

Covers Python 3 and Python 2

Users interact with a project through web pages, and a
project’s home page can start out as a simple page with no
data. A page usually needs a URL, a view, and a template.

Mapping a project’s URLs
The project’s main urls.py file tells Django where to find the urls.py
files associated with each app in the project.

from django.conf.urls import include, url
from django.contrib import admin

urlpatterns = [
 url(r'^admin/', include(admin.site.urls)),
 url(r'', include('learning_logs.urls',
 namespace='learning_logs')),
]

Mapping an app’s URLs
An app’s urls.py file tells Django which view to use for each URL in
the app. You’ll need to make this file yourself, and save it in the
app’s folder.

from django.conf.urls import url

from . import views

urlpatterns = [
 url(r'^$', views.index, name='index'),
]

Writing a simple view
A view takes information from a request and sends data to the
browser, often through a template. View functions are stored in an
app’s views.py file. This simple view function doesn’t pull in any
data, but it uses the template index.html to render the home page.

from django.shortcuts import render

def index(request):
 """The home page for Learning Log."""
 return render(request,
 'learning_logs/index.html')

Django is a web framework which helps you build
interactive websites using Python. With Django you
define the kind of data your site needs to work with,
and you define the ways your users can work with
that data.

It’s usualy best to install Django to a virtual environment,
where your project can be isolated from your other Python
projects. Most commands assume you’re working in an
active virtual environment.

Create a virtual environment

$ python –m venv ll_env

Activate the environment (Linux and OS X)

$ source ll_env/bin/activate

Activate the environment (Windows)

> ll_env\Scripts\activate

Install Django to the active environment

(ll_env)$ pip install Django

The data in a Django project is structured as a set of
models.

Defining a model
To define the models for your app, modify the file models.py that
was created in your app’s folder. The __str__() method tells
Django how to represent data objects based on this model.

from django.db import models

class Topic(models.Model):
 """A topic the user is learning about."""
 text = models.CharField(max_length=200)
 date_added = models.DateTimeField(
 auto_now_add=True)

 def __str__(self):
 return self.text

Activating a model
To use a model the app must be added to the tuple
INSTALLED_APPS, which is stored in the project’s settings.py file.

INSTALLED_APPS = (
 --snip--
 'django.contrib.staticfiles',

 # My apps
 'learning_logs',
)

Migrating the database
The database needs to be modified to store the kind of data that
the model represents.

$ python manage.py makemigrations learning_logs
$ python manage.py migrate

Creating a superuser
A superuser is a user account that has access to all aspects of the
project.

$ python manage.py createsuperuser

Registering a model
You can register your models with Django’s admin site, which
makes it easier to work with the data in your project. To do this,
modify the app’s admin.py file. View the admin site at
http://localhost:8000/admin/.

from django.contrib import admin

from learning_logs.models import Topic

admin.site.register(Topic)

To start a project we’ll create a new project, create a
database, and start a development server.

Create a new project

$ django-admin.py startproject learning_log .

Create a database

$ python manage.py migrate

View the project
After issuing this command, you can view the project at
http://localhost:8000/.

$ python manage.py runserver

Create a new app
A Django project is made up of one or more apps.

$ python manage.py startapp learning_logs

The documentation for Django is available at
http://docs.djangoproject.com/. The Django documentation
is thorough and user-friendly, so check it out!

http://nostarchpress.com/pythoncrashcourse
http://nostarchpress.com/pythoncrashcourse
http://docs.djangoproject.com/

Writing a simple template
A template sets up the structure for a page. It’s a mix of html and
template code, which is like Python but not as powerful. Make a
folder called templates inside the project folder. Inside the
templates folder make another folder with the same name as the
app. This is where the template files should be saved.

<p>Learning Log</p>

<p>Learning Log helps you keep track of your
learning, for any topic you're learning
about.</p>

A new model can use an existing model. The ForeignKey
attribute establishes a connection between instances of the
two related models. Make sure to migrate the database
after adding a new model to your app.

Defining a model with a foreign key

class Entry(models.Model):
 """Learning log entries for a topic."""
 topic = models.ForeignKey(Topic)
 text = models.TextField()
 date_added = models.DateTimeField(
 auto_now_add=True)

 def __str__(self):
 return self.text[:50] + "..."

More cheat sheets available at

Using data in a template
The data in the view function’s context dictionary is available
within the template. This data is accessed using template
variables, which are indicated by doubled curly braces.
 The vertical line after a template variable indicates a filter. In this
case a filter called date formats date objects, and the filter

linebreaks renders paragraphs properly on a web page.

{% extends 'learning_logs/base.html' %}

{% block content %}

 <p>Topic: {{ topic }}</p>

 <p>Entries:</p>

 {% for entry in entries %}

 <p>
 {{ entry.date_added|date:'M d, Y H:i' }}
 </p>
 <p>
 {{ entry.text|linebreaks }}
 </p>

 {% empty %}
 There are no entries yet.
 {% endfor %}

{% endblock content %}

Many elements of a web page are repeated on every page
in the site, or every page in a section of the site. By writing
one parent template for the site, and one for each section,
you can easily modify the look and feel of your entire site.

The parent template
The parent template defines the elements common to a set of
pages, and defines blocks that will be filled by individual pages.

<p>

 Learning Log

</p>

{% block content %}{% endblock content %}

The child template
The child template uses the {% extends %} template tag to pull in
the structure of the parent template. It then defines the content for
any blocks defined in the parent template.

{% extends 'learning_logs/base.html' %}

{% block content %}
 <p>
 Learning Log helps you keep track
 of your learning, for any topic you're
 learning about.
 </p>
{% endblock content %}

Most pages in a project need to present data that’s specific
to the current user.

URL parameters
A URL often needs to accept a parameter telling it which data to
access from the database. The second URL pattern shown here
looks for the ID of a specific topic and stores it in the parameter
topic_id.

urlpatterns = [
 url(r'^$', views.index, name='index'),
 url(r'^topics/(?P<topic_id>\d+)/$',
 views.topic, name='topic'),
]

Using data in a view
The view uses a parameter from the URL to pull the correct data
from the database. In this example the view is sending a context
dictionary to the template, containing data that should be displayed
on the page.

def topic(request, topic_id):
 """Show a topic and all its entries."""
 topic = Topics.objects.get(id=topic_id)
 entries = topic.entry_set.order_by(
 '-date_added')
 context = {
 'topic': topic,
 'entries': entries,
 }
 return render(request,
 'learning_logs/topic.html', context)

You can explore the data in your project from the command
line. This is helpful for developing queries and testing code
snippets.

Start a shell session

$ python manage.py shell

Access data from the project

>>> from learning_logs.models import Topic
>>> Topic.objects.all()
[<Topic: Chess>, <Topic: Rock Climbing>]
>>> topic = Topic.objects.get(id=1)
>>> topic.text
'Chess'

If you make a change to your project and the change
doesn’t seem to have any effect, try restarting the server:
$ python manage.py runserver

Python code is usually indented by four spaces. In
templates you’ll often see two spaces used for indentation,
because elements tend to be nested more deeply in
templates.

http://ehmatthes.github.io/pcc/cheatsheets/README.html

Covers Python 3 and Python 2

Showing the current login status
You can modify the base.html template to show whether the user is
currently logged in, and to provide a link to the login and logout
pages. Django makes a user object available to every template,

and this template takes advantage of this object.
 The user.is_authenticated tag allows you to serve specific

content to users depending on whether they have logged in or not.
The {{ user.username }} property allows you to greet users

who have logged in. Users who haven’t logged in see links to
register or log in.

<p>

 Learning Log

 {% if user.is_authenticated %}
 Hello, {{ user.username }}.

 log out

 {% else %}

 register
 -

 log in

 {% endif %}
</p>

{% block content %}{% endblock content %}

The logout view
The logout_view() function uses Django’s logout() function
and then redirects the user back to the home page. Since there is
no logout page, there is no logout template. Make sure to write this
code in the views.py file that’s stored in the users app folder.

from django.http import HttpResponseRedirect
from django.core.urlresolvers import reverse
from django.contrib.auth import logout

def logout_view(request):
 """Log the user out."""
 logout(request)
 return HttpResponseRedirect(
 reverse('learning_logs:index'))

User accounts are handled by a dedicated app called
users. Users need to be able to register, log in, and log

out. Django automates much of this work for you.

Making a users app
After making the app, be sure to add 'users' to INSTALLED_APPS
in the project’s settings.py file.

$ python manage.py startapp users

Including URLS for the users app
Add a line to the project’s urls.py file so the users app’s URLs are
included in the project.

urlpatterns = [
 url(r'^admin/', include(admin.site.urls)),
 url(r'^users/', include('users.urls',
 namespace='users')),
 url(r'', include('learning_logs.urls',
 namespace='learning_logs')),
]

Defining the URLs
Users will need to be able to log in, log out, and register. Make a
new urls.py file in the users app folder. The login view is a default

view provided by Django.

from django.conf.urls import url
from django.contrib.auth.views import login

from . import views

urlpatterns = [
 url(r'^login/$', login,
 {'template_name': 'users/login.html'},
 name='login'),
 url(r'^logout/$', views.logout_view,
 name='logout'),
 url(r'^register/$', views.register,
 name='register'),
]

The login template
The login view is provided by default, but you need to provide your
own login template. The template shown here displays a simple
login form, and provides basic error messages. Make a templates
folder in the users folder, and then make a users folder in the
templates folder. Save this file as login.html.
 The tag {% csrf_token %} helps prevent a common type of

attack with forms. The {{ form.as_p }} element displays the

default login form in paragraph format. The <input> element

named next redirects the user to the home page after a successful

login.

{% extends "learning_logs/base.html" %}

{% block content %}
 {% if form.errors %}
 <p>
 Your username and password didn't match.
 Please try again.
 </p>
 {% endif %}

 <form method="post"
 action="{% url 'users:login' %}">
 {% csrf token %}
 {{ form.as_p }}
 <button name="submit">log in</button>

 <input type="hidden" name="next"
 value="{% url 'learning_logs:index' %}"/>
 </form>

{% endblock content %}

Most web applications need to let users create
accounts. This lets users create and work with their
own data. Some of this data may be private, and
some may be public. Django’s forms allow users to
enter and modify their data.

There are a number of ways to create forms and work with
them. You can use Django’s defaults, or completely
customize your forms. For a simple way to let users enter
data based on your models, use a ModelForm. This creates

a form that allows users to enter data that will populate the
fields on a model.
 The register view on the back of this sheet shows a simple
approach to form processing. If the view doesn’t receive
data from a form, it responds with a blank form. If it
receives POST data from a form, it validates the data and

then saves it to the database.

http://nostarchpress.com/pythoncrashcourse
http://nostarchpress.com/pythoncrashcourse

The register view
The register view needs to display a blank registration form when
the page is first requested, and then process completed
registration forms. A successful registration logs the user in and
redirects to the home page.

from django.contrib.auth import login
from django.contrib.auth import authenticate
from django.contrib.auth.forms import \
 UserCreationForm

def register(request):
 """Register a new user."""
 if request.method != 'POST':
 # Show blank registration form.
 form = UserCreationForm()
 else:
 # Process completed form.
 form = UserCreationForm(
 data=request.POST)

 if form.is_valid():
 new_user = form.save()
 # Log in, redirect to home page.
 pw = request.POST['password1']
 authenticated_user = authenticate(
 username=new_user.username,
 password=pw
)
 login(request, authenticated_user)
 return HttpResponseRedirect(
 reverse('learning_logs:index'))

 context = {'form': form}
 return render(request,
 'users/register.html', context)

The register template
The register template displays the registration form in paragraph
formats.

{% extends 'learning_logs/base.html' %}

{% block content %}

 <form method='post'
 action="{% url 'users:register' %}">

 {% csrf_token %}
 {{ form.as_p }}

 <button name='submit'>register</button>
 <input type='hidden' name='next'
 value="{% url 'learning_logs:index' %}"/>

 </form>

{% endblock content %}

More cheat sheets available at

Restricting access to logged-in users
Some pages are only relevant to registered users. The views for
these pages can be protected by the @login_required decorator.

Any view with this decorator will automatically redirect non-logged
in users to an appropriate page. Here’s an example views.py file.

from django.contrib.auth.decorators import /
 login_required
--snip--

@login_required
def topic(request, topic_id):
 """Show a topic and all its entries."""

Setting the redirect URL
The @login_required decorator sends unauthorized users to the

login page. Add the following line to your project’s settings.py file
so Django will know how to find your login page.

LOGIN_URL = '/users/login/'

Preventing inadvertent access
Some pages serve data based on a parameter in the URL. You
can check that the current user owns the requested data, and
return a 404 error if they don’t. Here’s an example view.

from django.http import Http404

--snip--
def topic(request, topic_id):
 """Show a topic and all its entries."""
 topic = Topics.objects.get(id=topic_id)
 if topic.owner != request.user:
 raise Http404
 --snip--

Users will have data that belongs to them. Any model that should
be connected directly to a user needs a field connecting instances
of the model to a specific user.

Making a topic belong to a user
Only the highest-level data in a hierarchy needs to be directly
connected to a user. To do this import the User model, and add it

as a foreign key on the data model.
 After modifying the model you’ll need to migrate the database.
You’ll need to choose a user ID to connect each existing instance
to.

from django.db import models
from django.contrib.auth.models import User

class Topic(models.Model):
 """A topic the user is learning about."""
 text = models.CharField(max_length=200)
 date_added = models.DateTimeField(
 auto_now_add=True)
 owner = models.ForeignKey(User)

 def __str__(self):
 return self.text

Querying data for the current user
In a view, the request object has a user attribute. You can use this

attribute to query for the user’s data. The filter() function then
pulls the data that belongs to the current user.

topics = Topic.objects.filter(
 owner=request.user)

The django-bootstrap3 app allows you to use the Bootstrap
library to make your project look visually appealing. The
app provides tags that you can use in your templates to
style individual elements on a page. Learn more at
http://django-bootstrap3.readthedocs.io/.

If you provide some initial data, Django generates a form
with the user’s existing data. Users can then modify and
save their data.

Creating a form with initial data
The instance parameter allows you to specify initial data for a form.

form = EntryForm(instance=entry)

Modifying data before saving
The argument commit=False allows you to make changes before
writing data to the database.

new_topic = form.save(commit=False)
new_topic.owner = request.user
new_topic.save()

Heroku lets you push your project to a live server, making it
available to anyone with an internet connection. Heroku
offers a free service level, which lets you learn the
deployment process without any commitment. You’ll need
to install a set of heroku tools, and use git to track the state
of your project. See http://devcenter.heroku.com/, and click
on the Python link.

http://ehmatthes.github.io/pcc/cheatsheets/README.html
http://django-bootstrap3.readthedocs.io/
http://devcenter.heroku.com/

