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0.1 Meta

These notes are written to supplement the textbooks in the course High Per-
formance Programming and Systems. Consider them terminally in-progress.
These notes are not a textbook, do not cover the entire curriculum, and might
not be comprehensible if isolated from the course and its other teaching activ-
ities.

These notes are made available under the terms of the Creative Commons
Attribution-ShareAlike 4.0 International Public License.
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Chapter 1

Computer Systems

There is nothing a computer can that a human cannot also do. The only
advantage that computers offer is far greater speed. As the machines of the
industrial revolution amplified the physical power of humanity beyond what
our bodies are capable of, so do the machines of the computer revolution am-
plify our computational power beyond what is possible using only our brains.
Therefore, while it is a common trope that “programmer time is more valu-
able than computer time”, and that even inexpertly written programs are fast
enough, ultimately it is execution speed that is the reason why computers are
important and interesting.

In the chapters that follow, we will look at how modern computers work and
how to construct programs that run fast. We will take a fairly high level view—
there are many details that will only be covered briefly, and reading this text
will not make you an expert programmer. However, it will hopefully give you
an appreciation of how to design programs that are not accidentally inefficient,
and where to start looking when you have a program that works correctly, but
is too slow to be useful. This focus on performance is the underlying theme of
the text. You’ve been hopefully been taught how to write correct programs;
now is the time to make them fly.

Our initial focus will be on understanding the distinction between rep-
resentation and interpretation. Computers know nothing of images, graphs,
sounds, text, files, networks, humans, or even—when you really get down to
it—numbers. Whenever we want to process and transform data that is mean-
ingful to humans, we first have to represent it in a way that the machine
can understand, which usually boils down to sequences of bits. How we de-
sign such encodings has significant performance and convenience implications.
While this view will be everpresent throughout the course, it is especially the
focus of chapters 2 to 4.

Not only do computers not comprehend most data that is meaningful to
humans, they also do not understand human commands. Instead they follow
orders encoded as machine code, which can be seen as a particularly human-
hostile programming languages. In chapter 5 look at how computers are made
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accessible to humans through programming languages, look at the various ways
we can categorise and classify them, and what the implications might be for
performance.

For modern computers, sheer computational power—e.g. how fast we can
multiply two numbers—is rarely the main performance bottleneck. Indeed, it is
often far more costly to retrieve data than it is to operate on it once it has been
fetched. In chapters 6 and 7 we will look at how larger collections of data can
be structured and what the implications are for performance. In particular, the
notion of locality is one of the most important concerns for program efficiency.

Beyond locality, another crucial technique necessary to obtain good perfor-
mance is parallelism. Modern computers are able to perform multiple oper-
ations simultaneously, and if we write programs that do not take advantage
of this capability, we are in effect not exploiting the computer to its full ex-
tent. Chapters 10 and 11 discuss programming and measurement techniques
for parallel programming.



Chapter 2

Data as Bits

A computer is a machine for processing and transforming information. Ma-
chines inevitably must operate on things that physically exist, so in order to
process information in a machine, we must represent the information in some
physical way. While we stop short of discussing precisely the physical phe-
nomena that underlie modern computers, we will look at the notion of value
encodings—how mathematical objects can be represented such that they can
be processed by machines.

2.1 A Bit

Definition 2.1 (Bit) A bit (binary digit) is a logical state that can represent
two possible values, which we write as 1 or 0.

Conventionally, and in this text, the two possible values are written 1 and
0, as a reference to their interpretation as numbers, but this merely a question
of notation. We could equally well have used true/false, a/b, yes/no, or any
other notation that allows us to distinguish unambiguously between the two
possible values. By convention, we say that a bit is set when 1 and unset when
0.

Bits are used in information theory as a unit of information. For computers,
bits are convenient because any physical phenomenon that can be interpreted
as having two states can be used to represent a bit. For example:

1. High or low voltage in an electrical wire.

2. Absence or presence of a hole in some material.

3. Vertical or horizontal polarity of light.

4. Heads or tails of a coin.

5. Whether a cup is full or empty.

6. Whether a corridor is full of soldier crabs or not [2].

8
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Some of these representations are more practical than others, but all are ulti-
mately based on the notion of a bit. The choice of which representation is most
practical in a given setting is largely based on how we can construct machinery
that manipulates the physical representation of the bits. Modern computers are
overwhelmingly electronic, and use transistors to transform electrical signals
representing bits, but optical representations are also common for long-distance
communications.

2.1.1 Bit Vectors

Single bits rarely occur in isolation. Typically we use a sequence of bits, called
a bit vector.

Definition 2.2 (Bit vector) A bit vector x of length w is an ordered sequence
of w bits, which we write as x = ⟨xw−1 . . . x0⟩.

Note the convention that bit x0 in a bit vector is written at the rightmost
position. This resembles the ordering of digits in mathematical notation.

Definition 2.3 (Concatenation of bit vectors) Two bit vectors juxtaposed
is interpreted as concatenation and defined as follows:

⟨xn−1 . . . x0⟩⟨ym−1 . . . y0⟩ = ⟨xn−1 . . . x0 ym−1 . . . y0⟩

Bit vectors can be interpreted as encoding various mathematical objects.
We will initially be representing values that look very similar to bits, and the
following may seem unnecessarily long-winded and ceremonious, but eventually
we will look at more complicated encodings. The goal is to establish a firm
distinction between the encoding of some mathematical object (say, a number)
as a bit vector, and the mathematical object itself. Such an encoding is defined
by specifying conversion functions between the set of w-bit vectors, which
we denote Bw, and the mathematical set we wish to encode, say the natural
numbers N.

2.1.2 Bit Vectors as Natural Numbers

One of the most obvious ways to interpret a bit vector is as a number in base
2. For example, the bit vector ⟨1001⟩ might be interpreted as an encoding
of the number 10012 = 910. Note the subscripts used to denote the radix
of the literals—we will include these whenever the radix would otherwise be
ambiguous. However, it is important to note that a ⟨1001⟩ is not the same as
10012! They are objects in completely different domains, and it makes no sense
to say that they are equal or unequal. It is merely a quirk of notation that
they look similar when written down, and we shall soon enough see encodings
where this is not the case.

To completely specify the encoding of natural numbers, we must define how
a bit vector of length w is interpreted as a number. Here we do treat single
bits as numbers, 0 or 1, and multiply them with a weight.



CHAPTER 2. DATA AS BITS 10

Definition 2.4 (Bit vector to natural number)

Bits2N(⟨xw−1 · · ·x0⟩) :=
w−1∑
i=0

xi · 2i

Example 2.1 (Interpreting ⟨1101⟩ as natural number)

Bits2N(⟨1101⟩) = 1 · 20 + 0 · 21 + 1 · 22 + 1 · 23
= 13

The conversion of a number to a bit vector is slightly less pleasant, and is
defined by the following recursive procedure.

Definition 2.5 (Natural number to w-bit vector)

N2Bits1(0) :=⟨0⟩ (2.1)

N2Bits1(1) :=⟨1⟩ (2.2)

N2Bitsw(x) :=

{
⟨N2Bitsw−1(⌊x

2 ⌋)⟩⟨0⟩ x is even

⟨N2Bitsw−1(⌊x
2 ⌋)⟩⟨1⟩ x is odd

(2.3)

Note that N2Bitsw(x) always produces a bit vector with w bits, no matter
the magnitude of x. This is because we tend to work only with bit vectors of
some fixed size. We will return to this in section 2.2.2.

Example 2.2 (Encoding 9 as bit vector)

N2Bits4(9) = N2Bits4(2 · 4 + 1) (2.4)

= N2Bits3(4)⟨1⟩ (2.5)

= N2Bits2(2)⟨1⟩⟨1⟩ (2.6)

= N2Bits1(1)⟨0⟩⟨0⟩⟨1⟩ (2.7)

= ⟨1⟩⟨0⟩⟨0⟩⟨1⟩ (2.8)

= ⟨1001⟩ (2.9)

This representation can express only non-negative numbers, and is therefore
called unsigned, because there can be no leading minus sign. In section 2.4 we
will discuss negative numbers.

When x ≥ 2w, then x cannot be encoded with a w-bit vector by defini-
tion 2.5. Intuitively, x is truncated and only the lower w bits of its “full”
representation is included. This is an example of overflow, which we will re-
turn to in section 2.3.1.1. If we wished, we could also have designated a single
distinct bit pattern to encode all numbers that otherwise have no encoding,
which would let us detect anomalous cases. We will see an example of such an
encoding in chapter 3.
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p q p ∧ q p ∨ q p⊕ q ¬p
T T T T F F
T F F T T F
F T F T T T
F F F F F T

Figure 2.1: Truth table for and, or, exclusive-or, and negation.

Having an encoding of numbers is not terribly useful unless we can also
perform operations, such as arithmetic, on numbers represented in the given
encoding. However, before we can do that, we have to talk about Boolean
logic.

2.2 Boolean Logic

While numbers are one of the most interesting things we can encode as bit
vectors, we will start out by looking at bits as truth values. Truth as a subject
of computation was investigated by the English mathematician George Boole
(1815-1864), whose Boolean logic far predates the modern notions of computers
and bits.

Just as we can define operators on numbers (such as addition), we can define
operations on truth values, writing T for truth and F for falsity. For example,
logical-and, written p ∧ q, is true if p and q are both true, and otherwise false,
while logical-and, written p∨ q, is true if either operand is true. The exclusive-
or operation p⊕ q is true if exactly one of p and q is true, and logical negation
¬p is true only if p is false. This is shown in fig. 2.1.

Since a binary boolean operator can have two possible results (T or F ) for
a given combination of operands, and there are four possible combinations of
operands, there are 24 = 16 distinct binary operators on booleans. Most of
these can be written in terms of other operators. For example, the negated-and
operator can be defined as

nand(p, q) := ¬(p ∧ q) (2.10)

Interestingly, it turns out that the nand operation is universal, in that
any boolean function can be written using a combination of nand operations.
Examples:

¬p = nand(p, p) (2.11)

p ∧ q = nand(nand(p, q),nand(p, q)) (2.12)

p ∨ q = nand(nand(p, p),nand(q, q)) (2.13)
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2.2.1 Boolean Operations as Bits

The truth values of Boolean logic can easily be encoded as bits - by treating 1
as T and 0 as F , we can apply the boolean operators directly:

0 ∧ 1 = 0 (2.14)

0 ∨ 1 = 1 (2.15)

0⊕ 1 = 1 (2.16)

¬0 = 1 (2.17)

In section 2.1 we remarked that bits can be represented using any physical
phenomenon capable of two distinct states. In order to be practical for compu-
tation, we must also be able to easily implement boolean operations on pairs
of bits. As mentioned above, the nand operation is universal, so if we can show
how to implement it, we can implement any boolean function.

In practice, it turns out that representation of bits as high and low voltages
makes it easy to implement logical operations with transistors. It is relatively
straightforward to create a gate that has two input wires and one output wire,
where the voltage of the output wire depends on the voltages of the input—
and these gates can be made extremely small using modern manufacturing
techniques. This is why electronic computers have become the most popular
way of implementing computation.

We will not delve further into how logical operations are physically imple-
mented. Instead, we will use the logical operators to build ever more elaborate
operations on bit vectors, knowing that as long as we can express a computa-
tion in terms of bit operations, we can ultimately express it in hardware. On
this humble foundation we will build ever more elaborate data representations.

2.2.2 Words

One important concession to practicality is that we will operate on bit vectors
of fixed lengths. While it is possible to build computers that operate on bit
vectors of arbitrary lengths, it is much more efficient to build circuits that
operate on a fixed number of bits at a time. Usually these are powers of two—
8, 16, 32, 64, etc. In the computer systems nomenclature, a bit vector of some
directly hardware-supported fixed size is called a word. Generally, when we use
the term w-bit word, we mean a bit vector containing w bits.

Definition 2.6 (Word) A word is a bit vector of some fixed size w, on which
the computer can efficiently operate directly.

A w-bit word can express 2w different permutations of bits, meaning it
can represent 2w different values. When deciding on a value representation,
deciding how to best exploit this limited range is important. In definition 2.4 we
decided that a w-bit word can represent integers in the range [0, 2w −1], which
certainly feels intuitive, but we could just as well have defined a conversion
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function that encoded integers in the range [b, b+2w − 1] for some b1. We will
also have to decide what happens when an operation produces a value that lies
outside the representable range.

As a notational convenience, the bitwise operations are extended to operate
elementwise on words as follows:

Definition 2.7 (Bitwise operations on words)

⟨xw−1 · · ·x0⟩ ∧ ⟨yw−1 · · · y0⟩ := ⟨xw−1 ∧ yw−1 · · ·x0 ∧ y0⟩
⟨xw−1 · · ·x0⟩ ∨ ⟨yw−1 · · · y0⟩ := ⟨xw−1 ∨ yw−1 · · ·x0 ∨ y0⟩
⟨xw−1 · · ·x0⟩ ⊕ ⟨yw−1 · · · y0⟩ := ⟨xw−1 ⊕ yw−1 · · ·x0 ⊕ y0⟩

¬⟨xw−1 · · ·x0⟩ := ⟨¬xw−1 · · · ¬x0⟩

This is also the semantics bitwise operations have in programming languages
such as C.

2.3 Bit Arithmetic

Bit vectors have no inherent meaning. Though they look like binary numbers
when we write them down on paper, and we saw in section 2.1.2 how we
can encode natural numbers as bit vectors, they do not innately “know” how
to perform arithmetic operations such as addition. If we wish to perform
an operation on a mathematical object represented as a bit vector, we must
precisely specify that operation in terms of bit operations. Our goal is to specify
the operation such that the resulting bit vector, when decoded, corresponds to
the result we would have obtained if we operated directly on the mathematical
objects. For a mathematical operation ⊙, we will write ⊙⟨⟩ for the equivalent
operation on numbers encoded as bit vectors.

The algorithms for arithmetic we will introduce are largely similar to those
you were hopefully taught for base-10 numbers as a child. A large part of
learning how to perform binary arithmetic is to deconstruct what has long
since become intuitive and look at the actual operations we implicitly perform
when adding or multiplying numbers.

2.3.1 Addition

We wish to define an operation +⟨⟩ such that

Bits2N(N2Bitsw(y)+
⟨⟩ N2Bitsw(y)) = x+ y (2.18)

Adding binary numbers is much like adding decimal numbers. Starting
from the least significant (rightmost) bits, we add them elementwise, keeping
a carry. Example for adding x+⟨⟩ y = s where x = ⟨01011⟩, y = ⟨01001⟩:

1In fact, this encoding, known as biased numbers will make in appearance in chapter 3
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i xi yi si ci
0 1 1 0 1
1 1 0 0 1
2 0 0 1 0
3 1 1 0 1
4 0 0 1 0

The result is s = ⟨10100⟩ with no carry. In terms of bit operations, we can
express the computation of sums and carries as follows (recall that ⊕ means
exclusive-or):

s0 = xi ⊕ yi (2.19)

c0 = xi ∧ yi (2.20)

si = xi ⊕ yi ⊕ ci−1 (2.21)

ci = (xi ∧ yi) ∨ ((xi ∨ yi) ∧ ci−1) (2.22)

Thus, the definition of +⟨⟩ is as follows, when adding two natural numbers
represented as a w-bit word.

Definition 2.8 (Integer addition)

⟨xw−1 · · ·x0⟩+⟨⟩⟨yw−1 · · · y0⟩ := ⟨sw−1 · · · s0⟩

where si, ci are as in eqs. (2.19) to (2.22).

Our definition only covers the case where the two operands have the same
number of bits. We can always zero-extend a w-bit word to a l+w-bit word by
prepending l bits, without changing the natural number it encodes via Bits2N.
On the other hand, truncation by removing bits can change the encoded value.

2.3.1.1 Overflow

Our definition of +⟨⟩ accepts and produces w-bit words. What happens if the
resulting number is larger than 2w − 1 and thus logically requires more than
w bits to be represented? Following definition 2.8, we see that the final carry
bit cw−i is not part of the result—if this bit is 1, then we say that the addition
has overflowed.

Definition 2.9 (Integer overflow) When the result of an integer operation
is so large that it does fit in the designated word.

With the integer representation we have used so far, the result of an overflow
wraps around back to zero. This is conceptually similar to adding 5 + 5 in
decimal arithmetic and limiting the result to a single digit.
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Example 2.3 (⟨11⟩+⟨⟩⟨10⟩)

s0 = 1⊕ 0 = 1 (2.23)

c0 = 1 ∧ 0 = 0 (2.24)

s1 = 1⊕ 1⊕ 0 = 0 (2.25)

c1 = (1 ∧ 1) ∨ ((1 ∨ 0) ∧ 0) = 1 (2.26)

This gives us the final sum

⟨11⟩+⟨⟩⟨10⟩ = ⟨01⟩ (2.27)

and since c1 is set, the computation has overflowed.

Some programming languages make the last carry bit available as an over-
flow bit that programmers can check to see if overflow occurred. In others, an
error is signalled if the overflow bit is set after an addition. But in many lan-
guages, such as C, overflow silently occurs and means the program can produce
a possibly unexpected result when working with large numbers.

Does this mean that our carefully specified encoding of natural numbers as
a fixed quantity of bits is simply mathematically wrong, when even something
as simple as addition can give us an unexpected result? Not exactly: while no
fixed-size encoding can encompass the infinite natural numbers, our encoding
models the ring of natural numbers modulo 2w. Our definition of arithmetic is
modular arithmetic, which is mathematically quite well behaved. In particular,
arithmetic has the expected algebraic properties (associativity, commutativity,
0 as additive identity, etc).

2.3.2 Bit Shifting

Given a w-bit word, we can shift the bits of the word left by k positions,
inserting 0 bits in the newly vacated spots. Put another way, we discard the
leftmost k bits and append k zeroes to the end.

Definition 2.10 (Logical left-shift by k bits)

⟨xw−1 · · ·x0⟩<<k := ⟨xw−1−k · · ·x0 0 · · · 0︸ ︷︷ ︸
k

⟩

Left-shifting by k bits is equivalent to multiplying by 2k when using the
encoding of natural numbers from definition 2.4. This is analogous to multi-
plying a decimal integer by 10 by appending 0. Note that like addition, this is
susceptible to overflow, as we discard the original k leftmost bits.

Example 2.4 (Left-shifting bit vectors with w = 4)

N2Bits4(3)<< 2 = ⟨0011⟩<< 2 = ⟨1100⟩ = N2Bits4(12) (2.28)

N2Bits4(9)<< 2 = ⟨1001⟩<< 2 = ⟨0100⟩ = N2Bits4(8) (2.29)
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An obvious dual operation is right-shifting, where we drop the k leftmost
bits and prepend k zero bits.

Definition 2.11 (Logical right-shift by k bits)

⟨xw−1 · · ·x0⟩>>k := ⟨0 · · · 0︸ ︷︷ ︸
k

xw−1 · · ·xk⟩

Interpreted as an unsigned number, right-shifting a bit vector by k is equiv-
alent to dividing by 2k and then rounding towards zero. In the C programming
languages, shifting is provided with the operators >> and <<, although with
an important quirk that we will discuss in section 2.4.2.2.

Closely related to shifting is rotation, where bits are not discarded but
merely moved to the other end of the word. We will not use bit rotation in
these notes, but it is often efficiently supported by computers and has some
niche uses.

2.3.3 Multiplication

In the section 2.3.2 we saw how left-shifting can be used to multiply by pow-
ers of two. General multiplication is a bit more involved, but can be done
using essentially the same algorithm you learned in elementary school, only
with bits instead of digits. More efficient algorithms exist, but are much more
complicated. The formula for computing the product z = x× y is

z =

k−1∑
i=0

(x× yi)× 2i (2.30)

where yi is the ith bit of y. Note:

• The product x · yi is multiplying a number with a single bit, meaning the
result is either x or 0, which we can compute by using a logical-and on
every bit of x.

• The multiplication with 2i is with a power of 2, which can be done as in
definition 2.10.

This lets us express the formula in terms of bit operations.

Definition 2.12 (Integer multiplication)

⟨xw−1 · · ·x0⟩×⟨⟩⟨yw−1 · · · y0⟩ :=
w−1∑
i=0

⟨xw−1 ∧ yi, . . . , x0 ∧ yi⟩ << i

where summation is with +⟨⟩.
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Example 2.5 (5 × 3)

⟨0101⟩×⟨⟩⟨0011⟩ =
3∑

i=0

⟨0 ∧ yi, 1 ∧ yi, 0 ∧ yi, 1 ∧ yi⟩ << i (2.31)

= ⟨0 ∧ 1, 1 ∧ 1, 0 ∧ 1, 1 ∧ 1⟩ << 0 (2.32)

+⟨⟩⟨0 ∧ 1, 1 ∧ 1, 0 ∧ 1, 1 ∧ 1⟩ << 1

+⟨⟩⟨0 ∧ 0, 1 ∧ 0, 0 ∧ 0, 1 ∧ 0⟩ << 2

+⟨⟩⟨0 ∧ 0, 1 ∧ 0, 0 ∧ 0, 1 ∧ 0⟩ << 3

= (⟨0101⟩ << 0) (2.33)

+⟨⟩(⟨0101⟩ << 1)

+⟨⟩(⟨0000⟩ << 2)

+⟨⟩(⟨0000⟩ << 3)

= ⟨0101⟩+⟨⟩⟨1010⟩+⟨⟩⟨0000⟩+⟨⟩⟨0000⟩ (2.34)

= ⟨1111⟩ (2.35)

2.4 Signed Numbers

The number representation discussed thus far can only represent non-negative
numbers, which in computer science jargon are called unsigned. If we want to
handle negative numbers as well, we need a signed representation.

2.4.1 Sign-magnitude

In normal number notation, we turn a number negative by prefixing it with a
minus sign. Thus, an obvious way to introduce negative numbers is to treat
the most significant (leftmost) bit as a sign bit, which is set when the number
is negative. This representation is known as sign-magnitude. The conversion
function is as follows:

Definition 2.13 (Bit vector to integer using sign-magnitude)

SM2Int(⟨xw−1 · · ·x0⟩) := −1xw−1 × Bits2N(⟨xw−2 · · ·x0⟩)

Arithmetically negating a number in sign-magnitude representation is quite
simple: just negate the sign bit.

Although simple, this representation has the downside that it contains two
representations of zero, as seen in table 2.1. While having multiple represen-
tations of the same value is not inherently wrong, it is slightly wasteful, and
complicates the definition of arithmetic. In particular, arithmetic and com-
parisons of sign-magnitude numbers is somewhat involved because we have to
treat the sign bit specially. For these reasons, sign-magnitude is not used for
integers in most modern computers.
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x SM2Int(x) x SM2Int(x)
⟨0000⟩ 0 ⟨1000⟩ 0
⟨0001⟩ 1 ⟨1001⟩ −1
⟨0010⟩ 2 ⟨1010⟩ −2
⟨0011⟩ 3 ⟨1011⟩ −3
⟨0100⟩ 4 ⟨1100⟩ −4
⟨0101⟩ 5 ⟨1101⟩ −5
⟨0110⟩ 6 ⟨1110⟩ −6
⟨0111⟩ 7 ⟨1111⟩ −7

Table 2.1: All possible four-bit words interpreted as integers using sign-
magnitude representation.

2.4.2 Two’s complement

The overwhelmingly most common integer representation in modern computers
is Two’s Complement. In this representation, a negative number is encoded
by the logically negated bit sequence of the corresponding unsigned positive
number, plus one. This lets us define an encoding function.

Definition 2.14 (Integer to Two’s Complement)

Z2TCw(x) =

{
N2Bitsw(x) x ≥ 0

¬N2Bitsw(|x|)+⟨⟩ N2Bitsw(1) x < 0

Note that we are using word negation (definition 2.7) in the above formula.
An equivalent view of Two’s Complement is that it represents integers by

assigning each bit a weight, just like with unsigned numbers, but assigns the
most significant bit (the sign bit) a large negative weight. This is the intuition
we use in our decoding function.

Definition 2.15 (Two’s Complement to Integer)

TC2Z(⟨xw−1 · · ·x0⟩) := −xw−1 · 2w−1 +

w−2∑
i=0

xi · 2i

Using Two’s Complement, all distinct bit vectors represent distinct integers,
as demonstrated on table 2.2. But this representation also has other useful
properties. One almost miraculous property is that we can add and multiply
numbers in Two’s Complement representation the exact same way that we
add unsigned numbers using definition 2.8, and get the right result (ignoring
overflow). For non-negative numbers, this is not terribly surprising, as these
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x TC2Int(x) x TC2Int(x)
⟨0000⟩ 0 ⟨1000⟩ −8
⟨0001⟩ 1 ⟨1001⟩ −7
⟨0010⟩ 2 ⟨1010⟩ −6
⟨0011⟩ 3 ⟨1011⟩ −5
⟨0100⟩ 4 ⟨1100⟩ −4
⟨0101⟩ 5 ⟨1101⟩ −3
⟨0110⟩ 6 ⟨1110⟩ −2
⟨0111⟩ 7 ⟨1111⟩ −1

Table 2.2: All possible four-bit words interpreted as integers using Two’s Com-
plement representation.

have identical representations in unsigned and Two’s Complement representa-
tion. For negative numbers, the reason this works is that negative numbers in
Two’s Complement maintain their relative ordering when interpreted as un-
signed numbers, which is not the case for sign-magnitude. It is likely that it
is this property that has made Two’s Complement the dominant integer rep-
resentation, as it means a computer designer can use the same circuitry for
computing signed and unsigned numbers. Only when relatively ordering Two’s
Complement numbers does a computer need to inspect the sign bit.

2.4.2.1 Arithmetic Negation

Arithmetic negation of Two’s Complement numbers is done by logically negat-
ing all the bits and then incrementing by one:

Definition 2.16 (Negating a Two’s Complement number)

negTC(⟨xw−1 · · ·x0⟩) := ⟨¬xw−1 · · · ¬x0⟩+⟨⟩⟨0 · · · 1⟩

However, because the range of Two’s Complement is asymmetric—there are
more negative than positive numbers—negation of the most negative number
is an identity operation.

Example 2.6 (Overflow when negating)

negTC(⟨1000⟩) = ⟨¬1¬0¬0¬0⟩+⟨⟩⟨0001⟩ (2.36)

= ⟨0111⟩+⟨⟩⟨0001⟩ (2.37)

= ⟨1000⟩ (2.38)

Nevertheless, the definition of negation is sufficient for us to define subtrac-
tion of numbers in Two’s Complement:
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Definition 2.17 (Integer subtraction in Two’s Complement)

x -⟨⟩ y := x+⟨⟩ negTC(y)

2.4.2.2 Arithmetic right shift

In section 2.3.2 we saw how shifting by k corresponds to multiplication and
division by 2k. But while left-shifting works equivalently for unsigned and
Two’s Complement, right shifting a negative number tends not to produce the
arithmetically correct result.

Example 2.7 (Logically right-shifting Two’s Complement numbers)

Z2TC(4)>> 1 = ⟨0100⟩>> 1 = ⟨0010⟩ = Z2TC(2) (2.39)

Z2TC(−4)>> 1 = ⟨1100⟩>> 1 = ⟨0110⟩ = Z2TC(6) (2.40)

We can consider an unsigned number as consisting of an arbitrary number
of 0 bits to the left of its most significant bit, in the same manner we can write
decimal numbers with as many leading zeroes as we desire. When we right-
shift, it is these zeroes that are inserted. Following this analogy, a negative
Two’s Complement number could be viewed as having an arbitrary number
of 1 bits to the left of it—or more generally, copies of the sign bit. When we
right-shift, it is these that should be inserted.

To address this issue, we define a new kind of right-shift where we do not
prepend zeroes, but instead copies of the sign bit. This is called an arithmetic
right shift.

Definition 2.18 (Arithmetic right-shift by k bits)

⟨xw−1 · · ·x0⟩>>a k := ⟨xw−1 · · ·xw−1︸ ︷︷ ︸
k

xw−1 · · ·xk⟩

Example 2.8 Arithmetically right-shifting negative numbers

Z2TC(4)>>a 1 = ⟨0100⟩>>a 1 = ⟨0010⟩ = Z2TC(2) (2.41)

Z2TC(−4)>>a 1 = ⟨1100⟩>>a 1 = ⟨1110⟩ = Z2TC(−2) (2.42)

There is no need to define an arithmetic left shift, as left-shifting already
behaves as desired. In programming languages that distinguish between signed
and unsigned numbers in their type system, such as C, right-shifting a signed
number performs an arithmetic shift, and right-shifting an unsigned number
performs a logical shift.
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2.4.3 Sign Extension

In section 2.3.1 we saw that a w-bit unsigned number can be extended to a
w + k-bit number by prepending zeroes. Such zero extension can however
change the numeric interpretation of a Two’s Complement number, for reasons
similar to the troubles we had with right-shifting.

Example 2.9 (Zero extension may change value)

TC2Int(⟨1100⟩) = −4 (2.43)

TC2Int(⟨00001100⟩) = 12 (2.44)

TC2Int(⟨0100⟩) = 4 (2.45)

TC2Int(⟨00000100⟩) = 4 (2.46)

To extend a w-bit word to a w−k-bit word while preserving its Two’s Com-
plement numeric value, we perform sign extension where we prepend copies of
the sign bit.

Example 2.10 (Sign extension preserves value)

TC2Int(⟨1100⟩) = −4 (2.47)

TC2Int(⟨11111100⟩) = −4 (2.48)

TC2Int(⟨0100⟩) = 4 (2.49)

TC2Int(⟨00000100⟩) = 4 (2.50)



Chapter 3

Floating-Point Numbers

Integers are all well and good, but we often need to solve problems that require
the use of fractions—that is, we need a machine representation of some kind of
approximation of rational or real numbers. In this section we will look at the
various solutions one can come up with to this problem, but ultimately we will
focus in detail on floating-point numbers, which are the most common imple-
mentation of fractional numbers in modern computers. This is an enormous
topic, and many devote their entire careers to studying number representa-
tions. This chapter is relatively superficial, but the particularly interested
student can continue their studies by reading the Handbook of Floating-Point
Arithmetic [5], from which most of the information in this chapter is sourced,
or taking courses on numerical analysis.

3.1 The Basic Problem

Fractional numbers are inherently more difficult to implement on computers
because of their density. Between the numbers x and y, there are |x − y|
integers. Thus, when we define a fixed-size integer representation, there will be
a smallest and largest number, but there will be no gaps inside this interval.
In contrast, between x and y there is an infinite number of rational numbers
(assuming x ̸= y). With a w-bit fixed-size representation we can at most
represent 2w distinct values, so any nonempty interval of rational numbers
will necessarily have numbers we cannot represent using a fixed-size encoding.
Number representations using an arbitrary and value-dependent number of bits
can be defined that can represent any computable real numbers using a variable
number of bits, but these are implemented in software rather than in hardware,
and are much slower than fixed-size representations.

One obvious representation is to represent fractions as pairs of integers. For
example, the fraction

1

3

can be straightforwardly represented as the pair (1, 3). Using w-bit integers,

22
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such a pair could be represented as a 2w-bit vector. The main problem with this
representation is that a given number has many possible encodings—e.g. (1, 3)
and (2, 6) both represent the same number. Fractions can be reduced using
algorithms that have been known for literally thousands of years, but these are
computationally expensive—certainly not something we want a computer to do
as part of routine arithmetic. Another consequence of this redundancy is that
we also waste encoding space. As much as possible, we desire a representation
where distinct bit patterns encode distinct numbers.

3.1.1 Precision and Accuracy

Informally, the terms precision and accuracy are often used interchangeably.
In the following we will use them with very specific meanings.

Precision is how many digits are present in a result. As an analogy, if someone
asks you for the current time and you answer “twelve hours, four minutes,
three seconds, fourteen miliseconds”, then your answer is very precise.

Accuracy is how close an approximated or rounded result is to the true value.
Following on the analogy above, that very precise answer may be quite
inaccurate if it’s actually 8 in the morning. Accuracy is also sometimes
called exactness.

Since any finite-sized representation of rational numbers will always have
gaps, the result of any computation must be rounded to the nearest number
that can actually be represented in limited precision. This is a source of inac-
curacy. While we focus mostly on representation rather than calculation, we
will return to the issue of rounding in section 3.5.

3.2 Fixed-point Fractional Numbers

In previous sections we saw that that when we write a binary integer such as
100101012 it is basically interpreted the same way as 14910—the structure is
the same, except that the digit weights are powers of 2 instead of powers of
10. This correspondence inspired the unsigned integer representation of defini-
tion 2.4. Can we perhaps use the same idea to represent fractional numbers?
Yes. A decimal fraction 123.45610 can be viewed as having weights that are
non-negative powers of 10 on the left of the decimal point, and negative powers
to the right. To compute its value, we multiply each digit with the weight.

Example 3.1 (Interpretation of decimal fraction 123.45610)

Digit 1 2 3 . 4 5 6
Weight 102 101 100 10−1 10−2 10−3

Sum 100 + 20 + 3 + 4
10 + 5

100 + 6
1000
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Similarly, a binary fractional number 1001.0101 has weights that are powers of
2, and the ones to the right of the binary point1 have negative exponents:

Example 3.2 (Interpretation of binary fraction 1001.01012)

Digit 1 0 0 1 . 0 1 0 1
Weight 23 22 21 20 2−1 2−2 2−3 2−4

Sum 8 + 0 + 0 + 1 + 0 + 1
4 + 0 + 1

16
= 9.312510

For some word size w, we must specify how many of the bits we allocate
to the integral part (before the binary point) and how many are part of the
fraction. In the example above we used a symmetric representation with 4 bits
devoted to the integral and fractional part. The crucial property is that this
allocation is fixed for a given format, and cannot vary. This is why this number
representation is called fixed point.

Definition 3.1 (Fixed-point number) A number representation where a fixed
number of bits is allocated to the fractional part.

Definition 3.2 (Bit vector interpreted as unsigned fixed point)

Fix2Q(⟨xn+m−1 · · ·xm xm−1 · · ·x0⟩) =
n+m−1∑

i=0

x · 2i−m

where n,m is the number of bits allocated to integral and fractional part, re-
spectively.

For simplicity we deal only with non-negative numbers in this representa-
tion. Support for negative numbers can be implemented by either adding a
sign bit, or by interpreting the integral part as a Two’s Complement number.

One nice property of fixed-point representation is that we can divide and
multiply by bit-shifting, just as with integers. Unfortunately, it also has serious
limitations.

Limitation #1 This representation can only represent numbers of the form

x

2k

for some x, k. This means that numbers such as 0.310 cannot be represented
exactly, but must be approximated. Allowing 4 bits for the fraction, the best
approximation is

0.01012 = 0.312510

This is not a restriction that is particular to our use of binary. Any radix will
have numbers that cannot be represented, just as we cannot write

1

3

with any finite decimal sequence.
1Corresponding to the decimal point in a base-10 system.
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1 bit for fraction

• Largest number: 1111111.12 = 127.510

• Increment: 0000000.12 = 0.510

7 bits for fraction

• Largest number: 1.11111112 = 1.992187510

• Increment: 0.00000012 = 0.007812510

4 bits for fraction

• Largest number: 1111.11112 = 15.937510

• Increment: 0000.00012 = 0.062510

Figure 3.1: The fixed-point dilemma for w = 8. The increment is the distance
between neighbouring numbers.

Limitation #2 Given w bits to represent fixed-point numbers, we need to
decide once and for all how many bits we dedicate to the integral part, and
how many to the fraction. If we allocate many bits to the integral part, we will
be able to represent larger numbers, but the distance between neighbouring
representable numbers will be breater. This is illustrated on fig. 3.1.

Note in particular that fixed-point representations have lower relative pre-
cision for numbers close to zero. Suppose w = 8 and we are using 4 bits for the
fraction; then the next highest number from 1 is 1.00625—a relative distance
of 0.00625. But for 15, the next number is 15.00625—a relative distance of
0.00004167.

Ideally, we want a number representation where the relative distance be-
tween numbers is constant—meaning that the absolute distance between repre-
sentable numbers close to zero is small, while the distance between numbers far
from zero is large. Another way of looking at this of the 2w distinct numbers
possible for a w-bit representation, most of them should be close to zero. We
can view this as a number comprising w digits where the binary point is not
fixed, but rather “floating”, which is why the common name for this type of
numbers is floating-point numbers.

3.3 Intuition behind floating-point numbers

Before delving into the technical details of floating-point numbers, let us build
up a little intuition for how they work. floating-point numbers (or just floats)
are inspired by decimal scientific notation where a number is represented as

x = α× 10β (3.1)
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where the significand α is any number and the exponent exponent β is an
integer. Obviously we can represent any number simply by setting β = 0 and
using only α. However, a common convention is to require that |α| < 10, in
which case we say a number is normalised.

Example 3.3 (Normalisation in scientific notation) The number

x = −123× 10−1

is not normalised, but we can normalise it by dividing the significand by 10 and
incrementing the exponent by 1, giving

x− 1.23× 101.

Now suppose we make this representation finite by requiring

−100 < β < 100

and also that α has exactly two digits to the right of the decimal point, meaning
it is always of the form x.xx, possibly with a sign. This means we can now
encode any number as three digits for α (and a sign) plus two digits for β (and
a sign). But what are the consequences for which numbers can be represented?

One consequence is that we now have a largest representable number,
namely the one where α = 9.99 and β = 99. Another is that the distance
between neighbouring numbers now depends on the exponent β.

Example 3.4 (Distances between neighbouring numbers)

|1.23× 101 − 1.24× 101| = 0.1 (3.2)

|9.99× 101 − 0.01× 102| = 0.1 (3.3)

|0.01× 101 − 0.02× 102| = 0.2 (3.4)

|1.23× 1050 − 1.24× 1050| = 5 (3.5)

This is the basic idea behind floating-point numbers, and while floating-
point number formats have significant extra complexities to deal with various
numerical challenges and to make them efficiently implementable on binary
electronic computers, it all comes back to this idea of having a normalised
scientific representation comprising a significand and exponent.

3.4 IEEE 754

Floating-point formats were widely supported even by the earliest computers,
but they diverged widely in how they were implemented, how much precision
they offered, and what semantics they used for rounding. This made it difficult
for numerical programs written on one computer to run correctly on another
computer. Significant effort was spent on standardising floating-point arith-
metic, and in 1985, the IEEE 754 standard was ratified. It has since been
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Name binary16 binary32 binary64
Informal name Half precision Single precision Double precision
C type N/A float double
p 11 24 53
emax +15 +127 +1023
emin −14 −126 −1022

Table 3.1: The most common IEEE 754 floating-point formats. Half precision
floats are not supported in standard C, but are relatively common in graphics
programs. More exotic non-standard formats are also used in machine learning.

updated and extended, but the core concepts and principles are unchanged.
The IEEE 754 standard is now essentially universally supported, except for
very specialised processors.

Apart from specifying rules and encodings of conventional rational numbers,
IEEE 754 also mandates the existence of certain special values:

• NaN (“not a number”), a family of special values that are produced by
invalid operations such as

√
−1. The purpose of NaN is to ensure that

all arithmetic operations are “closed”, in that they produce a value that
is representable in the IEEE 754 value representation, even though it is
literally speaking not a number.

• Positive and negative infinity, which have two important uses. One is
to represent the result of operations such as division by zero. Another
is to represent overflow, where the result of an arithmetic operation lies
outside the representable number range. Compare this to integers, where
the most typical result is wraparound.

IEEE defines various floating-point formats. All of them are characterised
by four integers

• a radix, which we will assume to be 2 although IEEE 754 also specifies
decimal floating-point formats;

• a precision p ≥ 2, roughly corresponding to the number of “significant
bits” in the significand;

• two extremal exponents emin, emax such that emin < emax. In all formats
specified by IEEE 754, emin = 1− emax.

The two most common IEEE 754 formats are binary32 and binary64, cor-
responding to the float and double types in most C-like programming lan-
guages. The parameters for the most common binary IEEE 754 formats are
shown in table 3.1.

A finite floating-point number expressed in such a format is a number x for
which there exists a representation (s,m, e) defined as follows.
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Definition 3.3 (Representation of floating-point number x)

x = −1s ·m · 2e

where

• s is the sign bit, which is 1 for negative numbers;

• m is a number called the normal significand.

• e is an integer such that emin ≤ e ≤ emax, called the exponent.

The possible values of m is related to p in a way that we will specify in
section 3.4.1. Definition 3.3 does not specify unique representation for every
number. Consider

16 = −10 · 16 · 20 = −10 · 32 · 2−1 (3.6)

In order to ensure a unique representation for a given number, we require
that floating-point numbers are normalised, by always choosing the represen-
tation for which the exponent is smallest (but of course not less than emin).
This implies that 0 ≤ m < 2.

Further, whenever 1 ≤ m < 2, we say that x is a normal number. Intuitively
we can see m as indicating a number of the form 1.xxx2, where m constitutes
the binary digits to the right of the binary point. These digits are sometimes
called the fraction.

Otherwise, when e = emin, we must also have that 0 ≤ m < 1, and we
call this case a subnormal number. For subnormal numbers, the bit before the
binary point must necessarily be 0. That is, in this case m indicates a number
of the form 0.xxx2. This means that when we encode m in a bit vector, we can
elide the bit before the binary point, because it can be inferred from e, thus
saving a a bit.

The special case of zero will be discussed later.

3.4.1 Bit Vector Representation

By definition 3.3, a floating-point number is represented by three numbers
s, e,m. As a bit vector, these are encoded as tree fields S, E and T . Further,
some bit patterns are reserved to express NaN, infinity, and zero.

Definition 3.4 (Fields of a floating-point number x)

⟨ S0︸︷︷︸
1 bit

Er−1 · · ·E0︸ ︷︷ ︸
r bits

Tp−2 · · ·T0︸ ︷︷ ︸
p−1 bits

⟩

where S encodes s directly, E encodes e, and T encodes m.
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The S field is one bit in length and directly corresponds to s. The E field
consists of r bits and the T field consists of p − 1 bits, but still represents p
bits of information, because an extra bit can be deduced from the context as
discussed above. How these fields are decoded as e and m depends on their
exact values. In the normal case, E encodes e as a biased number, which we
briefly saw in section 2.2.2. Specifically, E encodes an unsigned integer from
which we subtract a bias b to obtain the possibly negative e. For all IEEE
formats, b = emax, which lets E encode integers ranging from emin to emax.

In total, decoding a floating point number represented as a bit vector in the
form from definition 3.4 involves the following cases.

• If E = ⟨1 · · · 1⟩ (a sequence of ones) and T ̸= ⟨0 · · · 0⟩, then the bit vector
represents not-a-number (NaN).2

• If E = ⟨1 · · · 1⟩ and T = ⟨0 · · · 0⟩ then the bit vector represents ±∞, with
sign determined by S.

• If E = ⟨0 · · · 0⟩ and T = ⟨0 · · · 0⟩, then the bit vector represents ±0, with
sign determined by S.

• If E ̸= ⟨0 · · · 0⟩ and E ̸= ⟨1 · · · 1⟩, then the bit vector represents the
normal number

(−1)s ·m · 2e

where
b = emax

s = Bits2N(S)
m = 1 + Bits2N(T ) · 21−p

e = Bits2N(E)− b

• If E = ⟨0 · · · 0⟩ and T ̸= ⟨1 · · · 1⟩, then the bit vector represents the
subnormal number

(−1)s ·m · 2emin

where
s = Bits2N(S)
m = Bits2N(T ) · 21−p

These cases form a conversion function. For space reasons, we will not write
it down in that form.

Example 3.5 (Interpreting a bit vector as a float) Using the binary16 for-
mat from table 3.1, we interpret

⟨111010001010001⟩
2Note that multiple NaNs exist, since T can have multiple possible values. This is

sometimes called the NaN payload, and can be used to store information about the origin of
the NaN value.
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as a float. First we split the bit vector into fields.

S = ⟨1⟩ E = ⟨11010⟩ T = ⟨0001010001⟩

Inspecing E and T , we see we are dealing with a normal number. We then
compute

b = 15
s = 1
m = 1 + 81 · 2−10

e = 11

giving the final result
(−1)s ·m · 2e = −2210

3.4.2 Interesting Properties

Working with floating-point numbers is a big topic, but there’s a handful of
simple properties that are useful to remember.

All floating point numbers can be arithmetically negated (multiplied by
negative one), simply by negating the sign bit. This is in contrast to Two’s
Complement integers, where the most negative number cannot be negated.

In all IEEE floating-point formats, the range of e is symmetric around zero,
e.g. table 3.1 shows that for binary32 (“single precision”), e ranges from −126
to +127. When e < 0, the magnitude of the represented number is less than
1. This means that approximately half of all representable numbers are in
the interval [−1, 1]! Therefore, while we can represent astronomically large
numbers with a magnitude of more than 2127, only a relatively tiny portion of
the encoding space is devoted to these, and any arithmetic in this end of the
number line is likely going to be subject to severe rounding error.

3.5 Rounding

Most rational numbers have no representation as floating point numbers. There-
fore, in general the result of an arithmetic operation cannot be represented
exactly in any floating point format, but has to be rounded to the nearest rep-
resentable value. As an example, although both 1 and 10 can be represented,
the division

1

10

cannot be exactly represented in any binary floating point format, and instead
has to be approximated. In binary32, the closest approximation is

13421773 · 2−27 = 0.10000000149011612.

In the first floating-point systems, the way results were rounded was not
always specified, and frequently varied among computers. The IEEE 754 stan-
dard mandates the concept of correct rounding, where the result of a single
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operation is calculated with infinite precision, and then rounded to a repre-
sentable value using one of several possible rounding modes3.

Definition 3.5 (Correct rounding) When the computed result of an oper-
ation is the same as if the operation was done with infinite precision and un-
limited range, then rounded according to the chosen rounding mode.

Essentially, when an operation is correctly rounded, it means that the re-
sult is as close to being mathematically correct as we can represent within
the floating-point format. IEEE 754 guarantees correct rounding for addition,
subtraction, multiplication, division, and square root, but not for the various
transcendental functions: logarithms, sines, cosines, etc. The exactness of these
functions can vary between platforms.

3.5.1 Rounding modes

IEEE 754 specifies five rounding modes:

• Round towards −∞, also called “rounding downwards”. When rounding
a number x, this produces the largest representable number smaller or
equal to x.

• Round towards ∞, also called “rounding upwards”. When rounding a
number x, this produces the smallest representable number greater or
equal to x.

• Round towards 0, which rounds downwards when x > 0 and otherwise
rounds upwards.

• Round to nearest, ties to even. This rounds to the closest representable
number, picking the even number in case of ties. This is the default
rounding mode in the vast majority of systems.

• Round to nearest, ties away from zero. Picks the representable number
with the largest magnitude in case of ties.

In most cases we do not worry about rounding modes when programming.
The default behaves sensibly in most cases, and changing the rounding mode
is usually a global change for the entire process, which makes it difficult to use
in a modular way.

3The 2008 revision to IEEE 754 changed the term to rounding direction attribute, but
rounding mode is still in widest use by practitioners.
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3.6 Arithmetic

While a full discussion on implementing floating-point arithmetic is well outside
the scope of this text, we are going to briefly discuss how multiplication and
addition is implemented. For clarity of exposition, we are going to assume that
the operands are proper numbers expressed as

(−1)s ·m · 2e.

In particular, they are not infinities or NaN (but may be subnormal). In gen-
eral, when an operation has a NaN operand, the result is also a NaN. Infinities
are produced by overflow, and most operations likewise preserve infinity, e.g:

1 +∞ = ∞ (3.7)

But some operations involving infinity may also produce NaN:

∞−∞ = NaN (3.8)

Definition 3.6 (Floating-point overflow) When the magnitude of a floating-
point number becomes too large to be representable and the result becomes ±∞.

Definition 3.7 (Floating-point underflow) When the magnitude of a floating-
point number becomes too small be representable and the result becomes 0.

Note that overflow also occurs when a number becomes too negative. This
is in contrast to integers, where this situation is called integer underflow. With
floating-point numbers, underflow means that the number comes too close to
zero, and ends up being rounded to zero.

3.6.1 Multiplication

Due to the exponential representation, multiplication of floating-point numbers
is actually simpler than addition. The product of two floating-point numbers

(−1)s1 ·m1 · 2e1

and
(−1)s2 ·m2 · 2e2

is given by

(−1)s3 ·m3 · 2e3 = ((−1)s1 ·m1 · 2e1) · ((−1)s2 ·m2 · 2e2) (3.9)

where

s3 = s1 ⊕ s2 (3.10)

m3 = m1 ·m2 (3.11)

e3 = e1 + e2 (3.12)
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This might produce an un-normalised or unrepresentable number. If me ≥
2, meaning that the number is not normalised, we shift m3 right (equivalent to
repeatedly dividing by two) and increment e3 (equivalent to doubling). Then, if
e3 is out of range (either less than emin or greater than emax), the operation has
overflowed, producing ±∞. Finally, we round m3 to p bits. The addition of the
exponents is just integer addition, which is straightforward. Implementing the
multiplication of the significands is more complicated, but fortunately outside
the scope of this text.

3.6.2 Addition

Given two floating-point numbers

x1 = (−1)s1 ·m1 · 2e1

and
x2 = (−1)s2 ·m2 · 2e2

we seek to compute the sum

((−1)s3 ·m3 · 2e3) = x1 + x2 (3.13)

meaning we have to find s3,m3, e3.
First, assume without loss of generality that e1 ≥ e2

4. We rewrite x2 such
that its exponent becomes e1, but without changing its numerical value by also
constructing a new significand m′

2:

x′
2 = ((−1)s2 ·m′

2 · 2e1 (3.14)

Note that x′
2 is most likely not a normal representation, but this is fine, as it

is merely an intermediate result. Now we can compute

s3 = s1 ⊕ s2 (3.15)

m3 = m1 +m′
2 (3.16)

As with multiplication, this might not yield a normalised or representable num-
ber. We fix it a similar way. If m3 ≥ 2, we shift m3 right and increment e3. If
m3 < 1, we shift m left and decrement e3. If e3 is outside the range [emin, emax],
the result is ±∞. Otherwise, we round m3 to p bits.

Example 3.6 (Addition with p = 3)

(−1.01 · 22) + (1.1 · 24)
= (−1.01 · 22) + (110.0 · 22) Align exponents
= (−1.01 + 110.0) · 22 Distributivity
= 100.11 · 22 Add significands
= 1.0011 · 24 Normalise
= 1.01 · 24 Perform rounding

4We can always just flip the operands to the addition.



Chapter 4

Data as Bytes

In the previous chapters we looked at data represented as bits. While fiddling
with bits is indeed how computation is ultimately carried out in a physical
sense, computers are built as layers of aggregation and abstraction. We already
saw how individual bits were assembled into bit vectors, and how bit vectors
of known lengths can be used to represent data types such as numbers. In
principle, we could imagine a computer that simply treated the totality of
available data as a single large bit vector. In practice, the smallest storable
unit of data is a bit vector called a byte, which is stored in memory, and which
is the subject of this chapter.

The size of a used to vary between computers, and tended to be the amount
of bits necessary to represent a single character. Many older computers used
6-bit bytes, as 26 = 64 allows enough distinct values to represent the alphabet,
ten digits, and some punctuation characters1. However, essentially all modern
computers use 8-bit bytes. In fact, “byte” has become more or less synonymous
with “8 bits”, although a pedant would insist that the proper term for such a
bit vector is octet. For simplicity, we will use “byte” in this text.

As we saw earlier, many data types are represented in more than 8 bits. To
represent such data, we need multiple bytes. Because the byte unit is the unit
of storage, all common data types are a multiple of 8 bits, meaning one or more
whole bytes. Working with data that is not expressible as a whole number of
bytes is possible, but is more of a chore.

When discussing values at the byte level, hexadecimal (base-16) notation is
often used, where the letters a–f (or their uppercase equivalents) are used to
denote digits with values 10–15. Hexadecimal notation is convenient because
the 16 different digits for a single hexadecimal digit corresponds exactly to 4
bits, and a single 8-bit byte can thus be written using exactly two hexadecimal
digits.

14910 = 100101012 = 9516 (4.1)

It is usually easier to read a hexadecimal number than a long binary number.

1We will return to the issue of text representation in section 4.3

34
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00 · · · 016 FF · · ·F16

· · ·

Figure 4.1: Memory is an array of bytes, indexed from 0 to some largest address,
depending on the size of the memory. Addresses are typically written with
hexadecimal (base-16) numbers.

Also, it is easy to translate hexadecimal numbers to binary, because we can
translate each digit separately and simply concatenate at the end.

4.1 Memory

The main working storage of a computer is called the memory. Conceptually,
the memory can be seen as a large contiguous array of bytes. Given an index,
called an address, we can retrieve or modify the byte stored at that address.
Figure 4.1 shows this conceptual model. This kind of memory is called random
access memory (or RAM) because we can at any time access the data at any
address. When a program is running, its data (values of variables and objects)
is stored in memory.

Physically, memory is usually implemented using dynamic RAM (DRAM)
technology, although other technologies have been used in the past. DRAM
needs to be constantly refreshed, requiring power, or it will lose data. This
means that data stored in DRAM will be lost when the computer is turned
off. Data that we intend to keep must be written to persistent storage, which
today typically takes the form of a hard disk drive (HDD) or solid state drive
(SSD), although many other technologies exist. These storage technologies are
not typically considered part of “memory”, but are made available through
file systems, although the line is somewhat blurred by the notion of virtual
memory where data is transparently moved between different physical storage
media (outside the scope of this chapter).

In principle, to perform a computation such as addition, the processor must
fetch the operands from memory, perform the operation as described in pre-
vious chapters, and write the result back to memory. In practice, processors
contain a fixed set of registers that we can view as a small collection of fixed-
size variables. The processor operates on data stored in registers, and copies
explicitly between registers and memory as needed. As programmers we can
usually ignore this distinction—it is dealt with by the implementation of the
programming language we are using. We will return to this in chapter 5.

4.2 Multi-byte Words

When we store a multi-byte object in memory, such as a 64-bit floating-point
number, we identify it with the address of its first constituent byte, counting
from low addresses to high addresses. As always, data is not self-describing,
so it is in principle our responsibility to remember the number of constituent
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bytes. For simple data types, the size is known. For example, in C on a modern
x86-64 machine, the char type is always 1 byte, a short is 2 bytes, and an
int is 4 bytes. We will discuss variable-size data types in section 4.3 and
chapter 6.

4.2.1 Byte Ordering

When storing a multi-byte object (say, a 4-byte int) in memory, each indi-
vidual byte will have an address. This means that the byte order is visible
at the memory level, and hence that the order in which we store the bytes
matter. This is called endianness, a term taken from Gulliver’s Travels where
the Lilliputians fight a civil war over whether the shell of a boiled egg should
be broken from the big or little end.

In computer science, there are two main endianness conventions:

Definition 4.1 (Big Endian) The most significant byte is stored at the low-
est address.

Definition 4.2 (Little Endian) The least significant byte is stored at the
lowest address.

Example 4.1 (Representing x = 0123456716 in memory) With big-endian,
the byte order would be 01 23 45 67, while with little-endian the order would be
67 45 23 01. If x is stored starting at address p, then address p would contain
the byte 01 or 67 if x is stored in respectively big-endian and little-endian order.

Note that byte ordering does not affect the ordering of digits (or bits) within
each byte. This is because individual bits do not have addresses; only bytes
do.

While big-endian used to be dominant, most current machines use little-
endian byte order. This can be confusing when inspecting raw memory con-
tents, as the convention in mathematical notation is big-endian. Fortunately,
byte order is unimportant in most programming tasks: it is handled by the
programming language implementation. We can only observe the byte order
when we explicitly decompose values into their constituent bytes. Bit-shifting
integers and similar always works as expected.

4.2.2 Addresses and pointers

The addresses used to index memory are unsigned numbers of a fixed size that
depends on the computer architecture. 32-bit addresses used to be common,
but most mainstream computers now use 64-bit addresses. The size of the
address is independent of how much memory is actually physically installed in
the computer—with 64 bits we can address a memory comprising 264 bytes,
which is far larger than any current or planned computer.2

2As of this writing, the largest supercomputer in the world is the Japanese Fukagu, which
contains approximately 252 bytes of memory in total, although this is spread across 158976
distinct physical memories.



CHAPTER 4. DATA AS BYTES 37

As a model, we can imagine that addresses beyond the physical capacity of
the computer result in an error. For example, in a computer with 230B = 1GiB
of memory, addresses of 230 and above would be invalid. The consequences of
accessing an invalid address varies depending on the machines, but in most
cases the program will be terminated—under Unix-like operating systems, this
is called a segmentation fault. You will see lots of these in your own C programs.

To the computer, an address is merely an unsigned number, and program-
ming directly with them is notoriously error-prone. Most languages do not
expose addresses at all, and even those that do tend to give them a distinct
type to avoid mistakes. In C, we can use the & prefix operator to take the
address of a variable x, as follows:

&x

If x has type T, then &x has type T*, read as “pointer to T”. In C, a variable
that contains an address is called a pointer. We can dereference a pointer by
using the prefix operator *. This means taking the value of the pointer (which
is an address) and retrieving the value at that address. For example, if px has
type T*, the expression *px has type T. Be careful not to confuse the use of *
in types (where it adds a layer of indirection) with the use of * in expressions
(where it removes a layer of indirection). Pointers are an inherently difficult
topic, but flaws in C’s syntax makes it no easier.

If you print the addresses used for variables in your own programs, you will
see that many have values that far exceed the amount of physical memory in
your computer. This is due to virtual memory, which we will return to later,
but means there is a decoupling between the addresses seen by software and the
actual physical addresses used by hardware. As a model, we can see program
memory not as an array with contiguous valid addresses, but instead as an
array with “gaps” of invalid addresses.

4.3 Text and Characters

Computers understand only bits, aggregated into bytes. These are stored as
voltage differences inside electronic circuitry. In order for a computer to be
useful, this data must be made comprehensible to a human.

This usually happens through an input-output (IO) device. Imagine an
electronic typewriter that receives bytes over a wire. Upon receiving a byte, it
consults a table called a coded character set that maps each of the 256 possible
bytes to a character, and then prints the corresponding character on a piece of
paper. This was exactly how early teletypes worked, and the idea of associating
numbers with characters, which are then printed or shown as appropriate, is
still relevant. Today, it is unlikely that you interact with your computer through
a teletype, and instead the bytes are passed through multiple layers of hardware
and software until your monitor ultimately illuminates multiple tiny LEDs to
form the desired shape on the screen.
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Control characters Normal characters
000 nul 016 dle 032 048 0 064 @ 080 P 096 ‘ 112 p
001 soh 017 dc1 033 ! 049 1 065 A 081 Q 097 a 113 q
002 stx 018 dc2 034 ‘‘ 050 2 066 B 082 R 098 b 114 r
003 etx 019 dc3 035 # 051 3 067 C 083 S 099 c 115 s
004 eot 020 dc4 036 $ 052 4 068 D 084 T 100 d 116 t
005 enq 021 nak 037 % 053 5 069 E 085 U 101 e 117 u
006 ack 022 syn 038 & 054 6 070 F 086 V 102 f 118 v
007 bel 023 etb 039 ' 055 7 071 G 087 W 103 g 119 w
008 bs 024 can 040 ( 056 8 072 H 088 X 104 h 120 x
009 tab 025 em 041 ) 057 9 073 I 089 Y 105 i 121 y
010 lf 026 eof 042 * 058 : 074 J 090 Z 106 j 122 z
011 vt 027 esc 043 + 059 ; 075 K 091 [ 107 k 123 {
012 np 028 fs 044 ’ 060 < 076 L 092 108 l 124 |
013 cr 029 gs 045 - 061 = 077 M 093 ] 109 m 125 }
014 so 030 rs 046 . 062 > 078 N 094 ˆ 110 n 126 ˜
015 si 031 us 047 / 063 ? 079 O 095 _ 111 o 127 del

Table 4.1: The ASCII table, mapping decimal numbers to the corresponding
character. Note that not all of these characters are intended for humans—
some are control characters for operating the teletype or otherwise controlling
the communication link. While some of these are still used, mainly the ones
corresponding to whitespace, most are rarely seen today.

Definition 4.3 (Coded character set) A mapping from integers to charac-
ters.

Many character sets used to proliferate, but ASCII eventually became dom-
inant. ASCII, shown on table 4.1 defines only 127 characters, leaving the 8th
bit free. Originally this 8th bit was used to perform error correction when data
was transmitted across noisy telephone lines, but later it was used to extend
the ASCII-table with language-specific variants. For example, the ISO-8859-1
character set added support for most Western European characters. Countries
that did not use the Latin alphabet (such as Russia, China, or Japan) defined
their own non-ASCII character sets. As always, data was not self-describing, so
in order to interpret a byte sequence as text, you had to know which character
set was used to encode it.

Eventually, the Unicode standard was established, which was conceived as
a single character set that could encompass all the worlds languages. In ASCII
and its variants, each byte corresponds to a single character, but this is insuf-
ficient for Unicode, which as of this writing defines 149,186 characters3. While
Unicode is still rooted in the idea of mapping numbers to characters, it provides
multiple ways of encoding each number as (usually multiple) bytes. The most
common encoding, called UTF-8, is a variable-width encoding where the num-
ber of bytes per character depends on the character being encoded. However,
for the subset of Unicode corresponding to ASCII, UTF-8 has the property
that any ASCII text is also valid UTF-8, and encodes the same characters. For
simplicity, we will stick to ASCII in the following.

3For a very wide definition of “character”—everything from hieroglyphs, right-to-left
indications, combining accents, and emoji are part of Unicode.
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4.3.1 Numbers and Text

When we want to print a number, we have to produce a byte sequence corre-
sponding to an encoding of the digits. For example, the number

123410 = 04d216

might be stored like this in memory, using decimal notation, 2 bytes, and
little-endian representation:

210 4

We cannot merely submit these two bytes to the teletype. The number 210
does not correspond to any ASCII character at all, and 4 corresponds to the
control character eot (for “end of transmission”). Instead, we must convert it
to the byte string

49 50 51 52

which we can then submit to the teletype or write to a text file. Note that the
number 49 encodes the ASCII digit 1, 50 encodes 2, etc. It is an easy mistake
to conflate the number in memory with the (in principle arbitrary) number
that identifies a digit character in the ASCII table. Note also that endianness
does not matter for human-readable text. The order in which the characters
appear in memory (or the order in which they are submitted to the IO device)
are also the order in which they will appear to a human.4

4.3.2 Strings in C

A sequence of characters is colloquially called a string in most programming
languages, and is typically one of the most central types. Unfortunately, C
has no built-in string type. Instead C represents strings with the type char*,
representing the address of the first character in the string, and indicates the
end of the string with a single byte with the value 0.

This representation, called zero-termination, is recognised as one of the
greatest design mistakes in computer science and has been the cause of countless
security holes. The reason is that it is awfully easy to forget to add the trailing
0 byte when constructing a string. When later code then attempts to work on
the string, it will go past the intended end and into arbitrary memory, until a
0 byte happens to be encountered.

Most other languages employ a representation where a string is stored along-
side an integer containing the size of the string. This is much less error-prone.

4There are character encodings that represent each characters using a fixed number of
bytes, such as UTF-32 which uses four bytes per character. These are subject to byte ordering
issues within each character. Text using this encoding is usually preceded by a byte order
mark indicating the endianess used. This is not a problem for UTF-8. If you make correct
choices in life, you will never have to worry about this.



Chapter 5

Compiled and Interpreted
Languages

A computer can directly execute only machine code, consisting of raw numeric
data. Machine code can be written by humans, but we usually use symbolic
assembly languages to make it more approachable. However, even when us-
ing an assembly language, this form of programming is very tedious. This is
because assembly languages are (almost) a transparent layer of syntax on top
of the raw machine code, and the machine code has been designed to be ef-
ficient to execute, not to be a pleasant programming experience. Specifically,
we are programming at a very low level of abstraction when we use assembly
languages, and with no good ability to build new abstractions. In practice,
almost all progamming is conducted in high-level languages.

5.1 Low-level and High-Level Languages

For the purpose of this chapter, a high-level programming language is a lan-
guage that is designed not to directly represent the capabilities and details of
some machine, but rather to abstract the mechanical details, in order to make
programming simpler. However, we should note that “high-level” is a spec-
trum. In general, the meaning of the term “high-level programming language”
depends on the speaker and the context (fig. 5.1). The pioneering computer sci-
entist Alan Perlis said: “A programming language is low-level when its programs
require attention to the irrelevant”. During the course you will gain familiarity
with the programming language C, which definitely requires you to pay atten-
tion to things that are often considered irrelevant, which makes it low-level in
Perlis’s eyes. However, we will see that the control offered by C provides some
capabilities, mostly the ability to tune our code for high performance, that are
for some problems not irrelevant. The term mid-level programming language
might be a good description of C, as it fills a niche between low-level assembly
languages, and high-level languages such as Python and F#.

Generally speaking, low-level languages tend to be more difficult to program

40
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Figure 5.1: A remark on the clarity of terms in computer science.

in, while offering greater potential performance (i.e. programs written in them
are faster). Higher-level languages are much easier to program in, but run
slower and require more machine resources (e.g. memory). Given the speed of
modern computers, this is a price we are often willing to pay—especially in the
common case where the slowest part of our program is waiting for information
from disk or network. Do not make the mistake of assuming that a program
written in a low-level language is always faster than one written in a high-level
language. Choice of algorithm is often more important than choice of language.
Further, some high-level languages are specifically designed to execute very
efficiently. But there is no free lunch: these languages make tradeoffs in other
areas. There is no objective measure of where a language lies on the scale of
“level-ness”, so while a statement such as “Python is more high-level than C”
is unlikely to raise any objections, it is usually pointless to try to rank very
similar languages on this spectrum.

5.2 Compilers and Interpreters

As the computer natively understands only its machine code, other languages
must be translated to machine code in order to run. For historical reasons, this
is called compilation. We say that a compiler takes as input a file with a source
program, and produces a file containing an executable machine program that
can be run directly. This is a very simplified model, for the following reasons:

1. Strictly speaking, a compiler does not have to produce machine code.
A compiler can also produce code in a different high level languag. For
example, with the rise of browsers, it has become common to write com-
pilers that produce JavaScript code.

2. The machine program normally cannot be directly executed, as modern
systems have many layers of abstraction on top of the processor. While
the compiler does produce machine code, it is usually stored in a special
file format that is understood by the operating system, which is respon-
sible for making the machine code available to the processor.



CHAPTER 5. COMPILED AND INTERPRETED LANGUAGES 42

3. The actual compiler contains many internal steps. Further, large pro-
grams are typically not compiled all at once, but rather in chunks. Typi-
cally, each source file is compiled to one object file, which are finally linked
to form an executable program.

While compilers are a fascinating subject in their own right, we will dis-
cuss them only at a superficial level. For a more in-depth treatment, you are
encouraged to read a book such as Torben Mogensen’s Basics of Compiler
Design1.

In contrast, an interpreter is a program that executes code directly, without
first translating it. The interpreter can be a compiled program, or itself be
interpreted. At the bottom level, we always have a CPU executing machine
code, but there is no fundamental limit to how many layers of interpreters we
can build on top. However, the most common case is that the interpreter is a
machine code program, typically produced by a compiler. For example, Python
is an interpreted language, and the python interpreter program used by most
people is written in C, and compiled to machine code.

Interpreters are generally easier to construct than compilers, especially for
very dynamic languages such as Python. The downside is that code that is
interpreted generally runs much slower than machine code. This is called the
interpretive overhead. When a C compiler encounters an integer expression x
+ y, then this can likely be translated to a single machine code instruction—
possibly preceded by instructions to read x and y from memory. In contrast,
whenever the Python interpreter encounters this expression, it has to analyse
it and figure out what is supposed to happen (integer addition), and then
dispatch to an implementation of that operation. This is usually at least an
order of magnitude slower than actually doing the work. This means that
interpreted languages are usually slower than compiled languages. However,
many programs spend most of their time waiting for user input, for a network
request, or for data from the file system. Such programs are not greatly affected
by interpretive overhead.

As an example of interpretive overhead, let us try writing programs for
investigating the Collatz conjecture. The Collatz conjecture states that if we
repeatedly apply the function

f(n) =

{
n
2 if n is even

3n+ 1 if n is odd

to some initial number greater than 1, then we will eventually reach 1. To
investigate this function, the Python program collatz.py in listing 5.1 takes
an initial k from the user, then for every 1 ≤ n < k prints out n followed by
the number of iterations of the function it takes to reach 1.

1http://hjemmesider.diku.dk/˜torbenm/Basics/

http://hjemmesider.diku.dk/~torbenm/Basics/
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Listing 5.1: A Python program for investigating the Collatz conjecture.

import sys

def collatz(n):
i = 0
while n != 1:

if n % 2 == 0:
n = n // 2

else:
n = 3 * n + 1

i = i + 1
return i

k = int(sys.argv[1])
for n in range(1, k):

print(n, collatz(n))

In a Unix shell we can time the program for k = 100000 as follows, where
we explicitly ignore the output2:

$ time python3 ./collatz.py 100000 >/dev/null

real 0m1.368s
user 0m1.361s
sys 0m0.007s

The real measurement tells us that the program took a little more than
1.3s to run in the real world (we’ll talk about the difference between user and
sys in chapter 10).

Now let us consider the same program, but written in C, which we call
collatz.c, and is shown in listing 5.2.

C is a compiled language, so we have to compile collatz.c:

$ gcc collatz.c -o collatz

And then we can run it:

$ time ./collatz 100000 >/dev/null

real 0m0.032s
user 0m0.030s
sys 0m0.002s

2This is a very naive way of timing programs—it’s adequate for programs that run for a
relatively long time, but later we will have to discuss better ways to measure performance. In
particular, it includes the overhead of starting up the Python interpreter, and it is sensitive
to noise, because we only take a single measurement.
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Listing 5.2: A C program for investigating the Collatz conjecture.

#include <stdio.h>
#include <stdlib.h>

int collatz(int n) {
int i = 0;
while (n != 1) {

if (n % 2 == 0) {
n = n / 2;

} else {
n = 3 * n + 1;

}
i++;

}
return i;

}

int main(int argc, char** argv) {
int k = atoi(argv[1]);
for (int n = 1; n < k; n++) {

printf("%d %d\n", n, collatz(n));
}

}

Only 0.032s! This means that our C program is

1.368

0.032
= 42.75

times faster than the Python program3. This is not unexpected. The ease of
use of interpreted languages comes at a significant overhead.

5.2.1 Advantages of interpreters

People implement interpreters because they are easy to construct, especially for
advanced or dynamic languages, and because they are easier to work with. For
example, when we are compiling a program to machine code, the compiler dis-
cards information about the source code, which makes it difficult to relate the
generated machine code with the code originally written by the human. This
makes debugging harder, because the connection between what the machine
physically does, and what the programmer wrote, is not explicit. In contrast,
an interpreter more or less executes the program as written by the program-

3This is the speedup in latency—a concept we will return to in section 11.1.1
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mer, so when things go wrong, it is easier to explain where in the source code
the problem occurs.

In practice, to help with debugging, good compilers can generate significant
amounts of extra information in order to let special debugger programs map
the generated machine code to the original source code. However, this does
tend to affect the performance of the generated code.

Another typical advantage of interpreters is that they are straightforwardly
portable. When writing a compiler that generates machine code, we must
explicitly write a code generator every CPU architecture we wish to target.
An interpreter can be written once in a portable programming language (say,
C), and then compiled to any architecture for which we have a C compiler
(which is essentially all of them).

As a rule of thumb, very high-level languages tend to be interpreted, and
low-level languages are almost always compiled. Unfortunately, things are not
always so clear cut in practice, and any language can in principle be compiled—
it may just be very difficult for some languages.

5.2.2 Blurring the lines

Very few production languages are pure interpreters, in the sense that they do
no processing of the source program before executing it. Even Python, which
is our main example of an interpreted language, does in fact compile Python
source code to Python bytecode, which is a kind of invented machine code that is
then interpreted by the Python virtual machine, which is an interpreter written
in C. We can in fact ask Python to show us the bytecode corresponding to a
function:

>>> import dis
>>> def add(a,b,c):
... return a + b + c
...
>>> dis.dis(add)

2 0 LOAD_FAST 0 (a)
2 LOAD_FAST 1 (b)
4 BINARY_ADD
6 LOAD_FAST 2 (c)
8 BINARY_ADD

10 RETURN_VALUE

This is not machine code for any processor that has ever been physically con-
structed, but rather an invented machine code that is interpreted by Python’s
bytecode interpreter. This is a common design because it is faster than inter-
preting raw Python source code, but it is still much slower than true machine
code.
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5.2.2.1 JIT Compilation

An even more advanced implementation technique is just-in-time (JIT) com-
pilation, which is notably used for languages such as C#, F# and JavaScript.
Here, the source program is first compiled to some kind of intermediary byte-
code, but this bytecode is then further compiled at run-time to actual machine
code. The technique is called just-in-time compilation because the final com-
pilation typically occurs on the user’s own machine, immediately prior to the
program running.

The main advantage of JIT compilation is that programs run much faster
than when interpreting bytecode, because we ultimately do end up executing
a machine code version of the program. Because JIT compilation takes place
while the program is running, it is also able to inspect the actual run-time
behaviour of the program and tailor the code generation to the actual data
encountered in use. This is useful for highly dynamic languages, where tradi-
tional ahead-of-time (AOT) compilers have difficulty generating good code. In
theory, a JIT compiler can always be at least as good as an AOT compiler, but
in practice, AOT compilers tend to generate better code, as they can afford
to spend more time on compilation. In practice, JIT compilers are only used
to compute those parts of the program that are “hot” (where a lot of time is
spent), and an interpreter is used for the rest. This tends to works well in prac-
tice, due to the maxim that 80% of the run-time is spent in 20% of the code.
An AOT compiler will not know which 20% of the code is actually hot, and so
must dedicate equal effort to every part, while a JIT compiler can measure the
run-time behaviour of the program, and see where it is worth putting in extra
effort.

The main downside of JIT compilation is that it is difficult to implement.
It has been claimed that AOT compilers are 10× as difficult to write as inter-
preters, and JIT compilers are 10× as difficult to write as AOT compilers.

5.3 Tombstone Diagrams

Interpreters and compilers allow us to consider programs as input and output
of other programs. That is, they are data. Tombstone diagrams (sometimes
called T-diagrams) are a visual notation that lets us describe how a program is
translated between different languages (compiled), and when execution takes
place (either through a software interpreter or a hardware processor). They are
not a completely formal notation, nor can they express every kind of translation
or execution, but they are useful for gaining an appreciation of the big picture.

As the most fundamental concept, we have programs, which are written in
some language. Suppose we have a sorting program written in Python, which
we draw as follows:
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A
A

�
�Sort

Py

This is an incomplete diagram, since it contains programs we have not
described how to execute. A machine that executes some language, say x86
machine code is illustrated as a downward-pointing triangle:

J
JJ







x86

We can say that the Python program is executed on this machine, by stack-
ing them:

A
A

�
�Sort

Py

J
JJ







x86

But this diagram is wrong — we are saying that a program written in
Python is running on a machine that executes only x86. When putting together
a tombstone diagram, we must ensure that the languages of the components
match. While on paper we can just assume a Python machine, this is not very
realistic. Instead, we use an interpreter for Python, written in x86, which as a
tombstone diagram is drawn like this:

Py

x86

We can then stack the Python program on top of the interpreter, which we
then stack on top of the x86 machine:

A
A

�
�Sort

Py

Py

x86

J
JJ







x86
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But maybe we are actually running on an ARM machine (as can be found
in most phones), but still only have a Python interpreter in x86. As long as
we have an x86 interpreter written in ARM machine code, this is no problem:

A
A

�
�Sort

Py

Py

x86

x86

ARM

J
JJ







ARM

There is no limit to how tall we can stack interpreters. All that matters
is that at the end, we have either a machine that can run the implementation
language of the bottommost interpreter. Of course, in practice, each level of
interpretation adds overhead, so while tombstone diagrams show what is pos-
sible, they do not necessarily show what is a good idea. Tall interpreter stacks
mostly occur in retrocomputing or data archaeology, where we are simulating
otherwise dead hardware.

The diagrams above are a bit misleading, because the Python interpreter
is not actually written in machine code—it is written in C, which is then
translated by a compiler. With a tombstone diagram, a compiler from C to
x86, where the compiler is itself also written in x86, is illustrated as follows:

C → x86

x86

We can now put together a full diagram showing how the Python interpreter
is translated from C to x86, and then used to run a Python program:
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Py

C C → x86

x86

Py

x86

A
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Py
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x86
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JJ







x86

For a diagram to be valid, every program, interpreter, or compiler, must
either be stacked on top of an interpreter or machine, or must be to the left of
a compiler, as with the Python interpreter above.

Compilers are also just programs, and must either be executed directly by
an appropriate machine, or interpreted. For example, the following diagram
shows how to run a C compiler in Python, on top of a Python interpreter in
x86 machine code:

C → x86

Py

Py

x86

J
JJ







x86

How the Python interpreter has been obtained, whether written by hand
or compiled from another language, is not visible in the diagram.

We can also use diagrams to show compilation pipelines that chain multiple
compilers. For example, programs written in the Futhark4 programming lan-
guage are typically compiled first to C, and then uses a C compiler to generate
machine code, which we can then finally run:

4https://futhark-lang.org

https://futhark-lang.org
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Many compilers have multiple internal steps—for example, a C compiler
does not usually generate machine code directly, but rather generates symbolic
assembly code, which an assembler then translates to binary machine code.
Typically tombstone diagrams do not include such details, but we can include
them if we wish, such as with the Futhark compiler above.

Tombstone diagrams can get awkward in complex cases (sometimes there
will be no room!), but they can be a useful illustration of complex setups of
compilers and interpreters. Also, if we loosen the definition of “machine” to
include “operating systems”, then we can use these diagrams to show how we
can emulate Windows or DOS programs on a GNU/Linux system.

Tombstone diagrams hide many details that we normally consider impor-
tant. For example, a JIT compiler is simply considered an interpreter in a
tombstone diagram, since that is how it appears to the outside. Also, tomb-
stone diagrams cannot easily express programs written in multiple languages,
like the example shown in section 5.4. Always be aware that tombstone dia-
grams are a very high-level visualisation. In practice, such diagrams are mostly
used for describing bootstrapping processes, by which we make compilers avail-
able on new machines. The tombstone diagram components are summarised
in fig. 5.2.

A
A

�
�Prog

L

(a) A program written in language L.

F

T

(b) An interpreter for F , written in T .

J
JJ







L

(c) A machine that runs L programs.

F → T

L

(d) A compiler from F to T , written
in L.

Figure 5.2: A summary of tombstone diagram building blocks.
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5.4 Combining Python and C

As discussed above, interpreted languages are typically substantially slower
than compiled languages, especially for languages with high computational in-
tensity. By this term, we mean how much of the execution time is spent
directly executing program code, and how much is spent waiting for data (e.g.
user input or network data). For programs with low computational intensity,
an interpreted language like Python is an excellent choice, as the interpretive
overhead has little impact. However, Python is also very widely used for com-
putationally heavy programs, such as data analysis. Do we just accept that
these programs are much slower than a corresponding program written in C?
Not exactly. Instead, we use high-performance languages, such as C, to write
computational kernels in the form of C functions. These C functions can then
be called from Python using a so-called foreign function interface (FFI).

As a simple example, let us consider the collatz.c program from list-
ing 5.2. Instead of compiling the C program to an executable, we compile it to
a so-called shared object, which allows it to be loaded by Python5:

$ gcc collatz.c -fPIC -shared -o libcollatz.so

We can now write a Python program that uses the ctypes library to access
the compiled code in the libcollatz.so file, and call the collatz function
we wrote in C:

Listing 5.3: A Python program that uses a C implementation of collatz.

import ctypes
import sys

c_lib = ctypes.CDLL(’./libcollatz.so’)

k = int(sys.argv[1])
for n in range(1, k):

print(n, c_lib.collatz(n))

Let’s time it as before:

$ time python3 ./collatz-ffi.py 100000 >/dev/null

real 0m0.165s
user 0m0.163s
sys 0m0.003s

The pure Python program ran in 1.3s, the pure C in 0.032s, and this mixture
in 0.165s - significantly faster than Python, but slower than C by itself. The
difference is mostly down to the work required to convert Python values to C

5Don’t worry about the details of the command line options here—the technical details
are less important than the concept.
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values when calling c lib.collatz. The overhead is particularly acute for
this program, because each call to collatz does relatively little work.

While this example is very simple, the basic idea is fundamental to Python’s
current status as perhaps the most popular language for working data scien-
tists and students. Ubiquitous libraries such as NumPy and SciPy have their
computational core written in high-performance C or Fortran, which is then
exposed in a user-friendly way through Python functions and objects. While
a program that uses NumPy is certainly much slower than a tightly optimised
C program, it is much faster than a pure Python program would be, and far
easier to write than a corresponding C program.



Chapter 6

Data Layout

One of the things that makes C a difficult programming language is that it does
not provide many built-in data types, and provides poor support for making it
convenient to work with new data types. In particular, C has notoriously poor
support for multi-dimensional arrays. Given that multi-dimensional arrays are
perhaps the single most important data structure for scientific computing, this
is not good. In this chapter we will look at how we encode mathematical
objects such as matrices (two-dimensional arrays) with the tools that C makes
available to us. One key point is that there are often multiple ways to represent
the same object, with different pros and cons, depending on the situation.

6.1 Arrays in C

At the surface level, C does support arrays. We can declare a n×m array as

double A[n][m];

and then use the fairly straightforward A[i][j] syntax to read a given el-
ement. However, C’s arrays are a second-class language construct in many
ways:

• They decay to pointers in many situations.

• They cannot be passed to a function without “losing” their size.

• They cannot be returned from a function at all.

In practice, we tend to only use language-level arrays in very simple cases,
where the sizes are statically known, and they are not passed to or from func-
tions. For general-purpose usage, we instead build our own representation of
multi-dimensional arrays, using C’s support for pointers and dynamic alloca-
tion. Since actual machine memory is essentially a single-dimensional array,
working with multi-dimensional arrays in C really just requires us to answer
one central question:

53
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How do we map a multi-dimensional index to a single-dimensional
index?

Or to put it another way, representing a d-dimensional array in C requires us
to define a bijective1 index function

I : Nd → N (6.1)

The index function maps from our (mathematical, conceptual) multi-dimensional
space to the one-dimensional memory space offered by an actual computer.
This is sometimes also called unranking, although this is strictly speaking a
more general term from combinatorics.

As an example, suppose we wish to represent the following 3× 4 matrix in
memory: 11 12 13 14

21 22 23 24
31 32 33 34

 (6.2)

We can do this in any baroque way we wish, but the two most common
representations are:

Row-major order, where elements of each row are contiguous in memory:

11 12 13 14 21 22 23 24 31 32 33 34

with index function
(i, j) 7→ i× 4 + j

Column-major order, where elements of each column are contiguous in mem-
ory:

11 21 31 12 22 32 13 23 33 14 24 34

with index function
(i, j) 7→ j × 3 + i

The index functions are generalised on fig. 6.1. Note that the two represen-
tations contain the exact same values, so they encode the same mathematical
object, but in different ways. The intuition for the row-major index function
is that we first skip i rows ahead to get to the row of interest, then move j
columns into the row.

Row-major order is used by default in most programming languages and
libraries, but not universally so—the scientific language Fortran is famously
column-major. The NumPy library for Python uses row-major by default
(called C in Numpy), but one can explicitly ask for arrays in column-major
order (called F), which is sometimes needed when exchanging data with sys-
tems that expect a different representation.

1A bijective function is a function between two sets that maps each element of each set
to a distinct element of the other set.
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(i, j) 7→ i×m+ j (6.3)

(a) Row-major indexing.

(i, j) 7→ j × n+ i (6.4)

(b) Column-major indexing.

Figure 6.1: Index functions for n × m arrays represented in row-major and
column-major order. For an example of why computer scientists tend to prefer
0-indexing, try rewriting the above to work with 1-index arrays instead.

6.1.1 Implementation in C

Let’s look at how to implement this in C. Let’s say we wish to represent the
matrix from eq. (6.2) in row-major order. Then we would write the following
(assuming n=3, m=4):

int *A = malloc(n*m*sizeof(int));
A[0] = 11;
A[1] = 12;
...
A[11] = 34;

Note that even though we conceptually wish to represent a two-dimensional
array, the actual C type is technically a single-dimensional array with 12 ele-
ments. If we when wish to index at position (i, j) we then use the expression
A[i*4+j].

Similarly, if we wished to use column-major order, we would program as
follows:

int *A = malloc(n*m*sizeof(int));
A[0] = 11;
A[1] = 21;
...
A[11] = 34;

To C there is no difference—and there is no indication in the types what
we intended. This makes it very easy to make mistakes.

Note also how it is on us to keep track of the sizes of the array—C is no
help. Don’t make the mistake of thinking that sizeof(A) will tell you how
big this array is—while C will produce a number for you, it willindicate the
size of a pointer (probably 8 on your machine).

Some C programmers like defining functions to help them generate the flat
indexes when indexing arrays:

int idx2_rowmajor(int n, int m, int i, int j) {
return i * m + j;

}

int idx2_colmajor(int n, int m, int i, int j) {
return j * n + i;

}
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Note how row-major indexing does not use the n parameter, and column-
major indexing does not use m.

However, these functions do not on their own fully prevent us from making
mistakes. Consider indexing the A array from before with the expression

A[idx2_rowmajor(n, m, 2, 5)].

Here we are trying to access index (2, 5) in a 3× 4 array—which is concep-
tually an out-of-bounds access. However, by the index function, this translates
to the flat index 2×3+5 = 11, which is in-bounds for the 12-element array we
use for our representation in C. This means that handy tools like valgrind
will not even be able to detect our mistake—from C’s point of view, we’re doing
nothing wrong! Things like this make scientific computing in C a risky endeav-
our. We can protect ourselves by using helper functions like those above, and
augment them with assert statements that check for problems:

int idx2_rowmajor(int n, int m, int i, int j) {
assert(i >= 0 && i < n);
assert(j >= 0 && j < m);
return i * m + j;

}

We can still make mistakes, but at least now they will be noisy, rather than
silently reading (or corrupting!) unintended data.

6.1.2 Size passing

With the previously discussed representation, a multidimensional array (e.g. a
matrix) is just a pointer to the data, along with metadata about its size. The
C language does not help us keep this metadata in sync with reality. When
passing one of these arrays to a function, we must manually pass along the
sizes, and we must get them right without much help from the compiler. For
example, consider a function that sums each row of a (row-major) n×m array,
saving the results to an n-element output array:

Listing 6.1: Summing the rows of a matrix.

void sumrows(int n, int m,
const double *matrix, double *vector) {

for (int i = 0; i < n; i++) {
double sum = 0;
for (int j = 0; j < m; j++) {

sum += matrix[i*m+j];
}
vector[i] = sum;

}
}
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C gives us the raw building blocks of efficient computation, but we must put
together the pieces ourselves. We protect ourselves by carefully documenting
the data layout expected of the various functions. For the sumrows function
above, we would document that matrix is expected to be a row-major array
of size n×m.

6.1.3 Slicing

In high-level languages like Python, we can use notation such as A[i:j] to
extract a slice (a contiguous subsequence) of an array, in this case of the ele-
ments from index i to j. No such syntactical niceties are available in C, but
by using our knowledge of how arrays are physically laid out in memory, we
can obtain a similar effect in many cases.

Suppose V is a vector of n elements, and we wish to obtain a slice of the
elements from index i to j (the latter exclusive). In Python, we would merely
write V[i:j]. In C, we compute the size of the slice as

int m = j - i;

and then compute a pointer to the start of the slice:

double *slice = &V[i];

Now we can treat slice as an m-element array that just happens to use the
same underlying storage as V. This means that we must be careful not to
deallocate V while slice is still in use.

Similarly, if A represents a matrix of size n by m in row-major order, then
we can produce a vector representing the ith row as follows:

double *row = &A[i*m];

The restriction is that such slicing can only produce arrays whose elements
are contiguous in memory. For example, we cannot easily extract a column
of a row-major array, because the elements of a column are not contiguous in
memory. If we wish to extract a column, then we have to allocate space and
copy element-by-element, in a loop2.

6.1.4 Even higher dimensions

The examples so far have focused on the two-dimensional case. However, the
notion of row-major and column-major order generalises just fine to higher
dimensions. The key distinction is that in a row-major array, the last dimension
is contiguous, while for a column-major array, the first dimension is contiguous.
For a row-major array of shape n0 × · · · × nd−1, the index function where p is
a d-dimensional index point is

2There are more sophisticated array representations that use strides to allow array el-
ements that are not contiguous in memory—NumPy uses these, but they are outside the
scope of our course.
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p 7→
∑

0≤i<d

pi
∏

i<j<d

nj (6.5)

where pi gets the ith coordinate of p, and the product of an empty series is
1.

Similarly, for a column-major array, the index function is

p 7→
∑

0≤i<d

pi
∏

0≤j<i

nj (6.6)

We can also have more complex cases, such as a three-dimensional array
where the two-dimensional “rows” are stored consecutively, but are individually
column-major. Such constructions can be useful, but are beyond the scope of
this course (and are a nightmare to implement).



Chapter 7

Locality and Caches

For modern computers, computation is a rather cheap operation in terms of
time and energy consumption. In fact, it is far more energy-consuming and
slow to move data than to perform computation. As we discussed in chapter 4,
program data is usually stored in memory and must be moved into CPU reg-
isters before it can be worked on. Particularly large quantities of data might
not even fit in memory, but is stored in local or remote files. The details can
differ, but in all cases the situation is the same: data must be moved from over
there to here before it can be used.

This phenomenon that computation is faster than memory, is often called
the memory wall, and the gap is still widening. While faster processors keep
getting designed, memory technology is not keeping up, and therefore we have
increasing difficulty supplying our processors with data.

Since data movement is slow and costly compared to computation, a pro-
grammer who wants to write high-performance code must be diligent in doing
as little of it as possible. This chapter describes the properties of software and
hardware that one must exploit to accomplish this.

While we will continue to use C for concrete programming examples, the
principles here are truly universal, and inescapable whenever we write code
for modern computers. Fortunately, we will see that optimising code to min-
imise data movement usually doesn’t require us to write particularly ugly or
complicated code - it is mostly about choosing the right data structures and
traversing them in a sensible manner.

7.1 Locality of Reference

Empirically, programs tend to access data located nearby data that was ac-
cessed recently. We call this phenomenon the principle of localty.

Definition 7.1 (Principle of locality) Programs tend to access data located
near that which was accessed recently.

59
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Listing 7.1: C code that sums an array.

double sum = 0;
for (int i = 0; i < n; i++) {

sum += a[i];
}

To keep things simple, this chapters is concerned only with data stored in
memory, and we will decide if two pieces of data are “close” to each other based
on the numerical value of their addresses. For example, the byte at address 100
is considered adjacent to the bytes at addresses 99 and 101. However, some
notion of locality is present in any kind of storage technology. Informally, we
say that a program “exhibits good locality” when it adheres to the principle of
locality.

The principle of locality is what ultimately helps us break through the
memory wall. It is a virtuous cycle: we build computers that run programs with
good locality quickly, which makes programmers try to improve the locality in
their programs.

We distinguish between two kinds of locality.

Definition 7.2 (Temporal locality) Accessing data that was accessed re-
cently.

Definition 7.3 (Spatial locality) Accesing data close to data that was ac-
cessed recently.

While it is possible to run a program, record the exact memory operations
performed, and then quantiatively describe how much locality they exhibit, this
is often somewhat impractical. Instead, a good programmer should develop
the ability to quickly eyeball simple programs and qualitiatively estimate their
locality.

7.1.1 Qualitative Estimates of Locality

Consider the program fragment shown in listing 7.1. In terms of data
accesses, it accesses the elements of the array a serially, with a stride of 1
between successive accesses. This is an example of spatial locality : we do not
access the same data, but we do access data very close to what we accessed in
the recent past. Further, we also repeatedly access the variables sum and i.
This is an example of temporal locality.

But program data is not the only thing that is stored in memory: the
program code is as well, in the form of machine instructions. Absent of control
flow, instructions are read from memory and executed in the order in which
they appear—just like how lines in a C program are executed from the top
down. This means they have spatial locality. However, we also have a loop in
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Listing 7.2: Summing a matrix, iterating along the rows.

int sumrows(int A[M][N]) {
int sum = 0;
for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++)
sum += A[i][j];

return sum;
}

listing 7.1, which means that the same instructions are executed repeatedly.
This is temporal locality. Generally speaking, program code almost always
exhibits good locality, so we tend to ignore it when analysing the locality of a
program, and instead focus only on the locality of data accesses.

Further, we focus only on memory accesses. Because simple scalar variables
tend to be stored in registers by the C compiler, we look only at how arrays
are traversed.

7.1.2 Analysing Array Iteration

Let us consider a more complicated example, seen in listing 7.2. For conci-
sion we are use multidimensional C arrays, rather than explicit index functions
as in chapter 6. This means that the array A is stored in row-major order and
that the access A[i][j] results in an offset computation i*N+j.

Consider the memory accesses performed by the loop. In the first iteration,
we have i=0 and j=0, meaning that we access memory at offset 0. In the next
iteration we have i=0 and j=1, meaning we access offset 11. In every loop
iteration, we will access an array element adjacent to the one accessed in the
immediately preceding iteration—the stride is 1—and therefore this function
exhibits good spatial locality with respect to how it accesses A.

Now consider listing 7.3. By repeating the analysis above, we see that the
first array element we access is A[0][0] and the next one is A[1][0]. Since
A is stored in row-major order, this means we are iterating with a stride of N.
Assuming N is large, this function exhibits bad locality with respect to A.

7.2 Memory Hierarchies

In an ideal world, memory would be cheap, fast, and plentiful. In the world we
actually inhabit, we cannot get all three. In fact, fundamental physical prin-
ciples mean memory capacity and memory capacity are conflicting properties.

1Strictly speaking, we are accessing 1*sizeof(int), meaning 4, but since the first
iteration accesses the four bytes stored at offsets 0-3, this is still considered adjacent. We
can ignore the element size for arrays of scalars, but it does have impact if we have arrays
containing large compound data structures.
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Listing 7.3: Summing the rows of a matrix, iterating along the columns

int sumcols(int A[M][N]) {
int sum = 0;
for (int j = 0; j < N; j++)

for (int i = 0; i < M; i++)
sum += A[i][j];

return sum;
}

Roughly, the larger the capacity of some storage technology, the longer it takes
it to retrieve data. However, by exploiting the principle of locality, we can
construct a memory hierarchy of different storage technologies, starting from
the small and fast and ending in the large and slow.

Definition 7.4 (Memory hierarchy) A separation of computer storage into
levels based on their response time and capacity.

The idea behind a memory hierarchy is that each level contains a subset of
the data contained in the level below it. Only the level at the bottom contains
all data. Each level of the hierarchy acts as a cache for the one below it.

Definition 7.5 (Cache) A smaller and faster memory that stores a subset of
the contents of a larger and slower memory.

An example of a memory hierarchy for a computer is shown in fig. 7.1.
The exact levels of the memory hierarchy depends on the machine. Further,
when using the memory hierarchy model to describe the performance of a
system, we often exclude levels that are irrelevant—for example, registers are
often ignored because they are controlled by the compiler, and we might ignore
anything below main memory if we know that our data will fit.

In this chapter we will focus entirely how the contents of RAM is cached.
Further, while real computers usually have multiple levels of caching, we will
for simplicity asumme only a single level above main memory, and just call it
the cache. So in total, we pretend we have only two levels: the small and fast
cache on top, and the large and slow main memory below it. In a full memory
hierarchy, this situation is simply replicated for each levelall the way down.

7.2.1 Cache Operation

The reason why caching works is due to the principle of locality: most accesses
will tend to be towards the top of the hierarchy. When we try to access an
address that is already present in the cache, the data is immediately returned
to the program.
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Remote storage (network)

Local persistent storage (e.g. SSDs)

Main memory (DRAM)

L3 cache (SRAM) Contains cache blocks retrieved from RAM

L2 cache (SRAM) Contains cache blocks retrieved from L3 cache

L1 cache (SRAM) Contains cache blocks retrieved from L2 cache

Registers Contains words retrieved from L1 cache

Small and fast

Large and slow

Figure 7.1: Example memory hierarchy for a modern computer. The number of
levels and the specifics of their operation depends on the computer in question.
Very tiny computers may have no caches at all, but only registers and main
memory. Some extremely small processors may have only registers—but these
are unlikely to be useful for general-purpose computation.

Definition 7.6 (Cache hit) A memory operation to an address that is present
in the cache.

If we try to retrieve a piece of data that is not already in the cache, the
data is fetched from the next level of the hierarchy, stored in the cache, and
then returned to the program.

Definition 7.7 (Cache miss) A memory operation to an address that is not
present in the cache.

In programs with good locality, most memory accesses will result in cache
hits. For such programs, the memory hierarchy provides the illusion of storage
that is as large as the bottommost level of the hierarchy, and as fast as the
topmost one.

If caches merely contained exactly the bytes that had been retrieved pre-
viously, then only temporal locality would benefit. Instead, we partition the
addressable memory space into cache blocks, each containing B bytes.

Definition 7.8 (Cache block) A B-byte chunk of memory, where B is a
power of two.

Whenever we have a cache miss, the entire block containing the requested
address is copied into the cache. This means that subsequent accesses to ad-
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dresses that fall within the same block will result in cache hits. This means
that programs that exhibit good spatial locality will have more cache hits.

On modern computers, B = 64 is common. It is important to be aware that
the organisation of memory into cache blocks does not affect addressing: data
is still byte-addressed, and programs are not directly aware of B. We merely
say that the first B bytes of memory belong to the first cache block, the next
B bytes to the second, and so on. This means a memory address x belongs
to block xmodB. When B is a power of 2 B = 2m, this can be computed
simply by dropping the b least significant bits of m. We will return to this in
section 7.3. Each level of the memory hierarchy may use different cache block
sizes, although they are usually the same for the L1/L2/L3 caches.

Caching is effective when the data being actively actively by the program
within some bounded period of time fits within the cache. We call the size of
this actively used data the working set.

Definition 7.9 (Working set) The amount of memory accessed by a pro-
gram within a bounded period of time.

Definition 7.10 (Memory footprint) The total amount of memory allo-
cated by a program.

During the total runtime of a process, different working sets may be in use,
as the program switches between different subtasks. Consider a data analysis
program sequentially processes a collection of files, one at a time, by loading
them into memory. We would characterise the working set of such a program
as the size of a single file (perhaps the largest one), rather than summing the
sizes of all files. We also focus only on data that is being frequently accessed.
It is fine for the total memory footprint of a program to exceed what can be
stored in the cache, as the excess is simply stored further down in the memory
hierarchy. It is not unusual for programs to keep large amounts of data in
memory at the same time, while actively working on only small parts at a
time. Indeed, this is exactly how to make best use of the memory hierarchy.

Definition 7.11 (Compulsory miss) A miss that occurs because the cache
is empty.

Definition 7.12 (Capacity miss) A miss that occurs because the program
working set exceeds the cache capacity.

7.3 Cache Organisation

In this section we will look at how caches are organised in terms of logical units.
Their physical representation may be different, but this need not concern us.
What matters is how we can characterise the structure of caches and how
this affects the way we should program in order to get optimal performance.
Beyond storing the actual cache block data, caches must also maintain a variety
of book-keeping information so they can quickly determine whether a given
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address corresponds to a block that is present. We call a cache block alongside
this auxiliary information a cache line. when describing the size of a cache, we
count only the cache blocks, even though the auxiliary information may take
up a significant amount of space.

Definition 7.13 (Cache line) A structure that contains a cache block as well
as metadata about the origin of the block.

Be aware that this nomenclature is not universally used—many program-
mers use the term cache line interchangeably for both what we call a cache
block and a cache line. For clarity, we will use more precise nomenclature.

Specifically, a cache line contains three parts:

1. A cache block containing B bytes.

2. A t-bit tag indicating which part of memory is stored in the block. The
actual t depends on the specific design of the cache.

3. A valid bit indicating whether the cache line contents are sensible.

The reason for the valid bit is that as a piece of hardware, a cache line
cannot be “empty”. There are always bits stored in the tag and block fields,
and they might accidentally correspond to a valid address. The valid bit is
used to indicate whether the cache line should be disregarded when checking
whether the cache contains a block corresponding to a given address.

At a high level, looking up an address x in a cache then involves computing
the tag of the address as

x mod B

and then searching for a cache line with a matching tag field. However, for large
caches, searching every single cache line would be slow. It is generally the case
that the more choices you have, the slower you are at making a choice. Since
the speed of cache lookups is extremely critical for computer performance, this
is not something we want to make slower than absolutely necessary.

To solve this, we use set-associative caches, where the lines are split into
S sets, with each set containing L cache lines, such that the total number of
cache lines is S · L. The bits of an address are then used to determine which
set the block corresponding to the address may be stored in. The end result is
that we have only L lines to search, rather than all lines in the cache.

Definition 7.14 (S-way set associative cache) A cache with S sets.

When the number of sets and the block size are both powers of two S =
2s, B = 2b, we can split a w-bit address into fields, writing xi for bit i.

xw−1 · · ·xs+b+1︸ ︷︷ ︸
tag

xb+s · · ·xs︸ ︷︷ ︸
set index

xb−1 · · ·x0︸ ︷︷ ︸
block offset
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· · ·

...

· · ·

· · ·

· · · Set

Line

S = 2s sets

L = 2l lines per set

valid? tag 0 1 2 · · · B − 1

B = 2b bytes (cache block)

Figure 7.2: Structure of a set-associative cache with S sets, L lines per set,
and a B-byte block per line, where we assume all of these are powers of 2. The
total size of this cache is S × L×B.

Example 7.1 (Fields for an 8-bit address scheme) Consider an 8-bit ad-
dress on a system with a block size of B = 22 and S = 23 sets, with. Going
from right to left, the first b = 2 bits constitute the offset, the next s = 3 bits
the set index, and the remainder are the tag.

x7x6x5︸ ︷︷ ︸
tag

x4x3x2︸ ︷︷ ︸
tag

x1x0︸︷︷︸
offset

In a set-associative cache, a cache block is limited to being stored in only a
subset of all cache lines. This means we risk having cache misses even through
the working set of the program is smaller than the total size of the cache. This
is called a conflict miss.

Definition 7.15 (Conflict miss) A miss that occurs because too many blocks
of the program working set are mapped to the same cache set.

The general structure of a set-associative cache is shown in fig. 7.2. When
designing a cache, the number of sets must be carefully balanced: too large,
and cache lookups take too long. Too small, and we end up with more conflict
misses. Balancing this tradeoff is a delicate affair. As of this writing, most
CPU caches are 8- or 16-way set associative. Two special cases have dedicated
nomenclature.
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· · ·

...

· · ·

· · ·

· · ·

S = 2s sets

L = 2l lines per set
Address components

t bits s bits b bits

tag set
index

block
offset

valid? tag 0 1 2 · · · B − 1

Figure 7.3: Looking up an address in a set-associative cache with S sets and L
lines per set. The set index determines which set to look at (in this case, the
last one). The set is then searched for a cache line with a tag matching the tag
bits of the address. If a match is found (in this case, the first line), and the
valid bit is set, the block offset of the address is used to determine which bytes
to read from the block.

Definition 7.16 (Direct-mapped cache) A cache with L = 1, meaning
that there is only one possible location for a block in the cache.

Definition 7.17 (Fully associative cache) A cache with S = 1, meaning
that a block can be located anywhere in the cache.

Direct-mapped and fully associative caches tend not to occur for CPU
caches, but they appear in lower parts of the memory hierarchy—the latter
typically when cache misses are ruinously expensive and so it is worth signifi-
cant overhead to avoid them.

A diagram of how we perform a cache lookup based on an address is shown
in fig. 7.3.

7.4 Cache Performance

To characterise the cache behaviour of a program, we focus on the miss rate.

Definition 7.18 (Miss rate) The fraction of memory references issues by a
program not found in the cache.

For typical programs, the miss rate for the L1 cache is often around 3− 10%,
and often less than 1% for L2 and below.
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Beyond the miss rate, we are also often interested in the hit time and miss
penalty.

Definition 7.19 (Hit time) Time taken in the event of a cache hit.

Definition 7.20 (Miss penalty) Time taken in the event of a cache miss.

A cache hit is typically very fast—perhaps 4 clock cycles for L1, 10 for L2,
and 45 − 75 for L3. Conversely, cache misses can be extremely costly—easily
hundreds of cycles when we need to go all the way to main memory. This
means that a cache miss can be two orders of magnitude slower than a cache
hit, and that minimising cache misses is therefore crucial for performance.

7.4.1 Writing cache-friendly code

When writing cache-friendly code, and for that matter whenever we want to
optimise the performance of a program, we focus on the innermost loops. In a
typical program, the majority of the run-time is spent in a comparatively small
portion of the overall code. Generally, it is rarely worth optimising non-loop
code.

As a general rule of thumb for writing cache-friendly code, we should avoid
dereferencing many different pointers, as we have in principle no way of know-
ing where in the memory they point. If we perform a huge number of tiny
allocations with malloc(), we have no knowledge of where in memory they
are located relative to each other, and no way of ensuring that we use them in
an order that provides good spatial locality. As an example, linked lists have
notoriously terrible cache behaviour, because neighbouring links in the list may
be arbitrarily distant in memory. Traversing a linked list can easily cause a
cache miss whenever we moved to the next element. It is better to work on a
few large allocations (such as arrays), where we can analyse the access patterns
and decide whether our accesses exhibit good locality.

Another rule of thumb is to minimise the program footprint. If our working
set fits in L3 cache, then we will never see a L3 cache miss after the initial com-
pulsory misses needed to load the data into cache in the first place. Sometimes
this can be achieved by using smaller data types (e.g. 16-bit integers instead
of 32-bit integers) or by clever representations that take advantage of sparsity
(e.g. if a large matrix is mostly zeroes, store only the non-zero elements as well
as their coordinates).

But sometimes we simply have to work on a large piece of data that will
not fit in cache. We must carefully consider how we traverse it to minimise
the number of cache misses. A common example is matrix multiplication. As
matrix multiplication is a fundamental primitive in many numerical techniques,
much time has been spent developing elaborate implementation techniques for
making them run as fast as possible on pretty much any computer ever built.
Our analysis, and our optimisation, will be comparatively simple, but hopefully
still illustrative.
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Listing 7.4: Matrix multiplication in C.

for (int i=0; i<n; i++) {
for (int j=0; j<n; j++) {

for (int k=0; k<n; k++)
c[i][j] += a[i][k] * b[k][j];

}
}

Our starting point is the program fragment shown in listing 7.4. The two n-
byn matrices a and b are given to us in row-major order, and we must produce
a result matrix c also in row-major order. Each matrix element is a double,
comprising 8 bytes. The total amount of work is O(n3), and each of the n2

elements in c is the result of n summed values.
Further, assume a cache block size

B = 64

meaning that a single block can hold 8 doubles. We also assume that n is
very large—specifically, so large that the cache is not large enough to hold a
full row or column. This means if we traverse a row fully from start to end,
then traversing it again cannot take advantage of any cache contents.

We analyse the performance of the program by looking at the access pattern
of the innermost loop, because the statements in there are executed n3 times,
making them asymptotically dominant relative to the other statements in the
program.

Using the assumptions above, consider a loop that looks as follows:

for (int k=0; k<n; k++)
sum += a[0][k]

As we are traversing a single row of a, we can take advantage of spatial locality.
Each cache miss will load not just the current element into the cache, but a
total of 8 elements (ignoring speculative prefetching), meaning that we will
only have a cache miss every 8th iteration. This gives us a miss rate of 0.125.

Now consider:

for (int k=0; k<n; k++)
sum += a[k][0]

Here we are jumping through memory with a stride of n. As we assume n is
very large (certainly larger than a cache block), we will have a cache miss on
every single iteration. The miss rate is 1.

With this line of thinking, we can consider the innermost loop in listing 7.4.
The miss rate for accesses to the array a is 0.125, to array b is 1, and to array
c is 0, because we access the exact same element in every iteration—providing
perfect temporal locality. The total miss rate is 1.125. Intuitively, we are
traversing the array a row-wise, which is good, and b column-wise, which is
bad. As a rule of thumb, whenever we index a multi-dimensional array, we are
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indexing with a loop variable of the innermost loop, and that loop variable is
not used to index the last dimension of the array, we are probably traversing
in a way that has poor spatial locality.

Listing 7.5: Matrix multiplication in C with the loops permuted.

for (int k=0; k<n; k++) {
for (int i=0; i<n; i++) {

for (int j=0; j<n; j++)
c[i][j] += a[i][k] * b[k][j];

}
}

Now consider the program in listing 7.5. It computes the same thing as
lst:matmul-kij.c, but with the loops reordered. Looking at the inner loop, we
are accessing c and b row-by-row, so these each have a miss rate of 0.125, while
the miss rate for a is 0 because we are accessing the same element repeatedly.
The total miss rate is 0.25.

Listing 7.6: Matrix multiplication in C with the loops permuted.

for (int j=0; j<n; j++) {
for (int k=0; k<n; k++) {

for (int i=0; i<n; i++)
c[i][j] += a[i][k] * b[k][j];

}
}

Can we permute the loops further? Yes, consider listing 7.6. Here we are
traversing both a and c along columns, giving a miss rate of 1, while the
accesses to b have a miss rate of 0. The total miss rate is 2. Clearly not good.

Our analysis shows that listing 7.5 is the most cache-efficient implementa-
tion. Indeed, benchmarking these on a real machine produces fig. 7.4. Note
that all we did was permute the loop ordering. While obtaining true peak per-
formance typically requires more complicated program transformations than
this, we can often get quite far simply by carefully considering the order in
which we traverse our data.
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Figure 7.4: Benchmarking the different matrix multiplication implementations.
The x axis shows the edge size of the matrices, while the logarithmic y axis
shows the runtime in milliseconds. Note that the kij loop ordering, which our
analysis determined as optimal, is indeed about a factor of two faster than the
other implementations. Somewhat surprisingly, iji (the original program) and
jki are about equally fast. This is possibly because the values of n used here
are not as large as we assumed in our analysis.



Chapter 8

Operating Systems

The operating system (Often abreiviated to OS) is a core piece of software that
manages both the device hardware, as well as how other software runs on that
hardware. An OS is present on the vast majority of devices we interact with,
with the only real exception being simple, dedicated devices that perform only
a single function. Most OSs in use today are either explicitly derived from
Unix, or are heavily inspired by the systems and operations is developed.

8.1 The Kernel

At its core, the OS provides two abstractions that have proven to be very
useful. These are processes and virtual memory. The ultimate aim of both of
these concepts is to allow for multiple different programs, users or systems to
operate on as many different devices as possible, without programmers having
to create custom implementations depending on how their program was run.
In order to do this, the OS provides what is known as the kernel. This can
be thought of as the very core of the OS, and has complete control over all
hardware and software running on a device.

The kernel provides a variety of functions to software running on the same
device, which we might think of as being core to how a system operates. These
include functions to open files, write to files, read from files, start new process-
ing, end existing processing, and so on. These functions are known as system
calls are the basic building blocks for any software to interact with any hard-
ware, with a key abstraction being that no software needs to know how to
physically write to a file on a given device, it can simply call the write function
to do so. Crucially, it is only by calling this function that any software can
read/write to/from the hardware, giving the kernel complete control over who
is writing to what and how they do so.

72
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8.2 Processes

As you should know by now, a CPU can only ever do one thing at a time. A
CPU is capable of running a series of instructions, with data being manipulated
within registers. Not all data will fit into registers, with the wider data stored
in memory. The CPU will progress through its instructions one at a time,
starting at the start until it reaches the end. This is not an incorrect model
of how a computer works, but is obviously a simplification. One limitation of
this system is that the CPU is limited to doing only one thing at a time, yet it
should be obvious that your computer is capable of doing many things at the
same time. This is enabled by the OS concept of processes.

A process is a conceptual grouping of a programs CPU register counters,
the program code, as well as the memory used by the code. This is everything
we discussed in our simple example above. This is known as the state, with
each processes having its own state of registers, memory and instructions. By
taking a complete state and writing it to memory, then writing a new state into
the CPU we can swap between two processes. If we do this often enough, the
computer can give the impression of doing multiple different things at once,
even with only a single CPU. This act of switching states is known as a context
switch and typically takes at least 1.2 microseconds. This means there is an
unavoidable overhead in switching between processes, but its almost always
worth it as we can now do multiple things at once.

An example of a process can be almost anything. Our internet browser
will run in a process with its own state, whilst a text editor could be another.
Games, music players, scripts and apps all run in their own processes with their
own state. Often times there are also smaller systems that run in their own
background processes, such as update checkers, download managers, network
managers and the like. These might not have a dedicated user interface or
display but still run in the background, which is why when we inspect our
systems using tools such as top, htop or the process manager, we can often see
many different processes running on our machine. For most laptops or desktops
this process count could even be in the low hundreds. This isn’t to say that
each process necessarily has something to do at that point, in fact most will
be sleeping until they have something to do. For instance, an update checker
might only wake once every 24 hours, check with some server if an update has
been released, and then go back to sleep.

8.2.1 Concurrency and Parallel

Note that often we aren’t literally doing multiple things at once, but that the
compute switch between multiple processes so quickly and humans are so slow
that it looks like they’re taking place at the same time. This is referred to as
concurrency, where different processes can each progress before any of them
have finished, even if they aren’t progressing at literally the same time. Modern
computers often have more than a single CPU core however, and so they can
do multiple things at once. This is referred to as parallel, where two things are



CHAPTER 8. OPERATING SYSTEMS 74

progressing at literally the same time. Processes are concurrent, as each is a
self contained logical unit, and so we can interrupt any process with another
at any point. Anything that is concurrent can be executed in parallel, though
this depends on their being the hardware to support it.

8.2.2 Process Scheduling

Any time we introduce some new concept, that presumably is non-trivial for
someone to implement, it is always worth asking what it gives us. Processes
allow for a complete compartmentalisation of a programs code and its data,
from any other programs code and data. As well as allowing for the concurrent
and parallel scheduling described above, this compartmentalisation also means
that programmers are free to write whatever program they want, as though
they had complete control over the entire hardware. Programmers can take as
much time as they need, running as many tasks as they wish, without having
to worry about who else might need the same resources. Consider your own
programming, and what you’ve asked the computer to do. Presumably at
some point you’ve run a program that has lasted for several hours, potentially
performing some complex operations whilst doing so (most modern computer
games and even browsers would be another good example of this). You’ve not
need to insert little breaks everyone now and again so that other processes can
continue in the background, this is all managed automatically by the OS using
processes.

The part of the OS that decides what process to schedule is funnily enough,
called a scheduler. Process scheduling is actually a vast area of study and
expertise in its own right, which we do not have the time to get into here.
Instead it suffices to say that most schedulers will try to give each process at
least some time on a regular basis to keep executing. This is to avoid what is
termed livelock, where some execution can progress but the process is not given
any resources to do so. Round robin is the most simple scheduling style, where
the scheduler will let process 1 run for a short time, then let process 2 run, for
a short time, then process 3 and so on, until returning to let process 1 run for
a short time again. This keeps everyone moving a little bit, and though there
are far more advanced algorithms that start weighting the scheduling based
on how much work each process needs to do, this fundamental principle still
applies.

8.3 Virtual Memory

The second core concept that OSs provide, is that of virtual memory. Par-
ticularly astute readers might have noted that processes can’t really enforce
their own compartmentalisation, as there is nothing stopping one process from
writing into the contents of another. Luckily processes are paired with virtual
memory so that everything we’ve described already is still true, but first let us
consider the alternative.
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8.3.1 Physical Memory

A simple memory management system would use an address space that directly
maps on to what it is trying to describe. This is analogous to most street
addressing, where all the buildings on a given street will start at number 1 at
one end, and then increment along the street. This is a physical mapping as
number 1 refers to the first house, number 2 to the house next to it and so on.

The advantage of such a system is that it is extremely quick to derive and
use. As soon as you’re told and address, you know exactly where to go, or what
data to read without any additional steps. The downside is that the simplicity
makes it hard to enforce access to any particular bit. Again, using the street
address analogy, consider that most military bases don’t appear on road maps.
This doesn’t make it impossible to find them, but its suddenly a lot harder to
send them a letter.

Such physically mapped systems are still used in some computing systems,
especially in very small or simple systems that typically only perform a single
function on very limited hardware. However, this is certainly not a common
method on any system complex enough to be running an OS.

8.3.2 Virtual Mapping

Rather than directly mapping address to memory, the OS will provide each
process with a virtual mapping. This is the same as in the physical example,
where there is a collection of individual virtual addresses, which still map to
some memory location. The process will treat these addresses as though they
are a physical mapping, and so will still read and write anything to the ad-
dresses in that mapping, but the process has no idea what physical address
each virtual address actually maps to.

Each process is given its own virtual memory space, which may or may
not overlap. It doesn’t really matter if they do or not as they are completely
isolated, so what is address 1000 for one process, will almost certainly not map
to the same location as address 1000 in another process. Exactly how much
virtual memory is given to each system is configured on a per device basis,
though this is usually related to how much RAM your device has.

8.3.3 Page tables

Within virtual memory mapping, address are stored in page tables which di-
rectly map virtual address to physical addresses. This address translation takes
place in a dedicated piece of hardware called the Memory Management Unit
(MMU). Each address will usually be for a memory page, rather than an in-
dividual byte. This is as memory is divided into pages (typically of 4KB) so
that we don’t need to store addresses of every individual byte. There is also no
requirement that our virtual memory is actually next to each other in physical
memory. Therefore virtual address 1 could point to one location in physical
memory, while virtual address 2 points to some very very different location.
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This demonstrates one advantage of virtual memory, as even in this example
the programmer can navigate around this virtual memory in a linear fashion,
and the fact that it is actually quite disparate in memory doesn’t even appear
to them.

8.3.4 Sizing Virtual Memory and Physical Memory

Just as there is a limit to how much space a physical mapping can map, there is
a limited size to the virtual address space, though they might not be as linked
as you would expect. You can absolutely have a bigger virtual memory space
than physical, and this is in fact used in most systems. As the limit on your
physical memory is usually your RAM, this is often taken as the starting size
for your virtual memory. However, many systems use the concept of ’swap’
memory, where we allow for a slightly larger virtual memory than physical
memory. This means we can store more data, and are less likely to run into
problems of loading programs too big to store.

However, we haven’t actually expanded our memory, and though we can
refer to more pages than really fit into our memory, we are going to need to
swap pages in and out of cache if we are to use such a system. If we only
add a small amount of swap memory ( 10%) then we aren’t going to see too
many cache misses, but if we add far too much then we’re going to defeat the
entire point of the cache as we’ll just be swapping things in an out constantly.
Usually locality will save us here and minimise misses, but again, too large a
swap will sink us here if we aren’t careful.



Chapter 9

Networks

Although there are many kinds of computer networks created, the vast major-
ity of network equipment is based on the TCP/IP stack, which we will cover in
these notes. These course notes focus on explaining how the network is imple-
mented and the properties that arise from the implementation. Some reference
material for network programming is included at the end of the chapter, but
the exercises are intended as the main way to learn this.

9.1 OSI layers

The OSI layers are a model that explains the implementation of the internet.
Each of the layers in the OSI model relies on the previous layer and makes
certain assumptions about it. Using the services provided by the underlying
layer, each layer can add new services. There are several different versions of
the OSI model, with differing numbers of layers and various names for those
layers. For this course we will only consider the commonly used 5 layer model
shown below. Just make sure to remember that different representations do
exist.

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Figure 9.1: The 5 layer OSI model
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By using a layered model we can seperate out functionality, to aid modelling,
but also product design and deployment. By letting individual components
(software or hardware) only need to meet the requirements of an individual
layer, then companies or developers can more easilly create small components
that can be of use to the wider network. This has greatly aided the very fast
deployment of a global network of devices, which would not be possible if each
user needed to implement an entire end to end system. The OSI model is
intended to describe many kinds of networks, but in the text here we map the
concepts to the implementation on global internet and consider this the only
implementation.

9.2 Physical layer

The physical layer is the lowest layer in the OSI model and is concerned with
transmission of bits via various propagation media. The first networks were
implemented as wired networks, propagating electrical signals through a shared
copper wire. Modern implementations use radio signals, to implement services
such as Wi-Fi and 3/4/5G.

The physical layer provides the service of sending and receiving bits. It
is important to note that due to properties of the propagation medium, the
timings, bandwidth, and error correction properties are different. Each of the
layers above needs to accept this, such that the layers work similarly with
different physical layers.

9.2.1 Sharing a medium

The most significant work done by the physical layer is the ability to transmit
messages on a shared medium, without any out-of-band control mechanism.
The primary method for solving this is the use of a multiple-access proto-
col. For both (wired) Ethernet and Wi-Fi, the protocol is the carrier-sense
multiple-access collision, CSMA, protocol. The protocol requires that each
host can ”sense” if data is being sent, and refrains from sending data which
would cause a collision, making the data impossible to read. Since there is no
out-of-band communication, collisions will eventually happen when two hosts
communicate. The CSMA protocol uses a concept of exponential back-off with
random starting values to ensure that collisions are eventually resolved.

9.2.2 Sharing with radio signals

For radio-based networks, it is possible to have a situation where the base
station (the Wi-Fi access point) is placed between two hosts, such that neither
can sense the other host’s signals. In this case the CSMA protocol is extended
to use collision avoidance, as the detection is not always possible. The concept
is explored in this animated video: https://www.youtube.com/watch?
v=iKn0GzF5-IU.

https://www.youtube.com/watch?v=iKn0GzF5-IU
https://www.youtube.com/watch?v=iKn0GzF5-IU
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9.2.3 Connecting: Hub

Since the physical layer is about transmitting signals, and a shared media
is supported, the physical layer allows multiple machines to be joined. For
Ethernet (wired) networks, a hub can be used to physically connect multiple
devices. With a network connected by a hub, the entire bandwidth for the
network is shared with all hosts, resulting in poor scalability. If a network
comprises 100 hosts and is using 100 Mbps Ethernet, each host will reach less
than 1 Mbps if all hosts attempt to communicate at full speed.

9.3 Link layer

With a physical layer that is capable of transmitting bits, the link layer provides
the option for addressing a single host. The bits are framed to allow sending
a number of bits. Since the physical layer is expected to be using a shared
medium, the link layer assumes that all frames are broadcast to every host.

9.3.1 Addressing network cards: MAC

To solve the problem of sending a frame to a particular host, the link layer adds
media access control, MAC, addresses. Every network device has a globally
unique address that is typically burned into the device but can be changed in
some cases. When a host wishes to communicate with another host, a frame
is transmitted on the physical medium, containing the MAC address of the
recipient and sender.

The format of the MAC address is using six dual-digit hexadecimal numbers,
for instance: 01:23:45:67:89:ab. The special address ff:ff:ff:ff:ff:ff
is used for broadcasting frames to all recipients.

9.3.2 Connecting: Switch

To make larger networks more efficient, a switch can be used in place of a hub.
Where the hub operates on the physical layer, a switch operates on the link
layer and forwards frames. When a switch is powered on, it has no knowledge
of the network. Each frame it receives, it will broadcast to all other ports with
a cable plugged in. For each package it receives, it will record the sender MAC
address as well as the originating port. Since each MAC address is globally
unique, the switch can use this simple scheme to learn where to send a frame
and can avoid broadcasting to the entire network. Note that this feature works
without any configuration, and even supports networks of networks, as the
switch will allow mapping multiple MAC addresses to a single port. If a host
is moved to another port, there will be a short period where the switch will
forward frames incorrectly, until it sees a package from the new port.
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9.3.3 Switches can increase available bandwidth

Once the network has levels, or just a large number of hosts, switches become
a crucial component in ensuring performance of the network. More expensive
switches can allow multiple parallel full-duplex data paths, such that multiple
pairs of ports may use the full bandwidth. This allows the network to scale
better with the addition of multiple hosts but may still have bottlenecks if
there is cross-switch communication.

9.3.4 Transmission errors

Since the physical layer may have transmission errors, the link frames typi-
cally include a simple checksum that the receiver verifies. If the checksum is
incorrect, or any parts of the frame are invalid, the frame is dropped with no
notification to the sender.

9.4 Network layer

With a layer that supports sending frames, the network layer adds routing and
global addressing. While we can build larger networks with a switch, the idea
of broadcasting becomes problematic for a global network.

9.4.1 Addressing hosts: IP address

Because the MAC address is fixed, it is not usable for global routing. Imagine
that a core router on the internet would need to keep a list of all MAC addresses
for all machines in Europe. The size and maintenance of such a list would be
an almost impossible task.

To simplify routing, each host on the network layer has at least one IP
address, used to transmit packages. The IP addresses are assigned in a hierar-
chical manner, such that a geographic region has a large range, which is then
divided into smaller and smaller ranges. At the bottom is the internet service
provider, ISP, who owns one or more ranges. From these ranges they assign
one or more IP addresses to their customers.

The hierarchy is important when considering global-scale routing. Instead
of having a core router that keeps track of all IPs for Europe, it can just know
that one of the ports ”eventually leads to Europe” and then assign a few IP
ranges to that port.

9.4.2 IP, CIDR, networks and masks

The IP addresses are 32 bit numbers, and usually presented as four 8-bit dec-
imal numbers, called the dotted-decimal notation: 123.211.8.111. The
routing works locally by comparing one IP address with another, using bitwise
XOR. By XOR’ing two IP addresses, any bits that are the same will be zero.
The subnet mask then defines what bits are ignored, so we can use bitwise AND



CHAPTER 9. NETWORKS 81

on the result. After these two operations, the result will only be all zero bits if
two IP addresses are on the same subnet.

As an example, consider the two IP addresses 192.168.0.8 and 192.168.0.37.
Given a subnet mask of 255.255.255.192, we can apply the XOR operation
to the two numbers and get 0.0.0.45. When we apply the AND operation
to the result we get 0.0.0.0, meaning that the two hosts are on the same
subnet.

As the subnet masks are always constructed with leading zeroes (i.e. it
is not valid to use 255.0.255.0), we can simply count the number of lead-
ing bits in the mask. This gives the classless interdomain routing notation,
where we supply the IP address and number of bits in a compact notation:
192.168.0.0/26. This notation is equivalent to supplying an IP address
and a subnet mask, as we can convert trivially between the two.

9.4.3 Packets

So far we have mentioned packages a few times without really describing what
they are. Most messages sent over the network are small (maybe only a couple
of hundred bytes in length), but there are manay messages that considerably
larger than this. If a file of several GB in size was sent continuously over the net-
work it would take considerable amount of time, and no other communication
could take place in that time. This is how traditional network communication
such as old landline phones used to opperate and is has the additional ineffi-
cency of the space for the message on the network needs to be reserved, even
if no message is actually being sent at that time. Modern networks split up
messages into packets, typically of no more than 1500B in size. These packets
can be interleaved with other messages being sent over the network to share
the available resources. Packets may be recieved out of order at the recieving
end of the communication, in which case the protocols discussed below will
re-order them correctly before passing the message on to the application layer.

9.4.4 Connecting networks: Router

If we consider a package sent from a home-user in Europe to a server in the
USA, the package will initially be sent to the uplink port of the routers, until
it reaches a router that can cross the Atlantic ocean. After it has crossed the
Atlantic ocean, it will reach more and more specific IP ranges until it arrives at
the destination. This system allows each router to know only general directions,
simplified as ”one port for away, multiple closer”. As mentioned in the video,
routing is often done with ”longest prefix matching”, where multiple rules are
stored as a tuple of: (destination port, IP pattern in CIDR). The
router can then sort the rules by the number of fixed bits (i.e. the /x part of the
CIDR address), and use the first forwarding rule where the bits match. This
approach allows the router to store broad ”general rules” and then selectively
change smaller ranges. As the only operations required are XOR + AND, it can
be performed efficiently in hardware.
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9.4.5 A router is a host

The router device itself works on the network layer, such that it can read the
IP address. It can be considered a specialized computer, because the first
routers were simply ordinary computers with multiple network cards. Unlike
the switch and hub, a router is visible on the network and is addressable with
its own IP addresses.

To function correctly, a router needs to know what ranges its ports are
connected to, which requires manual configuration. As the network can also
change, due to links being created and removed, as well as traffic changes and
fluctuating transfer costs, the routers need to be dynamically updated.

9.4.6 Updating routing tables

The dynamic updates are handled inside each owners’ network, and across
the networks using various protocols, constantly measuring capabilities, traf-
fic load, and costs. One of the protocols for communicating routes between
network owners is called the Border Gateway Protocol and is unfortunately
not secure yet. Bad actors can incorrectly advertise short and routes, which
causes the networks to start sending all traffic over a particular link, either for
disruption or eavesdropping purposes. Occasionally this also happens due to
human errors, leaving parts of the internet unreachable for periods of time.

For an overview of the layers until now, and the different components that
connect them, there is an animated video here: https://www.youtube.
com/watch?v=1z0ULvg_pW8.

9.4.7 Packet loss

Each point on the network, be it routers or hosts, will maintain some cache for
the storing of packets. The recieving of packets, writing them to cache, waiting
for them to be transmitted, and the time taken to write them onto the network
all conmtibute to a nodal delay, e.g. the delay in sending a packet at a given
node. Nodes will have a finite sending speed and if packets are recieved faster
than they can be sent then the local cache will fill up. If this state persists
then eventually the cache will fill and packet loss will occur, where a packet is
discarded or overwritten. Any information in this packet will be permanently
lost.

9.5 Transport layer

With a network layer that is capable of transmitting a package from one host
to another, the transport layer provides one protocol for doing just that: User
Datagram Protocol, UDP.

https://www.youtube.com/watch?v=1z0ULvg_pW8
https://www.youtube.com/watch?v=1z0ULvg_pW8
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9.5.1 Adding ports

A datagram in UDP adds only a single feature to the service provided by
the network layer: ports. To allow multiple processes on a given host to use
the network, UDP adds a 16-bit port number. When describing and address
on the transport layer, the port number is often added to the IP address or
hostname after a colon: 192.168.0.1:456. The operating system kernel will
use the IP address and port number to deliver packages to a particular process
(More on this below). However, since UDP uses the network layer, there is
no acknowledgement of receipt and no signals if a package is lost. Because
the routers update dynamically, it is also possible for packages to reach the
destination via different routes, causing packages to arrive in a different order
than they were sent.

UDP does not make any attempt to detect packet loss, and so it is up to an
Application to determine when to resend data or not. Despite this, UDP can
be acceptable for some cases such as game updates or video streams, where we
would rather loose a frame than have a stuttering video. But for many other
cases, such as transferring a file or dataset, the UDP service is not useful.

Note that port numbers can be anything up to 65000, but that it is common
practice to avoid 0-2000ish as these are reserved for ’well-known’ services. For
example, most websites are hosted on port 80, and to keep functionality clear
we politely avoid using 80 for non-website applications.

9.5.2 Transmission control protocol: TCP

The Transmission Control Protocol, TCP, is the most widely used protocol and
most often used with IP to form TCP/IP. The TCP protocol builds a reliable
transfer stream on top of an unreliable delivery provided by the network layer.
The protocol itself is very robust, with understandable mechanics, but can
require some trials to accept that it works in all cases.

9.5.3 Establishing a connection

Since the network layer does not tell us if a package has been delivered, the
TCP protocol uses acknowledgements, ACKs, to report receipt of a package.
Before a connection is establish, the client sends a special SYN message, and
awaits an ACK, and sends an ACK. This exchange happens before any ac-
tual data is transmitted but allows for ”piggy backing” data on the last ACK
message. When designing an application, it is important to know that this
adds an overhead for each established connection, and thus connections should
preferably be reused where possible.

9.5.4 A simple stop-and-go TCP-like protocol

Once the connection is established, data can flow, but due to the network layers
unreliability, we can receive packages out-of-order or lose them. For a simple
protocol, we can just drop out-of-order packages, treating them as lost. The



CHAPTER 9. NETWORKS 84

remaining problem has two cases: loss of package and loss of ACK. Since the
sender cannot know which of these has occurred, it assumes the data is lost,
and re-transmits it after a timeout has occurred while waiting for an ACK. If
we prematurely hit a timeout, we will re-send a received package, but this is
the same case as a lost ACK will produce.

The recipient can simply discard a package it has already received, so if we
add a package number, called a sequence number1, to the package, it is trivial
for the recipient to know which packages are new and which are retransmits.
It should be fairly simple to convince oneself that this works in all cases, in
the sense that the recipient will eventually get the package, and the sender will
eventually get an ACK.

9.5.5 Improving bandwidth with latency hiding

However, due to the communication delay, we are waiting some of the time,
instead of communicating. For even moderate communication delays, this re-
sults in poor utilization. To work around this, the TCP protocol allows multiple
packages to be ”in-flight”, so the communication can occur with full bandwidth.
This requires that the sender needs to keep track of which packages have gotten
an ACK and which are still pending. We also need to keep copies of multiple
packages, such that we can retransmit them if required. This does not change
the way the simple stop-n-go protocol works, it simply adds a counter on the
sender side. The choice of ”how many” is done with a ramp-up process, in-
creasing until no improvements are seen, which further adds to the delay of
new connections.

9.5.6 Minimizing retransmission

We could stop there, and be happy that it works, but if we get packages out-
of-order it means not being able to send the ACK, and many in-flight packages
needs to be retransmitted. This is solved in TCP by keeping a receive buffer,
allowing packages to arrive in out-of-order. This does not change the protocol,
except that the recipient needs to send an ACK, only when there are no ”holes”
in the sequence of received packages. This is simplified a bit in TCP, where an
ACK is interpreted as vouching for all data up until the sequence number. This
means that when as the sender we recieve an acknowledgetment for packet 500,
we know that all packets up to 500 have also been recieved. This means that
lost ACK messages are usually not causing disturbance, as a new one arrives
shortly afterwards. But it also makes it easier for the recipient to just send an
ACK for the full no-holes sequence.

If we lose a package, the recipient will notice that it keeps getting packages
with the same sequence number. Since the reciever can only ACK the last
packet it has recieved, it will keep doing so. The sender can then notice getting

1In the text and the video, we use a number pr. package. In the real TCP protocol, the
sequence number counts bytes to support split packages.
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multiple ACKs (specifically: 3) for the same package, and guess that it needs to
re-transmit the next package. This improvement makes it possible to transmit
at full speed even with some package loss, and without having to eait for time-
consuming timeouts.

Hopefully you can convince yourself that the protocol works correctly in all
cases, despite the performance enhancements.

9.5.7 Flow control

When designing and evaluating network performance, it is important to know
the two complementary mechanisms that both end up throttling the sending of
packages. The original throttling mechanism is called flow-control and works
by having the recipient include the size of the receive buffer with each ACK
message. The sender can monitor this value and reduce the sending rate if
it notices that the remaining space is decreasing. This is essentially trying to
prevent the sender sending packets that there is not space to recieve, preventing
packet loss and package re-transmission. Once the space in the reciever is zero,
the sender will wait for a timeout or an ACK with a non-zero receive buffer
size. The timeout is a protection against the case where the ACK is lost.

9.5.8 Congestion control

The other mechanism is congestion control, which is a built-in protection
against overflowing the network itself. While any one machine cannot hope
to overflow the core routers in the network, many hosts working together can.
What happened in the early days of the internet was that some routers were
overwhelmed and started dropping packages. The hosts were using TCP and
responded by retransmitting the lost packages, causing a build-up of lost pack-
ages, to the point where no connection was working. The TCP protocols are
implemented in software, so the TCP implementations were gradually updated
with congestion control additions. Unlike flow-control, there is no simple way
of reporting the current load of all routers in the path. Instead, congestion con-
trol monitors the responses from the client, and makes a guess of the network
state. Various implementations use different metrics, where the loss of pack-
ages was once seen as the right indicator. However, since package loss occurs
after the congestion issues have started, this was later changed to measure the
time between ACK messages. Once the routers start to get overloaded, the
response time increases, and modern TCP implementations use this to throttle
the sending speed.

9.5.9 Closing a connection

The layers on top of TCP can assume that packages have arrived and are
delivered in-order. But how do we know if we have received all packages, and
not lost the last one? The TCP implementation handles this by sending a
package with the FIN bit set. Like other packages, the FIN package can be
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lost, so we need to get an ACK as well. Again, the ACK package may be lost,
so we need another package, and so on. TCP has a pragmatic solution, where
the side that wishes to close the connection will send FIN, wait for an ACK
and then send a final ACK. The final ACK may be lost, in which case the
recipient does not know if the sender has received the ACK. If this happens,
TCP will keep the connection in a ”linger” state for a period before using a
timeout and closing the connection. Even if this happens, both sides can be
certain that all messages have been exchanged.

9.5.10 Network Address Translation

In the original vision of the internet, all hosts were publicly addressable with
their own IP address. Later that turned out to be a bad idea for security
and economic reasons. Each ISP has to purchase ranges of IP addresses and
assign these to their customers. But some customers may have several devices,
increasing the cost. Likewise, some customers and companies may like to have
an internal network with printers and servers which is not exposed to the
internet, but at the same time be able to access the internet.

The technique that was employed rely on the router being a computer
itself, with an internal and external IP address. When a host sends a package
destined for the external network, the router will pick a random unused port
number and forward the package, using the routers external IP address and the
randomly chosen port. This information is stored in a table inside the router,
such that when a response package arrives that is destined for the particular
port and external IP, the router will forward it to the internal network, using
the original IP and port.

This operation is transparent to the hosts inside and outside the network,
allowing ISP customers to have multiple internal hosts, sharing a single external
IP address.

When compared to the original vision for the internet, the NAT approach
breaks with the assumption that each host needs a unique IP. In practice this
means that a NAT’ed host can only initiate connections, it cannot receive new
connections (i.e., it cannot be the server, only the client).

In some cases, it might be desirable to use NAT, but still have a host act as a
server. For this situation, most NAT capable routers allow pre-loading of static
rules, for instance ”external IP, port 80” should go to ”10.0.0.4:1234”. This is
the same operation that happens automatically for outbound connections, but
just always active.

Although NAT is not strictly a security feature, it does provide some pro-
tection against insecurely configured machines being directly accessible from
the internet. That is unless your NAT capable router has Universal Plug-n-
Play, UPNP, which allows any program on your machine to request insert a
preloaded NAT rule, exposing everything from printers to webcams without
the owners knowledge.
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9.5.11 IPv6

In the above we have only considered IPv4, which is where the addresses are 32-
bit. Despite the visions of giving every host their own IP address, the number
of hosts in the world has long exceeded the available IPv4 numbers. Thanks
mostly to NAT techniques, and a similar concept for ISPs called carrier-grade-
NAT, this has not yet stopped the growth of the internet.

Before it became apparent that NAT would ease some of the growing pains,
the IPv6 standard was accepted and ratified. With IPv6 there are now 128
bits for an address, essentially allowing so many hosts, that it is unnecessary
to have ports or NAT anywhere.

Where the transport layer is implemented in software and easily updated,
the network layer is embedded in devices with special-purpose chips. Changing
these is costly and has so far dragged out for more than a decade.

The number of IPv6 enabled hosts and routers continue to increase, but
there are still many devices with a physical chip that cannot upgrade to IPv4.
Many of these are IoT devices, attached to an expensive TV, surveillance cam
or refrigerator. As the devices work fine for the owners, there is virtually no
incentives for replacing it, leaving us with a hybrid IPv4 and IPv6 network for
some time to come.

New internet services would likely strive to use IPv4 addresses as there are
plenty of ISP that only offer IPv4. If a company only has IPv6 servers, they
would be inaccessible to a number of potential customers.

Currently the most promising upgrade seems to be, once again, relying on
NAT to perform transparent IPv4 to IPv6 translations. This could allow the
internet as a whole to switch to IPv6 while also being accessible to IPv4 users.

9.6 Application layers

With the transport layer providing in-order delivery guarantees for communi-
cating between to processes, it opens up to a multitude of applications. The
most popular one being the use of HTTP for serving web pages, but also many
other services, including the network time protocol, which keeps your computer
clock running accurately even though it is has low precision.

9.6.1 Domain Name System

One application that runs on top of the transport layer is the domain name
system, DNS. It is essentially a global key-value store for organizing values
belonging to a given domain name. In the simplest case it is responsible for
mapping a name, such as google.com to an IP address. This makes it easier
for humans to remember, but also allows the owner of the domain name to
change which host IPs are returned, without needing to contact the users.
This might occur for a variety of reasons, hardware may simply be changed, or
a different content provider may be used depending on your physical location.
After all, if you are in Australia you could still use cnn.com to access a news
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site, but a local server would be returned rather than connecting all the way
to New York.

The design of the system is based on a hierarchical structure, where 13
logical servers replicate the root information. In practice these 13 servers are
implemented on over 700 machines, geographically distributed over the entire
globe.

The root nodes store the IP addresses of the top-level domain servers, where
a top-level domain could be .com. A top-level domain server, naturally repli-
cated on multiple hosts, keeps a list of the name servers for each domain ending
with the top-level domain (i.e. the top-level server for .com keeps track of
twitter.com, google.com, etc).

This means that each domain must run their own nameserver, but in prac-
tice, most nameservers are run by a set of registrars, where a small number of
machines are responsible for thousands of domains.

The domain name server is the final step, containing all information related
to a given domain name. This server can be queried to obtain IP addresses for
all subdomains (i.e., www.google.com, docs.google.com) as well as the
domain itself (i.e., google.com).

Apart from the IP addresses for hosts, the DNS records contain email
servers, known as MX records, free text, called TXT records, and other domain
related information.

To keep the load on DNS servers down, each host in the DNS system will
cache the values it receives for a period. The exact period is also stored in the
DNS records with a time-to-live, TTL, value expressed in seconds.

This distributed system means that no device needs to maintain a complete
record of the entire DNS heirarchy, which would be a considerable task in
todays internet. It also means that organisations can maintain control over
their own DNS records. For instance, KU will maintain a DNS server which
it can administer, adding or removing web-pages and resources as it sees fit.
This does not need to be registered with the wider internet, only the location
of the KU DNS server needs to be known. Any requests for any IP addresses
can just be sent to this domain name server and it will handle it, however KU
wishes to do so. Another advantage of such a system is that there is no single
point of failure, in fact that are tens of thousands of DNS servers throughout
the world, making it infeasible for anyone to bring down the entire system.

9.6.2 DNS caching

When it comes time for a user to make a DNS querry, they will send a request to
a local DNS server. This will then querry the root server for the corresponding
top-level domain server. The top-level domain server is then contacted by the
local DNS server to obtain the address of the authorative DNS server. The local
DNS server will then contact this authorative server for the final DNS address.
This structure is refered to as iterative, as it is run as a series of independent
querries by the local DNS server. In contrast to this is the recursive querry,
where the local DNS server will contact the root, with the root then contacting
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the appropriate top-level domain server which in turn contacts the authorative
server. Though this may seem very similar, in practice it makes much better
use of caching. DNS requests are frequent, small, and very often predictable
(how often do you really go to a site you’ve never been to before). For these
reasons DNS is a very cachable application, to save repeated requests for the
same information. Recursive makes better use of caching as a cache hit at any
stage of the process will save any subsequent messages, but in the iterative
DNS only a cache hit at the local DNS would save messages.

9.7 Network Programming

These brief notes will only look into using Python for network programming.
All network programming is done via sockets, which act as file descriptors we
can read and write to/from. A socket will map to a port via the bind function.
From here we can either use it to listen for incoming messages via the listen
function, or attempt to establish a new connection to another port. Note that
the connect function includes the bind function within it so we don’t need to
call it explictly. An example is shown below. This creates a socket, connects
to some other host using an IP and port number, assembles a message, and
sends that message.

import socket

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) \
as client_socket:

client_socket.connect(("127.0.0.1", 12345))
request = bytearray("message".encode())
client_socket.sendall(request)

Receiving a message can also be done through sockets. This example creates
a socket at a given IP and port, listens for inbound communications, accepts
those connections, reads the request and replies.

import socket

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) \
as server_socket:

server_socket.bind(("127.0.0.1", 23456))
server_socket.listen()

while True:
connection, connection_address = server_socket.accept()
with connection:

message = connection.recv(1024)
connection.sendall(response)

Though individual socket programming may be usefull at some points, es-
pecially for sending messages. Servers are usually implemented through the
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socketserver class as shown below. In this model, dedicated handlers for re-
quests are created so that responses can be processed concurrently. This con-
currency is automatically handled by the ThreadingTCPServer class, which
wil create a new thread for each inbound communication.

from socketserver import ThreadingTCPServer, \
StreamRequestHandler

class MyHandler(StreamRequestHandler):
def handle(self) -> None:

message = self.request.recv(1024)
self.request.sendall(message)

with ThreadingTCPServer(("127.0.0.1", 5678), MyHandler) \
as my_server:

my_server.serve_forever()

Recall that regardless of the method used to program the sockets, all com-
munication should be conducted via a client-server model. Under this model
a communication is initiated by the client, aka the sender. It will attempt
to contact a server, or reciever. Depending on the protocol, the server may
respond or not. It is common that a response is always expected, such as in
most TCP communications. Even if a nonsense message is sent by the client,
the server will respond with an error message. Under the client/server model,
if a response is expected, the client must commit to being able to recieve a
reply, and the server must commit to sending a reply in a finite amount of
time. This ensures the system won’t livelock, where the communication hangs
without completing. Note that hosts can act as both clients and servers at the
same time, e.g., by recieving a request which requires some network commu-
nication to respond to. This is fine, but within each communication, one host
will always be the client, and one will be the server.

A server will create a socket to listen for new connections as shown above.
This will be on a defined port, however, this is not the port that the connection
will actually be established on. If this were, then the connection would reserve
that port and no other clients could connect. Therefore, when a server recieves
a new connection request, it will use the accept function to create and bind
a new socket for the inbound communication. This makes servers capable
of responding to multple connections, though the handling will have to be
threaded in order be responded to concurrently. This will be investigated
further in the following Chapter, though as already noted, the concurrency is
automatically handled in the socketserver implementation.
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OpenMP

Writing multi-threaded programs using the raw POSIX threads API is tedious
and error-prone. It is also not portable, as POSIX threads is specific to Unix
systems. Also, writing efficient multi-threaded code is difficult, as thread cre-
ation is relatively expensive, so we should ideally write our programs to have a
fixed number of worker threads that are kept running in the background, and
periodically assigned work by a scheduler. In many cases, particularly within
scientific computing, we do not need the flexibility and low-level control of
POSIX threads. We mostly wish to parallelise loops with iterations that are
independent, meaning that they can be executed in any order without changing
the result. For such programs we can use OpenMP. We will use only a small
subset of OpenMP in this course.

10.1 Basic use of OpenMP

OpenMP is an extension to the C programming language1 that allows the
programmer to insert high-level directives that indicate when and how loops
should be executed in parallel. The compiler and runtime system then takes
care of low-level thread management. OpenMP uses the the fork-join model
of parallel execution: a program starts with a single thread, the master thread,
which runs sequentially until the first parallel region (such as a parallel loop)
is encountered. At this point, the master thread creates a group of threads
(“fork”2), which execute the loop. The master thread waits for all of them to
finish (“join”), and then continues on sequentially. This is called an implicit
barrier : a point where execution pauses until all threads reach it. For example:

#pragma omp parallel for
for (int i=0; i<n; i++) {
A[i] = A[i]*2;

}

1OpenMP is not C specific, and is also in wide use for Fortran.
2Note an unfortunate mix-up of nomenclature: this has nothing to do with the Unix

notion of fork(), which creates processes, not threads
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The #pragma omp parallel for line is an OpenMP directive that in-
dicates that the iterations of the following for loop can be executed in parallel.
If this loop is compiled with a compiler that supports OpenMP, the n iterations
of the loop will be divided among some worker threads, which will then execute
them in parallel.

The number of threads used can be controlled at run-time, and is usually
not equal to the number of iterations in the parallel loop. This is because when
the amount of work per iteration is small (as above), it would not be efficient
to have one thread per iteration.

One important idea behind OpenMP is that to understand the semantics
of a program, we can always remove the directives and consider what the
remaining sequential C program would compute. This is called the sequential
elision. This is a great advantage over low-level multi-threaded programming.

When we ask OpenMP to parallelise a loop, we solemnly swear that the
following for loop is actually parallel. If we break this vow then the parallel
and sequential execution of the code will give different results; the API does
not provide any guarantees about the absence of race-conditions. For example,
the iterations of the following loop are not independent, yet OpenMP will not
stop us from asking it to be executed in parallel:

sum = 0;
#pragma omp parallel for
for (int i=0; i<N; i++) {
sum += A[i];

}

Since all threads executing the parallel region have access to the same data,
it is easy to have accidental race conditions in OpenMP programs. In chapter 12
we will look in detail at determining when it is safe to execute a loop in parallel,
and how to transform loops so they become safe to execute in parallel.

10.1.1 Compiling and running OpenMP programs

To compile with support for OpenMP directives in gcc, pass the -fopenmp
option to the compiler. The number of threads that are going to be used for
parallel execution can be set by environment variable OMP NUM THREADS. For
example,

$ export OMP_NUM_THREADS=8

sets the environment variable for the current shell session, such that any
OpenMP we run will use eight threads. Determining the optimal number of
threads to use for a given program on a particular machine is something of a
black art. In practice, we just try a few different numbers and see what runs
fastest.

For example, suppose the contrived program in listing 10.1 is stored in the
file openmp-example.c. We can then compile as follows:
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Listing 10.1: A very simple example of using OpenMP.

#include <stdio.h>
#include <stdlib.h>

int main(void) {
int n = 100000000;

int *arr = malloc(n*sizeof(int));

#pragma omp parallel for
for (int i = 0; i < n; i++) {

arr[i] = i;
}

free(arr);
}

$ gcc -o openmp-example openmp-example.c -fopenmp

And then run with various values of OMP_NUM_THREADS to investigate the
impact of parallelisation:

$ time OMP_NUM_THREADS=1 ./openmp-example
real 0m0.124s
user 0m0.034s
sys 0m0.090s
$ time OMP_NUM_THREADS=2 ./openmp-example
real 0m0.076s
user 0m0.033s
sys 0m0.104s
$ time OMP_NUM_THREADS=4 ./openmp-example
real 0m0.054s
user 0m0.039s
sys 0m0.133s
$ time OMP_NUM_THREADS=8 ./openmp-example
real 0m0.046s
user 0m0.054s
sys 0m0.184s

Note how the real time drops as we use more threads—although it’s not
quite eight times as fast with eight threads as with one. This is likely because
this contrived program does so little work compared to the amount of memory
we are accessing.
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10.1.2 Parallelism versus Concurrency

The terms parallelism and concurrency are frequently and historically used
interchangeably. If you look then up in a dictionary, you will find them to have
almost the same definitions. In computer science, they are terms of art with
distinct (although related) meanings.

To illustrate concurrency, consider a video game, which from a programming
perspective is basically a real-time interactive simulation. Many things need
to happen concurrently:

• We need to figure out what sounds and music to play and send it to the
IO device connected to the speakers.

• Many times per second, we need to draw to the screen a rendering of the
world as observed by the player.

• Perhaps we wish to guess at where the player is headed next, and preload
those parts of the game world.

• We need to run artificial intelligence for computer-controlled enemies.

• We need to compute physics interactions.

• In a multiplayer game, we need to transmit information information
about the local game world to other players across the network, as well
as incorporate information we receive in return.

• Probably we also wish to perform cleanup tasks, such as removing objects
from the game world that after a while are no longer necessary (e.g. the
remains of deceased enemies), to clear up system resources.

From a programming perspective, it is nicer if we can write each of these
parts as separate flows of control. The artificial intelligence code should not
worry about constantly checking whether it’s time to draw a new screen frame,
or whether the player hit some key. Similarly, the rate at which we receive
information from the network is completely unpredictable, relative to our other
responsibilities.

One solution is to implement each of these parts as a distinct thread, and
depend on the operating system to context-switch between them as needed.
Maybe we can also use some form of scheduling policy that understands that
it’s more important for the threads responsible for music and graphics to run
when they need to, than the thread that cleans up dead objects or simulates
physics. If we have only a single processor, then all these different threads
run concurrently, in that they overlap in time, but only one will physically
be executing instructions at any given point in time. This means that con-
currency can be a useful programming model even when the goal is not to
make the program faster. For that matter, threads are not the only way to
implement concurrency—asynchronous event loops are a popular technique for
highly scalable web servers, but outside the scope of this course.
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Listing 10.2: OpenMP dot product with reduction clause.

double dotprod(int n, double *x, double *y) {
double sum = 0;

#pragma omp parallel for reduction(+:sum)
for (int i = 0; i < n; i++) {

sum += x[i] * y[i];
}
return sum;

}

Definition 10.1 (Concurrency) Concurrency is the use of multiple, possibly
interacting, logical flows of control.

Parallelism is about making programs faster by performing several compu-
tations at the same time. When we have a program with multiple threads, such
as the video game example above, then if we have a machine with more than
one processing core (which is essentially every machine these days), we can run
several of those threads in parallel. While in Unix, threads are the fundamen-
tal implementation mechanism for obtaining parallelism, we often program in
languages or frameworks that do not directly expose threads, because they can
be difficult to work with. For example, OpenMP is a parallel programming
model, but for simple parallel loops, we do not concern ourselves with actual
threads, and we only have a single logical control flow.

Definition 10.2 (Parallelism) Parallelism is the simultaneous use of multi-
ple processing units, with the goal of speeding up a computation.

In scientific computing we are mostly concerned with parallelising loops
with independent iterations, and not with concurrent flows of control. While
OpenMP allows us to peek beneath the covers and interact with the threads
that it uses to implement the parallel loop abstraction, there does exist forms
of parallelism, and parallel programming languages, that do not expose this
abstraction, and are truly parallel without exposing any concurrency.

10.2 Reductions

A loop whose iterations are completely independent can be parallelised with the
#pragma omp parallel for directive, as shown before. Another common
case is when the iterations are almost independent, but they all update a single
accumulator - for example, when summing the elements of an array. For such
loops, OpenMP provides reduction clauses, as used to compute a dot product
on listing 10.2.

Note that all iterations of the loop update the same sum variable. The
reduction clause reduction(+:sum) that we added to the OpenMP directive
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indicates that this update is done with the + operator. The compiler will
transform this loop such that each thread gets its own private copy of sum,
which they then update independently. At the end, these per-thread results
are then combined to obtain the final result.

Reduction clauses only immediately work with a small set of built-in binary
operators: +, *, &&, ||, &, |, ˆ, max, and min. It is also possible to use user-
defined functions, but this is beyond the scope of this text. The common
property shared by these operators is that they are associative, and have a
neutral element. By associativity, we mean that for some operator ⊕, we have

(x⊕ y)⊕ z = x⊕ (y ⊕ z).

That is, the “order of evaluation” does not matter. This is what allows us to
partition the iterations of a reduction loop between multiple threads, without
changing the result. Note that subtraction and division is not associative—this
is we don’t use them in reduction clauses.

A neutral element 0⊕ for some operator ⊕ is a “natural zero” that does not
change the result of evaluation:

x⊕ 0⊕ = 0⊕ ⊕ x = x

For example, if the operator is addition, then the neutral element is 0. If the
operator is multiplication, then the neutral element is 1. OpenMP requires
that the initial value of each reduction variable (sum for listing 10.2) is the
neutral element of the operator.

10.2.1 Associativity of floating point operations

Some of you might recall that addition and multiplication of floating-point
numbers is not associative, due to roundoff errors. Yet we perform a reduction
on double values in listing 10.2! How can that be valid? The short answer is
that OpenMP allows us to shoot ourselves in the foot if we wish. In practice,
floating-point operations are often almost associative, and we can get useful
results by treating them as if they were. In particular, there is no reason to
believe that a sequential left-to-right summation of floating-point numbers is
going to be more numerically accurate than a parallelisation of that loop. This
does mean that an OpenMP program that uses reductions on floating-point
values might compute a different result than the original sequential program.

10.3 Nested loops

We can prefix every parallelisable for-loop with an OpenMP parallelisation
directive. But what happens if we nest multiple parallel loops such as the
following?

#pragma omp parallel for
for (int i = 0; i < n; i++) {
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#pragma omp parallel for
for (int j = 0; j < m; j++) {

...
}

}

In principle, the answer is easy: the original master thread launches worker
threads to handle each of the n outer iterations, and these individual worker
threads may then launch more worker threads to handle the inner m iterations.
This is called nested parallelism: iterations of a parallel loop may itself con-
tain more parallel loops. The overhead of nested parallelism quickly becomes
significant, in particular if we have recursive functions so that the nesting is
dynamic, so in practice it is not widely used in OpenMP. In fact, OpenMP im-
plementations are likely to ignore nested parallelisation directives, unless the
OMP_NESTED environment variable is set to True when running the program.

However, a common case of nested parallelism is iterating across all elements
of a multidimensional array, such as above, where we are conceptually covering
all indexes of an n by m array. This is called regular nested parallelism, because
the iteration count of the inner loop (m) is invariant (the same) for all iterations
of the outer loop. Such a nested loop can be collapsed to a single loop that
performs n*m iterations:

#pragma omp parallel for
for (int ij = 0; ij < n*m; ij++) {
int i = ij / m;
int j = ij % m;
...

}

We use division and modulo operations to extract the intended indexes
from the “combined” index ij—this is actually the inverse of the row-major
two-dimensional index function.

However, writing code like this is not very nice, as it obscures our intent.
Fortunately, OpenMP provides the collapse clause that we can use to tell
OpenMP to parallelise multiple perfectly nested loops. By perfectly nested, we
mean that the outermost loops contain only a loop, and no other statements.
An example is shown in listing 10.3, where we tell OpenMP to treat the two-
deep loop nest as a single parallel loop.

You should generally use the collapse clause when writing such perfectly
nested loops, which occurs frequently when implementing matrix operations.
But more generally, it is usually not worth worrying too much about paral-
lelising all inner loops of an OpenMP program. All we have to do is provide
enough parallel work such that all processors on the system have work to do,
and as of this writing, even a very large computer is unlikely to have more than
256 CPU cores—and on a personal computer, 16 is more likely.
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Listing 10.3: Matrix addition with OpenMP.

void matadd(int n, int m,
const double *x, const double *y,
double *out) {

#pragma omp parallel for collapse(2)
for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {
out[i*n+j] = x[i*n+j] + y[i*n+j];

}
}

}

10.4 Scheduling

When we use a directive to ask OpenMP to execute a loop in parallel, the com-
piler and runtime system will decide how the iterations should be distributed
among the threads. By default, OpenMP uses static scheduling.

Definition 10.3 (Static scheduling) When entering a parallel loop, we as-
sign each thread exactly the number of iterations to execute.

For example, when executing a loop with n iterations on m threads, we
might assign n

m iterations to each thread.
Static scheduling can be non-optimal when a loop is not load-balanced,

meaning that not all loop iterations take the same time. For such an imbalanced
loop, some threads may finish their iterations quickly and then sit idle while the
other threads finish theirs. In such cases, we can ask OpenMP to use dynamic
scheduling.

Definition 10.4 (Dynamic scheduling) When entering a parallel loop, we
assign each thread an iteration. When a thread finishes an iteration, it receives
a new one to execute.

The advantage of dynamic scheduling is that an idle thread will receive
more work (if any is available). The disadvantage is that dynamic scheduling
requires additional communication and synchronisation—while this is done for
us by the runtime system, it carries a performance overhead.

As an example of the benefit of dynamic scheduling, consider parallelising
loops where each iteration computes Fibonacci numbers using the recursive
function defined in listing 10.43.

Since computation of fib(i+ 1) takes over twice the time of fib(i), we can
produce a very imbalanced loop by letting iteration i compute fib(i). List-
ing 10.5 shows how to parallelise this with a static schedule in OpenMP. On

3This is an inefficient way to compute Fibonacci numbers—we only use as an expensive
computation that will take some time.



CHAPTER 10. OPENMP 99

Listing 10.4: Recursive Fibonacci function.

int fib(int n) {
if (n <= 1) {

return 1;
} else {

return fib(n-1) + fib(n-2);
}

}

Listing 10.5: Fibonacci loop with static scheduling.

#pragma omp parallel for schedule(static)
for (int i = 0; i < n; i++) {

fibs[i] = fib(i);
}

Listing 10.6: Fibonacci loop with dynamic scheduling.

#pragma omp parallel for schedule(dynamic)
for (int i = 0; i < n; i++) {

fibs[i] = fib(i);
}

my machine, for n=45, this program runs in 5.2s. We can ask for dynamic
scheduling by using the the schedule(dynamic) clause, as shown on list-
ing 10.6. On my machine, this version runs in 2.27s - a speedup (section 11.1)
of 2.29×.

By default, dynamic scheduling assigns single loop iterations to threads.
This is not a problem for the Fibonacci example, because there are few loop
iterations, and they take a fairly long time to run. For loops with many iter-
ations, where dynamically scheduling single iterations at a time would involve
too much overhead, we can add a chunk size to the scheduling clause. For
example,

#pragma omp parallel for schedule(dynamic, 100)

will schedule in chunks of 100 iterations at a time.
The guided schedule is similar to dynamic, but starts out with big chunks

and may then decrease the chunk size during program run-time if the work is
imbalanced.

OpenMP’s default behaviour will usually do a good job scheduling most
loops. But if we do not see the performance gains we would expect, and we see
in a process monitor that some of our processors are idle while our program
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is running, it is worth considering whether our loops could benefit from a
scheduling clause.

10.5 The Big Concurrency Problems

Concurrency and Parallel programming is a complex task, and can often be a
study in what not to do. Luckily, OpenMP manages a lot of the underlying
system interactions to ensure correct and efficient concurrency, but no system
is perfect. If you ever need to debug whats going on, or try to implement your
own concurrent solution you will need a firm understanding of the two core
problems; race conditions and deadlocks.

10.5.1 Races

Definition 10.5 (Race Condition) Sometimes also referred to simply as a
race. A race condition is any processing whose final result depends on the
arbitrary ordering of prior operations.

Races are a result of concurrent programs least desirable feature, non-
determinism. This is due to the essentially random4 scheduling of any threads
and processes, so we do not actually know in what order concurrent operations
will be performed.

Within threading this is most often caused by global variables being shared
among several threads. This is as each thread can read and write to and from
the same location, in essentially any order. As an example, consider the code
in listing 10.7. This code will spread the execution of the counting loop across
many threads, which will all read, increment and write to count in an arbitrary
order. This will produce an output for count that could be any value between 2
up to 1000000. In practice you are very unlikely to get a result as low as 2, but
it is technically possible if you get the very unluckiest scheduling5. Of course
its just as possible that you get 1000000 but this non-deterministic result is
everything we want to avoid in computing.

10.5.2 Locks

The code in 10.7 will produce a non-deterministic result, which we have already
seen how to solve in OpenMP, by adding ’reduction(+:count)’ after the ’parallel
for’ loop. Reductions are great for OpenMP, but a more broadly applicable
solution is the use of a mutex. Note that within the wider literature you will see
references to mutexes, locks, or semaphores. These are all name for related but

4Note that in practice the scheduler will not be literally scheduling at random, but that
process scheduling is way out of scope for this course. As user of a computer, we also have
little to no control over other users and processes that our program may be competing with,
so even when we do understand the scheduler it is still treated as effectively random.

5If you’re interested in how this is possible you can look through the trace on page 36 of
this pdf

https://link.springer.com/content/pdf/10.1007/s00165-017-0447-x.pdf
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Listing 10.7: An example of a racing program.

#include <stdio.h>
#include <omp.h>

int main(int argc, char* argv[]) {

int count = 0;
int total = 1000000;
#pragma omp parallel for
for (int i=0; i<total; i++)
{

count++;
}
printf("Final count is: %d\n", count);
printf("Should be: %d\n", total);

}

slightly different objects but within HPPS, and we will only concern ourselves
with mutexes. They are effectively a flag that can only be set by one thread
at a time.

This is achieved via atomic operations. An atomic operation is one that
cannot be interrupted. Recall that the problem with race conditions is that we
cannot guarantee that a thread will not interrupt another thread, even if it is
midway through an operation. Mutexes are implemented at the machine level
to only have two operations, set (e.g. claim the mutex) and release (e.g. give up
the mutex). Both of these operations are implemented as atomic operations,
that the scheduler cannot interrupt. Once a thread has claimed a mutex,
then any other threads that try to claim it will be blocked until the mutex is
released. This can have the effect of reducing how much parallel processing
is taking place, as threads will have to wait for mutexes to be released before
they can continue. However, this cost to speed is worth it if it means we can
get an actually meaningful result.

An example of how a mutex can be implemented using the ’pthread’ library,
as is shown in listing 10.8. This example will always produce the correct result,
regardless of how many threads are used to calculate it. Note that in this case,
the mutex is locking access to the entirety of the parallelised section, meaning
that this program will in fact be much slower than the racing program shown in
listing 10.7. We can see this in the timings presented below, when the mutexed
version is 3 times slower, as the threads need to keep waiting for each other to
release the mutex. This shows us that mutex usage should be minimised, by
only locking the smallest number of instructions to ensure we get the correct
result. Sometimes a lock is inevitable though, and so if we were going to
improve this program we would perhaps restructure the entire code so that
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Listing 10.8: An example of a mutex fixing a racing program.

#include <pthread.h>
#include <stdio.h>
#include <omp.h>

int main(int argc, char* argv[]) {

int count = 0;
int total = 1000000;
pthread_mutex_t lock;

pthread_mutex_init(&lock, NULL);

#pragma omp parallel for
for (int i=0; i<total; i++)
{

pthread_mutex_lock(&lock);
count++;
pthread_mutex_unlock(&lock);

}

printf("Final count is: %d\n", count);
printf("Should be: %d\n", total);

}

each thread calculates a subtotal, and these are then totalled in a mutexed
variable. This is in fact what an OpenMP reduction automatically does.

$ time ./race
real 0m0.031s
user 0m0.173s
sys 0m0.004s
$ time ./mutex
real 0m0.102s
user 0m0.161s
sys 0m0.484s

10.5.3 Deadlock

Mutexes may help solve the problem of races, but they can introduce a com-
peletly new problem, deadlock.

Definition 10.6 (Deadlock) Any situation where no system progress can take
place, as every process/thread is waiting for another to progress before it can.
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Much like races, deadlocks can be non deterministic which can make them
twice as annoying to debug, but we must treat the possibility of a deadlock as
though it will deadlock eventually. Therefore we need to design our systems
so that they are deadlock free. As an example of how a deadlock could occur
consider the following two threads, each which just lock and then unlock two
mutexes each:

Thread 1 Thread 2
lock(A) lock(B)
lock(B) lock(A)
unlock(A) unlock(A)
unlock(B) unlock(B)

The ordering of these operations is completely up to the whims of the
scheduler. Many orderings of these operations would be fine, but one such bad
one would be if thread 1 locked mutex A, but was then immediately interrupted
by thread 2 who would then lock mutex B. Thread 2 cannot continue as it
cannot lock mutex A, as it is already locked by thread 1. Thread 1 also cannot
continue as its next operations is to lock mutex B, but it is locked by thread
2. This is a deadlock, as there is no way for either thread to progress. There
is also no way for these two threads to detect that they are in a deadlock, the
system is completely stopped with no way to recover.

10.5.4 Progress Graphs

Reasoning about how each thread could be scheduled is all well and good, but
a more robust method to identify potential deadlocks would help a lot. We can
do so through the use of progress graphs. These are informal sketches, where
we can map all the mutex interactions, and can then deduce any potentially
deadlocking behaviour. For an example looking to figure 10.1. In this type of
graph we map each threads progression along the graph axis’. We only need
to map any locking and unlocking operations, as anything else may be time
consuming but is ultimately a non-blocking operation that will complete in a
finite amount of time.

As each thread is sequential, its progress can be mapped by following along
its axis, with any point in the graph being an expression of the combined
states of both graphs. For example, the bottom left corner would be neither
thread having started yet, with the top right corner being both threads having
completed. The shaded blue section shows forbidden zones, where due to our
mutexes is an impossible state to reach. There are two overlapping zones here,
one for mutex A and one for mutex B, with them each overlapping in the
middle of the graph. We can derive the locations of these zones by taking the
coordinate of where each thread locks the mutex as the bottom left corner, and
the coordinate of where each thread unlocks the mutex as the top right corner.

Two traces have been shown through the graph, one in green and one in
red. The green shows a valid route through that does not enter any forbidden



CHAPTER 10. OPENMP 104

L(A) L(B) U(A) U(B)

L(B)

L(A)

U(A)

U(B)

Thread 1

T
hr

ea
d 

2

Figure 10.1: A progress graph of the two potentially deadlocking threads.

zone and so will produce a valid result. The red is an impossible trace as it
enters a state within the forbidden zones, and so cannot occur in practice.

The concerning part of this graph is the red shaded area towards the bottom
left of the graph. This shows a potential deadlock. As each thread can only
progress linearly, our route through the graph can only be parallel to either
axis. If our state ever enters the red zone then there is no way to escape as
progress is blocked by the two forbidden zones. This makes it trivial to say
that if we can draw a progress graph, if it none of these progress traps exist
then our system is deadlock free. A solution to this is to reorder the operations
our threads perform. This can be seen in figure 10.2 where both threads are
now locking and unlocking the mutexes in the same order. No progress traps
exist and any valid state has at least one path out of, therefore we are always
deadlock free.
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Figure 10.2: A progress graph of the two never deadlocking threads.



Chapter 11

Parallel Speedup and Scalability

While concurrent programming is often done to model the problem domain
nicely (e.g. have a thread per connection to a web server), parallel program-
ming is primarily concerned with speeding up our programs. This chapter will
introduce nomenclature for talking about and comparing the performance of
programs, and also discuss ways in which we can predict the potential perfor-
mance advantage from parallelising a program.

11.1 Speedup

Suppose we are given some program and asked to speed it up. We then hack
on it for a bit based on our knowledge of low-level programming. But how
do we quantify our improvements? The standard approach to comparing the
performance of two programs is by computing the speedup of one over the other.

11.1.1 Speedup in latency

The easiest way to quantify the performance of a program by itself is to run
it and measure how long it takes. This is called program latency (often called
runtime): how long from it starts until the result is ready? This is usually
measured in wall time, because it corresponds to the real-world time we can
measure with a clock on our wall. In contrast to this is CPU time, which is
the total amount of time spent executing code on the CPUs we have available.
When we parallelise a program, we decrease the wall time, but typically not
the CPU time—16 CPUs that simultaneously run for 60 seconds equates 960
seconds of total CPU time, but will only have taken 60 seconds of wall time.

We usually have to put in effort to make sure that our time measurement
is reliable. For example, we must make sure that we are measuring what we
intend to measure—sometimes we do not wish to measure e.g. startup over-
head, or loading data from files. It’s also an easy mistake to make to measure
CPU time rather than wall time, which will hide the advantage of parallelisa-
tion. Also, particularly with short-running programs, we must perform mul-
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tiple measurements to average out random timing effects caused by random
scheduling decisions taken by the operating system, or background tasks wak-
ing up and causing cache evictions. As a final concern, we must also make sure
that we are compiling with optimisations, for example by passing -O3 to the
C compiler. You may be used to passing -g, which is good for debugging, but
hinders the performance of the generated code.

Once we have reliable runtime measurements for both the original program
and our modified program, we compare them by computing the speedup:

Definition 11.1 (Speedup in latency) If T1, T2 are the runtimes of two
programs P1, P2, then the speedup in latency of P2 over P1 is

T1

T2

For example, if we have a sequential program that runs in 25s and we
manage to write a parallel program that runs in 10s on our machine, then we
compute the speedup of the parallel program as

25

10
= 2.5

We would then say that the speedup we obtain is 2.5. Speedup is a dimen-
sionless quantity, but it’s common to write it with a tailing ×, as in 2.5×. The
speedup formula can explain why programmers sometimes say “program A is
twice as fast as B”, when they really mean “program A runs in half the time
as B”—they are talking about the speedup being 2.

11.1.2 Speedup in throughput

Latency speedup is useful for programs where the workload is fixed. But some-
times we are in a situation where the workload is infinite, for example in a
long-running server that constantly processes new requests. Here latency is
only meaningful within a single request, and to quantify the performance of
the entire system, it is more interesting to look at the throughput of how many
requests per time unit can be processed. Measuring throughput also allows us
to compare the performance of programs that operate on different data sets.

The throughput Q is computed simply as the workload W processed in
some time-span T :

Q =
W

T

How we measure the workload depends on the concrete program. For a
web server, we would measure requests. For matrix multiplication, we might
measure total number of input elements accessed. Once we have computed
throughput, we can then compute the speedup.
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Definition 11.2 (Speedup in throughput) If Q1, Q2 are the throughputs
of two programs P1, P2, then the speedup in throughput of P2 over P1 is

Q2

Q1

For example, suppose we have a program P1 that can sum a megabyte
in 69µs, and a program P2 that can sum a gigabyte in 28, 589µs. Since the
workloads are different, we cannot directly compare their latency, but we can
compute the throughputs as follows:

Q1 =
220B

69µs
= 15196B/µs = 14.2GiB/s

Q2 =
230

28589
= 37558B/µs = 35.0GiB/s

The speedup in throughput of P2 over P1 is

35.0GiB/s

14.2GiB/s
= 2.46

Note that while lower numbers are better for latency, higher numbers are
better for throughput. In both cases, a higher speedup is better.

11.2 Scalability

By scalability we mean how the system improves in its capacity (runtime or
throughput) as we add more resources, such as more processors. It can also be
used to describe how the performance changes as the problem size increases—
this is essentially what big-O notation is for. With respect to parallelisation,
we are interested in how the performance of a system changes as we add or
exploit more processors. We distinguish two forms of scalability.

Definition 11.3 (Strong scaling) How the runtime varies with the number
of processors for a fixed problem size.

Definition 11.4 (Weak scaling) How the runtime varies with the number of
processors for a fixed problem size relative to the number of processors.

11.2.1 Amdahl’s Law

Before we start on the often significant task of parallelising a program, or using
a larger and more parallel computer to run it, it is worthwhile to estimate the
potential performance gain. Unfortunately, it is not all parts of a program
that benefit from increased parallelisation. For example, suppose a program
needs 20 hours to run, but a 1-hour part of the program cannot possibly be
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parallelised. This is not unlikely: perhaps that hour is spent reading configu-
ration data, loading code, formatting human-readable reports, or waiting for
the human operator to interact with the system somehow. Even if we optimise
the program such that the optimisable 95% of the program runs in zero time,
we have only achieved a speedup of 20.

Gene Amdahl inspired the now-famous Amdahl’s Law [1] to describe the
theoretical speedup from parallelisation:

Definition 11.5 (Amdahl’s Law) If p is the proportion of execution time
that benefits from parallelisation, then S(N) is maximum theoretical speedup
achievable by execution on N threads, and is given by

S(N) =
1

(1− p) + p
N

We can see that

S(N) ≤ 1

1− p

This means that the potential speedup by optimising part of a system is
bounded by how dominant this part is in the overall runtime. It tells us that
we should spend our time optimising the parts that take the most time to run.
As fig. 11.1 shows, it is a rather pessimistic law—even in the case where 99%
of the program can be parallelised, execution on 300 processors will give us a
speedup of about 75 over a single processor.

While Amdahl’s Law is usually applied to parallelisation, it can be used to
characterise any situation where we are optimising a part of some system.

11.2.2 Gustafson’s Law

As parallel supercomputers became more common in the 80s, researchers found
that they routinely achieved speedup far in excess of what Amdahl’s Law would
predict. This is because Amdahl’s Law is quite pessimistic, as it assumes that
the workload stays fixed as we gain access to more computational resources.
In practice, as workloads increase in size, the parallelisable fraction tends to
increase in its share of the overall runtime. Also, when we get access to a larger
machine, we tend not to be interested in solving our old problems faster, but in
solving bigger problems in the same time as it took to solve our old problems.
Time is the constant, not the workload.

Suppose we scale the runtime to be 1 and use s, p to indicate the fraction of
this unit runtime spent in sequential and parallel code respectively on a parallel
system with N threads. Then a sequential processor would require s+N × p
time to execute the program. The scaled speedup of parallel execution is then

s+ p×N

s+ p
= s+ p×N = N + (1−N)× s
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Figure 11.1: A graph of Amdahl’s Law, plotted for various values of p.

This observation was first published by John L. Gustafson [3] and is there-
fore called Gustafson’s Law:

Definition 11.6 (Gustafson’s Law) If s is the proportion of execution time
that must be sequential, then S(N) is maximum theoretical speedup achievable
by execution on N threads, and is given by

S(N) = N + (1−N)× s

Compared to Amdahl, Gustafson is much more of an optimist—as shown
on fig. 11.2, Gustafson’s Law plots as a line, meaning that the speedup as we
add more processors is linear.

Neither Amdahl’s nor Gustafson’s Laws are laws in the common sense of
the word. Despite providing conflicting predictions, they can both be true un-
der different circumstances. Amdahl’s Law tells us about the limitations of
parallelism under a fixed workload, while Gustafson’s Law tells us about the
limitations of parallelism where we assume we the workload grows proportion-
ally with the amount of parallelism. Broadly, Amdahl’s Law predicts strong
scalability, and Gustafson’s law predicts weak scalability.

Both laws make significant simplifying assumptions—in practice, little sci-
entific code consists of enormous fully parallel loops with completely indepen-
dent iterations, but will tend to require some form of routine communication,
proportional to the number of processors involved. Specifically, these laws tend
to discount the nonlinear scaling of accessing large amounts data due to locality
effects.
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Chapter 12

Loop Dependence Analysis

This chapter is adapted with permission from the PMPH Lecture
Notes written by Cosmin Oancea.

So far, we have assumed that the user writes a fresh implementation of a
known algorithm, and that it can be straightforwardly expressed as fully paral-
lel loops, or as a simple reduction. However, there is a lot of legacy sequential
scientific code written in imperative languages such as C++, Java, Fortran,
and either the precise algorithm to which they correspond to (i) may have
been forgotten (not documented), or (ii) a fresh implementation is infeasible
(e.g., because it costs too much). At some point you may wish (or be asked)
to parallelise such code to run efficiently on a certain hardware.

This will require you to:

1. Identify the loop nests1 where most of the runtime is spent.

2. Parallelise these loops by reasoning at a low level of abstraction about
which loops in the nest are parallel.

3. Decide on the manner in which loop nests can be re-written in order to
optimise locality of reference, load balancing, thread divergence, etc.

The main source of inspiration for the material presented in this and chap-
ter 13 has been the book “Optimizing compilers for modern architectures: a
dependence-based approach” [4].

This chapter is organised as follows:

• Section 12.1 introduces various nomenclature, in particular the notion of
cross-iteration dependency, and it shows how to summarise dependencies
across the iteration space into a succinct representation, named direction
vectors, that promotes reasoning about various code transformations.

• Section 12.2 presents a simple theorem that allows easy identification of
loop-level parallelism.

1A loop nest is a collection of multiple loops nested within each other.
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S1: X = ..
S2: .. = X

(a) RAW: Read after write.

S1: .. = X
S2: X = ..

(b) WAR: Write after read.

S1: X = ...
S2: X = ...

(c) WAW: Write after write.

Figure 12.1: Three different kinds of dependencies.

12.1 Direction vectors

We start by defining the various reasons why a program statement must be
executed after some previous. C executes statements in program order—the
order they occur in the source code. Dependence analysis is about distinguish-
ing when the program order is crucial for correct execution, and in which cases
it is arbitrary because C requires us to write statements in some order. If a
statement S2 depends on S1, then S2 must always be executed after S1. De-
pendencies typically arise because the two statements interact with the same
values, with at least one of the statements changing the value. When two
statements are not dependent on each other, they can in principle be executed
in parallel. Our goal is to use dependence analysis to identify when entire loop
iterations are independent, which means that they can be executed in parallel.

The possible kinds of dependencies are depicted in fig. 12.1 between two
statements S1 and S2, which reside for simplicity in the same basic block—a
straight-line of code which is always entered by the first statement and is exited
after the execution of the last statement. For example, the body of a loop can
be considered a basic block if it contains no control flow and no continue
textttbreak statements. The possible kinds of dependencies are as follows:

RAW (fig. 12.1a): refers to the case when a write to a register or memory
location is followed, in program order, by a read from the same register
or memory location; this is typically referred to as a read-after-write
hazard in hardware-architecture nomenclature, and as a true dependency
in loop-based analysis nomenclature. The word true refers to the fact that
such a dependency denotes a producer-consumer relation, in which the
value produced by S1 is used in S2. The producer-consumer relation is
an algorithmic property of the program; such a dependency cannot be
eliminated other than by changing the underlying algorithm.

WAR (fig. 12.1b): refers to the case when a read from a register or memory
location is followed, in program order, by a write to the same register
or memory location; this is referred to as a write-after-read hazard, and
equivalently as an anti dependency. The problem here is that, if the
two statements are reordered—meaning S2 executes before S1, then the
value needed by S1 is no longer available because it has been already
overwritten by S2.

WAW (fig. 12.1c): refers to the case when a write from a register or memory
location is followed, in program order, by another write to the same reg-
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ister or memory location; this is referred to as a write-after-write hazard,
and equivalently as an output dependency. The problem here is that, if
the two statements are reordered—meaning S2 executes before S1, then
the final value stored in register or memory location is that of S1 rather
than that of S2.

In what parallelism or loop analysis is concerned, we are primarily interested
in analysing the (true, anti and output) dependencies that occur across different
iterations of the loop. For example such a true dependency would correspond
to the case in which an early iterations i writes/produces an array element
that is subsequently read/consumed in a later iteration j > i.

In what parallelisation is concerned, the main limiting factor are the true
dependencies—which correspond to an algorithmic property—because the anti
and output dependencies can be typically eliminated by various techniques, as
we shall see.

12.1.1 Loop notation and lexicographic ordering of
iterations in a loop nest

In the following we are concerned with loop nests that consist of for-loops
where the number of iterations (the trip count) can be determined when the
loop is first entered. This is the case when:

1. The loop counter is not modified inside the loop.

2. The loop condition is of the form i < n, where i is the loop counter and
n does not change during execution of the loop.

3. The loop counter is increased by a constant for each loop iteration.

Most for-loops you have written probably satisfy these conditions.
In the following we will also assume that iterations in a loop nest are rep-

resented by a vector, in which iterations numbers are written down from the
corresponding outermost to the innermost loop in the nest, and are ordered
lexicographically—i.e., are ordered consistently with the order in which they
are executed in the (sequential) program. This means that in the loop nest
below:

for (int i = 0; i < N; i++)
for (int j = 0; j < M; j++)

... loop-nest body ...

iteration k⃗=(i=2,j=4) is smaller than iteration l⃗=(i=3,j=3) (i.e., k⃗ < l⃗),
because the second iteration of the outer loop is executed before the third
iteration of the outer loop, no matter what the iteration numbers are executed
for the inner loop (of index j). In essence the iteration numbers of inner loops
are only used to discriminate the order in the cases in which all the outer-loop
iterations are equal, for example k⃗=(i=3,j=3) < l⃗=(i=3,j=4)
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12.1.2 Dependency definition

The precise definition of a dependency between two statements located inside
a loop nest is given below.

Definition 12.1 (Loop Dependency) There is a dependency from statement
S1 to statement S2 in a loop nest if and only if there exists loop-nest iterations
k⃗, l⃗ such that k⃗ ≤ l⃗ and there exists an execution path from statement S1 to
statement S2 such that:

1. S1 accesses some memory location M in iteration k⃗, and

2. S2 accesses the same memory location M in iteration l⃗, and

3. one of these accesses is a write.

In such a case, we say that S1 is the source of the dependence, and that S2 is
the sink of the dependence, because S1 is supposed to execute before S2 in the
sequential program execution.
Dependencies can be visually depicted by arrows pointing from the source to the
sink of the dependence.

The definition basically says that in order for a dependency to exist, there
must be two statements that access the same memory location and one of the
accesses must be a write—two read instructions to the same memory location
do not cause a dependency. The nomenclature denotes the statement that
executes first in the program order as the source and the other as the sink of
the dependency. We represent a dependency graphically with an arrow pointing
from the source to the sink.

Optimisations for instruction-level parallelism (ILP)—meaning eliminating
as much as possible the stalls from processor’s pipeline execution2—typically
rely on intra-iteration analyses (i.e., k⃗ = l⃗). Higher-level optimisations, such
as detection of loop parallelism, are mostly concerned with analysing inter-
iteration dependencies (i.e., k⃗ ̸= l⃗). For example the main aim could be to
disprove the existence of inter-iteration dependencies, such that different it-
erations may be scheduled out of order (in parallel) on different cores, while
the body of an iteration is executed sequentially on the same core. In such a
context, intra-iteration dependencies are trivially satisfied, and so are not very
interesting.

12.1.3 Aggregating dependencies with direction vectors

Assume the three loops presented in fig. 12.2, which will be used as running
example to demonstrate data dependence analysis and related transformations.
We make the important observation that the code is not in three-address code

2Outside the scope of HPPS.
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for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)

S1 : A[j][i] = A[j][i]...

(a)

for (int i = 1; i < N; i++)
for (int j = 1; j < N; j++) {

S1 : A[j][i] = A[j-1][i-1]...
S2 : B[j][i] = B[j-1][i]...

}

(b)

for (int i = 1; i < N; i++)
for (int j = 0; j < N; j++)

S1 : A[i][j] = A[i-1][j+1]...

(c)

Figure 12.2: Three simple running code examples that will be used to demon-
strate data-dependency analysis and related transformation. Note that the
statement labels Si are not part of the code as such, but used to refer to spe-
cific statements in the text.

(TAC) form: a statement such as A[j][i] = A[j][i] + 3 would corre-
spond to three TAC or hardware instructions: one that loads from mem-
ory tmp1 = A[j][i], followed by one that performs the arithmetic oper-
ation tmp2 = tmp1 + 3, followed by one that writes to memory A[j][i]
= tmp2. Automated analysis is for simplicity usually carried out on programs
in TAC form but, for brevity, our analysis will be carried out at the statement
level. A human may start analysing dependencies:

• by depicting the iteration space in a rectangle in which the x axis and y
axis correspond to iteration numbers of the inner loop j and outer loop
i, respectively, and

• then by reasoning point-wise about what dependencies may happen be-
tween two iterations.

A graphical representation of the dependencies of the three running code
examples is shown in fig. 12.3. They can be intuitively inferred as follows:

• For the loop in fig. 12.2a, different loop-nest iterations (i1, j1) and (i2, j2)
necessarily read and write different array elements A[j1][i1] and A[j2][i2].
This is because our assumption is that (i1, j1) ̸= (i2, j2), hence it can-
not be that both i1 = i2 and j1 = j2. As such, the representation of
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Figure 12.3: Graphical representation of the dependencies for the three running
examples shown in fig. 12.2; the x and y axis correspond to the index of the
inner and outer do loop, respectively.

dependencies should be a set of points (no arrows), meaning that all de-
pendencies actually occur inside the same iteration—in fact they are anti
intra-iteration dependencies (WAR) because A[j][i] is read first and
then A[j][i] is written inside the same iteration.

• For the loop in fig. 12.2b we reason individually for statements S1 and
S2 because each statement accesses (one) array A and B, respectively:

S1 : Let’s take an iteration, say (i1 = 2, j1 = 3), which reads ele-
ment A[j1-1][i1-1] = A[2][1]. Since an iteration (i, j) al-
ways writes the element A[i][j], we can reason that iteration
(i2 = 1, j2 = 2) will write the same element A[2][1]. It follows
that we have discovered a true (RAW) dependency, depicted in the
figure with and arrow, from the source iteration (i2 = 1, j2 = 2)—
which writes A[2][1]—to the sink iteration (i1 = 2, j1 = 3)—
which reads A[2][1]. This is because iteration (1, 2) < (2, 3) ac-
cording to the lexicographical ordering, and as such, the read hap-
pens after the write (RAW) in program order. One can individually
reason for each point of the iteration space and fill it with oblique,
forward-pointing arrows denoting true dependencies between differ-
ent instances of statement S1 (executing in different iterations).

S2 : Following a similar rationale, iteration (i1 = 2, j1 = 3) reads element
B[j1-1][i1] = B[2][2], and iteration (i2 = 2, j2 = 2) writes
element B[2][2]. It follows that we have discovered a true (RAW)
dependency with source (i2 = 2, j2 = 2) and sink (i1 = 2, j1 = 3),
because (2, 2) < (2, 3) in lexicographic ordering. Since i1 = i2 we
depict the arrow parallel with the horizontal axis (that depicts values
of j). One can fill in the rest of the iteration space with horizontal
arrows.

• For the loop in fig. 12.2c we reason in a similar way: take iteration
(i1 = 2, j1 = 3) that reads element A[2-1][3+1] = A[1][4]. This
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element is written by iteration (i2 = 1, j2 = 4). It follows that we have
discovered a true (RAW) from source (i2 = 1, j2 = 4) to sink (i1 = 2, j1 =
3)—because the read happens in iteration (2, 3) which comes after the
write in iteration (1, 4), i.e., (1, 4) < (2, 3). Thus, one can fill in the
iteration space with oblique, backward-pointing arrows, denoting true
dependencies between instances of S1 executing in different iterations.

We have applied above a human type of reasoning and, as a result, we have
a graphical representation of all dependencies. However, such a reasoning is not
suitable for automation because (i) the loop counts are statically unknown—
they depend on the dataset—hence one cannot possibly represent an arbitrary
large iteration space, and, more importantly, (ii) even if the loop counts would
be statically known it is still inefficient to maintain and work with all this
pointwise information.

A representation that promotes automated reasoning should succinctly cap-
ture the repeated pattern in the figure. Intuitively and imprecisely, for fig. 12.2a
the pattern would correspond to a point, for fig. 12.2b it would correspond to
two arrows—one oblique and one horizontal forward pointing arrows—and for
fig. 12.2c it would correspond to an oblique, backward-pointing arrow. These
patterns are formalized by introducing the notion of direction vectors.

Definition 12.2 (Dependency direction vector) Assume there exists a de-

pendency with source S1 in iteration k⃗ to sink S2 in iteration l⃗ (k⃗ ≤ l⃗). We
denote by m the depth of the loop nest, we use i to range from 0, . . . ,m − 1,
and we denote by xi the ith element of some vector x⃗ of length m.

The direction vector between the instance of statement S1 executed in some
source iteration k⃗ and statement S2 executed in sink iteration l⃗ is denoted by
D⃗(S1 ∈ k⃗, S2 ∈ l⃗), and corresponds to a vector of length m, whose elements are
defined as:

Di(S1 ∈ k⃗, S2 ∈ l⃗) =


< if it is provably that ki < li,

= if it is provably that ki = li,

> if it is provably that ki > li,

* if ki and li are statically uncomparable.

(12.1)

The first three cases of the definition above assume that the ordering rela-
tion between ki and li can be statically derived in a generic fashion (for any
source ki and li); if this is not possible than we use the notation * which con-
servatively assumes that any directions may be possible—i.e., star should be
understood as simultaneous existence of all <, =, > directions. For example,
the loop

for (int i = 0; i < N; i++)
S1 : A[ X[i] ] = ...
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would result in direction vector [*] corresponding to a potential output depen-
dency (WAW), because the write access to A[ X[i] ] is statically unanalysable—
for example under the assumption that the index array X is part of the dataset—
and, as such, all direction vectors may possibly hold between various pairs of
instances of statement S1 executed in different iterations.

Note that the symbols <, =, > are not connected at all to the type of
the dependency, e.g., true (RAW) or anti (WAR) dependency. The type of the
dependency is solely determined by the operation of the source and that of the
sink: If the source is a write statement and the sink is a read then we have a
true (RAW) dependency; if the source is a read and the sink is a write then we
have an anti (WAR) dependency; if both source and sink are writes then we
have an output (WAW) dependency.

The meaning of the symbol > at some position i is that the source iteration
at loop-level i is greater than the sink iteration at loop-level i. This case is
possible, for example the code in fig. 12.2(c) shows a dependency with source
iteration (1, 4) and sink iteration (2, 3). At the level of the second loop, we
have 4 > 3 hence the direction is > but still the source iteration is less than the
sink iteration (1, 4) < (2, 3) because of the first loop level. This observation
leads to the following corollary:

Corollary 12.1 (Direction vector legality) A direction vector is legal (well
formed), if removing the = entries does not result in a leading > symbol, as this
would mean that an iteration depends on a future iteration, and depending on
a future event is considered impossible, and as such illegal.

It remains to determine the sort of reasoning that can be applied to compute
the direction vectors for the code examples in fig. 12.2:

The loop in fig. 12.2a: dependencies can occur only between instances of
statement S1, executed in different (or the same) iterations. We recall
that, by the definition of dependency, the two (dependent) iterations must
access the same element of A and at least one iteration should perform
a write. Since statement S1 performs a read and a write to elements of
array A, two kinds of dependencies may occur:

WAW: an output dependency may be caused by two write accesses in
two different iterations, denoted (i1, j1) and (i2, j2). The written
element is thus A[j1][i1], which must be the same as A[j2][i2]
for a dependency to exist. By eq. (12.1) this results in the system
of equations {

i1 = i2

j1 = j2

which leads to direction vector [=,=]. Hence, an output depen-
dency from S1 to S1 happens in the same iteration, but statement
S1 executes only one write access in the same iteration. The con-
clusion is that no output dependency can occur, hence the direction
vector is discarded.
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RAW: a true or anti dependency—we do not know yet which—will be
caused by the read access from A and the write access to A in different
(or same) iterations. Remember that a statement such as A[j][i]
= A[j][i] + 3 actually corresponds to three hardware instruc-
tions, hence either a cross- or an intra-iteration dependency will nec-
essarily occur. Assume some iteration (i1, j1) reads from A[j1][i1]
and iteration (i2, j2) writes to A[j2][i2]. In order for a depen-
dency to exist, the memory location of the read and write must
coincide; this results in the system of equations{

i1 = i2

j1 = j2

from which we can derive the direction vector: [=,=]. This im-
plies that the dependency happens in the same iteration, hence it
is an intra-iteration dependency. Furthermore, since the write fol-
lows the read in the instruction order of an iteration, this is an anti
dependency (WAR).

For the loop in fig. 12.2b: dependencies may possibly occur between in-
stances of statement S1 and between instances of statement S2. The
case of output dependencies is disproved by a treatment similar to the
bullet above. It remains to examine the dependency caused by a read
and a write in different instances of S1 and S2, respectively:

S1: assume iteration (i1, j1) and iteration (i2, j2) reads from and writes
to the same element of A, respectively. Putting this in eq. (12.1)
results in the system {

i1 − 1 = i2

j1 − 1 = j2

which necessarily means that i1 > i2 and j1 > j2. However, we do
not know yet which iteration is the source and which is the sink.
Assuming that (i1, j1) is the source results in the direction vector
[>,>], which is illegal by corollary 12.1, because a direction vector
cannot start with the > symbol. It follows that our assumption was
wrong: (i2, j2) is the source and (i1, j1) is the sink, which means
that this is a cross-iteration true dependency (RAW)—because the
sink iteration reads the element that was previously written by the
source iteration—and its direction vector is [<,<].

S2: a similar rationale can be applied to determine that two instances of
S2 generate a true cross-iteration dependency (RAW), whose direc-
tion vector is [=,<]. In short, using the same notation results in
the system of equations {

i1 = i2

j1 − 1 = j2
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hence the source must be (i2, j2) and the sink must be (i1, j1) and
the direction vector is [=,<].

For the loop in fig. 12.2c: dependencies may possibly occur between instances
of statement S1. Assume iteration (i1, j1) and (i2, j2) reads from and
writes to the same element of A, respectively. Putting this into eq. (12.1)
results in the system {

i1 − 1 = i2

j1 + 1 = j2

which necessarily implies that i1 > i2 and j1 < j2. Choosing (i1, j1) as
the source of the dependency results in direction vector [>,<], which
is illegal because it has > as the first non-= outermost symbol, as stated
by corollary 12.1. It follows that (i1, j1) must be the sink and (i2, j2)
must be the source, which results in the direction vector [<,>], which
is legal. Since the source writes and the sink reads, we have a true
dependency (RAW). Moreover since the direction vector indicates that
the source iteration is strictly less than the sink iteration, this is also a
cross-iteration dependency.

Definition 12.3 (Dependency direction matrix) A direction matrix is ob-
tained by stacking together the direction vectors of all the intra- and cross-
iteration dependencies of a loop nest (i.e., between any possible pair of write-
write or read-read instruction instances).

In conclusion, the direction matrices for the three running code examples:

Figure 12.2a:
{
[=,=]

Figure 12.2b:

{
[<,<]

[=,<]

Figure 12.2c:
{
[<,>]

The following sections will show how the legality of powerful code transfor-
mations can be reasoned in a simple way in terms of direction vectors/matrices.

12.2 Determining loop parallelism

A loop is said to be parallel if its execution does not cause any (true, anti, or
output) dependencies between iterations—the loop execution is assumed to be
fixed in a specific iteration of an (potentially empty) enclosing loop context.

The following theorem states that a sufficient condition for a loop to be
parallel is that for all the elements in the loop’s corresponding direction-matrix
column, it holds that the element is either = or there exists an outer loop whose
corresponding direction is < (on that row). In the latter case we say that the
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outer loop carries all the dependencies of the inner loop, i.e., fixing an iteration
of the outer loop (think executing the outer loop sequentially) would guarantee
the absence of cross-iteration dependencies in the inner loop.

Theorem 12.2 (Parallel loop) We assume a loop nest denoted by L⃗, whose
direction matrix is denoted by M and consists of m rows. A sufficient condition
for a loop at depth k in L⃗, denoted Lk, to be parallel is that ∀i ∈ {0, . . .m−1}
either M [i][k] is = or there exists an outer loop at depth q < k such that M [i][q]
is <. Proof left as an exercise.

Theorem 12.2 claims to give only a sufficient condition for loop parallelism
because it assumes that symbols such as * may be part of the direction vector
elements—we recall that * conservatively assumes that all directions <,=,>
may be possible. If * does not appear in the direction matrix, then the condi-
tion becomes necessary as well as sufficient. Let us analyse the parallelism of
each loop in our running examples:

Figure 12.2a: The direction matrix is [=,=], hence by theorem 12.2, both
loops in the nest are parallel because all the directions are =.

Figure 12.2b: The direction matrix is

M =

{
[<,<]

[=,<]

hence neither the outer nor the inner loop can be proven parallel by
theorem 12.2. In the former case this is because M [0, 0] is < and there
is no other outer loop to carry dependencies. In the latter case this
is because M [1, 1] is < and the outer loop for that row has direction =
(instead of <, which would have been necessary to carry the dependencies
of the inner loop).

Figure 12.2c: The direction matrix is [<,>], which means that the outer
loop is not parallel—because it has a leading < direction—but the inner
loop is parallel because the outer loop starts with < on the only row of
the direction matrix, and, as such, it carries all the dependencies of the
inner loop. To understand what this means, take a look again at the
actual code in fig. 12.2c. Suppose we fix the outer iteration number to
some value i. Then the read accesses always refer to row i−1 of matrix A
and the write accesses always refer to row i of A; hence a cross-iteration
dependency cannot happen in the inner loop because no matter the value
of j, the read and write statement instances cannot possibly refer to the
same location of A.



Chapter 13

Loop Transformations

This chapter is adapted with permission from the PMPH Lecture
Notes written by Cosmin Oancea.

This chapter is organised as follows:

• Section 13.1 presents a simple theorem that gives necessary conditions for
the safety of the transformation that interchanges two perfectly nested
loops.

• Section 13.2 discusses the legality and the manner in which a loop can
be distributed across the statements in its body.

• Section 13.3 discusses techniques for eliminating cross-iteration write-
after-read and write-after-write dependencies.

• Section 13.4 introducing a simple transformation, named stripmining,
which is always valid, and shows how block and register tiling can be
derived as a combination of stripmining, loop interchange and loop dis-
tribution.

13.1 Loop interchange: legality and applications

Direction vectors are not used only for proving the parallel nature of loops,
but can also enable powerful code restructuring techniques. For example they
can be straightforwardly applied to determine whether it is safe to interchange
two loops in a perfect loop nest1—which may result in better locality and even
in changing an inner loop nature from dependent (sequential) to independent
(parallel).

The following theorem gives a sufficient condition for the legality of loop
interchange—i.e., for the transformation to result in code that is semantically
equivalent to the original one.

1A perfect loop nest is a nest in which any two loops at consecutive depth levels are not
separated by any other statements; for example all loop nests in fig. 12.2 are perfectly nested.

123
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Theorem 13.1 (Legality of Loop Interchange) A sufficient condition for
the legality of interchanging two loops at depth levels k and l in a perfect nest
is that interchanging columns k and l in the direction matrix of the loop nest
does not result in a (leading) > direction as the leftmost non-= direction of any
row.

The theorem above shows that the legality of loop interchange can be de-
termined solely by inspecting the result of permuting the direction matrix in
the same way as the one desired for loops. For the rationale related to why a
row-leading > direction is illegal, we refer the reader to corollary 12.1: a non-=
leading > direction would correspond to depending on something that happens
in the future: this currently seems impossible in our universe, and as such it
signals an illegal transformation. The following corollary can be easily derived
from theorem 13.1:

Corollary 13.2 (Interchanging a parallel loop inwards) In a perfect loop
nest, it is always safe to interchange a parallel loop inwards one step at a time
(i.e., if the parallel loop is the kth loop in the nest then one can always inter-
change it with loop k + 1, then with loop k + 2, etc.).

The corollary says that if we somehow know the parallel nature of a loop,
then we can safely interchange it in the immediate inward position, without
even having to build the dependence-direction matrix.

Let us analyse the legality of loop interchange for the three loop nests of
our running example:

Figure 12.2a: The direction matrix is [=,=] and, as such, it is legal to inter-
change the two loops, because it would result in direction matrix [=,=].
Moreover applying loop interchange in this case is highly beneficial be-
cause it optimises locality of reference: the loop of index i appears in the
innermost position after the interchange, which optimally exploits spatial
locality for the write and read accesses to A[j][i].

Figure 12.2b: The direction matrices are

M =

{
[<,<]

[=,<]

and

M intchg =

{
[<,<]

[<,=]

before and after interchange, respectively. It follows that the loop inter-
change is legal—because M intchg satisfies theorem 13.1—and it also opti-
mises spatial locality (as before). What is interesting about this example
is that after the interchange, the innermost loop has become parallel, by
theorem 12.2, because the outer loop caries all dependencies—the direc-
tion column corresponding to the outer loop consists only of < directions.
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Figure 12.2c: The direction matrix is [<,>] and interchanging the two loops
is illegal because the direction matrix obtained after the interchange
[>,<] starts with a > direction; this would mean that the current it-
eration depends on a future iteration, which is impossible, hence the
interchange is illegal.

13.2 Loop distribution: legality and applications

This section introduces a transformation, named loop distribution, where a
loop is distributed across its statements. Potential benefits are:

• Loop distribution provides the bases for performing vectorisation: the
innermost loop is distributed across its statements, and then the dis-
tributed loops are chunked (stripmined, section 13.4) by a factor that
permits utilisation of processor’s vector instructions.

• Loop distribution may enhance the degree of parallelism that can be stat-
ically mapped to the hardware. As discussed in section 10.3, OpenMP
collapse clauses only apply to perfect loop nests. Distribution lets
us split apart complex loop nests to create perfect nests of parallel con-
structs, which can then be parallelised efficiently with OpenMP.

Loop distribution requires the construction of a dependency graph, which
is defined below.

Definition 13.1 (Dependency graph) A dependency graph of a loop is a
directed graph in which the nodes correspond to the statements of the loop nest
and the edges correspond to dependencies. An edge is directed (points) from
the source to the sink of the dependency, and is annotated with the direction
corresponding to that dependence.

In the case when the loop contains another inner loop, then the inner loop is
represented as a single statement that conservatively summarises the behavior
of all the statements of the inner loop.

The dependency graph of a loop can be used to characterise its parallel
behavior:

Theorem 13.3 (Dependency cycle) A loop is parallel if and only if its de-
pendency graph does not have cycles.

If the loop contains a cycle of dependencies, then it necessarily exhibits at least
a cross iteration dependency (needed to form the cycle), and thus the loop is
not parallel. The following theorem specifies how the transformation can be
implemented:

Theorem 13.4 (Loop distribution) Distributing a loop across its statements
can be performed in the following way:

1. The dependency graph corresponding to the target loop is constructed.
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2. The graph is decomposed into strongly-connected components (SCCs)2,
and a new graph G′ is formed in which the SCCs are nodes.

3. The loop can be safely distributed across its strongly-connected compo-
nents, in the graph order of G′. Assuming a number k of SCCs, this
means that the result of the transformation will be k loops, each con-
taining the statements of the corresponding SCC. Inside an SCC, the
statements remain in program order, but the distributed loops are ordered
according to G′.

4. Array expansion (section 13.2.1) must be performed for the variables that

• are either declared inside the loop or overwritten in each iteration
(output dependencies), and

• are used in at least two strongly-connected components.

The theorem above says that the statements that are in a dependency cycle
must remain in (form) one loop (which is sequential by theorem 13.3). As such,
the loop can be distributed across groups of statements corresponding to the
strongly connected components (SCC) of the dependency graph. If the graph
has only one SCC then it cannot be distributed. The resulting distributed
loops are written in the order dictated by the graph of SCCs. We demonstrate
theorem 13.4 on the simple code example presented below:

for (int i = 2; i < N; i++) {
S1 : A[i] = B[i-2] ...
S2 : B[i] = B[i-1] ...

}

The code has two dependencies:

S2 → S1: In order for a dependency on B to exist the read from B in iteration
i1 of S1 and the write to B in iteration i2 of S2 must refer to the same lo-
cation. Hence i1-2 = i2, which means i1 > i2, hence S2 is the source,
S1 is the sink and the direction vector is [<];

S2 → S2: similarly, there is a dependency between the read from B in S2 and
the write to B in S2 of direction vector [<].

The dependency graph is thus:

S2

[ < ]

S1

[ < ]

2A graph is said to be strongly connected if every vertex is reachable from every other
vertex, i.e., a cycle. It is possible to find the strongly-connected components of an arbitrary
directed graph in linear time Θ(V + E), where V is the number of vertices and E is the
number of edges.
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and it exhibits two strongly-connected components: one formed by statement
S2 and one formed by statement S1. Loop distribution results in the following
restructured code:

for (int i = 2; i < N; i++)
S2 : B[i] = B[i-1] ...

for (int i = 2; i < N; i++)
S1 : A[i] = B[i-2] ...

in which, according to the graph order, the loop corresponding to statement
S2 appears before the one corresponding to statement S1. Note that this does
not match the program order of statements S1 and S2 in the original program.
Also note that the first loop is not parallel because the SCC consisting of S2

has a (dependency) cycle, but the second loop is parallel because the SCC
corresponding to S1 does not have cycles.

If a loop is parallel then it can be straightforwardly distributed across its
statements in program order because:

• by theorem 13.3, the loop dependency graph has no cycles and thereby
each statement is a strongly connected component;

• the program order naturally respects all dependencies.

Corollary 13.5 (Parallel loop distribution) A parallel loop can be directly
distributed across each one of its statements. The resulting loops appear in the
same order in which their corresponding statements appear in the original loop.

13.2.1 Array expansion

Finally, it remains to demonstrate array expansion, mentioned in the fourth
bullet of theorem 13.4. Assume the slightly modified code:

float tmp;
for (int i = 2; i < N; i++) {

S1 : tmp = 2 * B[i-2];
S2 : A[i] = tmp;
S3 : B[i] = tmp + B[i-1];

}

Statements S1 and S3 are in a dependency cycle, because there is a dependency
S3 → S1 with direction < caused by the write to and the read from array B,
and a dependency S1 → S3 with direction = caused by tmp. Statement S2 is
not in a dependency cycle, but there is a dependency S1 → S2, and hence its
distributed loop should follow the distributed loop containing S1 and S3. If we
do not perform array expansion, the distributed code:
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float tmp;
for (int i = 2; i < N; i++) {

S1 : tmp = 2 * B[i-2];
S3 : B[i] = tmp + B[i-1];

}
for (int i = 2; i < N; i++) {

S2 : A[i] = tmp;
}

does not respect the semantics of the original program because the second loop
uses the same value of tmp—the one set by the last iteration of the first loop—
while the original loop writes and then reads a different value of tmp for each
iteration. We fix this by performing array expansion for tmp, which means
that we must expand it with an array dimension equal to the loop count and
replace its uses with corresponding indexing expressions of the expanded array.
This results in the following correct code:

float tmp[N];
for (int i = 2; i < N; i++) {

S1 : tmp[j] = 2 * B[i-2];
S3 : B[i] = tmp + B[i-1];

}
for (int i = 2; i < N; j++) {

S2 : A[i] = tmp[j];
}

Array expansion requires us to normalise the loop first—this means rewrit-
ing the loop such as its index starts from 0 and increases by 1 each iteration.
This is why we have not written our example as do i = 2, N+1.

13.3 Eliminating false dependencies (WAR and WAW)

Anti and output dependencies are often referred to as false dependencies be-
cause they can be eliminated in most cases by copying or privatisation opera-
tions:

• Cross-iteration anti dependencies (WAR) typically correspond to a read
from some original element of the array—whose value was set before the
start of the loop execution—followed by an update to that element in a
later iteration. As such, this dependency can be eliminated by copying
(in parallel) the target array before the loop and rewriting the offending
read access inside the loop such that it refers to the copy of the array.

• Cross-iteration output dependencies (WAW) can be eliminated by a tech-
nique named privatisation (or renaming), whenever it can be determined
that every read access from a scalar or array location is covered by an
update to that scalar or memory location that was previously performed
in the same iteration. Semantically, privatisation moves the declaration
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of the offending variable inside the loop, because it has been already
determined that the read/used value was produced earlier in the same
iteration.

• Reasoning based on direction vectors is limited to relatively simple loop
nests; for example it is difficult to reason about privatisation by means
of direction vectors.

13.3.1 Eliminating WAR dependencies by copying

Consider the simple C code below which rotates an array in the right dimension
by one:

float tmp = A[0];
for (int i=0; i<N-1; i++) {

A[i] = A[i+1]; // S1

}
A[N-1] = tmp;

The loop exhibits a cross-iteration anti dependency (WAR) S1 → S1 (with
direction vector [<]), and, as such, it is not safe to execute it in parallel.
However, one can observe that the reads from A inside the loop correspond to
the original elements of A before the loop, because they are rewritten in a later
iteration. As such one can perform a copy of A before the loop, and replace the
read access inside the loop to operate on the copy of array A. This preserves
the original loop semantics and results in a parallel loop because the read and
write accesses operate on different arrays, hence a dependency cannot occur.
For example, using OpenMP:

float Acopy[N];
#pragma omp parallel for
for (int i=0; i<N; i++) {

Acopy[i] = A[i];
}
tmp = A[0];
#pragma omp parallel for
for (int i=0; i<N-1; i++) {

A[i] = Acopy[i+1];
}
A[N-1] = tmp;

Note that in a real program, we would allocate the Acopy array with
malloc() rather than creating a potentially very large stack allocation.

13.3.2 Eliminating WAW dependencies by privatisation

Consider the contrived and ugly looking C code below:
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int A[M];
for (int i=0; i<N; i++){
for (int j=0, j<M; j++) { // writes slice A[0:M-1]

A[j] = (4*i+4*j) % M; // S1

}
for (int k=0; k<N; k++) { // reads A[j] where j∈{0,. . .M-1}

// because % denotes modulus op
X[i][k] = X[i][k-1] * A[ A[(2*i+k)%M] % M]; // S2

}
}

Analysing the cross-iteration dependencies of the outer loop, one can ob-
serve that there are frequent output dependencies S1 → S1 of all directions (*),
because, in essence, all elements of A at indices 0 . . .M − 1 are (over)written
in each iteration of the outer loop. This also causes frequent cross-iteration
WAR and RAW dependencies between S1 and S2 of all directions * because
S2 reads some of the values of A which are written in S1. The read access is
also statically unanalysable because the index into A depends on a value of A
(i.e., it is an indirect-array access A[ A[...] ]).

It would thus seem that this is a hopeless case and parallel execution is
a pipe dream. Not so! Actually the rationale of how to transform the outer
loop into a parallel one is quite simple. One may observe that each iteration
of the outer loop writes the same indices of A, namely the ones belonging to
the closed integral interval [0,M-1]. One may also observe that S2 reads
from A elements whose indices necessarily belong to [0,M-1]—due to the two
modulus-M operations. As such, one may conclude that any value read in S2

must have been produced in the same iteration of the outer loop (in the inner
loop enclosing S1).

It follows that it is safe to rewrite the loop in the following way:

1. Declare a new variable A’ of the same dimensions as A just inside the
outer loop (or equivalently perform array expansion of array A’ with a
new outer dimension of size N).

2. Replace all the uses of A in the outer loop by uses of A’. The resulting
loop is safe to execute in parallel because there can be no dependencies
on A’ since each iteration uses a different array A’.

3. As a last step, after the parallel execution of the loop terminates, one
must copy (in parallel) the elements produced by the last iteration of the
outer loop (i.e., A’[0,. . .][M-1] back to A.

The parallel OpenMP code that implements these steps is presented below:

int A[M];
#pragma omp for lastprivate(A)
for (int i=0; i<N; i++) {

for(int j=0, j<M; j++) {
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A[j] = (4*i+4*j) % M;
}
for(int k=0; k<N; k++) {

X[i][k]=X[i][k-1] * A[ A[(2*i+k) % M] % M];
}

}

Declaring array A as private (by using the clause private(A)) would result
in semantically performing steps (1) and (2) above. Using the lastprivate(A)
clause instructs the OpenMP compiler to also perform step (3)—to copy back
the privately-maintained result of A of the last executing iteration into the
globally-declared array A.

Please also note that the OpenMP execution will not allocate a new A’ for
each iteration of the outer loop—this is actually equivalent to performing array
expansion which is also applicable here—but instead it will allocate a copy of A
for each active thread, thus significantly reducing the memory footprint and/or
the number of (de)allocations.

Privatisation can be applied whenever one can prove that every read access
in an iteration is covered by a previously-performed write access in the same
iteration. Privatisation can be implemented by performing either array expan-
sion or moving the declaration of the target variable from outside to inside the
loop. However, it saves memory to allocate the private copy per active thread
rather than per iteration, which is what OpenMP is doing.

13.4 Loop stripmining, block and register tiling

This section discusses several simple transformations that are going to be com-
bined in various ways to optimise locality of reference (both temporal and
spatial locality).

Stripmining refers to the following transformation, which is always safe
to apply:

for(int i = 0; i<N; i++) { for(int ii = 0; ii<N; ii+=T){
iteration body ⇒ for(int i=ii, i<min(ii+T,N); i++)

} iteration body
} }

In essence, a normalized loop is split into a perfect nest of two loops, in which
the first loop goes with stride T, and the second one goes with stride 1. Please
notice that the resulting loop nest executes the same number of statements and
in the same order as the original loop.

Block tiling refers to the transformation that stripmines several consec-
utive innermost loops in a perfect loop nest—named lk+1 . . . lk+n—and then
interchanges inwards the resulting loops of stride 1. The transformation is
valid/safe if in the original program it is safe to interchange any of the loops
lk+i, i ∈ {1, . . . , n−1} in the innermost position. For example, the code below
demonstrates block tiling a perfect loop nest of depth two:
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for(i = 0; i<N; i++) { for(ii=0; ii<N; ii+=T1) {
for(j = 0; j<M; j++) { for(jj=0; jj<M; jj+=T2) {

iteration body ⇒ for(i=ii; i<min(ii+T1,N); i++) {
} for(j=jj; j<min(jj+T2,M); j++) {

} iteration body
} } } }

Unroll and jam refers to the transformation that partially unrolls one
or more of the outer loops in a perfect nest and then fuses (“jams”) the re-
sulting loops. Equivalently, one can stripmine an outer loop, then interchange
(distribute) it in the innermost position, then completely unroll it. The trans-
formation is aimed at decreasing the number of memory loads and stores by
storing to and reusing values from registers, and thus it is applied when the
original loop nest contains data references that allow for temporal reuse—e.g.,
their indexes are invariant to some of the loops in the nest. Due to this, it
is also known as “register tiling”. We demonstrate the transformation on the
matrix-matrix multiplication code below:

for(i=0; i<N; i++) {
for(j=0; j<M; j++) {

float c;
c = 0.0;
for(k=0; k<N; k++) {
c += A[i][k] * B[k][j];

}
C[i][j] = c;

}
}

The plan is to stripmine the loop of index j by a tile of size 2, and to
interchange it to the innermost position, while performing the necessary loop
distribution and array expansion:

for(i=0; i<N; i++) {
for(jj=0; jj<M; jj+=2) {

float cs[2];
for(j=jj; j<min(jj+2,M); j++) {

cs[j-jj] = 0.0;
}
for(k=0; k<N; k++) {
for(j=jj; j<min(jj+2,M); j++) {

cs[j-jj] += A[i][k] * B[k][j];
} }
for(j=jj; j<min(jj+2,M); j++) {

C[i][j] = cs[j-jj];
}

} }
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One can observe that the access A[i][k] is invariant to its immediately con-
tained loop of index j and thus it can be hoisted outside it and saved into
a register. Then the loops of index j can be unrolled, and array cs can be
scalarized as well:

for(i=0; i<N; i++) {
for(jj=0; jj<M; jj+=2) {

float c1, c2;
if (jj < M) c1 = 0.0;
if (jj+1 < M) c2 = 0.0;
for(k=0; k<N; k++) {

float a;
a = A[i,k];
if (jj < M) c1 += a * B[k][jj ];
if (jj+1 < M) c2 += a * B[k][jj+1];

}
if (jj < M) C[i][jj ] = c1;
if (jj+1 < M) C[i][jj+1] = c2;

} }

In the resulted code, the accesses to the elements of A have been halved. We
can similarly apply unroll and jam for the loop of index i with a tile size equal
to 3. This will cut down the accesses to B by a factor of 3. The resulted code
is shown in fig. 13.1.
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for(ii=0; ii<N; ii+=3) {
for(jj=0; jj<M; jj+=2) {

float c11, c12, c21, c22, c31, c32;

if (ii < N && jj < M) c11 = 0.0;
if (ii+1 < N && jj < M) c21 = 0.0;
if (ii+2 < N && jj < M) c31 = 0.0;
if (ii < N && jj+1 < M) c12 = 0.0;
if (ii+1 < N && jj+1 < M) c22 = 0.0;
if (ii+2 < N && jj+1 < M) c32 = 0.0;

for(k=0; k<N; k++) {

float a1, a2, a3, b1, b2;

if (ii < N) a1 = A[ii ][k];
if (ii+1 < N) a2 = A[ii+1][k];
if (ii+2 < N) a3 = A[ii+2][k];
if (jj < M) b1 = B[k ][jj];
if (jj+1 < M) b2 = B[k ][jj+1];

if (ii < N && jj < M) c11 += a1 * b1;
if (ii+1 < N && jj < M) c21 += a2 * b1;
if (ii+2 < N && jj < M) c31 += a3 * b1;
if (ii < N && jj+1 < M) c12 += a1 * b2;
if (ii+1 < N && jj+1 < M) c22 += a2 * b2;
if (ii+2 < N && jj+1 < M) c32 += a3 * b2;

}

if (ii < N && jj < M) C[ii ][jj ] = c11;
if (ii+1 < N && jj < M) C[ii+1][jj ] = c21;
if (ii+2 < N && jj < M) C[ii+2][jj ] = c31;
if (ii < N && jj+1 < M) C[ii ][jj+1] = c11;
if (ii+1 < N && jj+1 < M) C[ii+1][jj+1] = c21;
if (ii+2 < N && jj+1 < M) C[ii+2][jj+1] = c31;

}
}

Figure 13.1: Result of unroll-and-jam applied to matrix-matrix multiplication,
where the first and second outer loops were tiled with sizes 3 and 2, respectively.
The number of accesses to A and B has been reduced by a factor of 2× and 3×,
respectively, at the expense of introducing some conditional statements.
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