-
Notifications
You must be signed in to change notification settings - Fork 9
/
Course-Schedule-2-Topological-Sort.cpp
96 lines (78 loc) · 3.47 KB
/
Course-Schedule-2-Topological-Sort.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
// There are a total of numCourses courses you have to take, labeled from 0 to numCourses - 1.
// You are given an array prerequisites where prerequisites[i] = [ai, bi] indicates that you must take course bi first if you want to take course ai.
// For example, the pair [0, 1], indicates that to take course 0 you have to first take course 1.
// Return the ordering of courses you should take to finish all courses. If there are many valid answers, return any of them.
// If it is impossible to finish all courses, return an empty array.
// Example 1:
// Input: numCourses = 2, prerequisites = [[1,0]]
// Output: [0,1]
// Explanation: There are a total of 2 courses to take. To take course 1 you should have finished course 0. So the correct course order is [0,1].
// Example 2:
// Input: numCourses = 4, prerequisites = [[1,0],[2,0],[3,1],[3,2]]
// Output: [0,2,1,3]
// Explanation: There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2.
// Both courses 1 and 2 should be taken after you finished course 0.
// So one correct course order is [0,1,2,3]. Another correct ordering is [0,2,1,3].
// Example 3:
// Input: numCourses = 1, prerequisites = []
// Output: [0]
// TOPOLOGICAL SORT: DAG only
// using DFS + Stack here
class Solution {
public:
// Graph coloring: 0->not visited; 1->visited; 2->visited and processed
bool detectCycleUtil(vector<vector<int>> &adj, vector<int> &visited, int node){
if(visited[node] == 1)
return true;
if(visited[node] == 2)
return false;
visited[node] = 1; // Mark visited
for(int i=0; i<adj[node].size(); i++){
if(detectCycleUtil(adj, visited, adj[node][i]))
return true;
}
visited[node] = 2;
return false;
}
// Cycle detection
bool detectCycle(vector<vector<int>> &adj, int numCourses){
vector<int> visited(numCourses, 0);
for(int i=0; i<numCourses; i++)
if(!visited[i])
if(detectCycleUtil(adj, visited, i))
return true;
return false;
}
// DFS and pushing to stack
void dfs(vector<vector<int>> &adj, int node, vector<bool> &visited, stack<int> &st){
visited[node] = true;
for(int i=0; i<adj[node].size(); i++)
if(!visited[adj[node][i]])
dfs(adj, adj[node][i], visited, st);
st.push(node);
}
vector<int> findOrder(int numCourses, vector<vector<int>>& prerequisites) {
int n = prerequisites.size();
vector<vector<int>> adj(numCourses);
// Make adjacency List
for(int i=0; i<n; i++)
adj[prerequisites[i][1]].push_back(prerequisites[i][0]);
// Detect Cycle. If present, return an empty array
vector<int> ans;
if(detectCycle(adj, numCourses))
return ans;
// Start Topological Sorting and store it in the stack
stack<int> st;
vector<bool> visited(numCourses, false);
// Apply DFS and find the topological sort
for(int i=0; i<numCourses; i++)
if(!visited[i])
dfs(adj, i, visited, st);
// Pop the stack elements to get correct order
while(!st.empty()){
ans.push_back(st.top());
st.pop();
}
return ans;
}
};