

Covers Python 3 and Python 2

Useful rect attributes
Once you have a rect object, there are a number of attributes that
are useful when positioning objects and detecting relative positions
of objects. (You can find more attributes in the Pygame
documentation.)

Individual x and y values:
screen_rect.left, screen_rect.right
screen_rect.top, screen_rect.bottom
screen_rect.centerx, screen_rect.centery
screen_rect.width, screen_rect.height

Tuples
screen_rect.center
screen_rect.size

Creating a rect object
You can create a rect object from scratch. For example a small rect
object that’s filled in can represent a bullet in a game. The Rect()
class takes the coordinates of the upper left corner, and the width
and height of the rect. The draw.rect() function takes a screen
object, a color, and a rect. This function fills the given rect with the
given color.

bullet_rect = pg.Rect(100, 100, 3, 15)
color = (100, 100, 100)
pg.draw.rect(screen, color, bullet_rect)

Pygame is a framework for making games using
Python. Making games is fun, and it’s a great way to
expand your programming skills and knowledge.
Pygame takes care of many of the lower-level tasks
in building games, which lets you focus on the
aspects of your game that make it interesting.

Pygame runs on all systems, but setup is slightly different
on each OS. The instructions here assume you’re using
Python 3, and provide a minimal installation of Pygame. If
these instructions don’t work for your system, see the more
detailed notes at http://ehmatthes.github.io/pcc/.

Pygame on Linux

$ sudo apt-get install python3-dev mercurial
 libsdl-image1.2-dev libsdl2-dev
 libsdl-ttf2.0-dev
$ pip install --user
 hg+http://bitbucket.org/pygame/pygame

Pygame on OS X
This assumes you’ve used Homebrew to install Python 3.

$ brew install hg sdl sdl_image sdl_ttf
$ pip install --user
 hg+http://bitbucket.org/pygame/pygame

Pygame on Windows
Find an installer at
https://bitbucket.org/pygame/pygame/downloads/ or
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygame that matches
your version of Python. Run the installer file if it’s a .exe or .msi file.
If it’s a .whl file, use pip to install Pygame:

> python –m pip install --user
 pygame-1.9.2a0-cp35-none-win32.whl

Testing your installation
To test your installation, open a terminal session and try to import
Pygame. If you don’t get any error messages, your installation was
successful.

$ python
>>> import pygame
>>>

The following code sets up an empty game window, and
starts an event loop and a loop that continually refreshes
the screen.

An empty game window

import sys
import pygame as pg

def run_game():
 # Initialize and set up screen.
 pg.init()
 screen = pg.display.set_mode((1200, 800))
 pg.display.set_caption("Alien Invasion")

 # Start main loop.
 while True:
 # Start event loop.
 for event in pg.event.get():
 if event.type == pg.QUIT:
 sys.exit()

 # Refresh screen.
 pg.display.flip()

run_game()

Setting a custom window size
The display.set_mode() function accepts a tuple that defines the
screen size.

screen_dim = (1200, 800)
screen = pg.display.set_mode(screen_dim)

Setting a custom background color
Colors are defined as a tuple of red, green, and blue values. Each
value ranges from 0-255.

bg_color = (230, 230, 230)
screen.fill(bg_color)

Many objects in a game can be treated as simple
rectangles, rather than their actual shape. This simplifies
code without noticeably affecting game play. Pygame has a
rect object that makes it easy to work with game objects.

Getting the screen rect object
We already have a screen object; we can easily access the rect
object associated with the screen.

screen_rect = screen.get_rect()

Finding the center of the screen
Rect objects have a center attribute which stores the center point.

screen_center = screen_rect.center

Many objects in a game are images that are moved around
the screen. It’s easiest to use bitmap (.bmp) image files, but
you can also configure your system to work with jpg, png,
and gif files as well.

Loading an image

ship = pg.image.load('images/ship.bmp')

Getting the rect object from an image

ship_rect = ship.get_rect()

Positioning an image
With rects, it’s easy to position an image wherever you want on the
screen, or in relation to another object. The following code
positions a ship object at the bottom center of the screen.

ship_rect.midbottom = screen_rect.midbottom

http://nostarchpress.com/pythoncrashcourse
http://nostarchpress.com/pythoncrashcourse
http://ehmatthes.github.io/pcc/chapter_12/README.html
https://bitbucket.org/pygame/pygame/downloads/
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygame

Drawing an image to the screen
Once an image is loaded and positioned, you can draw it to the
screen with the blit() method. The blit() method acts on the screen
object, and takes the image object and image rect as arguments.

Draw ship to screen.
screen.blit(ship, ship_rect)

The blitme() method
Game objects such as ships are often written as classes. Then a
blitme() method is usually defined, which draws the object to the
screen.

def blitme(self):
 """Draw ship at current location."""
 self.screen.blit(self.image, self.rect)

Pygame’s event loop registers an event any time the
mouse moves, or a mouse button is pressed or released.

Responding to the mouse button

for event in pg.event.get():
 if event.type == pg.MOUSEBUTTONDOWN:
 ship.fire_bullet()

Finding the mouse position
The mouse position is returned as a tuple.

mouse_pos = pg.mouse.get_pos()

Clicking a button
You might want to know if the cursor is over an object such as a
button. The rect.collidepoint() method returns true when a point is
inside a rect object.

if button_rect.collidepoint(mouse_pos):
 start_game()

Hiding the mouse

pg.mouse.set_visible(False)

More cheat sheets available at

Removing an item from a group
It’s important to delete elements that will never appear again in the
game, so you don’t waste memory and resources.

bullets.remove(bullet)

Pygame watches for events such as key presses and
mouse actions. You can detect any event you care about in
the event loop, and respond with any action that’s
appropriate for your game.

Responding to key presses
Pygame’s main event loop registers a KEYDOWN event any time a
key is pressed. When this happens, you can check for specific
keys.

for event in pg.event.get():
 if event.type == pg.KEYDOWN:
 if event.key == pg.K_RIGHT:
 ship_rect.x += 1
 elif event.key == pg.K_LEFT:
 ship_rect.x -= 1
 elif event.key == pg.K_SPACE:
 ship.fire_bullet()
 elif event.key == pg.K_q:
 sys.exit()

Responding to released keys
When the user releases a key, a KEYUP event is triggered.

if event.type == pg.KEYUP:
 if event.key == pg.K_RIGHT:
 ship.moving_right = False

Pygame has a Group class which makes working with a
group of similar objects easier. A group is like a list, with
some extra functionality that’s helpful when building games.

Making and filling a group
An object that will be placed in a group must inherit from Sprite.

from pygame.sprite import Sprite, Group

def Bullet(Sprite):
 ...
 def draw_bullet(self):
 ...
 def update(self):
 ...

bullets = Group()

new_bullet = Bullet()
bullets.add(new_bullet)

Looping through the items in a group
The sprites() method returns all the members of a group.

for bullet in bullets.sprites():
 bullet.draw_bullet()

Calling update() on a group
Calling update() on a group automatically calls update() on each
member of the group.

bullets.update()

You can detect when a single object collides with any
member of a group. You can also detect when any member
of one group collides with a member of another group.

Collisions between a single object and a group
The spritecollideany() function takes an object and a group, and
returns True if the object overlaps with any member of the group.

if pg.sprite.spritecollideany(ship, aliens):
 ships_left -= 1

Collisions between two groups
The sprite.groupcollide() function takes two groups, and two
booleans. The function returns a dictionary containing information
about the members that have collided. The booleans tell Pygame
whether to delete the members of either group that have collided.

collisions = pg.sprite.groupcollide(
 bullets, aliens, True, True)

score += len(collisions) * alien_point_value

The Pygame documentation is really helpful when building
your own games. The home page for the Pygame project is
at http://pygame.org/, and the home page for the
documentation is at http://pygame.org/docs/.
 The most useful part of the documentation are the pages
about specific parts of Pygame, such as the Rect() class
and the sprite module. You can find a list of these elements
at the top of the help pages.

You can use text for a variety of purposes in a game. For
example you can share information with players, and you
can display a score.

Displaying a message
The following code defines a message, then a color for the text and
the background color for the message. A font is defined using the
default system font, with a font size of 48. The font.render()
function is used to create an image of the message, and we get the
rect object associated with the image. We then center the image
on the screen and display it.

msg = "Play again?"
msg_color = (100, 100, 100)
bg_color = (230, 230, 230)

f = pg.font.SysFont(None, 48)
msg_image = f.render(msg, True, msg_color,
 bg_color)
msg_image_rect = msg_image.get_rect()
msg_image_rect.center = screen_rect.center
screen.blit(msg_image, msg_image_rect)

http://ehmatthes.github.io/pcc/cheatsheets/README.html

