
Getting Started in R: Tinyverse Edition
Saghir Bashir and Dirk Eddelbuettel

This version was compiled on November 24, 2018

Are you curious to learn what R can do for you? Do you want to see how
it works? Yes, then this “Getting Started” guide is for you. It uses realistic
examples and a real life dataset to manipulate, visualise and summarise
data. By the end of it you will have an overview of the key concepts of R.

R | Statistics | Data Science | Tinyverse

1. Preface

This “Getting Started” guide will give you a flavour of what R1 can
do for you. To get the most out of this guide, read it whilst doing
the examples and exercises using RStudio2ˆ.

This note is a variant of the original document3 but stresses
the use of Base R along with careful dependency management as
discussed below.

Experiment Safely. Be brave and experiment with commands and
options as it is an essential part of the learning process. Things
can (and will) go “wrong”, like, getting error messages or deleting
things that you create by using this guide. You can recover from
most situations (e.g. by restarting R). To do this “safely” start with
a fresh R session without any other data loaded (otherwise you
could lose it).

2. Introduction

Before Starting. Make sure that:

1. R and RStudio are installed.
2. https://eddelbuettel.github.io/gsir-te/Getting-Started-in-R.zip has

been downloaded and unzipped
3. Double click "Getting-Started-in-R.Rproj" to open

RStudio with the setup for this guide.

Starting R & RStudio. R starts automatically when you open RStu-
dio (see Figure 1). The console starts with information about the
version number, license and contributors. The last line is a standard
prompt “>” that indicates R is ready and expecting instructions to
do something.

Fig. 1. RStudio Screenshot with Console on the left and Help tab in the bottom right

1R project: https://www.r-project.org/
2RStudio IDE: https://www.rstudio.com/products/RStudio/
3Getting Started with R: https://github.com/saghirb/Getting-Started-in-R

Quitting R & RStudio. When you quit RStudio you will be asked
whether to Save workspace with two options:

• “Yes” – Your current R workspace (containing the work that
you have done) will be restored next time you open RStudio.

• “No” – You will start with a fresh R session next time you open
RStudio. For now select “No” to prevent errors being carried
over from previous sessions).

3. R Help

We strongly recommend that you learn how to use R’s useful and
extensive built-in help system which is an essential part of finding
solutions to your R programming problems.

help() function. From the R “Console” you can use the help()
function or ?. For example, try the following two commands (which
give the same result):

help(mean)
?mean

Keyword search. To do a keyword search use the function
apropos() with the keyword in double quotes ("keyword") or
single quote ('keyword'). For example:

apropos("mean")
[1] ".colMeans" ".rowMeans"
[3] "colMeans" "kmeans"
[5] "mean" "mean_cl_boot"
[7] "mean_cl_normal" "mean_sdl"
[9] "mean_se" "mean.Date"
[11] "mean.default" "mean.difftime"
[13] "mean.POSIXct" "mean.POSIXlt"
[15] "rowMeans" "weighted.mean"

Help Examples. Use the example() function to run the examples
at the end of the help for a function:

example(mean)
#
mean> x <- c(0:10, 50)
#
mean> xm <- mean(x)
#
mean> c(xm, mean(x, trim = 0.10))
[1] 8.75 5.50

RStudio Help. Rstudio provides search box in the “Help” tab to
make your life easier (see Figure 1).

Searching On-line For R Help. There are a lot of on-line resources
that can help. However you must understand that blindly copying
and pasting could be harmful and further it won’t help you to learn
and develop. When you search on-line use [R] in your search term
(e.g. “[R] summary statistics by group”). Note that often there is
more than one solution to your problem. It is good to investigate
the different options.

Learn more at http://ilustat.com/resources/ Getting Started in R | November 24, 2018 | 1–8

https://eddelbuettel.github.io/gsir-te/Getting-Started-in-R.zip
https://www.r-project.org/
https://www.rstudio.com/products/RStudio/
https://github.com/saghirb/Getting-Started-in-R
http://ilustat.com/resources/

Exercise. Try the following:

1. help(median)
2. ?sd
3. ?max

Warning. If an R command is not complete then R will show a plus
sign (+) prompt on second and subsequent lines until the command
syntax is correct.

+

To break out this, press the escape key (ESC).

Hint. To recall a previously typed commands use the up arrow key
(↑). To go between previously typed commands use the up and
down arrow (↓) keys. To modify or correct a command use the left
(←) and right arrow (→) keys.

4. Some R Concepts

In R speak, scalars, vectors/variables and datasets are called ob-
jects. To create objects (things) we have to use the assignment
operator <-. For example, below, object height is assigned a value
of 173 (typing height shows its value):

height <- 173
height
[1] 173

Warning: R is case sensitive. age and AgE are different:

age <- 10
AgE <- 50

age
[1] 10
AgE
[1] 50

New lines. R commands are usually separated by a new line but
they can also be separated by a semicolon: ;.

Name <- "Leo"; Age <- 25; City <- "Lisbon"
Name; Age; City
[1] "Leo"
[1] 25
[1] "Lisbon"

Comments. It is useful to put human readable comments in your
programs. These comments could help the future you when you
go back to your program. R comments start with a hash sign (#).
Everything after the hash to the end of the line will be ignored by
R.

This comment line will be ignored when run.
City # Text after "#" is ignored.
[1] "Lisbon"

5. R as a Calculator

You can use R as a calculator. Try the following:

2 + 3
[1] 5
(5*11)/4 - 7
[1] 6.75
^ = "to the power of"
7^3
[1] 343

Other math functions. You can also use standard mathematical
functions that are typically found on a scientific calculator.

• Trigonometric: sin(), cos(), tan(), acos(), asin(),
atan()

• Rounding: abs(), ceiling(), floor(), round(), sign(),
signif(), sqrt(), trunc()

• Logarithms & Exponentials: exp(), log(), log10(), log2()

Square root
sqrt(2)
[1] 1.414214
Round down to nearest integer
floor(8.6178)
[1] 8
Round to 2 decimal places
round(8.6178, 2)
[1] 8.62

Exercise. What do the following pairs of examples do?

1. ceiling(18.33) and signif(9488, 2)
2. exp(1) and log10(1000)
3. sign(-2.9) and sign(32)
4. abs(-27.9) and abs(11.9)

6. Some More R Concepts

You can do some clever and useful things with using the assignment
operator “<-”:

roomLength <- 7.8
roomWidth <- 6.4
roomArea <- roomLength * roomWidth
roomArea
[1] 49.92

Text objects. You can also assign text to an object.

Greeting <- "Hello World!"
Greeting
[1] "Hello World!"

Vectors. The objects presented so far have all been scalars (single
values). Working with vectors is where R shines best as they are
the basic building blocks of datasets. To create a vector we can use
the c() (combine values into a vector) function.

A "numeric" vector
x1 <- c(26, 10, 4, 7, 41, 19)
x1
[1] 26 10 4 7 41 19
A "character" vector of country names
x2 <- c("Peru", "Italy", "Cuba", "Ghana")

2 | Learn more at http://ilustat.com/resources/ CC BY SA ilustat • info@ilustat.com • edd@debian.org

http://ilustat.com/resources/
https://creativecommons.org/licenses/by-sa/4.0/
http://ilustat.com/
mailto:info@ilustat.com
mailto:edd@debian.org

x2
[1] "Peru" "Italy" "Cuba" "Ghana"

There are many other ways to create vectors, for example, rep()
(replicate elements) and seq() (create sequences):

Repeat vector (2, 6, 7, 4) three times
r1 <- rep(c(2, 6, 7, 4), times=3)
r1
[1] 2 6 7 4 2 6 7 4 2 6 7 4
Vector from -2 to 3 incremented by half
s1 <- seq(from=-2, to=3, by=0.5)
s1
[1] -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
[10] 2.5 3.0

Vector operations. You can also do calculations on vectors, for
example using x1 from above:

x1 * 2
[1] 52 20 8 14 82 38
round(sqrt(x1*2.6), 2)
[1] 8.22 5.10 3.22 4.27 10.32 7.03

Missing Values. Missing values are coded as NA in R. For example,

x2 <- c(3, -7, NA, 5, 1, 1)
x2
[1] 3 -7 NA 5 1 1
x3 <- c("Rat", NA, "Mouse", "Hamster")
x3
[1] "Rat" NA "Mouse" "Hamster"

Managing Objects. Use function ls() to list the objects in your
workspace. The rm() function removes (deletes) them.

ls()
[1] "age" "Age" "AgE"
[4] "City" "Greeting" "height"
[7] "Name" "op" "r1"
[10] "roomArea" "roomLength" "roomWidth"
[13] "s1" "x" "x1"
[16] "x2" "x3" "xm"
rm(x1, x2, x3, r1, s1, AgE, age)
ls()
[1] "Age" "City" "Greeting"
[4] "height" "Name" "op"
[7] "roomArea" "roomLength" "roomWidth"
[10] "x" "xm"

Exercise. Calculate the gross by adding the tax to net amount.

net <- c(108.99, 291.42, 16.28, 62.29, 31.77)
tax <- c(22.89, 17.49, 0.98, 13.08, 6.67)

7. R Functions and Packages

R Functions. We have already used some R functions (e.g. c(),
mean(), rep(), sqrt(), round()). Most of the computations in
R involves using functions. A function essentially has a name and
a list of arguments separated by a comma. Let’s have look at an
example:

seq(from = 5, to = 8, by = 0.4)
[1] 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

The function name is seq and it has three arguments from, to
and by. The arguments from and to are the start and end values
of a sequence that you want to create, and by is the increment of
the sequence. The seq() functions has other arguments that you
could use which are documented in the help page. For example,
we could use the argument length.out (instead of by) to fix the
length of the sequence as follows:

seq(from = 5, to = 8, length.out = 16)
[1] 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0
[12] 7.2 7.4 7.6 7.8 8.0

Custom Functions. You can create your own functions (using the
function() keyword) which is a very powerful way to extend R.
Writing your own functions is outside the scope of this guide. As
you get more and more familiar with R it is very likely that you
will need to learn how to do so but for now you don’t need to.

R Packages. You can already do many things with a standard R
installation—but it can be extended using contributed packages.
Packages are like apps for R. They can contain functions, data and
documentation.

Extending Base R. Base R already comes with over two-thousand
functions that have been proven to be versatile, reliable and stable.
That is no small feat. When it is possible to solve a problem with
fewer external dependencies, doing so follows time-honoured best
practices. You want to think carefully before adding dependencies.

The tinyverse View. The philosophy of less is more is at the core
of the tinyverse4. Fewer dependencies means a smaller footprint,
faster installation, and most importantly fewer nodes in your de-
pendency graph. Experience, as well as empirical and theoretical
software engineering practice have demonstrated that failure in-
creases with complexity.

So choosing when to rely on additional packages has to balance
the increased functionality a package brings with both its history
of development, its development model, maintenance status, and
history of both changes and fixes. This is a complex topic, and
there are no easy answers. But by adding another package, we
always open a door to interface changes we no longer control. The
added functionality is clearly valuable at times, yet one has to
remain aware of the costs that may accrue as a consequence. So
this document takes the view that fewer is better, and will rely on
only two additional packages: data.table5 for data wrangling as
well as input/output, and ggplot2 6 for visualization.

Installation. If needed, install these two packages via the following
command which should pick the suitable version for your installa-
tion:

install.packages(c("data.table", "ggplot2"))

4Tinyverse: http://www.tinyverse.org/
5data.table: http://r-datatable.com
6ggplot2: https://ggplot2.tidyverse.org

CC BY SA ilustat • info@ilustat.com • edd@debian.org Getting Started in R | November 24, 2018 | 3

http://www.tinyverse.org/
http://r-datatable.com
https://ggplot2.tidyverse.org
https://creativecommons.org/licenses/by-sa/4.0/
http://ilustat.com/
mailto:info@ilustat.com
mailto:edd@debian.org

8. Chick Weight Data

R comes with many datasets installed7. We will use the
ChickWeight dataset to learn about data manipulation. The help
system gives a basic summary of the experiment from which the
data was collect:

“The body weights of the chicks were measured at birth and
every second day thereafter until day 20. They were also
measured on day 21. There were four groups of chicks on
different protein diets.”

You can get more information, including references by typing:

help("ChickWeight")

The Data. There are 578 observations (rows) and 4 variables:

• Chick – unique ID for each chick.
• Diet – one of four protein diets.
• Time – number of days since birth.
• weight – body weight of chick in grams.

Note. weight has a lower case w (recall R is case sensitive).

Objective. Investigate the effect of diet on the weight over time.

9. Importing The Data

First we will import the data from a file called ChickWeight.csv
using the fread() function from the data.table package which
returns a data.table object (whereas the dataset built into R has
a different format). The first thing to do, outside of R, is to open
the file ChickWeight.csv to check what it contains and that it
makes sense. Now we can import the data as follows:

suppressMessages(library(data.table)) # tinyverse
cw <- fread("ChickWeight.csv")

Important Note. If all goes well then the data is now stored in an R
object called cw. If you get the following error message then you
need to change the working directory to where the data is stored.

Error: ’ChickWeight.csv’ does not exist in current
working directory ...

Change the working directory in RStudio. From the menu bar se-
lect “Session - Set Working Directory - Choose Directory. . . ” then
go to the directory where the data is stored. Alternatively, within
in R, you could use the function setwd()8. You can also specify a
full path, using ~ to denote your home directory.

10. Looking at the Dataset

To look at the data type just type the object (dataset) name:

cw
Chick Diet Time weight
1: 18 1 0 39
2: 18 1 2 35
3: 16 1 0 41

576: 48 4 18 261

7Type data() in the R console to see a list of the datasets.
8Use getwd() for the current directory and setwd("/to/data/path/data.csv") to change it.

577: 48 4 20 303
578: 48 4 21 322

Several base R functions help us inspect the data: str() com-
pactly displays the structure, summary() provides a summary, and
head() and tail() display the beginning and end of the data set.

str(cw)
Classes ’data.table’ and ’data.frame’:
578 obs. of 4 variables:
$ Chick : int [1:578] 18 18 16 16 16 ...
$ Diet : int [1:578] 1 1 1 1 1 ...
$ Time : int [1:578] 0 2 0 2 4 ...
$ weight: int [1:578] 39 35 41 45 49 ...
- attr(*, ".internal.selfref")=<externalptr>
summary(cw)
Chick Diet
Min. : 1.0 Min. :1.00
1st Qu.:13.0 1st Qu.:1.00
Median :26.0 Median :2.00
Mean :25.8 Mean :2.24
3rd Qu.:38.0 3rd Qu.:3.00
Max. :50.0 Max. :4.00
Time weight
Min. : 0.0 Min. : 35
1st Qu.: 4.0 1st Qu.: 63
Median :10.0 Median :103
Mean :10.7 Mean :122
3rd Qu.:16.0 3rd Qu.:164
Max. :21.0 Max. :373

Interpretation. This shows that the dataset has 578 observations
and 4 variables as we would expect, and as compared to the original
data file ChickWeight.csv. So a good start. str() call notes the
types of variables (all integer here) and the first few values. The
RStudio ‘Environment’ pane provides a very similar view.

Exercise. It is important to look at the last observations of the
dataset as it could reveal potential data issues. Use the tail()
function to do this. Is it consistent with the original data file
ChickWeight.csv?

11. Chick Weight: Data Visualisation

ggplot2 Package. To visualise the chick weight data, we will use
the ggplot2 package. Our interest is in seeing how the weight
changes over time for the chicks by diet. For the moment don’t worry
too much about the details just try to build your own understanding
and logic. To learn more try different things even if you get an
error messages.

First plot. Let’s plot the weight data (vertical axis) over time (hori-
zontal axis).

(Silently) load the plotting package
suppressMessages(library(ggplot2))
An empty plot (the plot on the left)
ggplot(cw, aes(Time, weight))
With data (the plot on the right)
ggplot(cw, aes(Time, weight)) + geom_point()

4 | Learn more at http://ilustat.com/resources/ CC BY SA ilustat • info@ilustat.com • edd@debian.org

http://ilustat.com/resources/
https://creativecommons.org/licenses/by-sa/4.0/
http://ilustat.com/
mailto:info@ilustat.com
mailto:edd@debian.org

100

200

300

0 5 10 15 20

Time

w
ei

gh
t

● ●
● ● ● ●

●
● ●

●
●

●
● ● ● ● ●

●
●

●
●

● ● ● ● ●
●

●
●

●
●

●
●

●
●

● ● ●
● ● ●

●
●

● ●
●

● ●

●
●

●
● ●

● ●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
● ●

●
●

●

●

●

●

●
●

●
● ● ●

●
●

●

●

●

●

●
●

● ● ●
●

● ●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ● ● ● ● ● ● ●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

● ●

●

●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●
● ● ● ●

●
●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

100

200

300

0 5 10 15 20

Time
w

ei
gh

t
Exercise. Switch the variables Time and weight in code used for
the plot on the right? What do you think of this new plot compared
to the original?

Add colour for Diet. The graph above does not differentiate be-
tween the diets. Let’s use a different colour for each diet.

Adding colour for diet
ggplot(cw, aes(Time,weight,colour=factor(Diet))) +

geom_point()

●
●

●
●

● ●
●

● ●

●
●

●
●

● ● ● ●

●
●

●
●

● ●
● ● ●

●

●
●

●
●

●
●

●

●
● ● ●

● ● ●

●
●

●
●

●
●

●

●
●

●
● ●

● ●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
● ●

●
●

●

●

●

●

●
●

●
● ● ●

●
●

●

●

●

●

●
●

● ● ●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ●

● ●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

● ●

●

●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

● ● ● ●

●
●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

100

200

300

0 5 10 15 20

Time

w
ei

gh
t

factor(Diet)
●

●

●

●

1

2

3

4

Interpretation. It is difficult to conclude anything from this graph as
the points are printed on top of one another (with diet 1 underneath
and diet 4 at the top).

Factor Variables. Before we continue, we have to make an impor-
tant change to the cw dataset by making Diet and Time factor
variables. This means that R will treat them as categorical variables
instead of continuous variables. It will simplify our coding.

cw[, Diet := factor(Diet)]
cw[, Time := factor(Time)]
str(cw) # notice the difference ?
Classes ’data.table’ and ’data.frame’:
578 obs. of 4 variables:
$ Chick : int [1:578] 18 18 16 16 16 ...
$ Diet : Factor w/ 4 levels "1","2","3","4":
1 1 1 1 1 ...
$ Time : Factor w/ 12 levels
"0","2","4","6",..: 1 2 1 2 3 ...
$ weight: int [1:578] 39 35 41 45 49 ...
- attr(*, ".internal.selfref")=<externalptr>

Notice that the := operator altered the variable “in-place”,
and no explicit assignment was made. This is a key feature of
data.table which operated “by reference”: changes are made in
reference to one instance of the cw variable, rather than by creating
updated copies. We will revisit this := assignment below.

facet_wrap() function. To plot each diet separately in a grid using
facet_wrap():

Adding jitter to the points
ggplot(cw, aes(Time, weight, colour=Diet)) +

geom_point() +
facet_wrap(~ Diet) +
theme(legend.position = "bottom")

● ●
● ● ● ●

●
● ●

●
●

●
● ● ● ● ●

●
● ●

● ● ● ● ● ●
●

● ●

●
●

●
●

●
●

● ● ●
● ● ●

●
●

● ●
●

● ●
●

●
●

● ●

● ●
●

●
●

●
●

● ●
●

● ●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

● ●
●

●
●

●

● ●
●

● ●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●

●
● ●

●
●

●

●

●

●

●
●

● ● ● ●

●
●

●

●

●

●

●
● ● ● ●

●

● ●

●
●

●

●

●

●

●

●
● ●

●
●

● ●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●
●

●

●
●

●
●

● ●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
● ●

● ●

●

●

● ●

●
●

●
●

●
●

●
●

●

●
● ●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

● ●
● ● ● ●

●
●

●

●

●

●

● ●

●
●

● ●

●
●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

3 4

1 2

0 2 4 6 8 10121416182021 0 2 4 6 8 10121416182021

100

200

300

100

200

300

Time

w
ei

gh
t

Diet ● ● ● ●1 2 3 4

Exercise. To overcome the issue of overlapping points we can jit-
ter the points using geom_jitter(). Replace the geom_point()
above with geom_jitter(). What do you observe?

Interpretation. Diet 4 has the least variability but we can’t really
say anything about the mean effect of each diet although diet 3
seems to have the highest.

Exercise. For the legend.position try using “top”, “left” and
“none”. Do we really need a legend for this plot?

Mean line plot. Next we will plot the mean changes over time for
each diet using the stat_summary() function:

ggplot(cw, aes(Time, weight,
group=Diet, colour=Diet)) +

stat_summary(fun.y="mean", geom="line")

100

200

0 2 4 6 8 10 12 14 16 18 20 21

Time

w
ei

gh
t

Diet

1

2

3

4

CC BY SA ilustat • info@ilustat.com • edd@debian.org Getting Started in R | November 24, 2018 | 5

https://creativecommons.org/licenses/by-sa/4.0/
http://ilustat.com/
mailto:info@ilustat.com
mailto:edd@debian.org

Interpretation. We can see that diet 3 has the highest mean weight
gain by the end of the experiment but we don’t have any informa-
tion about the variation (uncertainty) in the data.

Exercise. What happens when you add geom_point() to the plot
above? Don’t forget the +. Does it make a difference if you put
it before or after the stat_summary(...) line? Hint: Look very
carefully at how the graph is plotted.

Box-whisker plot. To see variation between the different diets we
use geom_boxplot to plot a box-whisker plot. A note of caution is
that the number of chicks per diet is relatively low to produce this
plot.

ggplot(cw, aes(Time, weight, colour=Diet)) +
facet_wrap(~ Diet) +
geom_boxplot() +
theme(legend.position = "none") +
ggtitle("Chick Weight over Time by Diet")

● ●●●

●

●●●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

3 4

1 2

0 2 4 6 8 10121416182021 0 2 4 6 8 10121416182021

100

200

300

100

200

300

Time

w
ei

gh
t

Chick Weight over Time by Diet

Interpretation. Diet 3 seems to have the highest “average” weight
gain but it has more variation than diet 4 which is consistent with
our findings so far.

Exercise. Add the following information to the above plot:

• x-axis label (use xlab()): “Time (days)”
• y-axis label (use ylab()): “Weight (grams)”

Final Plot. Let’s finish with a plot that you might include in a publi-
cation.

ggplot(cw, aes(Time, weight, group=Diet,
colour=Diet)) +

facet_wrap(~ Diet) +
geom_jitter() +
stat_summary(fun.y="mean", geom="line",

colour="black") +
theme(legend.position = "none") +
ggtitle("Chick Weight over Time by Diet") +

xlab("Time (days)") +
ylab("Weight (grams)")

● ●
● ● ● ●

●
● ●

●
●

●
● ● ● ● ●

●
● ●

●
● ● ● ● ●

●
●

●

●
●

●
●

●
●

● ● ●
● ● ●

●
●

● ●
●

● ●
●

●
●

● ●

● ●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

● ●
●

●
●

●

● ●
●

● ●
●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
● ●

●
●

●

●

●

●

●
●

● ● ● ●

●
●

●

●

●

●

●
●

● ● ●
●

● ●

●
●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●
●

●

●
●

●
●

● ●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
● ● ● ● ● ● ● ●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

● ●

●

●

● ●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●
● ● ● ●

●
●

●

●

●

●

● ●

●
●

● ●

●
●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

3 4

1 2

0 2 4 6 8 10121416182021 0 2 4 6 8 10121416182021

100

200

300

100

200

300

Time (days)

W
ei

gh
t (

gr
am

s)

Chick Weight over Time by Diet

12. data.table Data Wrangling Basics

In this section we will learn how to wrangle (manipulate) datasets
using the data.table package. Conceptually, data.table op-
erations can be viewed as dt[i, j, by] with some intentional
similarity to SQL. Here i can select (or subset) rows, j is used
to select, summarise or mutate columns, and by is the grouping
operator. Numerous examples follow.

j to select (or transform) columns. Adds a new variable (column)
or modifies an existing one. We already used this above to create
factor variables.

cw[, weightKg := weight/1000] # add a column
cw
Chick Diet Time weight weightKg
1: 18 1 0 39 0.039
2: 18 1 2 35 0.035
3: 16 1 0 41 0.041

576: 48 4 18 261 0.261
577: 48 4 20 303 0.303
578: 48 4 21 322 0.322
cw[, Diet := paste0("Diet_", Diet)] # mod col.
cw
Chick Diet Time weight weightKg
1: 18 Diet_1 0 39 0.039
2: 18 Diet_1 2 35 0.035
3: 16 Diet_1 0 41 0.041

576: 48 Diet_4 18 261 0.261
577: 48 Diet_4 20 303 0.303
578: 48 Diet_4 21 322 0.322

6 | Learn more at http://ilustat.com/resources/ CC BY SA ilustat • info@ilustat.com • edd@debian.org

http://ilustat.com/resources/
https://creativecommons.org/licenses/by-sa/4.0/
http://ilustat.com/
mailto:info@ilustat.com
mailto:edd@debian.org

j to select (or transform) columns. Keeps, drops or reorders vari-
ables.

Keep variables Time, Diet and weightKg
cw[, .(Chick, Time, Diet, weightKg)]
Chick Time Diet weightKg
1: 18 0 Diet_1 0.039
2: 18 2 Diet_1 0.035
3: 16 0 Diet_1 0.041

576: 48 18 Diet_4 0.261
577: 48 20 Diet_4 0.303
578: 48 21 Diet_4 0.322

j to summarise. It can be used to create aggregations, which is par-
ticularly handy with the grouping operator. The following example
computes means and standard deviations of the ‘weight’ variable
grouped by ‘Diet’. Note that the output has been truncated.

cw[, .(Mean=mean(weight),SDev=sd(weight)),
by=.(Diet, Time)]

Diet Time Mean SDev
1: Diet_1 0 41.4000 0.994723
2: Diet_1 2 47.2500 4.278157
3: Diet_1 4 56.4737 4.128067

46: Diet_4 18 202.9000 33.557413
47: Diet_4 20 233.8889 37.568086
48: Diet_4 21 238.5556 43.347754

setnames() to name or rename. Renames variables whilst keeping
all variables.

setnames(cw, c("Diet", "weight"),
c("Group", "Weight"))

cw
Chick Group Time Weight weightKg
1: 18 Diet_1 0 39 0.039
2: 18 Diet_1 2 35 0.035
3: 16 Diet_1 0 41 0.041

576: 48 Diet_4 18 261 0.261
577: 48 Diet_4 20 303 0.303
578: 48 Diet_4 21 322 0.322

i operator. Keeps or drops observations (rows).

cw[Time == 21 & Weight > 300]
Chick Group Time Weight weightKg
1: 7 Diet_1 21 305 0.305
2: 29 Diet_2 21 309 0.309
3: 21 Diet_2 21 331 0.331
4: 32 Diet_3 21 305 0.305
5: 40 Diet_3 21 321 0.321
6: 34 Diet_3 21 341 0.341
7: 35 Diet_3 21 373 0.373
8: 48 Diet_4 21 322 0.322

For comparing values in vectors use: < (less than), > (greater
than), <= (less than and equal to), >= (greater than and equal
to), == (equal to) and != (not equal to). These can be combined
logically using & (and) and | (or).

Keying observations. Setting a key changes the order of the obser-
vations (rows), and also makes indexing faster.

cw[order(Weight)] # on the fly
Chick Group Time Weight weightKg
1: 18 Diet_1 2 35 0.035
2: 18 Diet_1 0 39 0.039
3: 3 Diet_1 2 39 0.039

576: 34 Diet_3 21 341 0.341
577: 35 Diet_3 20 361 0.361
578: 35 Diet_3 21 373 0.373
setkey(cw, Chick, Time) # setting a key
cw
Chick Group Time Weight weightKg
1: 1 Diet_1 0 42 0.042
2: 1 Diet_1 2 51 0.051
3: 1 Diet_1 4 59 0.059

576: 50 Diet_4 18 234 0.234
577: 50 Diet_4 20 264 0.264
578: 50 Diet_4 21 264 0.264

Exercise. What does the order() do? Try using order(Time) and
order(-Time) in the i column.

13. Chaining

You may want to do multiple data wrangling steps at once. This is
where the ‘chaining’ of data.table operations (i.e., several sets
of commands with square brackets) comes to the rescue:

cw21 <- cw[Time %in% c(0,21)][# i: select rows
, weight := Weight][# j: mutate
, Group := factor(Group)][
, .(Chick,Group,Time,weight)][# j: arrange
order(Chick,Time)][# i: order

1:5] # i: subset

14. Chick Weight: Summary Statistics

From the data visualisations above we concluded that the diet 3
has the highest mean and diet 4 the least variation. In this section,
we will quantify the effects of the diets using summary statistics.
We start by looking at the number of observations and the mean of
weight grouped by diet and time.

cw[, .(N = .N, # .N is nb per group
Mean = mean(Weight)), # compute mean

by=.(Group, Time)][# group by Diet + Time
1:5] # display rows 1 to 5

Group Time N Mean
1: Diet_1 0 20 41.4000
2: Diet_1 2 20 47.2500
3: Diet_1 4 19 56.4737
4: Diet_1 6 19 66.7895
5: Diet_1 8 19 79.6842

by= argument. For each distinct combination of Diet and Time, the
chick weight data is summarised into the number of observations
(N, using the internal variable .N denoting current group size) and
the mean (Mean) of weight.

CC BY SA ilustat • info@ilustat.com • edd@debian.org Getting Started in R | November 24, 2018 | 7

https://creativecommons.org/licenses/by-sa/4.0/
http://ilustat.com/
mailto:info@ilustat.com
mailto:edd@debian.org

Other summaries. We can calculate the standard deviation, median,
minimum and maximum values—only at days 0 and 21.

cws <- cw[Time %in% c(0,21),
.(N = .N,

Mean = mean(Weight),
SDev = sd(Weight),
Median = median(Weight),
Min = min(Weight),
Max = max(Weight)),

by=.(Group, Time)]
cws
Group Time N Mean SDev Median Min Max
1: Diet_1 0 20 41.4 0.995 41.0 39 43
2: Diet_1 21 16 177.8 58.702 166.0 96 305
3: Diet_2 0 10 40.7 1.494 40.5 39 43
4: Diet_2 21 10 214.7 78.138 212.5 74 331
5: Diet_3 0 10 40.8 1.033 41.0 39 42
6: Diet_3 21 10 270.3 71.623 281.0 147 373
7: Diet_4 0 10 41.0 1.054 41.0 39 42
8: Diet_4 21 9 238.6 43.348 237.0 196 322

Finally, we can make the summaries “prettier” for a possible
report or publication where we format the numeric values as text.

cws[, Mean_SD := paste0(format(Mean,digits=1),
" (",
format(SDev,digits=2),
")")]

cws[, Range := paste(Min, "-", Max)]
prettySum <- cws[, .(Group, Time, N, Mean_SD,

Median, Range)][
order(Group, Time)]

prettySum
Group Time N Mean_SD Median Range
1: Diet_1 0 20 41 (0.99) 41.0 39 - 43
2: Diet_1 21 16 178 (58.70) 166.0 96 - 305
3: Diet_2 0 10 41 (1.49) 40.5 39 - 43
4: Diet_2 21 10 215 (78.14) 212.5 74 - 331
5: Diet_3 0 10 41 (1.03) 41.0 39 - 42
6: Diet_3 21 10 270 (71.62) 281.0 147 - 373
7: Diet_4 0 10 41 (1.05) 41.0 39 - 42
8: Diet_4 21 9 239 (43.35) 237.0 196 - 322

Final Table. Eventually you should be able to produce a publication-
ready version such as the following table. Its code uses the kable
and kableExtra packages. While the code is not displayed here
for compactness, full details are of course in the sources.

Group Time N Mean_SD Median Range

Diet_1 0 20 41 (0.99) 41.0 39 - 43
Diet_1 21 16 178 (58.70) 166.0 96 - 305
Diet_2 0 10 41 (1.49) 40.5 39 - 43
Diet_2 21 10 215 (78.14) 212.5 74 - 331
Diet_3 0 10 41 (1.03) 41.0 39 - 42
Diet_3 21 10 270 (71.62) 281.0 147 - 373
Diet_4 0 10 41 (1.05) 41.0 39 - 42
Diet_4 21 9 239 (43.35) 237.0 196 - 322

Interpretation. This summary table offers the same interpretation
as before, namely that diet 3 has the highest mean and median
weights at day 21 but a higher variation than group 4. However it
should be noted that at day 21, diet 1 lost 4 chicks from 20 that
started and diet 4 lost 1 from 10. This could be a sign of some
issues (e.g. safety).

Limitations of data. Information on bias reduction measures is not
given and is not available either9. We don’t know if the chicks
were fairly and appropriately randomised to the diets and whether
the groups are comparable (e.g., same breed of chicks, sex (gen-
der) balance). Hence we should be very cautious with drawing
conclusion and taking actions with this data.

15. Conclusion

This “Getting Started in R” guide introduced you to some of the
basic concepts underlying R and used a real life dataset to produce
some graphs and summary statistics. It is only a flavour of what
R can do but hopefully you have seen some of power of R and its
potential.

What next. There are plenty of R courses, books and on-line re-
sources that you can learn from. It is hard to recommend any in
particular as it depends on how you learn best. Find things that
work for you (paying attention to the quality) and don’t be afraid
to make mistakes or ask questions. Most importantly have fun.

16. Acknowledgements

Special thanks to Saghir Bashir for publishing the initial version of
Getting Started with R, Brodie Gaslam and Matt Dowle for feedback
on this version, and to Joshua Ulrich for many discussions about
The Tinyverse.

9 I (ie Saghir) contacted the source authors and kindly received the following reply “They were mainly un-
dergraduate projects, final-year, rather than theses, so, unfortunately, it’s unlikely that any record remains,
particularly after so many years.”

8 | Learn more at http://ilustat.com/resources/ CC BY SA ilustat • info@ilustat.com • edd@debian.org

https://github.com/saghirb
https://github.com/saghirb/Getting-Started-in-R
https://github.com/brodieG
https://github.com/mattdowle
https://github.com/joshuaulrich/
http://tinyverse.org
http://ilustat.com/resources/
https://creativecommons.org/licenses/by-sa/4.0/
http://ilustat.com/
mailto:info@ilustat.com
mailto:edd@debian.org

	Preface
	Experiment Safely

	Introduction
	Before Starting
	Starting R & RStudio
	Quitting R & RStudio

	R Help
	help() function
	Keyword search
	Help Examples
	RStudio Help
	Searching On-line For R Help
	Exercise
	Warning
	Hint

	Some R Concepts
	Warning: R is case sensitive
	New lines
	Comments

	R as a Calculator
	Other math functions
	Exercise

	Some More R Concepts
	Text objects
	Vectors
	Vector operations
	Missing Values
	Managing Objects
	Exercise

	R Functions and Packages
	R Functions
	Custom Functions
	R Packages
	Extending Base R
	The tinyverse View
	Installation

	Chick Weight Data
	The Data
	Note
	Objective

	Importing The Data
	Important Note
	Change the working directory in RStudio

	Looking at the Dataset
	Interpretation
	Exercise

	Chick Weight: Data Visualisation
	ggplot2 Package
	First plot
	Exercise
	Add colour for Diet
	Interpretation
	Factor Variables
	facet_wrap() function
	Exercise
	Interpretation
	Exercise
	Mean line plot
	Interpretation
	Exercise
	Box-whisker plot
	Interpretation
	Exercise
	Final Plot

	data.table Data Wrangling Basics
	j to select (or transform) columns
	j to select (or transform) columns
	j to summarise
	setnames() to name or rename
	i operator
	Keying observations
	Exercise

	Chaining
	Chick Weight: Summary Statistics
	by= argument
	Other summaries
	Final Table
	Interpretation
	Limitations of data

	Conclusion
	What next

	Acknowledgements

