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2WHAT ARE SELF-ADAPTIVE SYSTEMS ? 

[1] “A survey on engineering approaches for self-adaptive systems”, C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker 

Today systems must function in complex environments built out of 
infrastructure, components, services, and other systems that are not 
under direct control of the original system and/or its developers. These 
systems typically run in unpredictable and unstable environments.

A Self-Adaptive system (SAS) is able to automatically modify itself in 
response to changes in its operating environment [1].

The “self” prefix indicates that the systems decide autonomously (i.e. 
without or with minimal interference) how to adapt changes in their 
contexts. While some self-adaptive system may be able to function 
without any human intervention, guidance in the form of higher-level 
goals is useful and realized in many systems.



3LOOP
FEEDBACK CONTROL AND MAPE-K 

GENERIC MODEL
AI community’s sense-plan-act approach of the early 

1980s to control autonomous mobile robots

CONTROL THEORY AUTONOMIC COMPUTING
IBM’s architectural blueprint for autonomic computing
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5FRAMEWORK CHALLENGES

01 CONTAINMENT
Reuse, modularity and isolation of MAPE components as first-class entity.

02

03

COMMUNICATION INTERFACE (STANDARDIZATION)
Shared interface between components that allow stream communication, filtering, pre/post processing, data 
exchange communication and routing.

DISTRIBUTION
Multi-device distribution of MAPE loops and components.

04
DECENTRALIZED PATTERNS
Flat p2p and/or hierarchical architectures of loops and components with concerns separation. Allowing runtime 
pattern reconfiguration (stopping/starting, (un)linking, adding/removing).

05 NETWORK COMMUNICATION PARADIGMS
Different paradigms (blackboard, direct message) and protocols for various patterns interactions.

06 STATE / KNOWLEDGE
Distributed multi-scope (global, level, loop) Knowledge with partitioning and/or (full/partial async) replication.



6PARADIGMS AND TOOLS

Other used technologies: InfluxDB, Pub/Sub, RestAPI, (De)serialization system, Docker, Yaml, etc

ASYNCHRONOUS PROGRAMMING
Manage (I/O bound) tasks concurrency 
with non-blocking I/O operations.

01

02

03

04

REACTIVE SYSTEM/PROGRAMMING AND STREAM
System reactive to external event. Pillars: Responsive, Resilient, Elastic and Message 
Driven. Specific case of event-driven programming to avoid callback hell.

REACTIVEX (OBSERVER PATTERN)
Observables represent a source of events. An observer subscribes to an observable to receive items 

emitted (Hot, Cold, Subject,etc). Pipe operators modify streams flowing through them.

REDIS,  IN-MEMORY DATA STRUCTURE SERVER
Distributed, in-memory key-value data structure (strings, hashes, lists, (ordered) sets, 

queue, lock) store, cache and message broker with keyspace notifications. 
Partitioning and/or (full/partial async) replication.

single multi

sync getter iterable

async future observable
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PyMAPE FRAMEWORK
01
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MAIN
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10INSIDE AN ELEMENT
PORTS, PIPE OPERATORS, CORE FUNCTION …

GRAPHIC NOTATION



11CLASS DIAGRAM
REMOTE



12CLASS DIAGRAM
REMOTE

HASH, (SORTED) SET, 
LIST, QUEUE, LOCK, 

NOTIFICATION

REST ENDPOINTS 
EXPOSE ENTITIES AND 

ELEMENT PORTS

USED BY PERSISTENCE 
AND COMMUNICATION 

CLASS
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14GRAPHICAL NOTATION

 INSTANCE EXAMPLES



15FIRST MAPE LOOP
AMBULANCE
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18FIRST MAPE LOOP
AMBULANCE
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MAPE PATTERNS
02



20DECENTRALIZED (AND DISTRIBUTED)
MAPE PATTERNS

“On Patterns for Decentralized Control in Self-Adaptive Systems”, D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, …

Coordinated Control
Sharing and coordination 

among all MAPE  components

Information Sharing
Sharing among Monitor

 FULLY DECENTRALIZED 
“FLAT” DISTRIBUTION MODEL

 multiple peer MAPE loops cooperates in parallel to 
manage the overall self-adaptation



21DECENTRALIZED (AND DISTRIBUTED)
MAPE PATTERNS

“On Patterns for Decentralized Control in Self-Adaptive Systems”, D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, …

M/S

Regional Planning
Regional P for intra and cross-regional 

planning

Coordinated Control
Sharing and coordination 

among all MAPE  components

Master/Slave
Single (central) AP and multiple (local) 

ME

Hierarchical Control
“Divide et impera”: different 

time-scales, resources and concerns

Information Sharing
Sharing among Monitor

 FULLY DECENTRALIZED 
“FLAT” DISTRIBUTION MODEL

 multiple peer MAPE loops cooperates in parallel to 
manage the overall self-adaptation

HYBRID APPROACH
“HIERARCHICAL” DISTRIBUTION MODEL

 separation of concerns, higher level MAPE components control 
subordinate MAPE components



22INFORMATION & COORDINATED 
MAPE PATTERN

INFORMATION SHARING
Systems status (M) is shared among the MAPE loops.

P, A, and E components allow local adaptations without the 

need for coordination (timely decisions and execution). 

Reduced coordination may increase locally optimal 

objectives but at the cost of globally optimal ones.

COORDINATED CONTROL
MAPE elements of different MAPE loops can interact with 

peers to share particular information and/or coordinate their 

actions. Increase globally optimal objectives.



23AMBULANCE-CAR EMERGENCY

 EMERGENCY MANAGE
 AUTOMOTIVE DOMAIN



24AMBULANCE-CAR EMERGENCY

CLOSEST VEHICLE
DETECTS EMERGENCY

1

 EMERGENCY MANAGE
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25AMBULANCE-CAR EMERGENCY

CLOSEST VEHICLE
DETECTS EMERGENCY

COMMUNICATE 
EMERGENCY

CAR SAFETY POLICIES:
REDUCE SPEED & HAZARD LIGHTS

AMBULANCE EMERGENCY POLICIES:
INCREASE SPEED & SIREN

DIFFERENT 
GOALS/OBJECTIVES

ON SAME EVENT

1

2

3

3

 EMERGENCY MANAGE
 AUTOMOTIVE DOMAIN



26AMBULANCE-CAR EMERGENCY
CAR
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27AMBULANCE-CAR EMERGENCY
CAR to AMBULANCE (REST)
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28AMBULANCE-CAR EMERGENCY
CAR to CAR (PUB/SUB) v1



29AMBULANCE-CAR EMERGENCY
CAR to CAR (PUB/SUB) v2 - VOTING SYSTEM
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30AMBULANCE-CAR EMERGENCY
FULL REST and PUB/SUB IMPLEMENTATION

REST 

PUB/SUB 



31AMBULANCE-CAR EMERGENCY
RESULTS

$ python -m examples.coordinated-car-with-message --name Veyron --speed 380
10:38:35.645 M   examples.fixtures   : INFO     Init VirtualCar Veyron…
10:38:35.645 M   examples.fixtures   : INFO     VirtualCar Veyron speed: 380 Km/h
10:38:35.645 M   examples.fixtures   : INFO     VirtualCar Veyron speed limit set: 400 Km/h
10:38:35.645 M   examples.fixtures   : INFO     VirtualCar Veyron hazard lights OFF
10:38:35.645 M   examples.fixtures   : INFO     VirtualCar Veyron emergency OFF
10:38:35.767 M   examples.fixtures   : INFO     VirtualCar Veyron speed: 385 Km/h
10:38:38.818 M   examples.fixtures   : INFO     VirtualCar Veyron speed: 388 Km/h
10:38:42.223 M   examples.fixtures   : INFO     VirtualCar Veyron speed: 391 Km/h

$ python -m examples.coordinated-ambulance --speed 80
10:56:47.114 M   examples.fixtures   : INFO     Init VirtualAmbulance Ambulance…
10:56:47.114 M   examples.fixtures   : INFO     VirtualAmbulance Ambulance speed: 80 Km/h
10:56:47.114 M   examples.fixtures   : INFO     VirtualAmbulance Ambulance speed limit set: 100 Km/h
10:56:47.114 M   examples.fixtures   : INFO     VirtualAmbulance Ambulance hazard lights OFF
10:56:47.114 M   examples.fixtures   : INFO     VirtualAmbulance Ambulance emergency OFF
10:56:47.114 M   examples.fixtures   : INFO     VirtualAmbulance Ambulance siren: OFF
10:56:47.232 M   examples.fixtures   : INFO     VirtualAmbulance Ambulance speed: 85 Km/h
10:56:50.10  M   examples.fixtures   : INFO     VirtualAmbulance Ambulance speed: 88 Km/h
10:56:52.500 M   examples.fixtures   : INFO     VirtualAmbulance Ambulance speed: 91 Km/h
[...]
11:17:32.944 M   examples.fixtures   : INFO     VirtualAmbulance Ambulance speed: 99 Km/h
11:17:33.605 M   examples.fixtures   : INFO     VirtualAmbulance Ambulance speed limit set: 160 Km/h
11:17:33.605 M   examples.fixtures   : INFO     VirtualAmbulance Ambulance siren: ON
11:17:35.605 M   examples.fixtures   : INFO     VirtualAmbulance Ambulance speed: 114 Km/h
11:17:38.18  M   examples.fixtures   : INFO     VirtualAmbulance Ambulance speed: 125 Km/h

$ python -m examples.coordinated-car-with-message --name Countach --speed 240
[...]
11:18:59.257 M   examples.fixtures   : INFO     VirtualCar Countach speed: 260 Km/h
11:18:59.882 M   root                : INFO     [('Veyron', True), ('Panda', True)]
11:18:59.883 M   examples.fixtures   : INFO     VirtualCar Countach speed limit set: 30 Km/h
11:18:59.883 M   examples.fixtures   : INFO     VirtualCar Countach hazard lights ON
11:19:02.100 M   examples.fixtures   : INFO     VirtualCar Countach speed: 203 Km/h
11:19:05.720 M   examples.fixtures   : INFO     VirtualCar Countach speed: 160 Km/h

DATA LOG
Ambulance, Veyron, Countach extract

GRAPH
Emergency, Hazard lights, Speed



32REGIONAL PLANNING
MAPE PATTERN

Different loosely coupled parts (regions) of a system want to realize local adaptations (within a region) as well as 

adaptations that cross the boundaries (between regions). 

For each region, the M components monitor the local status of managed systems, the local A analyzes and reports the 

information to the associated regional planner. P may then decide to perform a local adaptation (i.e. within the 

region) or interact with another to plan adaptations that span over the regions. Once the planners agree on a plan the 

adaptations are achieved by activating the E components of the respective region.

PATTERN INSTANCE EXAMPLE



33DYNAMIC CARRIAGEWAY 
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35DYNAMIC CARRIAGEWAY 
LOCAL LANE ANALYZER
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36DYNAMIC CARRIAGEWAY 
REGIONAL CARRIAGEWAY PLANNER

CAR
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37DYNAMIC CARRIAGEWAY
RESULTS

$ python -m examples.regional-planning-dynamic-carriageway --name up --lanes 8
12:32:28.862 M   root                : DEBUG    lane_0 | enter | Pilot        |   1 (tot)
12:32:28.866 M   examples.fixtures   : INFO     carriageway_up has 8 lanes
12:32:42.111 M   root                : DEBUG    lane_7 | enter | Silver       |   2 (tot)
12:32:43.142 M   root                : DEBUG    lane_7 | enter | Cascada      |   3 (tot)
12:32:44.31  M   root                : DEBUG    lane_7 | enter | Fox          |   4 (tot)
12:32:45.816 M   root                : DEBUG    lane_1 | enter | Levante      |   5 (tot)
12:32:46.677 M   root                : DEBUG    lane_0 | enter | Phoenix      |   6 (tot)
12:32:47.627 M   root                : DEBUG    lane_3 | enter | Nova         |   7 (tot)
12:32:48.655 M   root                : DEBUG    lane_4 | enter | Avenger      |   8 (tot)
12:32:52.466 M   examples.fixtures   : INFO     carriageway_up has 7 lanes
12:32:53.722 M   examples.fixtures   : INFO     carriageway_up has 6 lanes
12:32:56.807 M   examples.fixtures   : INFO     carriageway_up has 5 lanes
12:32:59.778 M   examples.fixtures   : INFO     carriageway_up has 4 lanes
12:33:04.242 M   examples.fixtures   : INFO     carriageway_up has 3 lanes
12:33:10.68  M   root                : DEBUG    lane_1 | exit  | Levante      |   7 (tot)
12:33:10.846 M   root                : DEBUG    lane_2 | exit  | Phoenix      |   6 (tot)
12:33:11.847 M   root                : DEBUG    lane_0 | exit  | Cascada      |   5 (tot)
12:33:11.852 M   examples.fixtures   : INFO     carriageway_up has 2 lanes
12:33:12.687 M   root                : DEBUG    lane_0 | exit  | Nova         |   4 (tot)
12:33:13.445 M   root                : DEBUG    lane_1 | exit  | Pilot        |   3 (tot)
12:33:14.166 M   root                : DEBUG    lane_0 | exit  | Silver       |   2 (tot)
12:33:14.167 M   examples.fixtures   : INFO     carriageway_up has 1 lanes
12:33:14.990 M   root                : DEBUG    lane_0 | exit  | Fox          |   1 (tot)
12:33:15.839 M   root                : DEBUG    lane_0 | exit  | Avenger      |   0 (tot)
12:33:15.843 M   examples.fixtures   : INFO     carriageway_up has 0 lanes

$ python -m examples.regional-planning-dynamic-highway --name down --lanes 8
12:32:28.856 M   examples.fixtures   : INFO     carriageway_down has 0 lanes
12:32:52.468 M   root                : DEBUG    lane_0 | enter | Zephyr       |   1 (tot)
12:32:52.469 M   examples.fixtures   : INFO     carriageway_down has 1 lanes
12:32:53.727 M   root                : DEBUG    lane_0 | enter | Outlander    |   2 (tot)
12:32:53.730 M   examples.fixtures   : INFO     carriageway_down has 2 lanes
12:32:55.429 M   root                : DEBUG    lane_0 | enter | Frontier     |   3 (tot)
12:32:56.809 M   root                : DEBUG    lane_0 | enter | Verano       |   4 (tot)
12:32:56.810 M   examples.fixtures   : INFO     carriageway_down has 3 lanes
12:32:57.895 M   root                : DEBUG    lane_2 | enter | Summit       |   5 (tot)
12:32:58.888 M   root                : DEBUG    lane_2 | enter | Cimarron     |   6 (tot)
12:32:59.785 M   root                : DEBUG    lane_1 | enter | Matrix       |   7 (tot)
12:32:59.789 M   examples.fixtures   : INFO     carriageway_down has 4 lanes
12:33:00.624 M   root                : DEBUG    lane_0 | enter | Blackwood    |   8 (tot)
12:33:02.704 M   root                : DEBUG    lane_1 | enter | Pininfarina  |   9 (tot)
12:33:03.432 M   root                : DEBUG    lane_0 | enter | Scrambler    |  10 (tot)
12:33:04.250 M   root                : DEBUG    lane_2 | enter | Alero        |  11 (tot)
12:33:04.255 M   examples.fixtures   : INFO     carriageway_down has 5 lanes
12:33:05.140 M   root                : DEBUG    lane_4 | enter | Accent       |  12 (tot)
12:33:11.842 M   examples.fixtures   : INFO     carriageway_down has 6 lanes
12:33:14.164 M   examples.fixtures   : INFO     carriageway_down has 7 lanes
12:33:15.834 M   examples.fixtures   : INFO     carriageway_down has 8 lanes

DATA LOG
Up & Down carriageway extract

GRAPH
Cars count, Lanes count per carriageway



38HIERARCHICAL CONTROL
MAPE PATTERN

In a complex system is often necessary to consider multiple control loops within the same application. The loops can 

work at different time scales and manage different kind of resources, with different localities. 

Different layers typically focus on different concerns at different levels of abstraction. The hierarchical structure allows 

bottom layer to focus on concrete adaptation objectives, while higher level can take increasingly broader perspectives, 

using lower control loop as managed resource.

PATTERN INSTANCE EXAMPLE



39CRUISE CONTROL + CAR EMERGENCY

CALL METHOD
ON STREAM



40CRUISE CONTROL WITH DISTANCE HOLD
OUTLINE

CALL METHOD
ON STREAM



41CRUISE CONTROL WITH DISTANCE HOLD
CRUISE CONTROL

CALL METHOD
ON STREAM
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1 2
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42CRUISE CONTROL WITH DISTANCE HOLD
HOLD DISTANCE

CALL METHOD
ON STREAM

CALL METHOD
ON STREAM
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43CRUISE CONTROL WITH DISTANCE HOLD
COUNTACH vs PAND (PURSUIT)

GRAPH
Distance, Speed, Accelerator/Brake

Power
(Hp)

Brake Init Speed
(Km/h)

Cruise range
(Km/h)

Cruise distance
(meters)

Panda 70 70 0 0 - 160 250

Countach 200 180 0 x x

CARS SPECS & SETUP



44MASTER/SLAVE & HIERARCHICAL
MAPE PATTERN

M/S

M/S

MASTER/SLAVE 
AVERAGE SPEED ENFORCEMENT

HIERARCHICAL CONTROL
CRUISE CONTROL WITH DISTANCE HOLD



45CONCLUSIONS AND FUTURE WORK

CONCLUSIONS

STREAM 
Allows connection between loosely coupled 

components, mutable at runtime, further the classic 
flow configuration (M ⇨ A ⇨ P ⇨ E)

COMMUNICATION ABSTRACTION
Allows use of multiple network communication 

paradigms with minimal change to code

FRAMEWORK EXPRESSIVITY
Allows without effort, the implementation of 

different grades of decentralization with the 5 
main MAPE patterns used as a playground

DSL & M2T
Graphical notation 1:1 with code, encourages the 
introduction of a Domain Specific Language and a 
Model-to-Text transformation

MULTI-GOAL CONFLICTS
Manage conflicts in the self-adaptive systems 
with multiple and concurrent goals

PROTOCOLS SUPPORT
Add further network protocols (eg. GraphQL, gRPC, 
SOAP, WebSocket, MQTT) using the sink/source and 
stream paradigm

FUTURE WORK



46END

THANKS !
QUESTIONS ?

Source available on:

https://github.com/elbowz/PyMAPE
 All contributions (issues, forks, pull requests) are welcome


