
University of Padova

Master Degree in Computer Engineering

Solution strategies for the
Traveling Salesman Problem

Denis Deronjic
1231829

Stefano Ivancich
1227846

Academic year 2020/2021
August 23rd, 2021

Contents

1 Introduction 1
1.1 Problem history . 2
1.2 Problem formulation . 2

2 Compact models 4
2.1 Naive model . 4
2.2 Miller-Tucker-Zemlin . 5
2.3 GG - Flow 1 model (Gavish and Graves) 7
2.4 Comparison between Compact Models 7

3 Exact Models 10
3.1 Loop Method . 10
3.2 Incumbent callback . 11
3.3 User-cut callback . 13
3.4 Comparison between Exact Models 14

4 Matheuristics Models 16
4.1 Hard Fixing . 16
4.2 Local Branching . 17
4.3 Comparison between Matheuristics 19

5 Heuristics 25
5.1 Constructive Heuristics . 25

5.1.1 Nearest Neighbors . 25
5.1.2 Nearest/Farthest Insertion 26
5.1.3 Implementation choices, Comparisons and Results . . . 27

5.2 Refinement Heuristics . 28
5.2.1 2-OPT . 29

5.2.2 Comparison . 30

6 Metaheuristics 34
6.1 Variable Neighborhood Search (VNS) 35
6.2 Tabu search . 36
6.3 Genetic . 39
6.4 Comparison between metaheuristics 41

7 Conclusions 46
7.1 Compact methods . 46
7.2 Exact methods . 46
7.3 Heuristic methods . 47

Bibliography 47

Chapter 1

Introduction

Many decision problems in industry, logistics, and telecommunications can
be seen as satisfiability or optimization problems. The main paradigms used
to solve these problems are Constraint Programming (CP) and Mixed Integer
Programming (MIP). The purpose of this paper is to present, analyze and
compare different approaches to solve the Traveling Salesman Problem (TSP)
[1] as a way to understand more deeply the various issues that arise when
approaching those kind of problems. This was developed during the 2021
Operations Research 2 course held by Prof. Matteo Fischetti at University
of Padua.

In the next chapters we are going to present all the work done, which
includes mathematical formulations, implementation and testing phases. In
particular, this report is structured as follows:

• in this chapter we present the TSP history and its formulations,

• in Chapter 2 we will present all compact models we have studied and
implemented, showing the pros and cons of each model,

• in Chapter 3 we will present a set of algorithms that can solve the TSP,
finding the shortest tour and the solution is proved to be the optimal,

• in Chapter 4 we present math heuristics algorithms that use mathe-
matical programming at their core around which heuristics are built,

• in Chapter 5 we will see more heuristics algorithms that can find a
solution to the TSP but this solution is not proved to be optimal,

1

• in Chapter 6 we discuss about m eta heuristics that are problem inde-
pendent heuristics,

• in Chapter 7 we will present the conclusions of our work.

All the source code developed is available at

https://github.com/deno750/TSP_Optimization

In this project we solve the TSP, first by modifying its formulation, then
by using techniques that add constraints iteratively, and then by adopting
several heuristic methods. The MIP solver used in this work is CPLEX while
Visual Studio Code is used for the Ansi C programming. The instances for
the TSP were taken from the TSPLIB library [6].

1.1 Problem history

The origin of the TSP is not clear. The German handbook ”Der Hand-
lungsreisende—Von einem alten Commis-Voyageur” from 1832 reports an
explicit description of the TSP, made by a traveling salesman himself. The
first mathematical formulation dates back to the 1800s by William Rowan
Hamilton and Thomas Kirkman. One famous real example of the TSP prob-
lem is the one of salesman H. M. Cleveland, who worked for the Page Seed
Company in 1925, and had to travel over 350 cities in the Maine in 90 days.
Later in the 19th century several guides such as L. P. Brockett’s ”Commercial
Traveller’s Guide Book” appeared describing well-chosen routes in different
countries. In 1972 Richard Manning Karp proved that the Hamiltonian cycle
problem was NPcomplete, that implies the NP-hardness of the TSP.

1.2 Problem formulation

The Traveling Salesman Problem (TSP) consists in finding a Hamiltonian
circuit of minimum cost on a given directed graph G = (V,A). This problem
arises naturally when it is necessary to distribute a given product to a set of
locations, or when we need to optimally sequence a set of jobs. In some cases,
the problem can be analogously defined on a undirected graph; this happens
when the cost associated with an arc does not depend on its orientation.

2

https://github.com/deno750/TSP_Optimization

In this document we are mainly using the Symmetric Traveling Salesman
problem (STSP), that is defined as follows: consider an undirected weighted
complete graph G = (V,E) where V = {v1, ..., vn} is the set of the n nodes
and E is the set of the n(n − 1) edges. Also, let c : E → R+ be a function
that assigns to each edge e = {i, j} ∈ E the cost c(e) = ce. This function
represent an arbitrary distances or weight.

The TSP problem ask to sequence of edges (or nodes) that forms the
tour of minimum cost, also called optimal tour. To address this task, we
need to formulate the problem as a mathematical model. The symmetric
TSP can be expressed in the following conventional form, also known as
Dantzig-Fulkerson-Johnson formulation (DFJ):

min
∑
e∈E

cexe subject to (1.1)

∑
e∈δ(v)

xe = 2 ∀v ∈ V (1.2)

xe ∈ {0, 1} ∀e ∈ E (1.3)

This model uses a polynomial number of constraints, so it’s compact, but
it’s not complete, since it produces subtours.

So the Subtour Elimination Condition (SEC) is introduced, and it can be
formulated as follows:∑

e∈E(S)

xe ≤ |S| − 1 ∀S ⊂ V : |S| ≥ 3 (1.4)

The problem with this formulation is that it introduces 2n−1 constraints
and n(n− 1) binary variables. The exponential number of constraints makes
it impractical to solve directly the model.

3

Chapter 2

Compact models

2.1 Naive model

We first present a model that is not a compact model, but it will be used as
basis for other models that will just add constraints on it. It is composed of
in degree and out degree constraints (eq. 2.2 and eq. 2.3), that are imposing
that for a node the total number of ingoing edges is 1 and the total number
of outgoing edges is also 1.

min
∑
i∈V

∑
j∈V

cijxij subject to (2.1)

∑
i∈V

xih = 1 ∀h ∈ V (2.2)

∑
j∈V

xjh = 1 ∀h ∈ V (2.3)

xij ∈ {0, 1} ∀i, j ∈ V (2.4)

An example of solution provided by this model can be seen in Fig. 2.1.
As you can notice there are subtours. One way to remove them is to add the
SEC constraints 1.4, but the number of such constraints is exponential in the
number of nodes. While in fig. 2.2 the subtour elimination constraints are
used. So, now we are going to overview 2 models that are both introducing
just O(n2) new constraints.

4

Figure 2.1: An example of solution with no subtour elimination constraints.

2.2 Miller-Tucker-Zemlin

The Miller-Tucker-Zemlin [2] model introduces the variables ui that represent
the position of node i in the optimal tour, from a first (arbitrary) node. The
idea is that the values of ui increase during the tour and are assigned as
follows: the first node has no u variable associated to it, the second node
has ui = 0, the third node ui = 1, and so on until the last node of the tour,
which has ui = n − 2. This mechanism avoids the generation of subtours
since, in order to be closed, each tour requires a special node that does not
have the sequence constraint on u: such property allows to connect the last
node (with the largest value of u) to the first node (with the smallest).

In fig. 2.3 you can see a representation of this process.
So, the following constraints are added to the naive model:

uj ≥ ui + 1−M(1− xij) ∀i, j ∈ V i, j 6= 1 (2.5)

xij + xji ≤ 1 (2.6)

0 ≤ ui ≤ n− 2 Integer ∀i ∈ V \ {1} (2.7)

5

Figure 2.2: An example of solution with the MTZ subtour elimination con-
straints.

u1 = 0 (2.8)

The constraint (2.6) is not actually necessary to find the optimum, but
in practice it could improve the convergence speed for some instances.

The MTZ formulation adds O(n) variables (ui) and O(n2) constraints
(2.5).

Figure 2.3: Example of the MTZ formulation.

6

2.3 GG - Flow 1 model (Gavish and Graves)

The Gavish and Graves model also known as the flow commodity model [3]
its a modified version of the MTZ in which the concept of flow through the
edges is introduced. The basic idea is that the salesman is carrying n−1 units
of some commodity and after leaving the first node he drops 1 unit at each
node that he visits. The integer variables yij are introduced to represent
the amount that pass from node i to node j. In fig. 2.4 you can see a
representation of this process.
So, the following constraints are added to the naive model:∑

i∈V i6=h

yih −
∑

j∈V j 6=h

yhj = 1 ∀h ∈ V \ {1} (2.9)

yij ≤ (n− 2)xij ∀i, j ∈ V \ {1} (2.10)

y1j = (n− 1)x1j ∀j ∈ V \ {1} (2.11)

0 ≤ yij ≤ n− 2 Integer ∀i, j ∈ V \ {1} (2.12)

0 ≤ y1j ≤ n− 1 Integer ∀j ∈ V \ {1} (2.13)

yi1 = 0 ∀i ∈ V \ {1} (2.14)

The constraint (2.9) indicates that the in Inflow - outflow must be equal
to 1. The constraint (2.10) links the new variables yij to xij.
This formulation adds O(n2) new variables (yij) and O(n2) constraints (2.10).

2.4 Comparison between Compact Models

We compared different implementation of MTZ with GG on a bunch of
datasets that have less than 60 node, with a timelimit of 3600 seconds im-
posed with the cplex function CPXsetdblparam(env, CPXPARAM TimeLimit,

time limit). In particular, the implementations tested are:

• MTZ with Static constraints

7

Figure 2.4: Single Commodity Flow (GG)

• MTZ with Lazy Constraints

• MTZ with Static constraints + subtour elimination of degree 2

• MTZ with Lazy Constraints + subtour elimination of degree 2

• GG

As mentioned before these compact models uses O(n2) variables and con-
straints, that is why they were tested on small instances. However, as you
can clearly see in fig. 2.5 the GG model is much faster than the different
implementations of the MTZ model, since the its performance profile is al-
ways above the MTZ profile. While MTZ with Lazy Constraints and subtour
elimination of degree 2 seems to be the second fastest method.

In any case the solutions reached by these methods are always the opti-
mum.

8

Figure 2.5: Compact models comparison: MTZ vs GG

9

Chapter 3

Exact Models

This section introduces methods that solve to optimality a MIP problem
using the basic CPLEX MIP solver. The first approach iteratively adds the
SEC constraints and solves the problem until the optimal solution without
subtours is found, while the second uses a callback function that is called
periodically by the MIP optimizer (CPLEX) in order to allow the user to
query or modify the state of the optimization.

3.1 Loop Method

As said before, the Dantzig-Fulkerson-Johnson model just adds the (3.1)
subtour constraints in the naive model, but the number of such constraints
is exponential.

In the previous chapter we discussed some compact models to solve this
issue. Here we present another way called ”the loop method”.

The Loop method is based on the idea that the great majority of all
possible subtours is made by very bad edge’s combinations, corresponding
to branches of the branching tree that the MIP solver would quickly discard
while minimizing the cost of the solution. So, the method focuses only on
those subtours which are selected by the solver, and forbid it to choose them.

Bender’s implementation solves itereatively the DFJ model. It starts
from the degree constraints and solves the problem with Cplex’s MIP solver.
When the solution is found, it checks whether subtours are present; if so,
for each subtour adds the SECs and solves the new model until a solution is
found or the time limit is reached.

10

In particular, if the solution has m subtours and Sk is a subtour, then
the Loop method adds the following constraints:∑

e∈E(Sk)

xe ≤ |Sk| − 1 k = 1, ...,m (3.1)

The pseudo-code of Bender’s implementation of the LOOP method is
shown in (Algorithm 1).

Algorithm 1: Bender implementation of the DFJ model

Input : TSP instance.
Output: a valid tour (CPLEX solution).

model ←− naive model
solution ←− solve model
while solution has subtours do

foreach subtour in solution do
sec constraints ←− generate SECs constraints of subtour
add sec constraints to model

end
solution ←− solve model

end

This procedure avoids the generation of an exponential number of con-
straints, however rebuilding and reoptimizing the model from scratch at each
iteration is the major drawback.

3.2 Incumbent callback

Another way to add SEC constraints is to exploit the branch-and-cut tech-
nique used (in this case by CPLEX) to solve the problem. The branch-
and-cut algorithm provided by CPLEX at the root node applies some pre-
processing steps. For each node of the branching tree, it applies dozens of
cut separation families (Gomory, Clique, 0-1/2 cuts, ...) and then, after the
relaxation is calculated, some primal heuristics are applied to find better and
better incumbent solutions. They get as input the fractional solution, ap-
plies those heuristics to transform it in integer and than, if the cost is better
than the incumbent solution, this solution is updated. This integer solution

11

probably contains subtours. Between the heuristic step and the update of
the incumbent, is possible to instruct CPLEX to call an our custom callback
function. In this function we check in the same way of the bender’s imple-
mentation if the instance contains subtours. If so, we add the SECs for the
connected components. In Fig.3.1 this mechanism is explained.

Figure 3.1: CPLEX Branch and Cut Incumbent Callback mechanism

With this method only a single decision tree is generated avoiding to
generate multiple branching trees as in Loop method. This hopefully leads
in a faster computation.

The pseudo-code of Incumbent Callback is shown in (Algorithm 2).

Algorithm 2: Incumbent Callback implementation of the DFJ
model

Function IncumbentCallback(model, solution):
if solution has subtours then

foreach subtour in solution do
sec constraints ←− generate SECs constraints of subtour
add sec constraints to model

end

end

In the incumbent callback is possible to apply custom heuristics which
can help CPLEX finding quickly a better solution. From the integer solution
that CPLEX returns in this callback, if there’s only one connected component
the 2-opt heuristic which will be described in 5.2.1 can be applied in order
to remove crossing edges from the solution and find a better one hopefully
reducing the computation time. The solution found by 2-opt is added to
CPLEX with the help of CPXcallbackpostheursoln function.

12

3.3 User-cut callback

In this section we’re going to describe an advanced usage of CPLEX’s call-
back. At each node of the branching tree, CPLEX allows to call a user-cut
callback which is our custom function called in the relaxed solution of the
problem. The relaxed solution does not take into considerations the integer
constraints of the variables. In this way whoever needs to create custom
cuts for the relaxed problem, can do that easily by using this type of call-
backs. In the TSP though, the solution must be integer. Unfortunately the
algorithms used in the previous models cannot be used in this case. An ex-
ample is the Union find algorithm which only works with integer solution.
For that reason some functions from the concorde [7] library are used. For
instance the function that counts the components in a fractional solution is
CCcut connect components and the function which calculates the min-cut
of a flow problem is CCcut violated cuts. The implemented callback works
like the Incumbent callback in the sense that the number of components in
the relaxed solution returned by CPLEX is computed using the aforemen-
tioned function, and for each component, SEC is applied as global constraint.
The difference with the incumbent callback comes when the number of com-
ponents found is one. If in the incumbent callback the number of components
is one, the solution is treated as feasible; in user-cut instead we need to cal-
culate the min-cut on the graph.

For instance in TSP for each cut (S, V \ S), we need to satisfy∑
(i,j)∈δ(S)

xij
∗ ≥ 2 ∀S ∈ V, S 6= ∅ (3.2)

where i ∈ S, j ∈ V \ S, xij
∗ ≥ 0 is the value of the edge (i, j) in the relaxed

solution and δ(S) is the cut-set of a cut S.
The concorde function CCcut violated cuts returns the cuts which vi-

olate 3.2; then we apply on each cut the SECs.
Unfortunately it is not possible to apply this callback at every node of

the branching tree because it would create a huge overhead due to the time
complexity of the concorde’s algorithms. As a consequence we apply the
cuts with a probability of 10%. An alternative method which could be im-
plemented is applying the cuts when the depth of the node in the branching
tree is less than a threshold (for example 5).

One important notice is that User-Cuts callbacks are a subroutine of the
Incumbent callback method. For instance, the callback, which was defined in

13

incumbent callback method is called when an integer solution is found while
the user cuts are called when a fractional solution is found. This generally
helps CPLEX to apply some important constraints before the update of the
incumbent giving the chance to reduce the size of the branching tree and so
the computing time.

3.4 Comparison between Exact Models

In this section we report the comparison between the exact methods we
implemented, in particular we tested the models on 34 instances from 130 to
700 nodes. The plot in fig. 3.2 clearly shows that the user-cut callback gives
the best results, with its profile being above both Bender and Incumbent
Callback, even if it employs time expensive routines, based on concorde API.
Incumbent with 2-opt does not perform way better than Incumbent only
callback. Their results are pretty the same Bender’s implementation is the
worst because it spends a lot of time rebuilding the model from scratch at
each iteration, while the callbacks methods don’t do that.

14

Figure 3.2: Exact models comparison: Loop vs Callback vs Callback with
2-opt vs Usercut

15

Chapter 4

Matheuristics Models

An Heuristic according to [4], is defined as ”any approach to problem solv-
ing or self-discovery that employs a practical method, not guaranteed to
be optimal, perfect, logical, or rational, but instead sufficient for reaching
an immediate goal. Where finding an optimal solution is impossible or im-
practical, heuristic methods can be used to speed up the process of finding
a satisfactory solution”. According to this definition, Heuristic algorithms
are designed to search for good solutions in a reasonable time by sacrific-
ing optimality. In this chapter we are going to talk about Matheuristics.
Matheuristics algorithms combine the use of heuristic methods and Mathe-
matical Programming (MP). The techniques that we are going to present are
hard fixing and local branching.

4.1 Hard Fixing

The idea behind the hard fixing Heuristic is to iteratively fix some variables
(edges) of the reference solution computed by CPLEX and then try to solve
the new simplified problem with the MIP solver. When the solution is found,
the fixed edges are unfixed and then the loop restarts until a time limit
is reached. Since at each iteration the solution doesn’t violate the SEC
constraints, this accelerates the time for optimizing but the solution it’s not
guaranteed to be optimal. Furthermore at each iteration the solution can
just be equal or better than the previous one. In particular it starts with
an initialization step in which it instantiate the TSP model without SECs
constraints but only with the degree constraints and compute quickly an

16

incumbent solution with the TSP solver. This solution is probably very
far from the optimal. So, hard fixing iteratively fixes a given percentage
of edges, the fixing of variable xij can be done by setting its lower bound
to 1 in the model held by CPLEX. Then our best TSP solver, the user-cut
callback (chapter 3.3), is used to solve that model. Finally all the edges are
unfixed by setting the lower bound back to 0. This process continue until the
time limit is reached. Since the model has some fixed edges, it has a fewer
number of variables so an exact solver can easily handle such reduced model.
Furthermore, the algorithm keeps iterating using the same percentage until
it is not able to find a better solution for 5 consecutive times (or timelimit
occurs); then this percentage increases (or decreases), more specifically in
our implementation the sequence of percentages we used is 90%, 80%, 50%
and 30%. The algorithm after some iterations tends to make very small
improvements making the algorithm never change the fixing percentage. To
overcome this issue we forced the algorithm to change the fixing percentage
when the number of consecutive small improvements reaches the maximum
limit allowed. In this way the algorithm tends to explore more widely new
neighborhoods by the end of the time limit.

An example of the solution space exploration made by this technique can
be viewed in Fig. 4.1, as you can see smaller fixing-probabilities result in a
faster and more feasible computation but the solution won’t be much different
from the current one due to the smaller neighborhood. The pseudo-code of
the Hard Fixing is shown in (Algorithm 3).

4.2 Local Branching

The Local Branching also known as soft fixing, proposed by Fischetti [5], has
the idea to add a constraint to the mathematical model called local branching
constraint, which forces to fix a certain number of variables without choosing
them explicitly.

The current solution xh can be seen has a binary vector (eg. [0, 1, 0, ...])
of length |E|, where an element is set to 1 if the corresponding edge in the
solution is used, otherwise is set to 0. From this concept, we can use a notion
of distance from the two arrays called Hamming Distance, that is defined as
the number of positions at which the corresponding symbols are different. In

17

Figure 4.1: Example of hard fixing neighborhood search

particular it can be calculated as:

H(x, xh) =
∑

e∈E: xhe=1

(1− xe) +
∑

e∈E: xhe=0

xe (4.1)

where the first sum can be seen as the number of flips from 1 to 0, and the
second sum as the number of flips from 0 to 1.

Looking again at the solution space, the hamming distance of a solution
can be seen as the radius r distancing it from other solutions, similarly as
the fixing-probability of the hard-fixing method. So now we can impose a
limit to this distance: ∑

e∈E: xhe=1

(1− xe) +
∑

e∈E: xhe=0

xe ≤ r (4.2)

For the TSP problem, the second summation of eq. 4.2 can be removed
because the number of flips from 1 to 0 is equal to the number of flips from
0 to 1. For instance ∑

e∈E: xhe=1

(1− xe) =
∑

e∈E: xhe=0

xe (4.3)

Then removing the second summation from 4.2 it becomes

18

∑
e∈E: xhe=1

(1− xe) ≤ k (4.4)

where k = r
2
. With some algebraic passages we led to the final formulation

of the soft-fixing constraints: ∑
e: xhe=1

xe ≥ n− k (4.5)

where n is the number of edges equals to 1 in a TSP tour (i.e. n = |V |)
and k is a parameter that represents the number of edges of the incumbent
solution that CPLEX is free to reconsider in the upcoming re-optimization
of the problem. High values of k may allow too much variations and do not
respect the idea of a local constraint. Since empirically has been proved that
values up to 15 are effective, in our implementation we chose a list of different
values, in particular k = [3, 5, 7, 9]. The algorithm is similar to the hard-fix,
here we just change the neighborhood by controlling the radius parameter k
instead of the fixing-probability. The pseudo-code of the Soft Fixing is shown
in (Algorithm 4).

4.3 Comparison between Matheuristics

The matheuristics test-set contains 18 instances from the TSPLIB with 300 to
1000 nodes, over a time limit of 20 minutes (1200 seconds). The performance
profiling for matheuristics is shown in Fig. 4.2. We compared 3 different
models, an hard-fixing (HARD-FIX in the plot) that uses always the same
fixing-probability of 0.7, an advanced hard-fix (HARD-FIX2 in the plot) that
changes fixing-probability over time [0.9, 0.8, 0.5] as described in (Algorithm
3) and soft-fixing with changing radius [3, 5, 7, 9] as described in (Algorithm
4). The plot clearly shows that soft fixing is the worst algorithm, but is still
competitive for instances with less than 600 nodes. While the advanced hard-
fixing is by far the best. Data in table 4.1 shows that the cost of solutions
found by HARD-FIX2 is within 1% in all instances except for dsj1000 (30%)
and pr1002 (3%) that are the largest. Furthermore, in Fig. 4.3 we plotted
the cost at each iteration over the dfj1000 tsp instance for Hard Fixing with
single fixing-probabilities of 70% and 90%, the advanced hard-fixing and
soft-fixing. As you can see the advanced hard-fixing outperform the other
methods and is much more smooth.

19

Figure 4.2: Matheuristics comparison: Hard-Fix vs Advanced Hard-Fix vs
Soft-Fix

20

Algorithm 3: Hard fixing implementation

Input : TSP instance.
Output: a valid tour.

prob array ←− array of probabilities /* eg. [0.9, 0.8, 0.5] */

prob idx ←− 0
number small improv ←− 0

model ←− naive model (with degree constraints)
solution ←− get a feasible solution for model quickly

/* While we are within the time limit and prob array */

while time elapsed < time limit AND prob idx < len(prob array) do
time remain ←− time limit − time elapsed
model ←− fix some edges according to prob array[prob idx]
solution ←− get a solution of model within time remain

current improv ←− 1− cost(solution)/cost(best solution)

/* If it’s just a small improvement */

if current improv < minimum improv then
number small improv ++

/* If we had a lot of small improvements */

if number small improv = max small improv then
prob idx ++ /* Use next probability */

number small improv ←− 0

end

else
number small improv ←− 0

end

best solution ←− solution
model ←− unfix edges

end

21

Algorithm 4: Soft fixing implementation

Input : TSP instance.
Output: a valid tour.

radius array ←− array of radius /* eg. [3, 5, 7, 9] */

radius idx ←− 0
number small improv ←− 0

model ←− naive model (with degree constraints)
solution ←− get a feasible solution for model quickly

/* While we are within the time limit and radius array */

while time elaps < time limit AND radius idx < len(radius array) do
time remain ←− time limit − time elaps
model ←− fix some edges according to radius array[radius idx]
solution ←− get a solution of model within time remain

current improv ←− 1− cost(solution)/cost(best solution)

/* If it’s just a small improvement */

if current improv < minimum improv then
number small improv ++

/* If we had a lot of small improvements */

if number small improv = max small improv then
radius idx ++ /* Use next radius */

number small improv ←− 0

end

else
number small improv ←− 0

end

best solution ←− solution
model ←− unfix edges

end

22

Figure 4.3: Solution vs Timestamp comparison between Matheuristics over
the dsj1000 tsp instance

23

Models
Instance Real Cost HARD FIX HARD FIX2 SOFT FIX
ali535 202339 207566 206164 202994
p654 34643 1185640 34805 510224
rat783 8806 9014 8896 57132
gr666 294358 300963 299465 633564
d657 48912 50117 50053 104542
pr439 107217 107511 110144 134285
rat575 6773 6804 6834 6821
u724 41910 65876 42770 439548
rd400 15281 15480 15286 15281
u574 36905 37452 37476 38025
vm1084 239297 2177905 388384 7173041
att532 27686 28076 27761 29392
d493 35002 35227 35086 37424
lin318 42029 42159 42449 42029
pr1002 259045 1551030 266639 4579930
gr431 171414 173407 172714 171923
pcb442 50778 50778 50824 50808
dsj1000 18659688 371793030 26526532 332813825

Table 4.1: Results of Hard Fixing and Local Branching algorithms

24

Chapter 5

Heuristics

The execution of exact algorithms becomes more and more computational
demanding with respect to the number of nodes of the problem, until it be-
came unfeasible to solve exactly an instance for the today (2021) technology.
For that reason, we can use Heuristics algorithms which don’t find the opti-
mal solution but a good one with a reasonable computational cost. We are
going to introduce 2 families of heuristics:

• Constructive heuristics that generate from scratch an approximate
solution for the problem.

• Refinement heuristics that improve an existing solution.

5.1 Constructive Heuristics

Constructive heuristics build a solution from scratch in feasible amount of
time, usually getting within 10-15% of optimality. This type of heuristics are
often use as a starting point for other heuristics, since the quality of the final
solution of an heuristic is highly dependent on the starting instance. We are
going to introduce the heuristics: Nearest Neighbors and Insertion.

5.1.1 Nearest Neighbors

This is a greedy 2-approximation algorithm (meaning that the solution is at
most 100% far from the optimum), that generates in O(n2) a solution for
the TSP instance starting from one node and at each iteration selecting the

25

next node in the tour that is closest to the current. The pseudocode for the
computation of a single starting solution from an arbitrary node is shown in
Algorithm 5.

Algorithm 5: Nearest Neighbour implementation

Input : Starting node
Output: a valid tour.

tour ←− empty tour
solution ←− 0
visited ←− {start node} /* visited nodes */

curr node ←− start node

/* While there are nodes to visit */

while |visited| 6= N do
closest node ←− closest node to curr node /∈ visited
solution ←− solution + dist(curr node,closest node)
curr node ←− closest node
add curr node to visited
add edge (curr node,closest node) to tour

end
add edge (curr node,start node) to tour
solution ←− solution + dist(curr node,start node)

5.1.2 Nearest/Farthest Insertion

This algorithm initialize the tour with 2 farthest (or nearest) nodes (initial-
ization step). Then, at each iteration, the node k not visited whose distance
to the tour is minimal (maximal for farthest insertion) is selected (selection
step). This node is inserted in the tour in a way that it insertion causes
the smallest increase in the tour length (insertion step). This step is done by
finding an edge (i, j) in the tour that minimizes ∆(i, j, k) = cik+ckj−cij that
is referred as extra-mileage. It works in O(n3). The bottleneck of this algo-
rithm is the time spent computing k. The pseudocode for the computation
of a single starting solution from an arbitrary node is shown in Algorithm 6.

26

Algorithm 6: Nearest/Farthest Insertion implementation

Input : nothing.
Output: a valid tour.

solution ←− 0
visited ←− {the 2 nearest/farthest nodes} /* visited nodes */

tour ←− edge between the 2 nearest/farthest nodes

/* While there are nodes to visit */

while |visited| 6= N do
/* find the edge (i,j) nearest/farthest to the tour */

for node k /∈ visited do
for edge (i, j) ∈ tour do

compute extra mileage
end

end
Select node k with minimum extra-mileage
Replace edge (i, j) with edges (i, k) and (k, j)

end

5.1.3 Implementation choices, Comparisons and Re-
sults

We also used two techniques:

• GRASP (greedy randomized adaptive search procedure): used in the
nearest neighbor search, introducing randomization in the choice of
the next node of the tour by choosing the second nearest node with
probability of 10%:

• Multistart: initializes nearest neighbour search for each possible node
and then returns the best solution.

For the Extra-Mileage algorithm we pick the 2 farthest nodes and than, at
each iteration, the node that is nearest to the tour.

Table 5.1 and Fig. 5.1 show the comparison between different construc-
tion algorithms in terms of time spent to create the tour and the final cost of
the solution. As you can see the best constructive heuristic is Extra Mileage.
Greedy multistart algorithm is the following. Iterative grasp and the basic

27

greedy (nearest neighborhood) are equivalent in terms of solution quality.
Basic grasp is the worst one. In terms of time computation, basic greedy and
basic grasp are the fastest algorithms. Iterative Grasp works until the time
limit is reached, while the other algorithms can stop when a good solution is
found. In principle for all the methods but Iterative Grasp, the computation
usually takes fraction of time of the time limit dedicated (apart obviously for
small time limits or very large instances).

Figure 5.1: Constructive Heuristics comparison

5.2 Refinement Heuristics

This kind of heuristics start from a given solution and improves it making
small changes. Their performances are strongly dependent by the construc-
tion heuristic used.

28

GREEDY GREEDY ITER EXTR MILE GRASP GRASP ITER
Instance Real Cost Cost Time (s) Cost Time (s) Cost Time (s) Cost Time (s) Cost Time (s)
ali535 202339 253362 0.03 241072 16.76 243778 15.99 298675 0.03 255853 300
p654 34643 43457 0.01 43027 5.24 40123 4.30 71935 0.01 45052 300
rat783 8806 11054 0.01 10540 10.45 10399 7.50 12910 0.01 11156 300
gr666 294358 366843 0.05 351041 31.11 341997 29.31 406054 0.05 365454 300
d657 48912 61627 0.01 60175 5.99 57879 4.73 75956 0.01 61885 300
pr439 107217 131281 0.005 127230 1.63 127715 1.28 176401 0.005 128470 300
rat575 6773 8605 0.01 7993 3.67 8079 2.88 9372 0.01 8483 300
u724 41910 52943 0.01 50802 7.62 49944 5.97 59319 0.01 53868 300
rd400 15281 19183 0.005 18431 1.29 18187 0.97 22671 0.005 19150 300
u574 36905 50459 0.01 45440 3.57 43261 2.88 59085 0.01 46661 300
vm1084 239297 301477 0.02 290806 26.14 274081 19.37 363967 0.02 320469 300
att532 27686 35516 0.01 33387 5.52 33250 4.45 42259 0.01 34341 300
d493 35002 41665 0.005 40189 2.34 40330 1.80 50435 0.005 41332 300
lin318 42029 54019 0.005 49201 0.61 49497 0.48 63037 0.005 50104 300
pr1002 259045 331103 0.02 313745 19.27 302240 15.18 391413 0.02 334032 300
gr431 171414 208932 0.02 204473 8.36 197761 8.07 238814 0.02 208304 300
pcb442 50778 61979 0.005 58950 1.70 61170 1.32 78570 0.005 63335 300
dsj1000 18659688 24631468 0.02 22450178 21.31 21991699 16.05 29570791 0.02 24677521 300

Table 5.1: Results of constructive heuristics

5.2.1 2-OPT

This heuristic proposed in 1958 by [8], first initializes the tour randomly or
using some construction algorithm and then iteratively improves this tour by
resolving crossing edges. This is done by selecting 2 edges that are crossing
each other and then exchange them. More specifically, at each step it selects
2 edges (a, b) and (c, d) from the tour and crosses them obtaining the edges
(a, c) and (b, d) exploiting the triangle inequality. Thanks to the triangle
inequality it’s possible to determine, when a solution contains two or more
crossing edges, that this solution is not optimal.

Given two edges (a, b) and (c, d) where a 6= c, a 6= d and b 6= c the
condition for exchanging two edges is the following:

∆(a, c) = cac + cbd − cab − ccd < 0 (5.1)

where cij is the cost between node i and node j. When the condition
5.1 is satisfied, the edges (a, b) and (c, d) are replaced with (a, c) and (b, d)
respectively, decreasing the total cost of the tour. The 2-opt move can be
seen in fig. 5.2.

The 2-opt algorithm continues until there are no more crossing edges, i.e.
when the condition 5.1 is not satisfied for all couple of edges, reaching a local
optimum. The 2-OPT algorithm is shown in (Algorithm 7).

29

Figure 5.2: 2-Opt move: (a, b) and (c, d) are crossing, so replacing them with
(a, c) and (b, d) decreases the tour length.

5.2.2 Comparison

We compared different versions of 2-opt refinement each with a different con-
structive heuristic as the initial solution. The results are shown in table 5.2
and Fig. 5.3. The best is greedy with multistart. This could be surprising
since in comparison made with constructive heuristics in Fig. 5.1 the Extra
Mileage was the winner. A reason on why applying 2-opt refinement the
advantage of extra mileage is lost is due to the fact that extra mileage gen-
erates a solution with fewer crossing edges compared with greedy and grasp.
In terms of quality of the solution and running time, the best one is 2-opt
in combination with basic greedy. As you can see in table 5.2, the solving
time is in the order of fractions of second for the majority of instances tested,
making this algorithm suitable for larger instances.

30

Figure 5.3: Constructive Heuristics + 2OPT comparison

31

Algorithm 7: 2-opt refinement

Input : a valid tour.
Output: a valid tour possibly of smaller length.

best cost ←− cost(tour)

/* While we are within the time limit */

while time elaps <time limit do
/* for each pair of subsequent nodes */

for node a ∈ [0, n− 2] do
for node c ∈ [a+ 1, n− 1] do

b←− succ(a) /* successor of a */

d←− succ(c) /* successor of c */

/* skip non valid configurations */

if b == d or a == d or b == c then
continue

end

∆(a, c)←− (cac + cdb)− (cab + cdc)
if ∆(a, c) < 0 then

swap (a, b) with (a, c) and (c, d) with (b, d)
end

end

end

/* If we couldn’t improve the tour, stop */

if best cost <= cost(tour) then
stop

end

best cost ←− cost(tour)

end

32

2OPT GREEDY 2OPT GREEDY ITER 2OPT EXTR MIL 2OPT GRASP 2OPT GRASP ITER
Instance Real Cost Cost Time (s) Cost Time (s) Cost Time (s) Cost Time (s) Cost Time (s)
ali535 202339 227440 0.90 222260 17.56 226579 15.84 238297 0.81 225908 120.75
p654 34643 36765 0.53 35139 5.70 38203 4.48 43658 0.29 35641 12.56
rat783 8806 9470 0.30 9410 10.45 9841 7.60 10166 0.36 9717 120.34
gr666 294358 325816 1.25 318530 31.85 328849 30.25 343098 1.03 328372 121.18
d657 48912 53098 0.28 52241 5.88 55216 4.61 56960 0.32 53284 120.25
pr439 107217 115748 0.14 114123 1.72 118724 1.39 124308 0.11 113609 120.11
rat575 6773 7324 0.22 7155 3.91 7543 3.01 7865 0.19 7263 120.19
u724 41910 45409 0.34 45128 7.83 47423 6.32 48312 0.31 44999 120.24
rd400 15281 16647 0.06 16401 1.35 16891 1.02 17814 0.10 16442 120.08
u574 36905 40282 0.19 39647 3.77 41171 3.00 43971 0.21 40285 120.22
vm1084 239297 257862 0.77 260470 27.51 262928 20.40 278616 0.78 263958 120.67
att532 27686 30594 0.28 29836 5.84 31368 4.76 31424 0.37 30317 120.19
d493 35002 36975 0.12 37728 2.50 38695 1.96 39428 0.16 37643 120.18
lin318 42029 45009 0.07 44358 0.68 45940 0.54 49872 0.07 45283 120.05
pr1002 259045 283967 0.59 273491 19.86 285094 16.41 301900 0.66 287580 120.68
gr431 171414 184075 0.59 180915 8.91 184026 9.29 204805 0.51 182742 120.48
pcb442 50778 54119 0.11 53211 1.86 56141 1.46 56331 0.13 55818 120.11
dsj1000 18659688 20858850 0.87 20222830 22.16 20760775 17.20 21450916 0.81 20625547 120.68

Table 5.2: Results of constructive heuristics + 2opt

33

Chapter 6

Metaheuristics

Metaheuristics are a high-level problem-independent algorithmic framework
that provides a set of guidelines or strategies to develop heuristic optimiza-
tion algorithms. Those algorithms can solve any type of optimization prob-
lem with only few adaptations. Even with a naive adaptation for a specific
problem these algorithms can obtain a good solution for certain instances.
So far, Metaheuristics for TSP should hopefully find better solutions than
any 2-opt variation giving a good time limit. In general, the main idea of
the majority of metaheuristic algorithms is to escape from a local minimum
in order to find hopefully a better one.

In the following sections we are going to present three different meta-
heuristic algorithms:

• Variable Neighborhood Search (VNS) that randomly changes
k different edges from the current solution and improves it by using
2-opt.

• Tabu Search that adds some edges in a tabu list which become for-
bidden for an improving move.

• Genetic algorithm that simulates Darwin’s evolution theory which
the objective is to generate the fittest population which may contain a
good solution.

34

6.1 Variable Neighborhood Search (VNS)

Instead of running greedy + 2opt for multiple initial solutions, the VNS
heuristic proposed by [9] is based on local search; it starts from an arbitrary
solution, optimizes it reaching a local minimum and then, escapes this local
minimum by moving to a neighbour solution in the hope to find a better
solution. This process is shown in Fig. 6.1. VNS is based on 3 facts:

• A local minimum for a neighborhood structure is not necessarily the
same for other neighborhood structures.

• A global minimum is also a local minimum for all possible neighborhood
structures.

• In many problems a local minimum for one neighborhood structure is
very close a local minimum of another neighborhood structure.

This means that with a different neighborhood structure we can reach a
different local minimum; this comes the name of this algorithm, Variable
Neighborhood Search. For the TSP we used Basic VNS that uses a predefined
set of neighborhood structures. These neighborhoods, are usually of different
sizes starting from the smallest one to a larger one when a better solution is
not found.

VNS iteratively optimizes the current solution till a local minimum is
found (intensification phase) that is done by 2-opt. Then the algorithm
chooses randomly a solution in the neighborhood (diversification phase). If
the current solution is better than the best found so far, it gets updated
and in the next iteration the smallest neighborhood will be used otherwise
a incrementally larger neighborhood will be used in the next iteration. The
pseudocode for the VNS is shown in Algorithm 8.

We implemented just the 3-opt neighborhood, that means that during
the kick operation we remove randomly 3 edges and reconnect them in a
predefined way because we saw that the 2-opt neighborhood never lead to a
better solution without increasing the neighborhood size.

In Fig. 6.2 we plotted the solutions cost through the iterations selecting
a random solution in the 3-opt neighborhood has. As you can see the diversi-
fication phase worsen suddenly the current solution while the intensification
phase improves it.

35

Figure 6.1: VNS starts from an initial solution and optimizes it reaching a
local minimum. To escape this local minimum it applies a random kick and
optimizes again in the hope to find a better solution.

6.2 Tabu search

As we know, local search algorithms can be stuck in a local minimum. Tabu
search tries to avoid this by allowing a move that worsen the current solution
when a move that can improve it cannot be found. However by doing this we
can still be trapped in cycles because, when an improving move is applied,
the solution goes back to the same local minimum. To avoid this situation,
Tabu Search keeps a list called tabu-list, that contains moves that cannot
be performed again. More specifically, when a move is performed is added to
the tabu-list which is a FIFO queue with a specific size. The tabu-list size is
called tenure. In this way a move won’t remain illegal forever but just for
a certain amount of iterations. The performance of this algorithm depends
dramatically by the tenure of the tabu-list. If it is too small, the algorithm
gets stuck in the local minimum because there is a sequence of moves that
brings the solution back to the local minimum. Instead if the tenure is too
large, the search is not effective because the neighborhood is too small. To
overcome this, we can change the tenure dynamically during the execution.

We implemented 3 different policies to change dynamically the Tabu

36

Figure 6.2: VNS solutions cost trough iterations over DSJ1000 tsp instance.
A random solution in the 3-opt neighborhood is chosen and then optimized
with 2-opt at each iteration.

tenure:

• Step policy: changes the tabu-list size every 100 iterations to a min-
imum or a maximum

• Linear policy: the tabu-list size grows of 1 unit for each iteration ’till
reaching the maximum size, then decreases of 1 unit for each iteration
’till reaching the minimum size, and so on...

• Random policy: changes the tabu-list size every 100 iterations to a
random size chosen in a range.

The tabu list is implemented in order to contain forbidden edges. At every
iteration a 2-opt algorithm is computed taking in consideration the tabu

37

Algorithm 8: Basic VNS for TSP implementation

Input : a tsp instance.
Output: a valid tour.

best solution ←− greedy 2opt(tour)
k ←− 1

while time remain < time limit do
curr solution ←− best solution
curr solution ←− kick(curr solution,k)
curr solution ←− 2opt(curr solution)
if curr solution cost <best solution cost then

best solution ←− curr solution
k ←− 1

end
k ←− k + 1

end
return best solution

list. When 2-opt encounters an edge which is tabu, it skips that edge. This
ensures 2opt to explore other solutions rather than going back to the previous
one. After the 2-opt optimization step, a worsening 2-opt move is done by
taking two random edges that are not in tabu-list and are crossed. After
that, these two edges are added in the tabu list. From time to time some
edges are removed from tabu based on the current value of the tenure. For
instance, given an edge e ∈ E currently in tabu-list (i.e. tabu[e] > 0), this
edge is removed from tabu-list if the following condition is satisfied:

curr iter − tabu[e] > tenure (6.1)

where for each element in tabu-list, the iteration of when the edge e is
added in tabu-list is saved. The tenure value changes during the execution
alternating diversification and intensification phases. For example in the step
policy, the tenure is updated every 100 iterations between min tenure and
max tenure which are parameters chosen by design which are num nodes ∗
0.02 and num nodes ∗ 0.1 respectively.

The Tabu-Search pseudocode is shown in (Algorithm 9).

38

Algorithm 9: Tabu Search for TSP implementation

Input : a tsp instance.
Output: a valid tour.

best solution ←− greedy 2opt(tour)
curr iter ←− 1

while time remain < time limit do
curr solution ←− best solution
curr solution←− 2opt(curr solution, tabu list, curr iter, curr tenure)
if curr solution cost <best solution cost then

best solution ←− curr solution
end
e1 ←− rand(E)
e2 ←− rand(E)
curr solution ←− 2opt move(e1, e2)
tabu list [e1] ←− curr iter
tabu list [e2] ←− curr iter
curr tenure ←− update tenure(curr tenure, curr iter).
curr iter ←− curr iter + 1

end
return best solution

6.3 Genetic

In computer science and operations research, a genetic algorithm (GA) is a
metaheuristic inspired by the process of natural selection that belongs to the
larger class of evolutionary algorithms (EA). Genetic algorithms are com-
monly used to generate high-quality solutions to optimization and search
problems by relying on biologically inspired operators such as mutation,
crossover and selection [10]. We represent a individual as a list of nodes
that is the order in which the tour is visited. The steps executed by a GA
are:

1. Create the initial population of N individuals (generation 0).

2. Compute the fitness value of each individual in the current population.
For the TSP problem the fitness is the tour cost.

39

3. Selection: select 60% of individuals (parents). We used the Rank based
roulette wheel selection proposed by [11].

4. Crossover: create a new individual (child) by merging 2 random parents
from the selected part of the population. The merge operation works
by pick randomly a subtour from the first parent and fill the empty cells
with the nodes from the second one in order of appearance, without
adding duplicate nodes. You can see this process in Fig. 6.4.

5. Mutation: mutate each child in order to avoid local convergence. In
our case we apply a mutationt to an individual with 5% probability.

6. keep just the 1000 best individuals among the previous population and
offsprings exploiting rank based roulette wheel selection.

7. Repeat steps 3-6 for G generations or until time limit is reached

In our implementation the initial population can be chosen to be initial-
ized by completely random tours or by some constructive heuristics. For
instance grasp is the most suitable for this since it exploits some random-
ness in selecting the nearest node letting the initial population have with
high probability, different individuals in the population compared with extra
mileage and greedy. Another design choice is the mutation probability for
which an individual gets a mutation by inverting a subtour and the 2-opt
mutation. We have tested three different versions of the genetic implemen-
tation:

• Pure genetic: Only genetic algorithm is involved without any other
type of heuristics such as constructive or 2-opt.

• Genetic with grasp initial population: Applies genetic algorithm
with an initial population generated by grasp heuristic.

• Genetic with 2-opt mutation: Genetic with initial population gen-
erated randomly with a low probability 2-opt mutation after crossover
operation.

The results can be viewed in Fig. 6.3. As you can see, 2-opt mutation
and grasp initial population lead to same performances. There’s no clearly
one method in advantage on the other while, the pure genetic obtains the
worst results.

40

Figure 6.3: Comparison between pure genetic, genetic with grasp initial pop-
ulation and genetic with 2-opt mutation

The Genetic Algorithm pseudocode is shown in (Algorithm 10).
In Fig. 6.5 you can see the best solution cost over the generations.

6.4 Comparison between metaheuristics

The results of the Meta heuristics comparison are shown in Table 6.1 and
in Fig. 6.6. As you can see the best is the VNS having the best results for
every instance tested. The TABU variants almost perform the same to each
other, while Genetic is the worst. The genetic algorithm tested here is the
one with 2-opt mutation.

41

Figure 6.4: Crossover operation: in step 1 we pick a subtour of the first
parent, and in step 2 we fill the blank cells with the nodes from the second
parent in order of appearance without duplicates

Algorithm 10: Genetic algorithm for TSP implementation

Input : tsp instance.
Output: a valid tour.

population ←− {N random TSP tours}
compute the tour cost for each tour in population

while time remain < time limit do
for K times do

par1, par2 ←− select 2 tours from population with probability
over their cost
child ←− crossover between par1 and par2
child ←− randomly swap some nodes of child
child.cost ←− compute the tour cost for child
add child to population

end
population ←− keep the N best tours

end
return best tour in population

42

Figure 6.5: Genetic solutions cost trough iterations over DSJ1000 tsp in-
stance

43

Figure 6.6: Comparison between meta heuristics methods each ran for 20
mins on each instance

44

Models
Instance Real Cost VNS GENETIC TABU STEP TABU LIN TABU RAND
ali535 202339 204605 227742 207656 207640 210263
p654 34643 34684 35110 34954 35033 34946
rat783 8806 8961 9725 9150 9150 9147
gr666 294358 298407 334235 308915 308109 308194
d657 48912 49332 52919 50444 50464 50497
pr439 107217 107223 113796 108676 108891 108732
rat575 6773 6804 7376 7063 7035 7060
u724 41910 42591 45917 43331 43397 43442
rd400 15281 15397 16418 15667 15729 15677
u574 36905 37280 39816 38110 38165 38297
vm1084 239297 246610 267146 248219 248759 247958
att532 27686 27917 29924 28506 28417 28658
d493 35002 35371 36919 35965 35940 35909
lin318 42029 42405 43412 42925 42779 42773
pr1002 259045 265627 284358 269073 269073 269933
gr431 171414 173396 187667 176975 176781 176019
pcb442 50778 50979 53756 52043 52169 51802
dsj1000 18659688 19208075 20487747 19421019 19529106 19492379

Table 6.1: Results of meta heuristics ran for 1200 seconds

45

Chapter 7

Conclusions

In this work we implemented tested and analysed 29 algorithms to solve
the Traveling salesman problem. Some of them, called exact algorithms,
return the optimal solution while others, called heuristic algorithms, return
an approximate solution for larger instances in a feasible amount of time. For
each algorithm we have highlighted strengths and weaknesses over several tsp
instances.

7.1 Compact methods

Compact methods are capable on finding an optimal solution by using MIP
solver adding a polynomial number of constraints to the naive mathematical
formulation of the TSP. For instance O(n2) constraints are added. The best
compact model we found is the Gavish and Graves model that adds O(n2)
new variables and O(n2) constraints. Testing on instances with up to 70
nodes, we have figured out that the major drawback of these models is that
they require a long computational time. This makes them impractical to
solve larger instances.

7.2 Exact methods

Exact models use the MIP optimizer to iteratively solve sub-problems leading
to an optimal solution for the given TSP instance. According to our test,
those models can solve bigger instances than the compact ones but are still
impractical for instances with more than 1000 nodes. The test was conducted

46

utilizing instances between 150 and 750 nodes. The best performing exact
model we found is the user-cut which utilizes a callback function to apply
SECs in incumbent and relaxed solutions.

7.3 Heuristic methods

Most combinatorial optimization problems like the TSP are not solvable to
optimum for very large instances. For this reason heuristic algorithms are
used. These algorithms does not guarantee to find an optimal solution but
can compute a good one in a small amount of time which make them suitable
for large instances.

We firstly presented Matheuristics. Matheuristics use a MIP solver in
a combination with some heuristic. The best one we found is Hard-Fixing
that fixes iteratively some edges on the original problem and solves the new
simplified one using MIP. The size of the tested instances goes from 300 to
1000 nodes.

The second category of heuristics we presented are Constructive-Heuristics.
Constructive-Heuristics are heuristic algorithms which obtain a solution in a
very small amount of time. Due to their solution quality, these algorithms are
utilized to construct a good feasible initial solution to feed to a more power-
ful heuristic (usually refinement-heuristic). The best constructive algorithm
which returns good solutions is the Extra Mileage algorithm although the
greedy one gives acceptable solutions with a fraction of time needed by Ex-
tra Mileage.

The third type of heuristics presented is refinement-heuristic. Different
versions of 2-opt algorithm were tested showing that with combination of
multi start greedy algorithm, the 2-opt gives the best results.

We finally presented Meta-Heuristic algorithms which are problem inde-
pendent heuristics. These algorithms try to find better local minimum in the
neighboring solutions by worsening the current one with the hope to reach
after some re-optimizations a better solution. We have seen that the best
performing algorithm is VNS being the best one for all the instances tested
in comparison with Tabu and Genetic. These algorithms are scalable and
parallelizable these qualities make them suitable for larger instances rather
than matheuristics.

47

Bibliography

[1] Cormen T., Leiserson C., Rivest R. and Stein C. Introduction to Algo-
rithms. The MIT Press, Ed. 3, pages 1096-1097, 2009.

[2] Miller, C. E. and Tucker, A. W. and Zemlin, R. A. Integer Programming
Formulation of Traveling Salesman Problems. Association for Computing
Machinery, 1960

[3] Gavish Bezalel, Graves Stephen C. The Travelling Salesman Problem and
Related Problems. MIT, 1978.

[4] https://en.wikipedia.org/wiki/Heuristic

[5] Fischetti, M., Lodi, A. Local branching. Math. Program., Ser. B 98, 23–47
(2003). https://doi.org/10.1007/s10107-003-0395-5

[6] TSPLIB95. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/

[7] Concorde. https://www.math.uwaterloo.ca/tsp/concorde.html

[8] G. A. Croes, A method for solving traveling salesman problems. Opera-
tions Res. 6 (1958) , pp., 791-812.

[9] N. Mladenović, P. Hansen, Variable neighborhood search. Computers &
Operations Research, Volume 24, Issue 11, 1997, Pages 1097-1100

[10] Mitchell, Melanie, An Introduction to Genetic Algorithms, 1996, MIT
Press,Cambridge, MA, USA

[11] Razali, Noraini & Geraghty, John. Genetic Algorithm Performance with
Different Selection Strategies in Solving TSP. 2011

48

	Introduction
	Problem history
	Problem formulation

	Compact models
	Naive model
	Miller-Tucker-Zemlin
	GG - Flow 1 model (Gavish and Graves)
	Comparison between Compact Models

	Exact Models
	Loop Method
	Incumbent callback
	User-cut callback
	Comparison between Exact Models

	Matheuristics Models
	Hard Fixing
	Local Branching
	Comparison between Matheuristics

	Heuristics
	Constructive Heuristics
	Nearest Neighbors
	Nearest/Farthest Insertion
	Implementation choices, Comparisons and Results

	Refinement Heuristics
	2-OPT
	Comparison

	Metaheuristics
	Variable Neighborhood Search (VNS)
	Tabu search
	Genetic
	Comparison between metaheuristics

	Conclusions
	Compact methods
	Exact methods
	Heuristic methods

	Bibliography

