
Dipartimento di Ingegneria e
Scienze dell’Informazione e

Matematica

Corso di Laurea
Magistrale in Informatica

Emanuele Palombo

Relatore
Prof. Davide Di Ruscio

PyMAPE
A software framework
to support the development and deployment
of Autonomous Systems

2WHAT ARE SELF-ADAPTIVE SYSTEMS ?

[1] “A survey on engineering approaches for self-adaptive systems”, C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker

Today systems must function in complex environments built out of
infrastructure, components, services, and other systems that are not
under direct control of the original system and/or its developers. These
systems typically run in unpredictable and unstable environments.

A Self-Adaptive system (SAS) is able to automatically modify itself in
response to changes in its operating environment [1].

The “self” prefix indicates that the systems decide autonomously (i.e.
without or with minimal interference) how to adapt changes in their
contexts. While some self-adaptive system may be able to function
without any human intervention, guidance in the form of higher-level
goals is useful and realized in many systems.

3LOOP
FEEDBACK CONTROL AND MAPE-K

GENERIC MODEL
AI community’s sense-plan-act approach of the early

1980s to control autonomous mobile robots

CONTROL THEORY AUTONOMIC COMPUTING
IBM’s architectural blueprint for autonomic computing

4LOOP
FEEDBACK CONTROL AND MAPE-K

GENERIC MODEL
AI community’s sense-plan-act approach of the early

1980s to control autonomous mobile robots

CONTROL THEORY AUTONOMIC COMPUTING
IBM’s architectural blueprint for autonomic computing

5FRAMEWORK CHALLENGES

01 CONTAINMENT
Reuse, modularity and isolation of MAPE components as first-class entity.

02

03

COMMUNICATION INTERFACE (STANDARDIZATION)
Shared interface between components that allow stream communication, filtering, pre/post processing, data
exchange communication and routing.

DISTRIBUTION
Multi-device distribution of MAPE loops and components.

04
DECENTRALIZED PATTERNS
Flat p2p and/or hierarchical architectures of loops and components with concerns separation. Allowing runtime
pattern reconfiguration (stopping/starting, (un)linking, adding/removing).

05 NETWORK COMMUNICATION PARADIGMS
Different paradigms (blackboard, direct message) and protocols for various patterns interactions.

06 STATE / KNOWLEDGE
Distributed multi-scope (global, level, loop) Knowledge with partitioning and/or (full/partial async) replication.

6PARADIGMS AND TOOLS

Other used technologies: InfluxDB, Pub/Sub, RestAPI, (De)serialization system, Docker, Yaml, etc

ASYNCHRONOUS PROGRAMMING
Manage (I/O bound) tasks concurrency
with non-blocking I/O operations.

01

02

03

04

REACTIVE SYSTEM/PROGRAMMING AND STREAM
System reactive to external event. Pillars: Responsive, Resilient, Elastic and Message
Driven. Specific case of event-driven programming to avoid callback hell.

REACTIVEX (OBSERVER PATTERN)
Observables represent a source of events. An observer subscribes to an observable to receive items

emitted (Hot, Cold, Subject,etc). Pipe operators modify streams flowing through them.

REDIS, IN-MEMORY DATA STRUCTURE SERVER
Distributed, in-memory key-value data structure (strings, hashes, lists, (ordered) sets,

queue, lock) store, cache and message broker with keyspace notifications.
Partitioning and/or (full/partial async) replication.

single multi

sync getter iterable

async future observable

7

PyMAPE FRAMEWORK
01

8CLASS DIAGRAM
MAIN

9CLASS DIAGRAM
MAIN

1

1

2

2

3

3

4
4

ELEMENT PATH

10INSIDE AN ELEMENT
PORTS, PIPE OPERATORS, CORE FUNCTION …

GRAPHIC NOTATION

11CLASS DIAGRAM
REMOTE

12CLASS DIAGRAM
REMOTE

HASH, (SORTED) SET,
LIST, QUEUE, LOCK,

NOTIFICATION

REST ENDPOINTS
EXPOSE ENTITIES AND

ELEMENT PORTS

USED BY PERSISTENCE
AND COMMUNICATION

CLASS

13CLASS DIAGRAM
REMOTE

1

1

2

2

3

3

4

4

HASH, (SORTED) SET,
LIST, QUEUE, LOCK,

NOTIFICATION

REST ENDPOINTS
EXPOSE ENTITIES AND

ELEMENT PORTS

USED BY PERSISTENCE
AND COMMUNICATION

CLASS

14GRAPHICAL NOTATION

 INSTANCE EXAMPLES

15FIRST MAPE LOOP
AMBULANCE

16FIRST MAPE LOOP
AMBULANCE

1

1

SPEED

EMERGENCY
DETECT

1

17FIRST MAPE LOOP
AMBULANCE

1 2

1

2

2

EMERGENCY
DETECT

SPEED

EMERGENCY
DETECT

1

18FIRST MAPE LOOP
AMBULANCE

1 2 3

1

2

3

2

3

EMERGENCY
DETECT

APPLY
EMER. POLICY

(SPEED/SIREN)

SPEED

EMERGENCY
DETECT

1

19

MAPE PATTERNS
02

20DECENTRALIZED (AND DISTRIBUTED)
MAPE PATTERNS

“On Patterns for Decentralized Control in Self-Adaptive Systems”, D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, …

Coordinated Control
Sharing and coordination

among all MAPE components

Information Sharing
Sharing among Monitor

 FULLY DECENTRALIZED
“FLAT” DISTRIBUTION MODEL

 multiple peer MAPE loops cooperates in parallel to
manage the overall self-adaptation

21DECENTRALIZED (AND DISTRIBUTED)
MAPE PATTERNS

“On Patterns for Decentralized Control in Self-Adaptive Systems”, D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, …

M/S

Regional Planning
Regional P for intra and cross-regional

planning

Coordinated Control
Sharing and coordination

among all MAPE components

Master/Slave
Single (central) AP and multiple (local)

ME

Hierarchical Control
“Divide et impera”: different

time-scales, resources and concerns

Information Sharing
Sharing among Monitor

 FULLY DECENTRALIZED
“FLAT” DISTRIBUTION MODEL

 multiple peer MAPE loops cooperates in parallel to
manage the overall self-adaptation

HYBRID APPROACH
“HIERARCHICAL” DISTRIBUTION MODEL

 separation of concerns, higher level MAPE components control
subordinate MAPE components

22INFORMATION & COORDINATED
MAPE PATTERN

INFORMATION SHARING
Systems status (M) is shared among the MAPE loops.

P, A, and E components allow local adaptations without the

need for coordination (timely decisions and execution).

Reduced coordination may increase locally optimal

objectives but at the cost of globally optimal ones.

COORDINATED CONTROL
MAPE elements of different MAPE loops can interact with

peers to share particular information and/or coordinate their

actions. Increase globally optimal objectives.

23AMBULANCE-CAR EMERGENCY

 EMERGENCY MANAGE
 AUTOMOTIVE DOMAIN

24AMBULANCE-CAR EMERGENCY

CLOSEST VEHICLE
DETECTS EMERGENCY

1

 EMERGENCY MANAGE
 AUTOMOTIVE DOMAIN

25AMBULANCE-CAR EMERGENCY

CLOSEST VEHICLE
DETECTS EMERGENCY

COMMUNICATE
EMERGENCY

CAR SAFETY POLICIES:
REDUCE SPEED & HAZARD LIGHTS

AMBULANCE EMERGENCY POLICIES:
INCREASE SPEED & SIREN

DIFFERENT
GOALS/OBJECTIVES

ON SAME EVENT

1

2

3

3

 EMERGENCY MANAGE
 AUTOMOTIVE DOMAIN

26AMBULANCE-CAR EMERGENCY
CAR

1

1

EMERGENCY
DETECT

REQUEST
SAFETY
POLICY

SPEED

EMERGENCY
DETECT

SET
SPEED AND
HAZ. LIGHTS

27AMBULANCE-CAR EMERGENCY
CAR to AMBULANCE (REST)

2

1

12

EMERGENCY
DETECT

REQUEST
SAFETY
POLICY

SPEED

EMERGENCY
DETECT

SET
SPEED AND
HAZ. LIGHTS

IN

28AMBULANCE-CAR EMERGENCY
CAR to CAR (PUB/SUB) v1

29AMBULANCE-CAR EMERGENCY
CAR to CAR (PUB/SUB) v2 - VOTING SYSTEM

1

1

2

2

3

3

30AMBULANCE-CAR EMERGENCY
FULL REST and PUB/SUB IMPLEMENTATION

REST

PUB/SUB

31AMBULANCE-CAR EMERGENCY
RESULTS

$ python -m examples.coordinated-car-with-message --name Veyron --speed 380
10:38:35.645 M examples.fixtures : INFO Init VirtualCar Veyron…
10:38:35.645 M examples.fixtures : INFO VirtualCar Veyron speed: 380 Km/h
10:38:35.645 M examples.fixtures : INFO VirtualCar Veyron speed limit set: 400 Km/h
10:38:35.645 M examples.fixtures : INFO VirtualCar Veyron hazard lights OFF
10:38:35.645 M examples.fixtures : INFO VirtualCar Veyron emergency OFF
10:38:35.767 M examples.fixtures : INFO VirtualCar Veyron speed: 385 Km/h
10:38:38.818 M examples.fixtures : INFO VirtualCar Veyron speed: 388 Km/h
10:38:42.223 M examples.fixtures : INFO VirtualCar Veyron speed: 391 Km/h

$ python -m examples.coordinated-ambulance --speed 80
10:56:47.114 M examples.fixtures : INFO Init VirtualAmbulance Ambulance…
10:56:47.114 M examples.fixtures : INFO VirtualAmbulance Ambulance speed: 80 Km/h
10:56:47.114 M examples.fixtures : INFO VirtualAmbulance Ambulance speed limit set: 100 Km/h
10:56:47.114 M examples.fixtures : INFO VirtualAmbulance Ambulance hazard lights OFF
10:56:47.114 M examples.fixtures : INFO VirtualAmbulance Ambulance emergency OFF
10:56:47.114 M examples.fixtures : INFO VirtualAmbulance Ambulance siren: OFF
10:56:47.232 M examples.fixtures : INFO VirtualAmbulance Ambulance speed: 85 Km/h
10:56:50.10 M examples.fixtures : INFO VirtualAmbulance Ambulance speed: 88 Km/h
10:56:52.500 M examples.fixtures : INFO VirtualAmbulance Ambulance speed: 91 Km/h
[...]
11:17:32.944 M examples.fixtures : INFO VirtualAmbulance Ambulance speed: 99 Km/h
11:17:33.605 M examples.fixtures : INFO VirtualAmbulance Ambulance speed limit set: 160 Km/h
11:17:33.605 M examples.fixtures : INFO VirtualAmbulance Ambulance siren: ON
11:17:35.605 M examples.fixtures : INFO VirtualAmbulance Ambulance speed: 114 Km/h
11:17:38.18 M examples.fixtures : INFO VirtualAmbulance Ambulance speed: 125 Km/h

$ python -m examples.coordinated-car-with-message --name Countach --speed 240
[...]
11:18:59.257 M examples.fixtures : INFO VirtualCar Countach speed: 260 Km/h
11:18:59.882 M root : INFO [('Veyron', True), ('Panda', True)]
11:18:59.883 M examples.fixtures : INFO VirtualCar Countach speed limit set: 30 Km/h
11:18:59.883 M examples.fixtures : INFO VirtualCar Countach hazard lights ON
11:19:02.100 M examples.fixtures : INFO VirtualCar Countach speed: 203 Km/h
11:19:05.720 M examples.fixtures : INFO VirtualCar Countach speed: 160 Km/h

DATA LOG
Ambulance, Veyron, Countach extract

GRAPH
Emergency, Hazard lights, Speed

32REGIONAL PLANNING
MAPE PATTERN

Different loosely coupled parts (regions) of a system want to realize local adaptations (within a region) as well as

adaptations that cross the boundaries (between regions).

For each region, the M components monitor the local status of managed systems, the local A analyzes and reports the

information to the associated regional planner. P may then decide to perform a local adaptation (i.e. within the

region) or interact with another to plan adaptations that span over the regions. Once the planners agree on a plan the

adaptations are achieved by activating the E components of the respective region.

PATTERN INSTANCE EXAMPLE

33DYNAMIC CARRIAGEWAY
OUTLINE

LANE

CARRIAGEWAY

34DYNAMIC CARRIAGEWAY
OUTLINE

CAR
ENTER / EXIT

CAR
COUNT

COMPUTE
NEEDED
LANES

ENABLE
DISABLE

LANE

LANE

CARRIAGEWAY

35DYNAMIC CARRIAGEWAY
LOCAL LANE ANALYZER

CAR
ENTER / EXIT

CAR
COUNT

COMPUTE
NEEDED
LANES

ENABLE
DISABLE

LANE

36DYNAMIC CARRIAGEWAY
REGIONAL CARRIAGEWAY PLANNER

CAR
ENTER / EXIT

CAR
COUNT

COMPUTE
NEEDED
LANES

ENABLE
DISABLE

LANE

37DYNAMIC CARRIAGEWAY
RESULTS

$ python -m examples.regional-planning-dynamic-carriageway --name up --lanes 8
12:32:28.862 M root : DEBUG lane_0 | enter | Pilot | 1 (tot)
12:32:28.866 M examples.fixtures : INFO carriageway_up has 8 lanes
12:32:42.111 M root : DEBUG lane_7 | enter | Silver | 2 (tot)
12:32:43.142 M root : DEBUG lane_7 | enter | Cascada | 3 (tot)
12:32:44.31 M root : DEBUG lane_7 | enter | Fox | 4 (tot)
12:32:45.816 M root : DEBUG lane_1 | enter | Levante | 5 (tot)
12:32:46.677 M root : DEBUG lane_0 | enter | Phoenix | 6 (tot)
12:32:47.627 M root : DEBUG lane_3 | enter | Nova | 7 (tot)
12:32:48.655 M root : DEBUG lane_4 | enter | Avenger | 8 (tot)
12:32:52.466 M examples.fixtures : INFO carriageway_up has 7 lanes
12:32:53.722 M examples.fixtures : INFO carriageway_up has 6 lanes
12:32:56.807 M examples.fixtures : INFO carriageway_up has 5 lanes
12:32:59.778 M examples.fixtures : INFO carriageway_up has 4 lanes
12:33:04.242 M examples.fixtures : INFO carriageway_up has 3 lanes
12:33:10.68 M root : DEBUG lane_1 | exit | Levante | 7 (tot)
12:33:10.846 M root : DEBUG lane_2 | exit | Phoenix | 6 (tot)
12:33:11.847 M root : DEBUG lane_0 | exit | Cascada | 5 (tot)
12:33:11.852 M examples.fixtures : INFO carriageway_up has 2 lanes
12:33:12.687 M root : DEBUG lane_0 | exit | Nova | 4 (tot)
12:33:13.445 M root : DEBUG lane_1 | exit | Pilot | 3 (tot)
12:33:14.166 M root : DEBUG lane_0 | exit | Silver | 2 (tot)
12:33:14.167 M examples.fixtures : INFO carriageway_up has 1 lanes
12:33:14.990 M root : DEBUG lane_0 | exit | Fox | 1 (tot)
12:33:15.839 M root : DEBUG lane_0 | exit | Avenger | 0 (tot)
12:33:15.843 M examples.fixtures : INFO carriageway_up has 0 lanes

$ python -m examples.regional-planning-dynamic-highway --name down --lanes 8
12:32:28.856 M examples.fixtures : INFO carriageway_down has 0 lanes
12:32:52.468 M root : DEBUG lane_0 | enter | Zephyr | 1 (tot)
12:32:52.469 M examples.fixtures : INFO carriageway_down has 1 lanes
12:32:53.727 M root : DEBUG lane_0 | enter | Outlander | 2 (tot)
12:32:53.730 M examples.fixtures : INFO carriageway_down has 2 lanes
12:32:55.429 M root : DEBUG lane_0 | enter | Frontier | 3 (tot)
12:32:56.809 M root : DEBUG lane_0 | enter | Verano | 4 (tot)
12:32:56.810 M examples.fixtures : INFO carriageway_down has 3 lanes
12:32:57.895 M root : DEBUG lane_2 | enter | Summit | 5 (tot)
12:32:58.888 M root : DEBUG lane_2 | enter | Cimarron | 6 (tot)
12:32:59.785 M root : DEBUG lane_1 | enter | Matrix | 7 (tot)
12:32:59.789 M examples.fixtures : INFO carriageway_down has 4 lanes
12:33:00.624 M root : DEBUG lane_0 | enter | Blackwood | 8 (tot)
12:33:02.704 M root : DEBUG lane_1 | enter | Pininfarina | 9 (tot)
12:33:03.432 M root : DEBUG lane_0 | enter | Scrambler | 10 (tot)
12:33:04.250 M root : DEBUG lane_2 | enter | Alero | 11 (tot)
12:33:04.255 M examples.fixtures : INFO carriageway_down has 5 lanes
12:33:05.140 M root : DEBUG lane_4 | enter | Accent | 12 (tot)
12:33:11.842 M examples.fixtures : INFO carriageway_down has 6 lanes
12:33:14.164 M examples.fixtures : INFO carriageway_down has 7 lanes
12:33:15.834 M examples.fixtures : INFO carriageway_down has 8 lanes

DATA LOG
Up & Down carriageway extract

GRAPH
Cars count, Lanes count per carriageway

38HIERARCHICAL CONTROL
MAPE PATTERN

In a complex system is often necessary to consider multiple control loops within the same application. The loops can

work at different time scales and manage different kind of resources, with different localities.

Different layers typically focus on different concerns at different levels of abstraction. The hierarchical structure allows

bottom layer to focus on concrete adaptation objectives, while higher level can take increasingly broader perspectives,

using lower control loop as managed resource.

PATTERN INSTANCE EXAMPLE

39CRUISE CONTROL + CAR EMERGENCY

CALL METHOD
ON STREAM

40CRUISE CONTROL WITH DISTANCE HOLD
OUTLINE

CALL METHOD
ON STREAM

41CRUISE CONTROL WITH DISTANCE HOLD
CRUISE CONTROL

CALL METHOD
ON STREAM

1

1 2

2

42CRUISE CONTROL WITH DISTANCE HOLD
HOLD DISTANCE

CALL METHOD
ON STREAM

CALL METHOD
ON STREAM

3

1

1 2

3

2

43CRUISE CONTROL WITH DISTANCE HOLD
COUNTACH vs PAND (PURSUIT)

GRAPH
Distance, Speed, Accelerator/Brake

Power
(Hp)

Brake Init Speed
(Km/h)

Cruise range
(Km/h)

Cruise distance
(meters)

Panda 70 70 0 0 - 160 250

Countach 200 180 0 x x

CARS SPECS & SETUP

44MASTER/SLAVE & HIERARCHICAL
MAPE PATTERN

M/S

M/S

MASTER/SLAVE
AVERAGE SPEED ENFORCEMENT

HIERARCHICAL CONTROL
CRUISE CONTROL WITH DISTANCE HOLD

45CONCLUSIONS AND FUTURE WORK

CONCLUSIONS

STREAM
Allows connection between loosely coupled

components, mutable at runtime, further the classic
flow configuration (M ⇨ A ⇨ P ⇨ E)

COMMUNICATION ABSTRACTION
Allows use of multiple network communication

paradigms with minimal change to code

FRAMEWORK EXPRESSIVITY
Allows without effort, the implementation of

different grades of decentralization with the 5
main MAPE patterns used as a playground

DSL & M2T
Graphical notation 1:1 with code, encourages the
introduction of a Domain Specific Language and a
Model-to-Text transformation

MULTI-GOAL CONFLICTS
Manage conflicts in the self-adaptive systems
with multiple and concurrent goals

PROTOCOLS SUPPORT
Add further network protocols (eg. GraphQL, gRPC,
SOAP, WebSocket, MQTT) using the sink/source and
stream paradigm

FUTURE WORK

46END

THANKS !
QUESTIONS ?

Source available on:

https://github.com/elbowz/PyMAPE
 All contributions (issues, forks, pull requests) are welcome

