Skip to content

Latest commit

 

History

History

arch

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

架构

要解决谁的问题?

软件实际上就是把现实生活模拟到计算机中,并且软件是需要在计算机的硬件中运行起来的。要做到这一点需要解决两个问题:

  1. 业务问题

    具体的现实生活状态下,没有软件的时候,所解决的问题的主体是谁,解决的是什么问题,是如何解决,如何运作的?

  2. 计算机问题

    如何把现实生活用软件来模拟? 模拟出来的软件,需要哪些硬件设施才能够满足要求? 并且当访问量越来越大的时候,软件能否支持硬件慢慢长大,性能线性扩展? 因为硬件是可能会失效的,软件如何在硬件失效的情况下,仍然能够保证可用性,让用户能够不中断的访问软件提供的服务? 怎么收集软件产生的数据,为下一阶段的工作提供依据?

分别是谁的问题呢?

  1. 业务的owner需要提升业务的效率,降低业务的成本,这是动机。这个实际上就是业务的问题,所以一般软件开发的出发点就在这里。
  2. 是软件工程师的问题,要解决业务owner把业务虚拟化的问题,并且要解决软件开发和运营的生命周期的问题。

分别有什么问题?

  1. 业务问题的本质,是业务所服务的对象的利益问题,明白了这个,就很容易搞清业务的概念和组织方式。再次强调一下,有了软件,可以降低业务的成本,没有软件的情况下,业务是一样跑的。如果只是为了跟风要用软件,说不定反而提高了成本,这个是采用软件之前首先要先搞清楚的。我们经常说软件和技术是业务的enabler,实际就是把原来成本很高的降到到了很低的程度而已,并不是有了什么新的业务。另外软件也不是降低业务成本的唯一方式。

  2. 为了能够让软件很好的跑起来,软件工程师必须理解业务所服务的对象,他们的利益所在,即业务问题。业务面对这些问题是如何分拆解决的? 涉及到了哪些概念? 这些概念分别解决了哪些哪些问题? 我们不能自己按照自己的理解,用自己的一套概念体系来表述。如果这么做的话,会导致两个问题:

    • 业务无法和我们交流,因为他们无法明白我们所自己创建的概念,所以他们无法确认我们的理解是否正确。
    • 我们所表述的东西,并没有在实际生活中实践过,我们也不知道这些概念是否能够解决业务的问题。
  3. 软件工程师还必须要考虑,用什么样的硬件把软件跑起来,怎样跑得好,跑得快,并且可以随着业务的流量逐渐的长大?

分析问题

对于上面第二个问题,在有限的时间下,软件工程师毫无疑问无法一个人去完成这么多事情,那么我们需要把所做的事情列出来,进行分析。

  • 一、虚拟化业务需要完成这些事情:
  1. 学习业务知识,认识业务所涉及的stakeholders的核心利益述求,以及业务是如何分拆满足这些利益述求,并通过怎样的组织架构完成整个组织的核心利益的,以及业务运作的流程,涉及到哪些概念,有哪些权利和责任等。

  2. 通过对业务知识的学习,针对这些概念所对应的权利和责任以及组织架构,对业务进行建模,把并把建模的结果用编程语言实现。这是业务的模型,通常是现实生活中利益斗争的结果,是非常稳定的。

  3. 学习业务所参与的stakeholder是如何和业务打交道,并完成每个人的权利和义务的,并通过编程语言,结合业务模型实现这些打交道的沟通通道。这部分是变化最频繁的,属于组合关系。明白了这一点,对后续的实现非常有帮助。

  4. 如何把业务运行的结果,持久化,并通过合适的手段把持久化后的数据,在合适的时间合适的地点加载出来。这部分和基础设施有关,变化可能也会比较频繁。

  • 二、代码如何运营,需要完成这些事情:
  1. 需要多少硬件设备来满足访问的需求?
  2. 代码要分成多少个组件部署到哪些硬件设备上?
  3. 这些代码如何通过硬件设备互相连接在一起?
  4. 当业务流量增大到超过一台机器的容量时,软件能否支持通过部署到新增机器上的方式,扩大对业务的支撑?
  5. 当某台或某些硬件设备失效时,软件是否仍然能够不影响用户的访问。
  6. 软件运行产生的数据,能否支持提取出来并加以分析,为下一轮的业务决策提供依据。
  • 三、如果分成不同的角色来完成这些事情,就需要一个组织架构来组织代码的编写和运营,需要做哪些事情:
  1. 完成一和二所列的这些事情,需要哪些角色参与?
  2. 这些事情基本都需要顺序的发生,如何保证信息在不同角色的传递过程中不会有损失? 或者说即使有损失,也能快速纠正?
  3. 这些角色之间是如何协调,才能共同完成虚拟化业务的需求?

会生成哪些架构

如果业务足够简单,用户流量够小,时间要求也不急迫,那么一个人,一台机器就够了,这个时候一般不会去讨论架构的问题。当访问的流量越来越大,机器就会越来越多,代码的部署单元就会拆分的越来越多。

同样就会需要越来越多的人来完成拆分出来的越来越多的部署单元,甚至同一个部署单元也需要分拆为多人合作完成。但是我们需要注意到一点,整个的概念体系,或者说业务的建模不会有任何的变化,还是完成同样的这些事情。唯一的区别就是量越来越大,超过了单个人和单个机器的容量,不断地增长。这样就会导致以下的架构:

  1. 当流量越来越大,我们就会发现,软件所部属的机器就会开始按照树状的结构开始分拆,就会形成硬件的部属架构。这就是为什么会形成部署的分层。

  2. 为了把业务在软件中实现并落地,需要前端人员、业务代码人员、存储层等不同技巧的人同时工作,需要切分成代码的架构。这就是为什么会形成代码的分层,形成代码的架构。当然,当这些角色由一个人来完成的时候,不一定会有代码架构,往往会比较乱。

  3. 当参与的人员越来越多,就会形成开发体系的组织架构。因为代码开发的过程是一个连续的过程,会用流程来把不同的角色串联起来,这就是软件工程。

  4. 为了完成业务的工作,需要识别出来业务架构和支撑业务的组织架构,以及业务运作的流程。这是被虚拟化的业务架构和组织架构,也需要体现在代码中,保持和现实生活中一致。

什么是软件架构

这就是软件比较复杂的地方,涉及到软件本身的业务体系,和所虚拟的业务体系。根据以上的分析,所生成的架构,究竟那些算是软件架构呢?

  1. 软件因为流量增大而分拆成不同的运行单元,在不同的机器上部署所形成的架构,属于软件架构。
  2. 每个运行单元为了让不同角色的人,比如前端,业务,数据存储等能够并行工作,所分成的代码架构,也属于软件架构。

所以当我们说软件架构的时候,我们一定要讲清楚,究竟说的是部署的架构,还是代码的架构。软件架构的落地,需要软件的组织架构和流程来保障,离开了这个,软件架构是一句空话。

另外很多人讲,架构是进化出来的。架构实际上是在量不断的增大,超过了单台服务器的容量,逐渐的分拆,同时导致超过单个人员的能力,工作人员不断的增多,工作内容不断的分拆形成的。这本身就是架构的意义所在。不管怎么分拆,所达到的目标没有任何变化,就是完成业务在计算机中的虚拟化。

常见的架构类型

分层架构 (Layered Architecture)

它是最通用的架构,也被叫做N层架构模式(n-tier architecture pattern)。这也是Java EE应用经常采用的标准模式。基本上是个程序员都知道它。这种架构模式非常适合传统的IT通信和组织结构,很自然地成为大部分应用的第一架构选择。

分层架构模式里的组件被分成几个平行的层次,每一层都代表了应用的一个功能(展示逻辑或者业务逻辑)。尽管分层架构没有规定自身要分成几层几种,大多数的结构都分成四个层次:展示层,业务层,持久层,和数据库层。如表1-1,有时候,业务层和持久层会合并成单独的一个业务层,尤其是持久层的逻辑绑定在业务层的组件当中。因此,有一些小的应用可能只有3层,一些有着更复杂的业务的大应用可能有5层或者更多的分层。

分层架构中的每一层都着特定的角色和职能。举个例子,展示层负责处理所有的界面展示以及交互逻辑,业务层负责处理请求对应的业务。架构里的层次是具体工作的高度抽象,它们都是为了实现某种特定的业务请求。比如说展示层并不需要关心怎样得到用户数据,它只需在屏幕上以特定的格式展示信息。业务层并不关心要展示在屏幕上的用户数据格式,也不关心这些用户数据从哪里来。它只需要从持久层得到数据,执行与数据有关的相应业务逻辑,然后把这些信息传递给展示层。

分层架构的一个突出特性是组件间关注点分离 (separation of concerns)。一个层中的组件只会处理本层的逻辑。比如说,展示层的组件只会处理展示逻辑,业务层中的组件只会去处理业务逻辑。多亏了组件分离,让我们更容易构造有效的角色和强力的模型。这样应用变的更好开发,测试,管理和维护。

  • 关键概念

每一层都是封闭的。这是分层架构中非常重要的特点。这意味request必须一层一层的传递。举个例子,从展示层传递来的请求首先会传递到业务层,然后传递到持久层,最后才传递到数据层。

那么为什么不允许展示层直接访问数据层呢。如果只是获得以及读取数据,展示层直接访问数据层,比穿过一层一层来得到数据来的快多了。这涉及到一个概念:层隔离。

层隔离就是说架构中的某一层的改变不会影响到其他层:这些变化的影响范围限于当前层次。如果展示层能够直接访问持久层了,假如持久层中的SQL变化了,这对业务层和展示层都有一定的影响。这只会让应用变得紧耦合,组件之间互相依赖。这种架构会非常的难以维护。

从另外一个方面来说,分层隔离使得层与层之间都是相互独立的,架构中的每一层的互相了解都很少。为了说明这个概念的牛逼之处,想象一个超级重构,把展示层从JSP换成JSF。假设展示层和业务层的之间的联系保持一致,业务层不会受到重构的影响,它和展示层所使用的界面架构完全独立。

然而封闭的架构层次也有不便之处,有时候也应该开放某一层。如果想往包含了一些由业务层的组件调用的普通服务组件的架构中添加一个分享服务层。在这个例子里,新建一个服务层通常是一个好主意,因为从架构上来说,它限制了分享服务访问业务层(也不允许访问展示层)。如果没有隔离层,就没有任何架构来限制展示层访问普通服务,难以进行权限管理。

  • 注意事项

分层架构是一个很可靠的架构模式。它适合大多数的应用。如果你不确定在项目中使用什么架构,分层架构是再好不过的了。然后,从架构的角度上来说,选择这个模式还要考虑很多的东西。

第一个要注意的就是 污水池反模式(architecture sinkhole anti-pattern)。 在这个模式中,请求流只是简单的穿过层次,不留一点云彩,或者说只留下一阵青烟。比如说界面层响应了一个获得数据的请求。响应层把这个请求传递给了业务层,业务层也只是传递了这个请求到持久层,持久层对数据库做简单的SQL查询获得用户的数据。这个数据按照原样返回,不会有任何的二次处理,返回到界面上。

每个分层架构或多或少都可能遇到这种场景。关键在于这样的请求有多少。巴莱多定律(也叫二八定律)可以帮助你确定架构是否处于反污水模式。大概有百分之二十的请求仅仅是做简单的穿越,百分之八十的请求会做一些业务逻辑操作。然而,如果这个比例反过来,大部分的请求都是仅仅穿过层,不做逻辑操作。那么开放一些架构层会比较好。不过由于缺少了层次隔离,项目会变得难以控制。

  • 模式分析
  • 总体灵活性: 低
  • 发布易用性: 低
  • 可测试性: 高
  • 性能: 低
  • 规模扩展性: 低
  • 开发容易度: 高

事件驱动架构 (Event-Driven Architecture)

事件驱动架构是一个流行的分布式异步架构模式,可以用来设计规模很大的应用程序。基于这种架构模式应用可大可小。它由高度解耦的,单一目的的事件处理组件组成,可以异步地接收和处理事件。 它包括两个主要的拓扑结构:mediator 和 broker。Mediator拓扑结构需要你在一个事件通过mediator时精心安排好几个步骤,而broker拓扑结构无需mediator,而是由你串联起几个事件。这两种拓扑架构的特征和实现有很大的不同,所以你需要知道哪一个适合你。

  • Mediator拓扑结构

Mediator拓扑结构适合有多个步骤的事件,需要安排处理层次。 例如购买一只股票,首先会校验这个交易,校验股票交易是否符合各种规定,将它交给一个经纪人,计算佣金,最后确认交易。所有这些都安排好各个步骤的顺序,决定它们是否串行还是并行。 它包括四个组件:event queues, an event mediator, event channels 和 event processors。

事件流是这样开始的: 客户端发送一个事件到事件队列(event queues)中,它用来将事件传送给event mediator。Event mediator收到初始的事件后,会发送额外的一些异步事件给event channels来执行处理的每个步骤。Event processors监听event channels,接收事件并处理一些业务逻辑。

在事件驱动架构中有十几个甚至几百个事件队列都很正常。模式本身没有限定事件队列的实现方式。它可能是一个消息队列,一个web service或者其它。

这里有两种事件: 初始事件和处理事件。Mediator会将初始事件编排成处理事件。它没有具体的业务逻辑,只是一个协调者,负责将初始事件转化成一个或者多个处理事件。 event channels 既可以是消息队列,也可以是消息topic,大部分是消息topic,这样可以由多个消息处理器(event processor)处理同一个消息。

消息处理器包含实际的业务逻辑。每个消息处理器都是自包含的,独立的,高度解耦的,执行单一的任务。 这种模式可能有一些变种。作为架构师,你应该理解每个实现的细节,确保这种解决方案适合你的需求。 有一些开源的框架实现了这种架构,如Spring Integration, Apache Camel, 或者 Mule ESB。

  • Broker拓扑架构

Broker不同于上面的结构,它没有中心的Mediator。所有的事件串联起来通过一个轻量级的消息broker如RabbitMQ,ActiveMQ,HornetQ等。如果你的消息比较简单,不需要重新编排,就可以使用这种结构。

包含两个组件broker和 event processor。 broker中的event channel可以是消息队列,消息topic或者它们的复合形式。 每个event processor负责处理事件,发布新的事件。

  • 架构考量

事件驱动架构模式实现起来相对复杂,主要是由于它的异步和分布式特性。这可能会带来一些分布式的问题,比如远程处理的可用性,缺乏响应,broker重连等问题。 一个考虑是这种模式对于单一的逻辑缺乏原子事务。所以你需要将原子事务交给一个事件处理器执行,跨事件处理器的原子事务是很困难的。 最困难的设计之一是事件处理器的创建,维护和管理。事件通常有特殊的约定(数据值和格式)。

  • 模式分析
  • 总体灵活性: 高
  • 发布易用性: 高
  • 可测试性: 低
  • 性能: 高
  • 规模扩展性: 高
  • 开发容易度: 低

微内核架构 (Microkernel Architecture)

微内核架构模式通常又被成为插件架构模式,可以用来实现基于产品的应用, 比如Eclipse,在微内核的基础上添加一些插件,就可以提供不同的产品,如C++, Java等。 通过插件的形式添加额外的特性到核心系统中,这提供了很好的扩展性,也使得新特性与核心系统隔离开来。

  • 模式描述

微内核架构主要需要考虑两个方面面: 核心系统和插件模块。应用逻辑被划分为独立的插件模块和核心系统,这样就提供良好的可扩展性、灵活性,应用的新特性和自自定义处理逻辑也会被隔离。

微内核架构的核心系统一般情况下只包含一个能够使系统运作起来的最小化模块。很多操作系统的实现就是使用微内核架构,因此这也是该架构名字的由来。从商业应用的角角度看,核心系统通常是为特定的使用场景、规则、或者复杂条件处理定义了通用的业务逻辑,而插件模块根据这些规则实现了具体的业务逻辑。

核心系统需要了解插件模块的可用性以及如何获取到它们。一个通用的实现方法是通过一组插件注册表。这个插件注册表含有每个插件模块的信息,包括它的名字、数据规约和远程访问协议(取决于插件如何与核心系统建立连接)。 插件模块可以通过多种方式连接到核心系统,包括OSGi ( open service gateway initiative )、消息机制、web服务或者直接点对点的绑定 ( 比如对象实例化,即依赖注入 )。你使用的连接类型取决于你构建的应用类型和你的特殊需求(比如单机部署还是分布式部署)。微内核架构本身没有指定任何的实现方式,唯一的规定就是插件模块之间不要产生生依赖。 插件和核心系统的通信规范包含标准规范和自自定义规范。自自定义规范典型的使用场景是插件组件是被第三方构建的。在这种情况下,通常是在第三方插件规约和你的标准规范创建一个Adapter来使核心系统根本不需要知道每个插件的具体细节。当创建标准规范 ( 通常是通过XML或者Java Map )时,从一开始就创建一个版本策略是非常重要的。

  • 注意事项

对于微内核架构来说一个很重要的一点就是它能够被嵌入或者说作为另一种架构的一部分。例如,如果这个架构解决的是一个你应用中易变领域的特定的问题 ( 译者注 : 即插件化能够解决你应用中的某个特定模块的架构问题 ),你可能会发现你不能在整个应用中使用这种架构。在这种情况下,你可以将微内核架构嵌入到另一个架构模式中 ( 比如分层架构 )。同样的,在上一章节中描述的事件驱动架构中的事件处理器组件也可以使用微内核架构。

微内核架构对渐进式设计和增量开发提供了非常好的支支持。你可以先构建一个单纯的核心系统,随着应用的演进,系统会逐渐添加越来越多的特性和功能,而这并不会引起核心系统的重大变化。对基于产品的应用来说,微内核架构应该是你的第一选择。特别是那些你会在后续开发中发布附加特性和控制哪些用户能够获取哪些特性的应用。如果你在后续开发中发现这个架构不能满足足你的需求了,你能够根据你的特殊需求将你的应用重构为另一个更好的架构。

  • 模式分析
  • 总体灵活性: 高
  • 发布易用性: 高
  • 可测试性: 高
  • 性能: 高
  • 规模扩展性: 低
  • 开发容易度: 低

微服务架构(Microservices Architecture)

微服务架构模式作为替代单体应用和面面向服务架构的一个可行的选择,在业内迅速取得进展。由于这个架构模式仍然在不断的发展中,在业界存在很多困惑——这种模式是关于什么的?它是如何实现的?本报告的这部分将为你提供关键概念和必要的基础知识来理解这一重要架构模式的好处(和取舍),以此来判断这种架构是否适合你的应用。

  • 模式描述

不管你选择哪种拓扑或实现⻛风格,有几种常⻅的核心概念适用于一般架构模式。第一个概念是单独部署单元。 微服务架构的每个组件都作为一个独立单元进行部署,让每个单元可以通过有效、简化的传输管道进行通信,同时它还有很强的扩展性,应用和组件之间高高度解耦,使得部署更为简单。

也许要理解这种模式,最重要的概念就是服务组件(service component)。不要考虑微服务架构内部的服务,而最好是考虑服务组件,从粒度上讲它可以小到单一的模块,或者大至一个应用程序。服务组件包含一个或多个模块(如Java类),这些模块可以提供一个单一功能(如,为特定的城市或城镇提供天气情况),或也可以作为一个大型商业应用的一个独立部分(如,股票交易布局或测定汽车保险的费率)。在微服务架构中,正确设计服务组件的粒度是一个很大的挑战。在接下来的服务组件部分对这一挑战进行了详细的讨论。

微服务架构模式的另一个关键概念是它是一个分布式的架构,这意味着架构内部的所有组件之间是完全解耦的,并通过某种远程访问协议(如, JMS, AMQP, REST, SOAP, RMI等)进行访问。这种架构的分布式特性是它实现一些优越的可扩展性和部署特性的关键所在。

微服务架构另一个令人兴奋的特性是它是由其他常见架构模式存在的问题演化来的,而不是作为一个解决方案被创造出来等待问题出现。微服务架构的演化有两个主要来源:使用分层架构模式的单体应用和使用面向服务架构的分布式应用。

由单体应用( 一个应用就是一个整体 )到微服务的发展过程主要是由持续交付开发促成的。从开发到生产的持续部署管道概念,简化了应用程序的部署。单体应用通常是由紧耦合的组件组成,这些组件同时又是另一个单一可部署单元的一部分,这使得它繁琐,难以改变、测试和部署应用(因此常见的“月度部署”周期出现并通常发生在大型IT商店项目)。这些因素通常会导致应用变得脆弱以至于每次有一点新功能部署后应用就不能运行。微服务架构模式通过将应用分隔成多个可部署的单元(服务组件)的方法来解决这一问题,这些服务组件可以独立于其他服务组件进行单独开发、测试和部署。

另一个导致微服务架构模式产生的演化过程是由面向服务架构模式(SOA)应用程序存在的问题引起的。虽然SOA模式非常强大,提供了无与伦比的抽象级别、异构连接、服务编排,并保证通过IT能力调整业务目标,但它仍然是复杂的,昂贵的,普遍存在,它很难理解和实现,对大多数应用程序来说过犹不及。微服务架构通过简化服务概念,消除编排需求、简化服务组件连接和访问来解决复杂度问题。

  • 模式拓扑

虽然有很多方法来实现微服务架构模式,但三个主要的拓扑结构脱颖而出,最常见和流行的有:基于REST API的拓扑结构,基于REST的应用拓扑结构和集中式消息拓扑结构。

基于REST的API拓扑适用于网站,通过某些API对外提供小型的、自包含的服务。这种拓扑结构,由粒度非常细的服务组件(因此得名微服务)组成,这些服务组件包含一个或两个模块并独立于其他服务来执行特定业务功能。在这种拓结构扑中,这些细粒度的服务组件通常被REST-based的接口访问,而这个接口是通过一个单独部署的web API层实现的。此种拓扑的例子包含一些常见的专用的、基于云的RESTful web service,大型网站像Yahoo, Google, and Amazon都在使用。

基于REST的应用拓扑结构与基于REST API的不同,它通过传统的基于web的或胖客户端业务应用来接收客户端请求,而不是通过一个简单的API层。应用的用户接口层(user interface layer)是一个web应用,可以通过简单的REST-based接口访问单独部署的服务组件(业务功能)。该拓扑结构中的服务组件与API-REST-based拓扑结构中的不同,这些服务组件往往会更大、粒度更粗、代表整个业务应用程序的一小部分,而不是细粒度的、单一操作的服务。这种拓扑结构常见于中小型企业等复程度相对较低的应用程序。

微服务架构模式中另一个常见的方法是集中式消息拓扑。该拓扑与前面提到的基于REST的应用拓扑类似,不同的是,application REST- based拓扑结构使用REST进行远程访问,而该拓扑结构则使用一个轻量级的集中式消息代理(如,ActiveMQ, HornetQ等等)。不要将该拓扑与面向服务架构模式混淆或将其当做SOA简化版(“SOA-Lite”),这点是极其重要的。该拓扑中的轻量级消息代理(Lightweight Message Broker)不执行任何编排,转换,或复杂的路由;相反,它只是一个轻量级访问远程服务组件的传输工具。

集中式消息拓扑结构通常应用在较大的业务应用程序中,或对于某些对传输层到用户接口层或者到服务组件层有较复杂的控制逻辑的应用程序中。该拓扑较之先前讨论的简单基于REST的拓扑结构,其好处是有先进的排队机制、异步消息传递、监控、错误处理和更好的负载均衡和可扩展性。与集中式代理相关的单点故障和架构瓶颈问题已通过代理集群和代理联盟(将一个代理实例为分多个代理实例,把基于系统功能区域的吞吐量负载划分开处理)解决。

  • 避免依赖和编排

微服务架构模式的主要挑战之一就是决定服务组件的粒度级别。如果服务组件粒度过粗,那你可能不会意识到这个架构模式带来的好处(部署、可扩展性、可测试性和松耦合),然而,服务组件粒度过细将导致服务编制要求,这会很快导致将微服务架构模式变成一个复杂、容易混淆、代价昂贵并易于出错的重量级面向服务架构。

如果你发现需要从应用内部的用户接口或API层编排服务组件,那么很有可能你服务组件的粒度太细了。如果你发现你需要在服务组件之间执行服务间通信来处理单个请求,那么很有可能要么是你服务组件的粒度太细了,要么是没有从业务功能角度正确划分服务组件。

服务间通信,可能导致组件之间产生耦合,但可以通过共享数据库进行处理。例如,若一个服务组件处理网络订单而需要用户信息时,它可以去数据库检索必要的数据,而不是调用客户服务组件的功能。

共享数据库可以处理信息需求,但是共享功能呢?如果一个服务组件需要的功能包含在另一个服务组件内,或是一个公共的功能,那么有时你可以将服务组件的共享功能复制一份(因此违反了DRY规则:don’t repeat yourself)。为了保持服务组件独立和部署分离,微服务架构模式实现中会存在一小部分由重复的业务逻辑而造成的冗余,这在大多数业务应用程序中是一个相当常见的问题。小工具类可能属于这一类重复的代码。

如果你发现就算不考虑服务组件粒度的级别,你仍不能避免服务组件编排,这是一个好迹象,可能此架构模式不适用于你的应用。由于这种模式的分布式特性,很难维护服务组件之间的单一工作事务单元。这种做法需要某种事务补偿框架回滚事务,这对此相对简单而优雅的架构模式来说,显著增加了复杂性。

  • 注意事项

微服务架构模式解决了很多单体应用和面向服务架构应用存在的问题。由于主要应用组件被分成更小的,单独部署单元,使用微服务架构模式构建的应用程序通常更健壮,并提供更好的可扩展性,支持持续交付也更容易。

该模式的另一个优点是,它提供了实时生产部署能力,从而大大减少了传统的月度或周末“大爆炸”生产部署的需求。因为变化通常被隔离成特定的服务组件,只有变化的服务组件才需要部署。如果你的服务组件只有一个实例,你可以在用户界面程序编写专门的代码用于检测一个活跃的热部署,一旦检测到就将用户重定向到一个错误页面或等待页面。你也可以在实时部署期间,将服务组件的多个实例进行交换,允许应用程序在部署期间保持持续可用性(分层架构模式很难做到这点)。

最后一个要重视的考虑是,由于微服务架构模式是分布式的架构,他与事件驱动架构模式具有一些共同的复杂的问题,包括约定的创建、维护,和管理,远程系统的可用性,远程访问身份验证和授权。

  • 模式分析
  • 总体灵活性: 高
  • 发布易用性: 高
  • 可测试性: 高
  • 性能: 低
  • 规模扩展性: 高
  • 开发容易度: 高

基于空间的架构 (Space-Based Architecture)

基于空间的架构有时候也被成为基于云的架构。 大部分的基于web的应用的业务流都是一样的。 客户端的请求发送给web服务器,然后是应用服务器,最后是数据库服务器。对于用户很小时不会有问题,但是负载增大时就会遇到瓶颈(想想抢火车票)。首先是web服务器撑不住,web服务器能撑住应用服务器又不行,然后是数据库服务器。通常解决方案是增加web服务器,便宜,简单,但很多情况下负载会传递给应用服务器,然后传递给数据库服务器。有时候增加数据库服务器也没有办法,因为数据库也有锁,有事务的限制。 在一个高并发大容量的应用中,数据库通常是决定应用能够支持多少用户同时在线的关键因素。虽然各种缓存技术和数据库伸缩产品都在帮助解决这个问题,但数据库难以伸缩的现实并没有改变。

基于空间的架构模型是专门为了解决伸缩性和并发问题而设计的。它对于用户数量不可预测且数量级经常变化的情况同样适用。在架构级别来解决这个伸缩性问题通常是比增加服务器数量或者提高缓存技术更好的解决办法。

  • 模型介绍

基于空间的模型(有时也称为云架构模型)旨在减少限制应用伸缩的因素。模型的名字来源于分布式共享内存中的 tuple space(数组空间)概念。高伸缩性是通过去除中心数据库的限制,并使用从内存中复制的数据框架来获得的。保存在内存的应用数据被复制给所有运行的进程。进程可以动态的随着用户数量增减而启动或结束,以此来解决伸缩性问题。这样因为没有了中心数据库,数据库瓶颈就此解决,此后可以近乎无限制的扩展了。

大多数使用这个模型的应用都是标准的网站,它们接受来自浏览器的请求并进行相关操作。竞价拍卖网站是一个很好的例子 ( 12306更是一个典型的示例 )。网站不停的接受来自浏览器的报价。应用收到对某一商品的报价,记录下报价和时间,并且更新对该商品的报价,将信息返回给浏览器。

这个架构中有两个主要的模块:处理单元 和 虚拟化中间件。

处理单元包含了应用模块(或者部分的应用模块)。具体来说就是包含了web组件以及后台业务逻辑。处理单元的内容根据应用的类型而异——小型的web应用可能会部署到单一的处理单元,而大型一些的应用会将应用的不同功能模块部署到不同的处理单元中。典型的处理单元包括应用模块,以及保存在内存的数据框架和为应用失败时准备的异步数据持久化模块。它还包括复制引擎,使得虚拟化中间件可以将处理单元修改的数据复制到其他活动的处理单元。

虚拟化中间件负责保护自身以及通信。它包含用于数据同步和处理请求的模块,以及通信框架,数据框架,处理框架和部署管理器。这些在下文中即将介绍的部分,可以自定义编写或者购买第三方产品来实现。

  • 组件间合作

基于空间的架构的魔力就在虚拟化中间件,以及各个处理单元中的内存中数据框架。下图展示了包含着应用模块、内存中数据框架、处理异步数据恢复的组件和复制引擎的处理单元架构。

虚拟化中间件本质上是架构的控制器,它管理请求,会话,数据复制,分布式的请求处理和处理单元的部署。虚拟化中间件有四个架构组件:通信框架,数据框架,处理框架和部署管理器。

  • 通信框架

通信框架管理输入请求和会话信息。当有请求进入虚拟化中间件,通信框架就决定有哪个处理单元可用,并将请求传递给这个处理单元。通信框架的复杂程度可以从简单的round robin算法到更复杂的用于监控哪个请求正在被哪个处理单元处理的next-available算法。

  • 数据框架

数据框架可能是这个架构中最重要和关键的组件。它与各个处理单元的数据复制引擎交互,在数据更新时来管理数据复制功能。由于通信框架可以将请求传递给任何可用的处理单元,所以每个处理单元包含完全一样的内存中数据就很关键。下图展示处理单元间如何同步数据复制,实际中是通过非常迅速的并行的异步复制来完成的,通常在微秒级。

  • 处理框架

处理框架,就像下图所示,是虚拟化中间件中一个可选组件,负责管理在有多个处理单元时的分布式请求处理,每个处理单元可能只负责应用中的某个特定功能。如果请求需要处理单元间合作(比如,一个订单处理单元和顾客处理单元),此时处理框架就充当处理单元见数据传递的媒介。

  • 部署管理器

部署管理器根据负载情况管理处理单元的动态启动和关闭。它持续检测请求所需时间和在线用户量,在负载增加时启动新的处理单元,在负载下降时关闭处理单元。它是实现可变伸缩性需求的关键。

  • 其他考虑

基于空间的架构是一个复杂和实现起来相对昂贵的框架。对于有可变伸缩性需求的小型web应用是很好的选择,然而,对于拥有大量数据操作的传统大规模关系型数据库应用,并不那么适用。

虽然基于空间的架构模型不需要集中式的数据储存,但通常还是需要这样一个,来进行初始化内存中数据框架,和异步的更新各处理单元的数据。通常也会创建一个单独的分区,来从隔离常用的断电就消失的数据和不常用的数据,这样减少处理单元之间对对方内存数据的依赖。

值得注意的是,虽然这个架构的另一个名字是云架构,处理单元(以及虚拟化中间件)都没有放在云端服务或者PaaS上。他们同样可以简单的放在本地服务器,这也是为什么我更倾向叫它“基于空间的架构”。

从产品实现的角度讲,这个架构中的很多组件都可以从第三方获得,比如GemFire, JavaSpaces, GigaSpaces,IBM Object Grid,nCache,和 Oracle Coherence。由于架构的实现根据工程的预算和需求而异,所以作为架构师,你应该在实现或选购第三方产品前首先明确你的目标和需求。

  • 模式分析
  • 总体灵活性: 高
  • 发布易用性: 高
  • 可测试性: 低
  • 性能: 高
  • 规模扩展性: 高
  • 开发容易度: 低