzxMM

5.5. Results

600

| VAN /\
il / __ 7

-0.5

0.62 1.03 1.62 1.76 2.15 2.28 3.06

tls]

Figure 5.6: A generated motion plan for a 20kg-bipedal robot crossing a 1 m wide gap (see
video at 01:09). The plots show the base vertical acceleration 7*(t) as well as the vertical
position and vertical force of the left (L) and right (R) leg. The planned base vertical
acceleration is compared to the vertical body acceleration that results from evaluating (5.2)
with the current footholds and forces. In this example we use fourth-order polynomials of
duration 0.2 s for the base motion parameterization. The red nodes, spaced 0.1 s apart,
show the times at which the dynamic constraint is enforced in the NLP. We use two
third-order polynomials to parameterize each foot motion in swing-phase (white area), and
three third-order polynomials for each force profile per foot in stance-phase (shaded area).

forces and compare it to the optimized result #* (black solid line). The same evaluation
can be done for the other five base coordinates 7%, 7Y, w*, wY,w*. As can be seen, these
values coincide exactly at the node values, as these are enforced by hard constraints, and
deviate only slightly in between, e.g. during the dynamic sequence at t=2.0-2.2s. The

Root-Mean-Squared-Error (RMSE) for the base vertical acceleration is 1.8433%.

In case more accuracy is required, dynamic constraints can be enforced at a finer grid, e.g.,
every 50 ms. However, one must keep in mind that (i) the dynamic model is an approxima-
tion of the true dynamic system and will also never be perfectly accurate (ii) enforcing the
dynamics exactly might be unnecessary since the controller cannot even track the desired
motions exactly, due to sensor noise, inaccurate force tracking and delays. Taking the
above into account, sensible model accuracy must be chosen for each hardware, controller

67

5.5. Results

Table 5.1: NLP specs for bipedal gap crossing

Horizon T: 4.4s dt-kinematic: 0.05s Variables: 926
Goal x: 3.7m dt-dynamic: 0.1s Constraints: 1543
Steps per foot n, rp:5 Iterations: 21 T-solve (Ipopt): 4.1s

and problem individually.

5.5.1.2 Foot contact constraints

The foot height p*(t) for the left and right foot is shown by the blue lines. We notice
that the constant segments during stance phase (gray areas) are mostly at the tableau
height Aierrain = 0 (blue dotted line) as required by (5.7). The z-positions lower than
zero are where the biped steps into the sides of the gap while traversing it. In order the
have gradient information available, we model the gap hgap(,y) as a 5m deep parabola,
instead of a discretely changing ground height. This helps the NLP solver to converge to
a solution.

Vertical forces f#(t) only exist whenever the corresponding foot is in stance phase (gray
area). This is enforced by the parameterization of the force profile given by (5.6). During
the stance phase, the force can only push into the terrain as required by (5.8). Since the
normal direction of the terrain changes at the side of the gaps, negative z-forces are also
physically feasible, as seen at t = 2.8s.

5.5.1.3 Automatic gait discovery

The algorithm can automatically change the initially provided gait sequence and timings
depending on the terrain and desired task. The motion was initialized with a walking gait,
with short two-leg support phases between every step. As can be seen in Fig. 5.6, flight-
phases have been automatically inserted at e.g. t = 0.62s —0.7s. We constrain each phase
duration variable AT;; to be greater than 0.1s in this example to avoid rapid swing- or
extremely short stance phases. Flight-phases allow the solver to respect kinematic limits
while still covering significant distance with few steps. Capabilities such as these show the
advantages of optimizing all the aspects of the motion simultaneously.

5.5.1.4 Fast solver

As seen in Table 5.1 our formulation is able to generate the sample biped motion in
4.1s. This includes optimization over the contact sequence, finding 6D-body, foothold
and swing-leg motions as well as enforcing friction constraints. The kinematic constraint
(5.1) is enforced every 0.05s, while the dynamic constraint (5.2) is checked every 0.1s.

68

5.6. Conclusion

Generating a motion of two steps per leg for a quadruped robot takes ~300ms. For the
other motions shown in the video, with time horizons around 5 s involving dozens of steps,
the algorithm takes ~20s. These values vary depending on the problem definition, terrain,
and other parameters. Nonetheless, other approaches that can generate similarly complex
motions often take orders of magnitude longer. The results were obtained using C++
code interfaced with Interior Point Method solver Ipopt [35] on an Intel Core i7/2.8 GHz
Quadcore laptop. The Jacobians of the constraints are provided to the solver analytically,
which is important for performance. Another factor that speeds up the optimization is
that we do not use a cost function, as observed in Fig. 5.2. This also reduces the amount
of tuning parameters, as the relative importance of the constraints does not have to be
quantified — they all have to be fulfilled for a motion to be physically feasible.

5.5.2 Limitations and future work

For humanoid robots with heavy limbs deviating far from its nominal configuration the
simplified Centroidal dynamics model (5.2) might not be sufficient. If a more accurate
dynamic representation is necessary, the model can be refined by calculating the joint
angles q from the optimized foot positions p using inverse kinematics and updating I(q).
Likewise, optimized foot velocities p can be converted into angular velocities w; of each
leg link (e.g., using the leg Jacobian) and used in (5.2) explicitly. These refinements will
increase the nonlinearity of the dynamic constraint and possibly computation time, but
can still be handled by the proposed formulation and NLP solver.

The solver enforces the terrain constraints (terrain collision, unilateral force, friction cone)
only at the junctions of the 3"%-order feet polynomials. Since these polynomials are usually
short, violation of the constraints in between is often negligible. However, especially when
a foot motion polynomial enforces the terrain constraint (5.7) only at the borders and an
obstacle is in between, undesired terrain collision can occur.

Finally, for highly uneven terrain the solver is sometimes trapped in local minima. One
way to simplify the problem for the solver is to fix the step timings, thereby not optimizing
over the gait sequence. As long as the range of motion is large enough to reach the desired
goal in the specified number of steps the solver consistently finds solutions to the problem
and the solution time rapidly decreases.

5.6 Conclusion

We presented a TO formulation that is able to efficiently generate complex, highly dynamic
motions for a variety of legged systems over non-flat terrain, while also optimizing over
the contact sequence. The feasibility of the motion plan is demonstrated in simulation
and on a real quadruped. In the future, we will transfer even more motions to the real
system and also use this fast motion planner in an MPC fashion.

69

Conclusions and outlook

6.1 Summary

A variety of incremental contributions listed in Section 2.4 have led to the efficient motion-
planning algorithm for legged robots presented in this thesis.

The premise of the investigation was that footholds and body motion are important quan-
tities in legged locomotion and tightly coupled. Therefore, traditional body motion plan-
ning algorithms have been extended to generate optimal footholds and body motion plans
simultaneously. This reduces heuristics and allows the footholds to be placed precisely
where they are needed to guide the system to a specified goal.

Following this, we observed that different traditional planning approaches for quadruped
robots, either based on the ZMP or the Capture Point, can be represented in a uniform
TO formulation. We propose a vertex-based formulation of the support area constraint,
which allows treating point-, line-, and area contacts in a uniform way. This LIPM-based
TO formulation allows to efficiently generate a variety of also unconventional quadruped
gaits (e.g., limping) that can be useful for more complex tasks or terrains.

However, these gaits were still limited to flat ground and the restricting assumptions of
the LIPM. To increase the repertoire of motions, we model the robot as a 6D rigid body
controlled directly by 3D external forces according to the SRBD. We remove the restriction
of fixing the contact sequence in advance by a novel phase-based parameterization of the
end-effector variables in the NLP. The final result of this thesis is an efficient motion-
planning algorithm for legged robots that automatically determines the gait-sequence,
step-timings, footholds, contact forces, swing-leg motions and 6-dimensional body motion
over non-flat terrain. This generates motions for monopeds, bipeds and also for a physical
quadruped robot.

70

6.2. Future directions

6.2 Future directions

We see large potential in using T'O methods to generate motions for legged robots. With-
out numerical assistance through mathematical optimization, it can become unfeasible to
hand-design solutions with such complex interplay of components. This might become
more evident as legged robots start to tackle increasingly difficult terrain and are required
to perform higher dynamic motions.

The correct translation of the legged locomotion problem into a mathematical optimization
problem has been tackled by this thesis. This algorithm can still be improved in a number
of ways, which are explicit listed in Section 5.5.2. By transferring more of the motions
onto hardware, possible shortcomings of the dynamic model or other formulations can be
detected. The goal is for the algorithm to efficiently and reliably generate correct physical
motions that can be tracked on the physical system.

It is worth working on the core algorithm and improving its capabilities according to
Section 2.2, as it is a primary building block that MPC formulation depend on. In an
MPC formulation the motion-plan is repeatedly generated starting from the current state
of the system. This is an attractive approach, as without any additional methods, only
by solving a problem repeatedly and fast, the system gains a variety of capabilities. If the
control loop is fast enough, the robot will be reactive in case a foot slips, take corrective
steps if pushed or re-plan its motion completely when the plan is not executing as predicted.
Even further benefits of MPC include that, since motions are continuously re-optimized,
modeling errors of the dynamics are implicitly corrected.

This direction of future research, improving the underlying motion-planning algorithm
and following that embedding it in an MPC formulation on a physical system, seems
promising. With some algorithmic work, efficient software implementations, as well as
capable hardware, we might soon find it unremarkable when one of these highly remarkable
technological systems crosses our daily path.

71

Appendix

A.1 Derivation of SRBD from Centroidal Dynamics

We derive the SRBD (1.5) for a single rigid body from the Centroidal Dynamics. The
change of total momentum defined though the CMM A [10] as

d(Aq)
dt

= A4+ Aq. (A1)

From Assumption A2 follows that the joint velocities can be neglected. Therefore we
consider only the linear and angular velocity of the base q, = [f, ;jwp]|’ and define the
first 6 columns of the CMM as

(A.2)

A, — [m13 0] _ [ml3 0

0 I(6) 0 RpsLRL|

Let m be the total of all link masses combined, 13 € R**? the identity matrix and ;1,(0) €
R3*3 the combined inertia of all individual limbs in nominal joint configuration, anchored
at the CoM and expressed in coordinate axis parallel to the inertial frame (I). If this inertia
matrix is expressed in a coordinate frame (B) rotating together with the rigid body, it
is constant over time and denoted by gl,.. The base orientation @ can be equivalently
described through a rotation Rz € R3*3 from base (B) to inertial (I) frame.

From Assumption A3 follows that the full-body inertia remains constant, so gI, = 0. We
introduce the skew-symmetric matrix S(a) € R3*3, which is a generalization of the cross
product and satisfies S(a)b = a x b. The time derivative of a rotation matrix can be
expressed through Rz = S(;wiz)R s, where ;wip denotes the angular velocity between
the inertial frame and the base frame, expressed in the inertial frame. With this we can

72

A.2. Derivation of LIPM from SRBD

rewrite the derivative of the bottom right-corner of A, as

d(Riz pI, Rip)

1 = RIBBIrR}% + RIBBLR}% + RIBBITR}%

= S(;w)RimsLRI; + RippL (S(wm)Ri)" (A.3)
= S(IwIB)RIBBIrRITB + RIBBITR%ST(I@’IB)
= S(;wip)1.(0) + IIr(e)ST(IwIB)

Inserting this into back into (A.1) and using S” (jwp)wm = —rwp X wp =0 we get

mr

Agq+Aq= :
4+ A [IIT(G)IwIB + [S(;wm)1:(8) + 11.(0)S” (;wm)] 1w

(A4)
B mi
B LIr(O)IwIB + 1wmpxL(0)ws]|’

which is the left-hand side of the SRBD equations given in (1.5).

A.2 Derivation of LIPM from SRBD

Here we derive the LIPM model (1.6) from assumptions applied to the SRBD. The first
assumption A5 for the LIPM states that the angular velocity w and acceleration w of the
base must be zero. Substituting this into (1.5b) gives

i 7 fi,y(rz - pi,z) - fi,z(ry - pi,y)
0= Z fix(r—p;) = Z fi,z(rx - pi,x) - fi,x(rz - pi,z)) (A.5)
=1 i=1 fi,x(ry - pi,y) - fi,y(rm - pi,x)

where p; and f; denote the position and force of foot 7, r the CoM position and x the index
for the horizontal motion (y accordingly).

With our second assumption A6 that the foothold height p; . = p, is constant we rewrite
the second row of (A.5) as

Zi f’i@(rz - pi,z) = zl: fi,z(rz - pi,z>
A Z fiz = ! (T‘m Z Jie — Z fi,zpi,x> (A.6)

T2 = Pz
- an fi,z (Eni fi,zpi,x)
Ty =Pz Z ‘ fi,z

The last assumption A4 for the LIPM is that the CoM height stays constant, and thereby

73

A.3. Derivation of Capture Point

the vertical acceleration zero. Using the linear z-dimension of (1.5a) we get
0=mi,=mg—> fi. < > fi.=myg. (A.7)
i=1 i=1

With this we can rewrite (1.5a) as

i=1 Tz = Pz >is1 Jiz
AT _mg (Tx _ m) (A8)
Ty = P2 mg
&S T, = g(?“x — Pex),
h)

where h = r, — p, is the constant height of the LIPM and p. the CoP produced by the
vertical forces. This is the dynamic relationship of the LIPM in (1.6).

A.3 Derivation of Capture Point

This section derives the one-step Capture Point listed in (4.5). Consider the differential
equation describing a LIPM (linear, constant coefficients, second order) in z-direction

. Y 9
F(t) — Er(t) = Pe (A.9)

where r denotes the CoM, p. the CoP, g gravity acceleration and h the walking height.
The general solution to the homogeneous part of the equation can be construct by the
Ansatz r(t) = e* which leads to the characteristic equation a’e® — £e* = 0, resulting in

o= i\/% . Assuming constant input p.o leads to the partial solution 7,(t) = p.o, and the
space of solutions for the entire ODE is given by

r(t) = B1e™ + Bae™ + peg (A.10)

where 31,02 € R are the free parameters describing the motion. Imposing the initial
position 7(0) = 1 + B2 + peo = 1o and velocity 7(0) = af; — afs = 7, we obtain

1 T
Pr2 = 5(7“0 + EO — Peo)- (A.11)

74

A.4. Dynamic constraint

As t — oo we require the velocity 7(¢) to remain at zero (pendulum at rest). With av # 0
follows that lim,_,., e~ = 0, so we must only ensure

lim 7(¢) = af; lim e* =0 & B =0
t—00 t—00

R (A.12)
= Deo = 1o+ 'y,

which is known as the one-step Capture Point originally derived in [40].

A.4 Dynamic constraint

The system dynamics constraint (4.11) enforced through #[t] = Fa(x[t], u[t]), with the
local polynomial time t=(t — t), are formulated as

ift] = - i(i — Dt = 2 (x(t) — pe(t))
=2 (A.13)

4
&Y ant ™ (il 1) =) = % (ao + aat — pelt).
1=2

A.5 Hermite parameterization

Each cubic polynomial z(t) = ag + a1t + ast? + ast® introduced in (5.3) can either be
parameterized by its coefficients or the value and first derivative and the end points zq, 21
and the duration AT as

ag = o
a; = To

ay = —AT?[3(zg — x1) + AT (220 + 21)]
as = AT?[2(zg — 21) + AT (g + 1))

(A.14)

A.6 Euler angles and rates to angular velocities

The transformation from the optimized Euler angles 6 (order of application: yaw, pitch,
roll) and rates € to the angular velocities in world frame used in (5.2) are [94]

con- |] 29 41
: B sin(8,) o 1| |d (A.15)

w=C(6,0)0+C(6)0.

75

1.1

2.1

3.1

4.1

5.1

Overview of dynamic models used in legged locomotion 8
Capabilities (2.2) of our developed motion-planning algorithms. 21
Results of the online optimization for various tasks 33
Specs of the NLP for 16- and 4-step motions 51
NLP specs for bipedal gap crossing, 68

76

1.1
1.2
1.3

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
5.5
5.6

Sense-Plan-Act loop for autonomous agents
Dynamic models used for legged locomotion

Examples of floating-base systems

Approaches to solve a legged locomotion task
A quadruped robot modeled as a cart table.
Plan and execute optimal walking motions
Foothold and body motion optimization

Generated 8-step quadruped walking motion

Quadruped modeled as Linear Inverted Pendulum Model
Overview of the TO problem with LIPM for legged locomotion
Top-down view of a biped with non point feet
Planning and execution pipeline L.

Generated quadruped gaits (walk, trot, pace, bound)

Snapshots produced by TOWR
TO problem formulation for legged locomotion
Quadruped robot model (dynamic + kinematic)
Biped contact schedule variations,
Phase-based end-effector parameterization

Generated motion-plan for biped gap crossing

7

Bibliography

D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Constrained model
predictive control: stability and optimality”, Automatica, vol. 36, no. 6, pp. 789-814,
2000. por1: 10.1016/S0005-1098(99)00214-9 (Cit. on p. 2).

Flaticon, Freepik, and D. Gandy, http://www . freepik . com, https: //www .
flaticon.com, 2017 (cit. on p. 2).

L. Righetti, J. Buchli, M. Mistry, and S. Schaal, “Inverse dynamics control of floating-
base robots with external constraints: A unified view”, IEEE International Confer-
ence on Robotics and Automation, pp. 10851090, 2011. por: 10.1109/ICRA.2011.
5980156 (cit. on pp. 2, 10).

F. Farshidian, E. Jelavic, A. W. Winkler, and J. Buchli, “Robust whole-body mo-
tion control of legged robots”, in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2017. DOI: 10.1109/IR0S.2017.8206328 (cit. on p. 2).

C Semini, N. G. Tsagarakis, E Guglielmino, M Focchi, F Cannella, and D. G. Cald-
well, “Design of hyq - a hydraulically and electrically actuated quadruped robot”,
Journal of Systems and Control Engineering, vol. 225, no. 6, pp. 831-849, 2011. DOI:
10.1177/0959651811402275 (cit. on pp. 4, 6, 32, 50, 66).

A. Herzog, “Optimization-based motion generation for multiped robots in contact
scenarios”, PhD thesis, ETH Zurich, 2017. DOI: 10.3929/ethz-b-000199099 (cit.
on pp. 4, 19).

H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning with cen-
troidal dynamics and full kinematics”, IEFE-RAS International Conference on Hu-
manoid Robots, 2014. DOI: 10.1109/HUMANOIDS . 2014 .7041375 (cit. on pp. 5, 20,
24, 37, 57).

A. Herzog, S. Schaal, and L. Righetti, “Structured contact force optimization for
kino-dynamic motion generation”, in IEEE International Conference on Intelligent
Robots and Systems, 2016, pp. 2703-2710. DOI: 10.1109/IR0S.2016.7759420 (cit.

on pp. 5, 19, 56).

78

http://dx.doi.org/10.1016/S0005-1098(99)00214-9
http://www.freepik.com
https://www.flaticon.com
https://www.flaticon.com
http://dx.doi.org/10.1109/ICRA.2011.5980156
http://dx.doi.org/10.1109/ICRA.2011.5980156
http://dx.doi.org/10.1109/IROS.2017.8206328
http://dx.doi.org/10.1177/0959651811402275
http://dx.doi.org/10.3929/ethz-b-000199099
http://dx.doi.org/10.1109/HUMANOIDS.2014.7041375
http://dx.doi.org/10.1109/IROS.2016.7759420

BIBLIOGRAPHY

[16]

[17]

[18]

[19]

J. Carpentier, S. Tonneau, M. Naveau, O. Stasse, and N. Mansard, “A versatile and
efficient pattern generator for generalized legged locomotion”, IEEE International
Conference on Robotics and Automation, no. 3, pp. 3555-3561, 2016. DO1: 10.1109/
ICRA.2016.7487538 (cit. on pp. 5, 19, 24, 37, 56).

D. E. Orin, A. Goswami, and S. H. Lee, “Centroidal dynamics of a humanoid robot”,
Autonomous Robots, vol. 35, no. 2-3, pp. 161-176, 2013. DOI: 10.1007/s10514-013~
9341-4 (cit. on pp. 5, 56, 72).

M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis, J. Hwangbo,
K. Bodie, P. Fankhauser, M. Bloesch, R. Diethelm, S. Bachmann, A. Melzer, and M.
Hoepflinger, “ANYmal - A highly mobile and dynamic quadrupedal robot”, IEEE
International Conference on Intelligent Robots and Systems, pp. 38—44, 2016. DOTI:
10.1109/IR0S.2016.7758092 (cit. on pp. 6, 60, 66).

S. Seok, A. Wang, M. Y. M. Chuah, D. J. Hyun, J. Lee, D. M. Otten, J. H. Lang, and
S. Kim, “Design principles for energy-efficient legged locomotion and implementation
on the mit cheetah robot”, IEEE/ASME Transactions on Mechatronics, vol. 20, no.
3, pp. 1117-1129, 2015. por: 10.1109/TMECH. 2014 .2339013 (cit. on p. 6).

Boston Dynamics, Spotmini, "Youtube: https://youtu.be/tf7IEVIDjng", 2016
(cit. on p. 6).

Agility Robotics, Cassie, "Youtube: https://youtu.be/Is4JZghAy-M", 2017 (cit.
on p. 6).

K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, K. Akachi,
and T. Isozumi, “Humanoid robot hrp-2”, in IEFEE International Conference on
Robotics and Automation, vol. 2, 2004, pp. 1083-1090. DOI: 10.1109/R0OBOT. 2004 .
1307969 (cit. on pp. 6, 19).

G. Bledt, P. M. Wensing, and S. Kim, “Policy-regularized model predictive control
to stabilize diverse quadrupedal gaits for the mit cheetah”, 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 4102-4109, 2017.
DOI: 10.1109/IR0S.2017.8206268 (cit. on pp. 6, 20).

A. W. Winkler, D. C. Bellicoso, M. Hutter, and J. Buchli, “Gait and trajectory
optimization for legged systems through phase-based end-effector parameterization”,
IEEE Robotics and Automation Letters (RA-L), vol. 3, pp. 1560-1567, 2018. DOT:
10.1109/LRA.2018.2798285 (cit. on pp. 6, 13, 22).

M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal, “Learning, planning,
and control for quadruped locomotion over challenging terrain”, The International
Journal of Robotics Research, vol. 30, no. 2, pp. 236-258, Nov. 2010. po1: 10.1177/
0278364910388677 (cit. on pp. 7, 14, 24, 28, 29, 37, 43).

V. Barasuol, J. Buchli, C. Semini, M. Frigerio, E. R. De Pieri, and D. G. Caldwell, “A
reactive controller framework for quadrupedal locomotion on challenging terrain”,
IEEFE International Conference on Robotics and Automation, pp. 2554-2561, 2013.
DOI: 10.1109/ICRA.2013.6630926 (cit. on pp. 7, 37, 56).

79

http://dx.doi.org/10.1109/ICRA.2016.7487538
http://dx.doi.org/10.1109/ICRA.2016.7487538
http://dx.doi.org/10.1007/s10514-013-9341-4
http://dx.doi.org/10.1007/s10514-013-9341-4
http://dx.doi.org/10.1109/IROS.2016.7758092
http://dx.doi.org/10.1109/TMECH.2014.2339013
https://youtu.be/tf7IEVTDjng
https://youtu.be/Is4JZqhAy-M
http://dx.doi.org/10.1109/ROBOT.2004.1307969
http://dx.doi.org/10.1109/ROBOT.2004.1307969
http://dx.doi.org/10.1109/IROS.2017.8206268
http://dx.doi.org/10.1109/LRA.2018.2798285
http://dx.doi.org/10.1177/0278364910388677
http://dx.doi.org/10.1177/0278364910388677
http://dx.doi.org/10.1109/ICRA.2013.6630926

BIBLIOGRAPHY

[20]

[21]

[23]

[24]

[31]

A. W. Winkler, C. Mastalli, I. Havoutis, M. Focchi, D. Caldwell, and C. Sem-
ini, “Planning and execution of dynamic whole-body locomotion for a hydraulic
quadruped on challenging terrain”, in IEEFE International Conference on Robotics
and Automation (ICRA), 2015, pp. 5148-5154. DOI: 10.1109/ICRA.2015.7139916
(cit. on pp. 7, 24, 37, 56).

C. D. Bellicoso, F. Jenelten, C. Gehring, and M. Hutter, “Dynamic locomotion
through online nonlinear motion optimization for quadrupedal robots”, IEEFE Robotics
and Automation Letters, 2018. DOI: 10.1109/LRA.2018.2794620 (cit. on pp. 7, 19,
66).

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H.
Hirukawa, “Biped walking pattern generation by using preview control of zero-
moment point”, International Conference on Robotics and Automation, pp. 1620—
1626, 2003. DOI: 10.1109/R0OBOT. 2003 . 1241826 (cit. on pp. 7, 10, 19, 24, 37, 38,
56).

M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal, “Fast, robust
quadruped locomotion over challenging terrain”, IEEE International Conference on
Robotics and Automation, pp. 2665—2670, 2010. bo1: 10.1109/R0OBOT.2010.5509805
(cit. on pp. 7, 56).

C. D. Bellicoso, F. Jenelten, P. Fankhauser, C. Gehring, J. Hwangbo, and M. Hut-
ter, “Dynamic Locomotion and Whole-Body Control for Quadrupedal Robots”; in
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017. DOTI:
10.3929/ethz-b-000174751 (cit. on pp. 7, 19).

H. Hirukawa, S. Hattori, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro, K. Fujiwara,
and M. Morisawa, “A universal stability criterion of the foot contact of legged robots
- adios zmp”, IEEFE International Conference on Robotics and Automation, pp. 1976—
1983, 2006. pOI: 10.1109/R0OBOT.2006.1641995 (cit. on p. 7).

Alphabet Waymo, Firefly car, 'ITmage: https://waymo.con", 2016 (cit. on p. 9).
DJI, Phantom 2 drone, "Image: https://www.dji.com/phantom-2", 2016 (cit. on
p. 9).

ANYbotics, Anymal bear, "Image: https://www.anybotics.com/anymal", 2018
(cit. on p. 9).

Boston Dynamics, Atlas, "Image: https://www.bostondynamics.com/atlas", 2016
(cit. on p. 9).

M. Diehl, H. G. Bock, H. Diedam, and P. B. Wieber, “Fast direct multiple shooting
algorithms for optimal robot control”, Lecture Notes in Control and Information
Sciences, vol. 340, pp. 65-93, 2006. DOT: 10.1007/978-3-540-36119-0_4 (cit. on
pp. 11, 12, 43, 59).

J. T. Betts, “Survey of numerical methods for trajectory optimization”, Journal of
Guidance, Control, and Dynamics, vol. 21, no. 2, pp. 193-207, 1998. por: 10.2514/
2.4231 (cit. on pp. 11, 55).

80

http://dx.doi.org/10.1109/ICRA.2015.7139916
http://dx.doi.org/10.1109/LRA.2018.2794620
http://dx.doi.org/10.1109/ROBOT.2003.1241826
http://dx.doi.org/10.1109/ROBOT.2010.5509805
http://dx.doi.org/10.3929/ethz-b-000174751
http://dx.doi.org/10.1109/ROBOT.2006.1641995
https://waymo.com
https://www.dji.com/phantom-2
https://www.anybotics.com/anymal
https://www.bostondynamics.com/atlas
http://dx.doi.org/10.1007/978-3-540-36119-0_4
http://dx.doi.org/10.2514/2.4231
http://dx.doi.org/10.2514/2.4231

BIBLIOGRAPHY

32]

[33]

[34]

[35]

[38]

[40]

[41]

[42]

M. P. Kelly, “Transcription Methods for Trajectory Optimization: a beginners tu-
torial”, ArXiv e-prints, Jul. 2017. arXiv: 1707 . 00284 [math.0C] (cit. on pp. 11,
12).

S. Mehrotra, “On the implementation of a primal-dual interior point method”, SIAM
Journal on optimization, vol. 2, no. 4, pp. 575-601, 1992. por: 10.1137/0802028
(cit. on p. 11).

J. Nocedal and S. J. Wright, Sequential quadratic programming. Springer, 2006. DOI:
10.1007/978-0-387-40065-5 (Cit. on p. 11).

A. Waechter and L. T. Biegler, “On the implementation of an interior-point fil-
ter line-search algorithm for large-scale nonlinear programming”, Mathematical Pro-
gramming, vol. 106, no. 1, pp. 25-57, 2006. pO1: 10.1007/s10107-004-0559~-y
(cit. on pp. 11, 32, 50, 69).

P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP Algorithm for Large-
Scale Constrained Optimization, 2002. DOIL: 10.1137/S51052623499350013 (cit. on
pp. 11, 50).

D. Pardo, L. Moeller, M. Neunert, A. W. Winkler, and J. Buchli, “Evaluating direct
transcription and nonlinear optimization methods for robot motion planning”, IEEFE
Robotics and Automation Letters (RA-L), pp. 946-953, 2016. pOI: 10.1109/LRA.
2016.2527062 (cit. on pp. 12, 24).

A. W. Winkler, F. Farshidian, M. Neunert, D. Pardo, and J. Buchli, “Online walking
motion and foothold optimization for quadruped locomotion”, in IEEE International
Conference on Robotics and Automation (ICRA), 2017, pp. 5308-5313. poI: 10.
1109/ICRA.2017.7989624 (cit. on pp. 13, 21, 37, 56).

A. W. Winkler, F. Farshidian, D. Pardo, M. Neunert, and J. Buchli, “Fast trajectory
optimization for legged robots using vertex-based zmp constraints”, IEEE Robotics
and Automation Letters (RA-L), vol. 2, pp. 2201-2208, Oct. 2017. DO1: 10.1109/
LRA.2017.2723931 (cit. on pp. 13, 22, 56).

J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A step toward
humanoid push recovery”, in IEEE-RAS International Conference on Humanoid
Robots, 2006, pp. 200-207. DOI: 10.1109/ICHR.2006.321385 (cit. on pp. 14, 19, 37,
41, 75).

N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source
multi-robot simulator”, in IEEE/RSJ International Conference on Intelligent Robots
and Systems, Sendai, Japan, 2004, pp. 2149-2154. po1: 10 . 1109/ IROS . 2004 .
1389727 (cit. on p. 18).

J. Englsberger, C. Ott, and A. Albu-Schéffer, “Three-dimensional bipedal walking
control based on divergent component of motion”, IEEE Transactions on Robotics,
vol. 31, no. 2, pp. 355-368, 2015. DOI: 10.1109/TRO.2015.2405592 (cit. on p. 19).

81

http://arxiv.org/abs/1707.00284
http://dx.doi.org/10.1137/0802028
http://dx.doi.org/10.1007/978-0-387-40065-5
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1137/S1052623499350013
http://dx.doi.org/10.1109/LRA.2016.2527062
http://dx.doi.org/10.1109/LRA.2016.2527062
http://dx.doi.org/10.1109/ICRA.2017.7989624
http://dx.doi.org/10.1109/ICRA.2017.7989624
http://dx.doi.org/10.1109/LRA.2017.2723931
http://dx.doi.org/10.1109/LRA.2017.2723931
http://dx.doi.org/10.1109/ICHR.2006.321385
http://dx.doi.org/10.1109/IROS.2004.1389727
http://dx.doi.org/10.1109/IROS.2004.1389727
http://dx.doi.org/10.1109/TRO.2015.2405592

BIBLIOGRAPHY

[43]

[44]

[45]

[47]

[49]

[50]

[51]

A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, and M. Diehl,
“Online walking motion generation with automatic footstep placement”, Advanced
Robotics, vol. 24, no. 5-6, pp. 719-737, 2010. por: 10.1163/016918610X493552 (cit.
on pp. 19, 25).

M Naveau, M Kudruss, O Stasse, C Kirches, K Mombaur, and P Souéres, “A Reactive
Walking Pattern Generator Based on Nonlinear Model Predictive Control”, IEFEE
Robotics and Automation Letters, vol. 2, no. 1, pp. 10-17, 2017. DO1: 10.1109/LRA.
2016.2518739 (cit. on pp. 19, 37, 38, 56).

C. Gehring, C. D. Bellicoso, P. Fankhauser, S. Coros, and M. Rutter, “Quadrupedal
locomotion using trajectory optimization and hierarchical whole body control”, in
2017 IEEFE International Conference on Robotics and Automation, 2017, pp. 4788~
4794. por: 10.1109/ICRA.2017.7989557 (Cit. on p. 19).

M Kudruss, M Naveau, O Stasse, N. Mansard, C Kirches, P Soueres, and K. Mom-
baur, “Optimal Control for Multi-Contact, Whole-Body Motion Generation using
Center-of-Mass Dynamics for Multi-Contact Situations”, IEEE-RAS International
Conference on Humanoid Robots, pp. 684-689, 2015. poI: 10 . 1109 /HUMANOIDS .
2015.7363428 (cit. on pp. 19, 56).

S. Tonneau, N. Mansard, C. Park, D. Manocha, F. Multon, and J. Pettré, “A
reachability-based planner for sequences of acyclic contacts in cluttered environ-
ments”, in Robotics Research: Volume 2, A. Bicchi and W. Burgard, Eds. Springer
International Publishing, 2018, pp. 287-303. DO1: 10.1007/978-3-319-60916-4 17
(cit. on p. 19).

A. Herzog, N. Rotella, S. Schaal, and L. Righetti, “Trajectory generation for multi-
contact momentum control”, in IEEE-RAS International Conference on Humanoid
Robots, IEEE, 2015, pp. 874-880. DOI: 10.1109/HUMANOIDS.2015.7363464 (cit. on

p. 19).
B. Ponton, A. Herzog, S. Schaal, and L. Righetti, “A convex model of humanoid mo-
mentum dynamics for multi-contact motion generation”, IEFEE-RAS International

Conference on Humanoid Robots, pp. 842-849, 2016. por: 10 . 1109 /HUMANOIDS .
2016.7803371 (cit. on pp. 19, 56).

D. Mayne, “A second-order gradient method for determining optimal trajectories
of non-linear discrete-time systems”, International Journal of Control, vol. 3, no. 1,
pp. 85-95, 1966. DOI: 10.1080/00207176608921369 (cit. on p. 19).

F. Romano, A. Del Prete, N. Mansard, and F. Nori, “Prioritized optimal control:
a hierarchical differential dynamic programming approach”, in IEEFE International
Conference on Robotics and Automation, 2015, pp. 3590-3595. DOI: 10.1109/ICRA.
2015.7139697 (cit. on p. 19).

A. Sideris and J. E. Bobrow, “An efficient sequential linear quadratic algorithm for
solving nonlinear optimal control problems”, in American Control Conference, 2005,
pp. 2275-2280. DOI: 10.1109/ACC.2005. 1470308 (cit. on p. 19).

82

http://dx.doi.org/10.1163/016918610X493552
http://dx.doi.org/10.1109/LRA.2016.2518739
http://dx.doi.org/10.1109/LRA.2016.2518739
http://dx.doi.org/10.1109/ICRA.2017.7989557
http://dx.doi.org/10.1109/HUMANOIDS.2015.7363428
http://dx.doi.org/10.1109/HUMANOIDS.2015.7363428
http://dx.doi.org/10.1007/978-3-319-60916-4_17
http://dx.doi.org/10.1109/HUMANOIDS.2015.7363464
http://dx.doi.org/10.1109/HUMANOIDS.2016.7803371
http://dx.doi.org/10.1109/HUMANOIDS.2016.7803371
http://dx.doi.org/10.1080/00207176608921369
http://dx.doi.org/10.1109/ICRA.2015.7139697
http://dx.doi.org/10.1109/ICRA.2015.7139697
http://dx.doi.org/10.1109/ACC.2005.1470308

BIBLIOGRAPHY

[53]

[54]

[55]

[56]

[59]

[60]

[61]

[62]

E. Todorov and W. Li, “A generalized iterative lqg method for locally-optimal feed-
back control of constrained nonlinear stochastic systems”, in American Control Con-
ference, 2005, pp. 300-306. DOI: 10.1109/ACC.2005.1469949 (cit. on p. 19).

Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of complex behaviors
through online trajectory optimization”, in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2012, pp. 4906-4913. Do1: 10.1109/IR0S.2012.
6386025 (cit. on p. 19).

F. Farshidian, M. Neunert, A. W. Winkler, G. Rey, and J. Buchli, “An efficient
optimal planning and control framework for quadrupedal locomotion”, in IEEE In-
ternational Conference on Robotics and Automation (ICRA), 2017, pp. 93-100. DOI:
10.1109/ICRA.2017.7989016 (cit. on pp. 19, 20, 24, 37, 56).

M. Giftthaler, F. Farshidian, T. Sandy, L. Stadelmann, and J. Buchli, “Efficient
kinematic planning for mobile manipulators with non-holonomic constraints using
optimal control”, in IEFEE International Conference on Robotics and Automation,
2017, pp. 3411-3417. por: 10.1109/ICRA.2017.7989388 (cit. on p. 19).

F. Farshidian, E. Jelavic, A. Satapathy, M. Giftthaler, and J. Buchli, “Real-time
motion planning of legged robots: a model predictive control approach”, in IEFE-
RAS International Conference on Humanoid Robotics, 2017, pp. 577-584. DOI: 10.
1109/HUMANOIDS . 2017.8246930 (cit. on pp. 19, 20).

F. Aghili, “A unified approach for inverse and direct dynamics of constrained multi-
body systems based on linear projection operator: Applications to control and sim-
ulation”, IEFEE Transactions on Robotics, vol. 21, no. 5, pp. 834-849, 2005. DOTI:
10.1109/TR0.2005.851380 (cit. on pp. 19, 32, 49).

C. Hargraves and S. Paris, “Direct trajectory optimization using nonlinear program-
ming and collocation”, Journal of Guidance, Control, and Dynamics, 1987. DOLI:
10.2514/3.20223 (cit. on pp. 19, 45).

D. Pardo, M. Neunert, A. W. Winkler, R. Grandia, and J. Buchli, “Hybrid direct
collocation and control in the constraint- consistent subspace for dynamic legged
robot locomotion”, in Robotics, Science and Systems (RSS), 2017. DOI: 10.15607/
RSS.2017.XIII.042 (cit. on pp. 20, 37, 56).

I. Mordatch, M. de Lasa, and A. Hertzmann, “Robust physics-based locomotion
using low-dimensional planning”, ACM Transactions on Graphics, vol. 29, no. 4,
p. 1, 2010. DOT: 10.1145/1778765.1778808 (cit. on pp. 20, 24, 37, 56).

C. Mastalli, M. Focchi, I. Havoutis, A. Radulescu, S. Calinon, J. Buchli, D. G. Cald-
well, and C. Semini, “Trajectory and foothold optimization using low-dimensional
models for rough terrain locomotion”, in IEEFE International Conference on Robotics
and Automation, 2017, pp. 1096-1103. por: 10.1109/ICRA.2017.7989131 (cit. on
pp- 20, 56).

83

http://dx.doi.org/10.1109/ACC.2005.1469949
http://dx.doi.org/10.1109/IROS.2012.6386025
http://dx.doi.org/10.1109/IROS.2012.6386025
http://dx.doi.org/10.1109/ICRA.2017.7989016
http://dx.doi.org/10.1109/ICRA.2017.7989388
http://dx.doi.org/10.1109/HUMANOIDS.2017.8246930
http://dx.doi.org/10.1109/HUMANOIDS.2017.8246930
http://dx.doi.org/10.1109/TRO.2005.851380
http://dx.doi.org/10.2514/3.20223
http://dx.doi.org/10.15607/RSS.2017.XIII.042
http://dx.doi.org/10.15607/RSS.2017.XIII.042
http://dx.doi.org/10.1145/1778765.1778808
http://dx.doi.org/10.1109/ICRA.2017.7989131

BIBLIOGRAPHY

[63]

[64]

[65]

[67]

[68]

[69]

[70]

[71]

B. Aceituno-Cabezas, C. Mastalli, H. Dai, M. Focchi, A. Radulescu, D. G. Caldwell,
J. Cappelletto, J. C. Grieco, G. Fernandez-Lopez, and C. Semini, “Simultaneous
contact, gait and motion planning for robust multi-legged locomotion via mixed-
integer convex optimization”, IEEE Robotics and Automation Letters, 2017. DOTI:
10.1109/LRA.2017.2779821 (Cit. on p. 20).

S. Coros, A. Karpathy, B. Jones, L. Reveret, and M. van de Panne, “Locomotion
skills for simulated quadrupeds”, ACM SIGGRAPH, p. 1, 2011. por: 10. 1145/
1964921.1964954 (cit. on pp. 20, 24, 37, 56).

C. Gehring, S. Coros, M. Hutter, M. Bloesch, P. Fankhauser, M. A. Hoepflinger, and
R. Siegwart, “Towards automatic discovery of agile gaits for quadrupedal robots”,
IEEFE International Conference on Robotics and Automation, pp. 4243-4248, 2014.
DOI: 10.1109/ICRA.2014.6907476 (cit. on pp. 20, 56).

C. Gehring, S. Coros, M. Hutter, C. Dario Bellicoso, H. Heijnen, R. Diethelm, M.
Bloesch, P. Fankhauser, J. Hwangbo, M. Hoepflinger, and R. Siegwart, “Practice
Makes Perfect: An Optimization-Based Approach to Controlling Agile Motions for a
Quadruped Robot”, IEEE Robotics and Automation Magazine, vol. 23, no. 1, pp. 34—
43, 2016. DOT: 10.1109/MRA.2015.2505910 (cit. on pp. 20, 24).

M. Neunert, F. Farshidian, A. W. Winkler, and J. Buchli, “Trajectory optimization
through contacts and automatic gait discovery for quadrupeds”, IEEE Robotics and
Automation Letters (RA-L), vol. 2, pp. 15021509, 2017. por: 10.1109/LRA.2017.
2665685 (cit. on pp. 20, 24, 37, 57).

M. Neunert, M. Stauble, M. Giftthaler, C. D. Bellicoso, J. Carius, C. Gehring, M.
Hutter, and J. Buchli, “Whole-body nonlinear model predictive control through con-
tacts for quadrupeds”, IEEE Robotic and Automation Letters, 2018. DOI: 10.1109/
LRA.2018.2800124 (Cit. on p. 20).

I. Mordatch, E. Todorov, and Z. Popovi¢, “Discovery of complex behaviors through
contact-invariant optimization”, ACM Transactions on Graphics, vol. 31, no. 4,
pp. 1-8, 2012. DOI: 10.1145/2185520.2335394 (cit. on pp. 20, 24, 37, 57).

M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory optimization of
rigid bodies through contact”, The International Journal of Robotics Research, vol.
33, no. 1, pp. 69-81, 2013. pOI: 10.1177/0278364913506757 (cit. on pp. 20, 24, 37,
57).

C. Mastalli, I. Havoutis, M. Focchi, D. G. Caldwell, and C. Semini, “Hierarchical
planning of dynamic movements without scheduled contact sequences”, in IEEFE
International Conference on Robotics and Automation, 2016, pp. 4636-4641. DOI:
10.1109/ICRA.2016.7487664 (Cit. on p. 2()).

A. W. Winkler, TOWR — An open-source Trajecetory Optimizer for Legged Robots
in C++, http://wiki.ros.org/towr (cit. on pp. 22, 55, 66).

84

http://dx.doi.org/10.1109/LRA.2017.2779821
http://dx.doi.org/10.1145/1964921.1964954
http://dx.doi.org/10.1145/1964921.1964954
http://dx.doi.org/10.1109/ICRA.2014.6907476
http://dx.doi.org/10.1109/MRA.2015.2505910
http://dx.doi.org/10.1109/LRA.2017.2665685
http://dx.doi.org/10.1109/LRA.2017.2665685
http://dx.doi.org/10.1109/LRA.2018.2800124
http://dx.doi.org/10.1109/LRA.2018.2800124
http://dx.doi.org/10.1145/2185520.2335394
http://dx.doi.org/10.1177/0278364913506757
http://dx.doi.org/10.1109/ICRA.2016.7487664
http://wiki.ros.org/towr

BIBLIOGRAPHY

[81]

[82]

[83]

G. Schultz and K. Mombaur, “Modeling and optimal control of human-like running”,
IEEE/ASME Transactions on Mechatronics, vol. 15, no. 5, pp. 783-792, 2010. DOT:
10.1109/TMECH.2009.2035112 (cit. on pp. 24, 37, 56).

K. H. Koch, K. Mombaur, and P. Soueres, “Optimization-based walking generation
for humanoid robot”, IFAC Proceedings, vol. 45, no. 22, pp. 498-504, 2012. DOI:
10.3182/20120905-3-HR-2030.00189 (Cit. on p. 24).

S. Lengagne, J. Vaillant, E. Yoshida, and A. Kheddar, “Generation of whole-body
optimal dynamic multi-contact motions”, The International Journal of Robotics Re-
search, vol. 32, no. 9-10, pp. 1104-1119, 2013. por: 10.1177/0278364913478990
(cit. on p. 24).

P. Hamalainen, S. Eriksson, E. Tanskanen, V. Kyrki, and J. Lehtinen, “Online mo-
tion synthesis using sequential monte carlo”, ACM Transactions on Graphics (TOG),
vol. 33, no. 4, p. 51, 2014. poI: 10.1145/2601097.2601218 (cit. on p. 24).

J. Z. Kolter, M. P. Rodgers, and A. Y. Ng, “A control architecture for quadruped
locomotion over rough terrain”, IEEE International Conference on Robotics and
Automation, pp. 811-818, 2008. DO1: 10.1109/R0OBOT.2008.4543305 (cit. on pp. 24,
37).

A. W. Winkler, I. Havoutis, S. Bazeille, J. Ortiz, M. Focchi, R. Dillmann, D. Cald-
well, and C. Semini, “Path planning with force-based foothold adaptation and virtual
model control for torque controlled quadruped robots”, in IEEE International Con-
ference on Robotics and Automation (ICRA), 2014, pp. 6476-6482. por: 10.1109/
ICRA.2014.6907815 (cit. on pp. 24, 37, 56).

M. Vukobratovié¢ and B. Borovac, “Zero-moment point - thirty five years of its life”,
International Journal of Humanoid Robotics, vol. 01, no. 01, pp. 157173, 2004. DOTI:
10.1142/50219843604000083 (cit. on pp. 24, 37, 55).

H. Diedam, D. Dimitrov, P.-b. Wieber, K. Mombaur, and M. Diehl, “Online walk-
ing gait generation with adaptive foot positioning through linear model predictive
control”, IEEE International Conference on Intelligent Robots and Systems, 2009.
DOI: 10.1109/IR0S.2008.4651055 (cit. on pp. 25, 37, 38, 56).

M. Mistry, J. Buchli, and S. Schaal, “Inverse dynamics control of floating base sys-
tems using orthogonal decomposition”, IEEFE International Conference on Robotics
and Automation, no. 3, pp. 3406-3412, 2010. por: 10.1109/R0OBOT. 2010 .5509646
(cit. on pp. 32, 49).

O. Khatib, “A unified approach for motion and force control of robot manipulators:

The operational space formulation”, IEEE Journal on Robotics and Automation, vol.
3, no. 1, pp. 43-53, 1987. DOI: 10.1109/JRA.1987.1087068 (cit. on p. 32).

M. Bloesch, M. Hutter, M. A. Hoepflinger, S. Leutenegger, C. Gehring, C. D. Remy,
and R. Siegwart, “State Estimation for Legged Robots - Consistent Fusion of Leg
Kinematics and IMU”, Robotics: Science and Systems, p. 2005, 2012. DOI: 10. 15607/
RSS.2012.VIII.003 (cit. on pp. 32, 50).

85

http://dx.doi.org/10.1109/TMECH.2009.2035112
http://dx.doi.org/10.3182/20120905-3-HR-2030.00189
http://dx.doi.org/10.1177/0278364913478990
http://dx.doi.org/10.1145/2601097.2601218
http://dx.doi.org/10.1109/ROBOT.2008.4543305
http://dx.doi.org/10.1109/ICRA.2014.6907815
http://dx.doi.org/10.1109/ICRA.2014.6907815
http://dx.doi.org/10.1142/S0219843604000083
http://dx.doi.org/10.1109/IROS.2008.4651055
http://dx.doi.org/10.1109/ROBOT.2010.5509646
http://dx.doi.org/10.1109/JRA.1987.1087068
http://dx.doi.org/10.15607/RSS.2012.VIII.003
http://dx.doi.org/10.15607/RSS.2012.VIII.003

BIBLIOGRAPHY

[84]

[85]

[36]

[90]

[91]

[92]

[93]

[94]

M. Frigerio, J. Buchli, D. G. Caldwell, and C. Semini, “RobCoGen : a code generator
for efficient kinematics and dynamics of articulated robots , based on Domain Specific

Languages”, Journal of Software Engineering for Robotics, vol. 7, no. July, pp. 36—
54, 2016 (cit. on pp. 32, 50).

M. Posa, S. Kuindersma, and R. Tedrake, “Optimization and stabilization of tra-
jectories for constrained dynamical systems”, IEEE International Conference on
Robotics and Automation, no. 724454, pp. 13661373, 2016. DOI1: 10.1109/ICRA.
2016.7487270 (cit. on p. 37).

C. Gehring, S. Coros, M. Hutter, M. Bloesch, M. A. Hoepflinger, and R. Siegwart,
“Control of dynamic gaits for a quadrupedal robot”, IEEE International Conference
on Robotics and Automation, pp. 3287-3292, 2013. por: 10 . 1109/ ICRA . 2013.
6631035 (cit. on p. 37).

B. J. Stephens and C. G. Atkeson, “Push recovery by stepping for humanoid robots
with force controlled joints”, in IEEE-RAS International Conference on Humanoid
Robots, 2010, pp. 52-59. DOI: 10.1109/ICHR.2010.5686288 (cit. on pp. 37, 38).

A. Herdt, N. Perrin, and P. B. Wieber, “Walking without thinking about it”, In-
ternational Conference on Intelligent Robots and Systems, pp. 190-195, 2010. DOI:
10.1109/IR0S.2010.5654429 (cit. on pp. 37, 38, 56).

D. Serra, C. Brasseur, A. Sherikov, D. Dimitrov, and P.-b. Wieber, “A Newton
method with always feasible iterates for Nonlinear Model Predictive Control of walk-
ing in a multi-contact situation”, IEFE-RAS International Conference on Humanoid
Robots, no. 1, pp. 6-11, 2016. DOT: 10 . 1109 /HUMANOIDS . 2016 . 7803384 (cit. on
p. 38).

H.-W. Park, P. M. Wensing, and S. Kim, “Online planning for autonomous running
jumps over obstacles in high-speed quadrupeds”, in Robotics: Science and Systems,
2015. pOI: 10.15607/RSS.2015.XI.047 (cit. on p. 56).

A. Ibanez, P. Bidaud, and V. Padois, “Emergence of humanoid walking behaviors
from mixed-integer model predictive control”, IEEE International Conference on
Intelligent Robots and Systems, pp. 4014-4021, 2014. por: 10.1109/IR0S.2014 .
6943127 (cit. on p. 56).

R. Deits and R. Tedrake, “Footstep planning on uneven terrain with mixed-integer
convex optimization”, IEEE-RAS International Conference on Humanoid Robots,
pp. 279-286, 2015. DOIL: 10.1109/HUMANOIDS.2014.7041373 (cit. on p. 56).

A. W. Winkler, XPP — A collection of ROS packages for the visualization of legged
robots, http://wiki.ros.org/xpp (cit. on p. 66).

C. Gehring, D. Bellicoso, M. Bloesch, H. Sommer, P. Fankhauser, M. Hutter, and R.
Siegwart, Kindr Library - Kinematics and Dynamics for Robotics, https://docs.

leggedrobotics.com/kindr/cheatsheet_latest.pdf, 2016 (cit. on p. 75).

86

http://dx.doi.org/10.1109/ICRA.2016.7487270
http://dx.doi.org/10.1109/ICRA.2016.7487270
http://dx.doi.org/10.1109/ICRA.2013.6631035
http://dx.doi.org/10.1109/ICRA.2013.6631035
http://dx.doi.org/10.1109/ICHR.2010.5686288
http://dx.doi.org/10.1109/IROS.2010.5654429
http://dx.doi.org/10.1109/HUMANOIDS.2016.7803384
http://dx.doi.org/10.15607/RSS.2015.XI.047
http://dx.doi.org/10.1109/IROS.2014.6943127
http://dx.doi.org/10.1109/IROS.2014.6943127
http://dx.doi.org/10.1109/HUMANOIDS.2014.7041373
http://wiki.ros.org/xpp
https://docs.leggedrobotics.com/kindr/cheatsheet_latest.pdf
https://docs.leggedrobotics.com/kindr/cheatsheet_latest.pdf

Curriculum Vitae

Alexander W. Winkler (born in 1988 in Germany) is
a PhD student at the Agile and Dexterous Robotics
Lab and the Robotic Systems Lab at ETH Zurich
under the supervision of Prof. Dr.Jonas Buchli and
Prof. Dr. Marco Hutter. He received his Bachelor’s and
Master’s Degree (with distinction) in Mechanical En-
gineering from the Karlsruhe Institute of Technology
(KIT) in 2012 and 2013. Before starting his PhD in
2014, he was a researcher at the Dynamic Legged Sys-
tems Lab headed by Dr. Claudio Semini at the Italian
Institute of Technology (IIT). His research focuses on
the optimal planning and control of dynamic motions Alexander W. Winkler
for legged systems. www.awinkler.me

List of publications

The following presents selected publications (including videos) contributing to the results
in this thesis. For an up-to-date list, please see Google Scholar.

1. Alexander W. Winkler, C. Dario Bellicoso, Marco Hutter, Jonas Buchli. Gait
and Trajectory Optimization for Legged Systems through Phase-based Endeffector
Parameterization. In Robotics and Automation Letters (RA-L). 2018. (Video)

2. Alexander W. Winkler, Farbod Farshidian, Diego Pardo, Michael Neunert, Jonas
Buchli. Fast Trajectory Optimization for Legged Robots using Verter-based ZMP
Constraints. In Robotics and Automation Letters (RA-L). 2017. (Video)

3. Alexander W. Winkler, Farbod Farshidian, Michael Neunert, Diego Pardo, Jonas
Buchli. Online Walking Motion and Foothold Optimization for Quadruped Locomo-
tion. In IEEE International Conference on Robotics and Automation (ICRA). 2017.
(Video)

87

www.awinkler.me
https://scholar.google.ch/citations?user=EElBh28AAAAJ&hl=en
https://youtu.be/0jE46GqzxMM
https://youtu.be/5WLeQMBuv30
https://youtu.be/EBW3lpr1tB8

Curriculum Vitae

10.

11.

12.

Alexander W. Winkler, Carlos Mastalli, loannis Havoutis, Michele Focchi, Dar-
win Caldwell, Claudio Semini. Planning and FExecution of Dynamic Whole-Body
Locomotion for a Hydraulic Quadruped on Challenging Terrain. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2015. (Video)

Alexander W. Winkler, loannis Havoutis, Stephane Bazeille, Jesus Ortiz, Michele
Focchi, Ruediger Dillmann, Darwin Caldwell, Claudio Semini. Path planning with
force-based foothold adaptation and virtual model control for torque controlled quadru-
ped robots. In IEEE International Conference on Robotics and Automation (ICRA),
2014. (Video)

Diego Pardo, Michael Neunert, Alexander W. Winkler, Ruben Grandia, Jonas
Buchli. Hybrid direct collocation and control in the constraint-consistent subspace for

dynamic legged robot locomotion. In Robotics, Science and Systems (RSS), 2017.
(Video)

Michael Neunert, Farbod Farshidian, Alexander W. Winkler, Jonas Buchli. Tra-
jectory Optimization Through Contacts and Automatic Gait Discovery for Quadru-
peds. In IEEE Robotics and Automation Letters (RA-L). 2017. (Video)

Diego Pardo, Lukas Moeller, Michael Neunert, Alexander W. Winkler, Jonas
Buchli. Fvaluating direct transcription and nonlinear optimization methods for robot
motion planning. IEEE Robotics and Automation Letters (RA-L), 2016. (Video)

Farbod Farshidian, Michael Neunert, Alexander W. Winkler, Gonzalo Rey, Jonas
Buchli. An Efficient Optimal Planning and Control Framework For Quadrupedal Lo-

comotion. In IEEE International Conference on Robotics and Automation (ICRA).
2017. (Video)

Farbod Farshidian, Edo Jelavi¢, Alexander W. Winkler, Jonas Buchli. Robust
Whole-Body Motion Control of Legged Robots. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2017. (Video)

Jonas Buchli, Farbod Farshidian, Alexander W. Winkler, Timothy Sandy, Markus
Gifthaler, Optimal and Learning Control for Autonomous Robots, arXiv:1708.09342,
2017.

Carlos Mastalli, Ioannis Havoutis, Alexander W. Winkler, Darwin Caldwell,
Claudio Semini. On-line and on-board planning for quadrupedal locomotion using
practical, on-board perception. IEEE International Conference on Practial Robot
Applications, 2017.

38

https://youtu.be/MF-qxA_syZg
https://youtu.be/HWizOJs_KvI
https://youtu.be/c2OgA8qBuS0
https://youtu.be/YDCi3negCwk
https://youtu.be/VGIROnFWgMw
https://youtu.be/KHi_C-SsC2A
https://youtu.be/bE2_-lpZU7o

Curriculum Vitae

List of software

The following software has been developed and open-sourced under the BSD3 license as
part of this thesis. For an up-to-date list, visit https://github.com/awinkler.

catowr

~¢/LFOPT

ptimizer interface

XBD

DYNAMIC MOTIONS

ToOWR generates physically feasible motions for legged
robots by solving an optimization problem. Physical
constraints as well as a desired goal position are given to
the solver that then generates the motion plan. TOWR
generates 4 step monoped hopping, biped walking, or
a complete quadruped trotting cycle, while optimizing
over the gait and step durations, in less than 100 ms.

https://github.com/ethz-adrl/towr

IroPT is a unified Eigen-based interface to use Non-
linear Programming solvers, such as Ipopt and Snopt.
The user defines the solver independent optimization
problem by set of C++ classes resembling variables, cost
and constraints. Subsequently, the problem can then
be solved with either solver. This package can also be
dropped in your catkin workspace.

https://github.com/ethz-adrl/ifopt

XPP is a collection of ROS-packages for the visualization
of motion plans for floating-base robots. Apart from
drawing support areas, contact forces and motion
trajectories in Rviz, it also displays these plans for
specific robots. Current robots include a one-legged, a
two-legged hopper, HyQ and a quadrotor.

https://github.com/leggedrobotics/xpp

89

https://opensource.org/licenses/BSD-3-Clause
https://github.com/awinkler
https://github.com/ethz-adrl/towr
https://github.com/ethz-adrl/ifopt
https://github.com/leggedrobotics/xpp

	Table of contents
	List of symbols
	List of acronyms
	Preface
	1 Introduction
	1.1 The bigger picture
	1.2 Dynamic models for legged systems
	1.3 Physics of legged locomotion
	1.4 Traditional legged locomotion planning
	1.5 Trajectory optimization

	2 Contributions
	2.1 Relevant publications
	2.2 Capability metrics of motion-planning algorithms
	2.3 State-of-the-art motion-planning algorithms
	2.4 List of contributions

	3 Paper I: Simultaneous foothold and body optimization
	3.1 Introduction
	3.2 Approach
	3.3 Results
	3.4 Conclusions

	4 Paper II: Vertex-based ZMP constraints
	4.1 Introduction
	4.2 Method
	4.3 Implementation
	4.4 Tracking the motion
	4.5 Results
	4.6 Conclusion

	5 Paper III: Gait and trajectory optimization
	5.1 Introduction
	5.2 Trajectory optimization formulation
	5.3 Robot model
	5.4 Contact model
	5.5 Results
	5.6 Conclusion

	6 Conclusions and outlook
	6.1 Summary
	6.2 Future directions

	A Appendix
	A.1 Derivation of SRBD from Centroidal Dynamics
	A.2 Derivation of LIPM from SRBD
	A.3 Derivation of Capture Point
	A.4 Dynamic constraint
	A.5 Hermite parameterization
	A.6 Euler angles and rates to angular velocities

	Lists of tables
	Lists of figures
	Bibliography
	Curriculum Vitae
	List of publications
	List of software

