
Compositional Decompilation using LLVM IR

Robin Eklind

2015-04-21

Abstract

Decompilation or reverse compilation is the process of translating low-level
machine-readable code into high-level human-readable code. The problem is non-
trivial due to the amount of information lost during compilation, but it can be
divided into several smaller problems which may be solved independently. This
report explores the feasibility of composing a decompilation pipeline from indepen-
dent components, and the potential of exposing those components to the end-user.
The components of the decompilation pipeline are conceptually grouped into three
modules. Firstly, the front-end translates a source language (e.g. x86 assembly)
into LLVM IR; a platform-independent low-level intermediate representation. Sec-
ondly, the middle-end structures the LLVM IR by identifying high-level control flow
primitives (e.g. pre-test loops, 2-way conditionals). Lastly, the back-end translates
the structured LLVM IR into a high-level target programming language (e.g. Go).
The control flow analysis stage of the middle-end uses subgraph isomorphism search
algorithms to locate control flow primitives in CFGs, both of which are described
using Graphviz DOT files.

The decompilation pipeline has been proven capable of recovering nested pre-test
and post-test loops (e.g. while, do-while), and 1-way and 2-way conditionals (e.g.
if, if-else) from LLVM IR. Furthermore, the data-driven design of the control flow
analysis stage facilitates extensions to identify new control flow primitives. There
is huge potential for future development. The Go output could be made more
idiomatic by extending the post-processing stage, using components such as Grind
by Russ Cox which moves variable declarations closer to their usage. The language-
agnostic aspects of the design will be validated by implementing components in other
languages; e.g. data flow analysis in Haskell. Additional back-ends (e.g. Python
output) will be implemented to verify that the general decompilation tasks (e.g.
control flow analysis, data flow analysis) are handled by the middle-end.

i

Acknowledgements

My heartfelt gratitude goes to Janka Chlebíková for supervising this project and showing
me the beauty of Theoretical Computer Science. Your joyful enthusiasm is inspiring!

I would like to dedicate this work to my grandfather Morgan Dominius, who taught me
that anything worth doing, is worth doing with care.

ii

CONTENTS CONTENTS

Contents
1 Introduction 1

1.1 Project Aim and Objectives . 1
1.2 Deliverables . 2
1.3 Disposition . 3

2 Literature Review 5
2.1 The Anatomy of an Executable . 5
2.2 Decompilation Phases . 9

2.2.1 Binary Analysis . 10
2.2.2 Disassembly . 10
2.2.3 Control Flow Analysis . 13

2.3 Evaluation of Intermediate Representations 14
2.3.1 REIL . 14
2.3.2 LLVM IR . 15

3 Related Work 17
3.1 Native Code to LLVM IR . 17

3.1.1 Dagger . 17
3.1.2 MC-Semantics . 17

3.2 Hex-Rays Decompiler . 18

4 Methodology 20
4.1 Operational Prototyping . 20

4.1.1 Throwaway Prototyping . 21
4.1.2 Evolutionary Prototyping . 21

4.2 Continuous Integration . 21

5 Requirements 22
5.1 LLVM IR Library . 22
5.2 Control Flow Analysis Library . 23
5.3 Control Flow Recovery Tool . 23

6 Design 25
6.1 System Architecture . 25
6.2 Front-end Components . 26

6.2.1 Native Code to LLVM IR . 26
6.2.2 Compilers . 26

6.3 Middle-end Components . 28
6.3.1 Control Flow Graph Generation 28
6.3.2 Control Flow Analysis . 29

6.4 Back-end Components . 30
6.4.1 Post-processing . 31

7 Implementation 32
7.1 Language Considerations . 32
7.2 LLVM IR Library . 33
7.3 Go Bindings for LLVM . 34

iii

CONTENTS CONTENTS

7.4 Subgraph Isomorphism Search Library 35
7.5 Documentation . 37

8 Verification 39
8.1 Test Cases . 39

8.1.1 Code Coverage . 40
8.2 Performance . 41

8.2.1 Profiling . 43
8.2.2 Benchmarks . 45

8.3 Security Assessment . 45
8.4 Continuous Integration . 47

8.4.1 Source Code Formatting . 47
8.4.2 Coding Style . 48
8.4.3 Code Correctness . 48
8.4.4 Build Status . 48
8.4.5 Test Cases . 49
8.4.6 Code Coverage . 49

9 Evaluation 50
9.1 LLVM IR Library . 51

9.1.1 Essential Requirements . 51
9.1.2 Desirable Requirements . 52

9.2 Control Flow Analysis Library . 52
9.2.1 Essential Requirements . 53
9.2.2 Important Requirements . 53
9.2.3 Desirable Requirements . 54

9.3 Control Flow Recovery Tool . 54
9.3.1 Essential Requirements . 54

10 Conclusion 56
10.1 Project Summary . 56
10.2 Future Work . 57

10.2.1 Design Validation . 57
10.2.2 Reliability Improvements . 58
10.2.3 Extended Capabilities . 58

10.3 Personal Development . 59
10.4 Final Thoughts . 59

References 60

Appendices 64
A The REIL Instruction Set . 64
B Patch for Unnamed Basic Blocks of LLVM 67
C Dagger Example . 68
D MC-Semantics Example . 73
E Clang Example . 77
F Control Flow Graph Generation Example 78
G Control Flow Analysis Example . 79
H Restructure Example . 85

iv

CONTENTS CONTENTS

I Code Generation Example . 86
J Post-processing Example . 87
K Decompilation of Nested Primitives . 91
L Decompilation of Post-test Loops . 93

v

This page is unintentionally left blank.

1 INTRODUCTION

“What we call chaos is just patterns we haven’t recognized. What we call
random is just patterns we can’t decipher.”
— Chuck Palahniuk [1]

1 Introduction

A compiler is a piece of software which translates human readable high-level programming
languages (e.g. C) to machine readable low-level languages (e.g. Assembly). In the usual
flow of compilation, code is lowered through a set of transformations from a high-level
to a low-level representation. The decompilation process (also referred to as reverse
compilation [2]) moves in the opposite direction by lifting code from a low-level to a
high-level representation.

Decompilation enables source code reconstruction of binary applications and libraries.
Both security researchers and software engineers may benefit from decompilation as it
facilitates analysis, modification and reconstruction of object code. The applications of
decompilation are versatile, and may include one of the following uses:

• Analyse malware

• Recover source code

• Migrate software from legacy platforms or programming languages

• Optimise existing binary applications

• Discover and mitigate bugs and security vulnerabilities

• Verify compiler output with regards to correctness

• Analyse proprietary algorithms

• Improve interoperability with other software

• Add new features to existing software

As recognised by Edsger W. Dijkstra in his 1972 ACM Turing Lecture (an extract of
which is presented in figure 1), one of the most powerful tools for solving complex prob-
lems in Computer Science is the use of abstractions and separation of concerns. This
paper explores a compositional approach to decompilation which facilitates abstractions
to create a decompilation pipeline of self-contained components. Since each component
interacts through language-agnostic interfaces (well-defined input and output) they may
be written in a variety of programming languages. Furthermore, for each component of
the decompilation pipeline there may exist multiple implementations with their respective
advantages and limitations. The end user (e.g. malware analyst, security researcher or
reverse engineer) may select the components which solves their task most efficiently.

1.1 Project Aim and Objectives

The aim of this project is to facilitate decompilation workflows using composition of
language-agnostic decompilation passes; specifically the reconstruction of high-level con-

1

1.2 Deliverables 1 INTRODUCTION

“We all know that the only mental tool by means of which a very finite piece
of reasoning can cover a myriad cases is called “abstraction”; as a result the
effective exploitation of their powers of abstraction must be regarded as one
of the most vital activities of a competent programmer. In this connection
it might be worthwhile to point out that the purpose of abstracting is not to
be vague, but to create a new semantic level in which one can be absolutely
precise.”

Figure 1: An extract from the ACM Turing Lecture given by Edsger W. Dijkstra in
1972 [3].

trol structures and, as a future ambition, expressions.

To achieve this aim, the following objectives have been identified:

1. Review traditional decompilation techniques, including control flow analysis and
data flow analysis.

2. Critically evaluate a set of Intermediate Representations (IRs), which describes low-
, medium- and high-level language semantics, to identify one or more suitable for
the decompilation pipeline.

3. Analyse the formal grammar (language specification) of the IR to verify that it is
unambiguous. If the grammar is ambiguous or if no formal grammar exists, produce
a formal grammar. This objective is critical for language-independence, as the IR
works as a bridge between different programming languages.

4. Determine if any existing library for the IR satisfies the project requirements; and
if not develop one. These requirements would include a suitable in-memory rep-
resentation, and support for on-disk file storage and arbitrary manipulations (e.g.
inject, delete) of the IR.

5. Design and develop components which identify the control flow patterns of high-
level control structures using control flow analysis of the IR.

6. Develop tools which perform one or more decompilation passes on a given IR. The
tools will be reusable by other programming language environments as their input
and output is specified by a formally defined IR.

7. As a future ambition, design and develop components which perform expression
propagation using data flow analysis of the IR.

1.2 Deliverables

The source code and the report of this project have been released into the public domain1

and are made available on GitHub at https://github.com/decomp/decomp and https:
//github.com/decomp/doc.

The following document has been produced:

• Project report; see objective 1 and 2
1CC0 1.0 Universal: https://creativecommons.org/publicdomain/zero/1.0/

2

https://github.com/decomp/decomp
https://github.com/decomp/doc
https://github.com/decomp/doc
https://creativecommons.org/publicdomain/zero/1.0/

1.3 Disposition 1 INTRODUCTION

And the following system artefacts have been developed:

• Library for interacting with LLVM IR (work in progress); see objective 4
https://github.com/llir/llvm

• Control flow graph generation tool; see objective 5

• Subgraph isomorphism search algorithms and related tools; see objective 5

• Control flow recovery tool; see objective 6

• Go code generation tool (proof of concept); see objective 6

• Go post-processing tool; see objective 6

1.3 Disposition

This report details every stage of the project from conceptualisation to successful com-
pletion. It follows a logical structure and outlines the major stages in chronological order.
A brief summary of each section is presented in the list below.

• Section 1 - Introduction
Introduces the concept of decompilation and its applications, outlines the project
aim and objectives, and summarises its deliverables.

• Section 2 - Literature Review
Details the problem domain, reviews traditional decompilation techniques, and eval-
uates potential intermediate representations for the decompilation pipeline of the
project.

• Section 3 - Related Work
Evaluates projects for translating native code to LLVM IR, and reviews the design
of modern decompilers.

• Section 4 - Methodology
Surveys methodologies and best practices for software construction, and relates them
to the specific problem domain.

• Section 5 - Requirements
Specifies and prioritises the requirements of the project artefacts.

• Section 6 - Design
Discusses the system architecture and the design of each component, motivates the
choice of core algorithms and data structures, and highlights strengths and limita-
tions of the design.

• Section 7 - Implementation
Discusses language considerations, describes the implementation process, and show-
cases how set-backs were dealt with.

• Section 8 - Verification
Describes the approaches taken to validate the correctness, performance and security
of the artefacts.

3

https://github.com/llir/llvm

1.3 Disposition 1 INTRODUCTION

• Section 9 - Evaluation
Assesses the outcome of the project and evaluates the artefacts against the require-
ments.

• Section 10 - Conclusion
Summarises the project outcomes, presents ideas for future work, reflects on per-
sonal development, and concludes with an attribution to the key idea of this project.

4

2 LITERATURE REVIEW

2 Literature Review

This section details the problem domain associated with decompilation, reviews tradi-
tional decompilation techniques, and evaluates a set of intermediate representations with
regards to their suitability for decompilation purposes. To set the stage for binary anal-
ysis, a “hello world” executable is dissected in section 2.1.

2.1 The Anatomy of an Executable

The representation of executables, shared libraries and relocatable object code is stan-
dardised by a variety of file formats which provides encapsulation of assembly instructions
and data. Two such formats are the Portable Executable (PE) file format and the Exe-
cutable and Linkable Format (ELF), which are used by Windows and Linux respectively.
Both of these formats partition executable code and data into sections and assign appro-
priate access permissions to each section, as summarised by table 1. In general, no single
section has both write and execute permissions as this could compromise the security of
the system.

Section name Usage description Access permissions
.text Assembly instructions r-x
.rodata Read-only data r--
.data Data rw-
.bss Uninitialised data rw-

Table 1: A summary of the most commonly used sections in ELF files. The .text section
contains executable code while the .rodata, .data and .bss sections contains data in
various forms.

To gain a better understanding of the anatomy of executables, the remainder of this
section describes the structure of ELF files and presents the dissection of a simple “hello
world” ELF executable, largely inspired by Eric Youngdale’s article on The ELF Object
File Format by Dissection [4]. Although the ELF and PE file formats differ with regards
to specific details, the general principles are applicable to both formats.

In general, ELF files consist of a file header, zero or more program headers, zero or more
section headers and data referred to by the program or section headers, as depicted in
figure 2.

All ELF files starts with the four byte identifier 0x7F, ’E’, ’L’, ’F’ which marks the
beginning of the ELF file header. The ELF file header contains general information
about a binary, such as its object file type (executable, relocatable or shared object), its
assembly architecture (x86-64, ARM, . . .), the virtual address of its entry point which
indicates the starting point of program execution, and the file offsets to the program and
section headers.

Each program and section header describes a continuous segment or section of memory
respectively. In general, segments are used by the linker to load executables into memory

2Original image (CC BY-SA): https://en.wikipedia.org/wiki/File:Elf-layout--en.svg

5

https://en.wikipedia.org/wiki/File:Elf-layout--en.svg

2.1 The Anatomy of an Executable 2 LITERATURE REVIEW

Figure 2: The basic structure of an ELF file.2

with correct access permissions, while sections are used by the compiler to categorise data
and instructions. Therefore, the program headers are optional for relocatable and shared
objects, while the section headers are optional for executables.

To further investigate the structure of ELF files a simple 64-bit “hello world” executable
has been dissected and its content colour-coded. Each file offset of the executable consists
of 8 bytes and is denoted in figure 3 with a darker shade of the colour used by its
corresponding target segment, section or program header. Starting at the middle of
the ELF file header, at offset 0x20, is the file offset (red) to the program table (bright
red). The program table contains five program headers which specify the size and file
offsets of two sections and three segments, namely the .interp (grey) and the .dynamic
(purple) sections, and a read-only (blue), a read-write (green) and a read-execute (yellow)
segment.

Several sections are contained within the three segments. The read-only segment contains
the following sections:

• .interp: the interpreter, i.e. the linker

• .dynamic: array of dynamic entities

• .dynstr: dynamic string table

• .dynsym: dynamic symbol table

• .rela.plt: relocation entities of the PLT

• .rodata: read-only data section

The read-write segment contains the following section:

• .got.plt: Global Offset Table (GOT) of the PLT (henceforth referred to as the
GOT, as this executable only contains one such table)

6

2.1 The Anatomy of an Executable 2 LITERATURE REVIEW

Figure 3: The entire contents of a simple “hello world” ELF executable with colour-coded
file offsets, sections, segments and program headers. Each file offset is 8 bytes in width and
coloured using a darker shade of its corresponding segment, section or program header.

7

2.1 The Anatomy of an Executable 2 LITERATURE REVIEW

And the read-execute segment contains the following sections:

• .plt: Procedure Linkage Table (PLT)

• .text: executable code section

Seven of the nine sections contained within the executable are directly related to dy-
namic linking. The .interp section specifies the linker (in this case “/lib/ld64.so.1”)
and the .dynamic section, an array of dynamic entities containing offsets and virtual ad-
dresses to relevant dynamic linking information. In this case the dynamic array specifies
that “libc.so.6” is a required library, and contains the virtual addresses to the .dynstr,
.dynsym, .rela.plt and .got.plt sections. As noted, even a simple “hello world” exe-
cutable requires a large number of sections related to dynamic linking. Further analysis
will reveal their relation to each other and describe their usage.

The dynamic string table contains the names of libraries (e.g. “libc.so.6”) and identifiers
(e.g. “printf”) which are required for dynamic linking. Other sections refer to these strings
using offsets into .dynstr. The dynamic symbol table declares an array of dynamic
symbol entities, each specifying the name (e.g. offset to “printf” in .dynstr) and binding
information (local or global) of a dynamic symbol. Both the .plt and the .rela.plt
sections refers to these dynamic symbols using array indices. The .rela.plt section
specifies the relocation entities of the PLT; more specifically this section informs the
linker of the virtual address to the .printf and .exit entities in the GOT.

To reflect on how dynamic linking is accomplished on a Linux system, lets review the
assembly instructions of the executable .text and .plt sections, as outlined in listing 1
and 2 respectively.

Listing 1: The assembly instructions of the .text section.
1 text:
2 .start:
3 mov rdi , rodata.hello
4 call plt.printf
5 mov rdi , 0
6 call plt.exit

Listing 2: The assembly instructions of the .plt section.
1 plt:
2 .resolve:
3 push [got_plt.link_map]
4 jmp [got_plt.dl_runtime_resolve]
5 .printf:
6 jmp [got_plt.printf]
7 .resolve_printf:
8 push dynsym.printf_idx
9 jmp .resolve

10 .exit:
11 jmp [got_plt.exit]
12 .resolve_exit:
13 push dynsym.exit_idx
14 jmp .resolve

As visualised in listing 1, the first call instruction of the .text section targets the .printf
label of the .plt section instead of the actual address of the printf function in the libc

8

2.2 Decompilation Phases 2 LITERATURE REVIEW

library. The Procedure Linkage Table (PLT) provides a level of indirection between
call instructions and actual function (procedure) addresses, and contains one entity per
external function, as outlined in listing 2. The .printf entity of the PLT contains a
jump instruction which targets the address stored in the .printf entity of the GOT.
Initially this address points to the next instruction, i.e. the instruction denoted by the
.resolve_printf label in the PLT. Upon the first invocation of printf, the linker replaces
this address with the actual address of the printf function in the libc library. Any
subsequent invocation of printf will target the resolved function address directly.

This method of external function resolution is called lazy dynamic linking as it postpones
the work and only resolves a function once it is actually invoked at runtime. The lazy
approach to dynamic linking may improve performance by limiting the number of symbols
that require resolution. At the same time the eager approach may benefit latency sensitive
applications which cannot afford the cost of dynamic linking at runtime.

A closer look at the instructions denoted by the .resolve_printf label in listing 2 reveals
how the linker knows which function to resolve. Essentially the dl_runtime_resolve
function is invoked with two arguments, namely the dynamic symbol index of the printf
function and a pointer to a linked list of nodes, each referring to the .dynamic section of
a shared object. Upon termination the linked list of the “hello world” process contains
a total of four nodes, one for the executable itself and three for its dynamically loaded
libraries, namely linux-vdso.so.1, libc.so.6 and ld64.so.1.

To summarise, the execution of a dynamically linked executable can roughly be described
as follows. Upon execution the kernel parses the program headers of the ELF file, maps
each segment to one or more pages in memory with appropriate access permissions,
and transfers the control of execution to the linker (“/lib/ld64.so.1”), which was loaded
in a similar fashion. The linker is responsible for instantiating the addresses of the
dl_runtime_resolve function and the aforementioned linked list, both of which are stored
in the GOT of the executable. After this setup is complete the linker transfers control
to the entry point of the executable, as specified by the ELF file header (in this case
the .start label of the .text section). At this point the assembly instructions of the
application are executed until termination and external functions are lazily resolved at
runtime by the linker through invocations to the dl_runtime_resolve function.

2.2 Decompilation Phases

A core principle utilised in decompilers is the separation of concern through the use
of abstractions, and extensive work involves translating into and breaking out of vari-
ous abstraction layers. In general, a decompiler is composed of distinct phases which
parse, analyse or transform the input. These phases are conceptually grouped into three
modules to separate concerns regarding source machine language and target program-
ming language. Firstly, the front-end module parses executable files and translates their
platform-dependent assembly into a platform-independent intermediate representation
(IR). Secondly, the middle-end module performs a set of decompilation passes to lift the
IR, from a low-level to a high-level representation, by reconstructing high-level control
structures and expressions. Lastly, the back-end module translates the high-level IR to a
specific target programming language [2]. Figure 4 gives an overview of the decompilation
modules and visualises their relationship.

9

2.2 Decompilation Phases 2 LITERATURE REVIEW

Figure 4: Firstly, the front-end module accepts several executable file formats (PE, ELF,
. . .) as input and translates their platform-dependent assembly (x86, ARM, . . .) to
a low-level IR. Secondly, the middle-end module lifts the low-level IR to a high-level
IR through a set of decompilation passes. Lastly, the back-end module translates the
high-level IR into one of several target programming languages (C, Go, Python, . . .).

The remainder of this section describes the distinct decompilation phases, most of which
have been thoroughly described by Cristina Cifuentes in her influential paper “Reverse
Compilation Techniques” [2].

2.2.1 Binary Analysis

As demonstrated in section 2.1, parsing even a simple “hello world” executable requires
extensive knowledge of its binary file format (in this case ELF). The binary analysis phase
is responsible for parsing input files of various binary file formats, such as PE and ELF,
and present their content in a uniform manner which preserves the relations between
file contents, virtual addresses and access permissions. Later stages of the decompilation
pipeline builds upon this abstraction to access the file contents of each segment or section
without worrying about the details of the underlying file format. Information about
external symbols, metadata and the computer architecture of the assembly may also be
provided by this abstraction.

2.2.2 Disassembly

The disassembly phase (referred to as the syntactic analysis phase by C. Cifuentes) is
responsible for decoding the raw machine instructions of the executable segments into
assembly. The computer architecture dictates how the assembly instructions and their
associated operands are encoded. Generally CISC architectures (e.g. x86) use variable
length instruction encoding (e.g. instructions occupy between 1 and 15 bytes in x86)
and allow memory addressing modes for most instructions (e.g. arithmetic instructions
may refer to memory locations in x86) [5]. In contract, RISC architectures (e.g. ARM)
generally use fixed-length instruction encoding (e.g. instructions always occupy 4 bytes in
AArch64) and only allow memory access through load-store instructions (e.g. arithmetic
instructions may only refer to registers or immediate values in ARM) [6].

One of the main problems of the disassembly phase is how to separate code from data.
In the Von Neumann architecture the same memory unit may contain both code and
data. Furthermore, the data stored in a given memory location may be interpreted as

10

2.2 Decompilation Phases 2 LITERATURE REVIEW

code by one part of the program, and as data by another part. In contrast, the Harvard
architecture uses separate memory units for code and data [7]. Since the use of the Von
Neumann architecture is wide spread, solving this problem is fundamental for successful
disassemblers.

The most basic disassemblers (e.g. objdump and ndisasm) use linear descent when decod-
ing instructions. Linear descent disassemblers decode instructions consecutively from a
given entry point, and contain no logic for tracking the flow of execution. This approach
may produce incorrect disassembly when code and data are intermixed (e.g. switch tables
stored in executable segments) [2]; as illustrated in figure 5. More advanced disassem-
blers (e.g. IDA) often use recursive descent when decoding instructions, to mitigate this
issue.

Recursive descent disassemblers track the flow of execution and decode instructions from
a set of locations known to be reachable from a given entry point. The set of reachable lo-
cations is initially populated with the entry points of the binary (e.g. the start or main
function of executables and the DllMain function of shared libraries). To disassemble
programs, the recursive descent algorithm will recursively pop a location from the reach-
able set, decode its corresponding instruction, and add new reachable locations from the
decoded instruction to the reachable set, until the reachable set is empty. When decod-
ing non-branching instructions (e.g. add, xor), the immediately succeeding instruction is
known to be reachable (as it will be executed after the non-branching instruction) and its
location is therefore added to the reachable set. Similarly, when decoding branching in-
structions (e.g. br, ret), each target branch (e.g. the conditional branch and the default
branch of conditional branch instructions) is known to be reachable and therefore added
to the reachable set; unless the instruction has no target branches, as is the case with
return instructions. This approach is applied recursively until all paths have reached an
end-point, such as a return instruction, and the reachable set is empty. To prevent cycles,
the reachable locations are tracked and added only once to the reachable set.

1 _start:
2 mov rdi , hello
3 call printf
4 mov rdi , 0
5 call exit
6 ret
7 hello:
8 push qword 0x6F6C6C65 ; "hello"
9 and [rdi+0x6F], dh ; " wo"

10 jc short 0x6D ; "rl"
11 or al , [fs:rax] ; "d\n\0"

(a) Disassembly from objdump and ndisasm3.

1 _start:
2 mov rdi , hello
3 call printf
4 mov rdi , 0
5 call exit
6 ret
7 hello:
8 db "hello world" ,10,0

(b) Disassembly from IDA.

Figure 5: The disassembly produced by a linear descent parser (left) and a recursive
descent parser (right) when analysing a simple “hello world” program that stores the
hello string in the executable segment.

A limitation with recursive descent disassemblers is that they cannot track indirect
branches (e.g. branch to the address stored in a register) without additional informa-

3The Netwide Disassembler: http://www.nasm.us/doc/nasmdoca.html

11

http://www.nasm.us/doc/nasmdoca.html

2.2 Decompilation Phases 2 LITERATURE REVIEW

tion, as it is impossible to know the branch target of indirect branch instructions only by
inspecting individual instructions (e.g. jmp eax gives no information about the value of
eax). One solution to this problem is to utilise symbolic execution engines, which emulate
the CPU and execute the instructions along each path to give information about the val-
ues stored in registers and memory locations. Using this approach, the target of indirect
branch instructions may be derived from the symbolic execution engine by inspecting the
values of registers and memory locations at the invocation site [8]. Symbolic execution
engines are no silver bullets, and introduce a new range of problems; such as cycle ac-
curate modelling of the CPU, idiosyncrasies related to memory caches and instruction
pipelining, and potentially performance and security issues.

Malicious software often utilise anti-disassembly techniques to obstruct malware analy-
sis. One such technique exploits the fact that recursive descent parsers follow both the
conditional and the default branch of conditional branch instructions, as demonstrated
in figure 6. The recursive descent parser cannot decode the target instructions of both
the conditional branch (i.e. fake+1) and the default branch (i.e. fake) of the conditional
branch instruction at line 3, because the conditional branch targets the middle of a jmp
instruction which would be decoded if traversing the default branch. As both branches
cannot be decoded, the recursive descent parser is forced to choose one of them; and
in this case the fake branch was disassembled, thus disguising the potentially malicious
code of the conditional branch [9].

1 _start:
2 xor al, al
3 jz fake+1 ; true -branch always taken
4 fake:
5 db 0xE9 ; jmp instruction opcode
6 mov rdi , hello
7 call printf
8 mov rdi , 0
9 call exit

10 ret
11 hello:
12 db "hello world" ,10,0

(a) Original assembly.

1 _start:
2 xor al, al
3 jz fake+1
4 fake:
5 jmp 0x029FBF4C
6 db 0x40 ,0x00 ,0x00 ,0x00
7 db 0x00 ,0x00 ,0xE8 ,0xCC
8 db 0xFF ,0xFF ,0xFF ,0xBF
9 db 0x00 ,0x00 ,0x00 ,0x00

10 db 0xE8 ,0xD2 ,0xFF ,0xFF
11 db 0xFF ,0xC3 ,0x68 ,0x65
12 db 0x6C ,0x6C ,0x6F ,0x20
13 db 0x77 ,0x6F ,0x72 ,0x6C
14 db 0x64 ,0x0A ,0x00

(b) Disassembly from IDA.

Figure 6: The original assembly (left) contains an anti-disassembly trick which causes
the recursive descent parser to fail (right).

The anti-disassembly technique presented in figure 6 may be mitigated using symbolic
execution. The symbolic execution engine could verify that the conditional branch in-
struction at line 3 always branches to the conditional branch (i.e. fake+1) and never
to the default branch (i.e. fake). The conditional branch instruction may therefore be
replaced with an unconditional branch instruction to fake+1, the target of which cor-
responds to the mov instruction at line 6. Please note that this is inherently a game
of cat-and-mouse, as the anti-disassembly techniques could be extended to rely on net-
work activity, file contents, or other external sources which would require the symbolic
execution environment to be extended to handle such cases.

12

2.2 Decompilation Phases 2 LITERATURE REVIEW

To conclude, the disassembly phase deals with non-trivial problems, some of which are
very difficult to automate. Interactive disassemblers (such as IDA) automate what may
reasonably be automated, and rely on human intuition and problem solving skills to
resolve any ambiguities and instruct the disassembler on how to deal with corner cases;
as further described in section 3.2.

2.2.3 Control Flow Analysis

The control flow analysis stage is responsible for analysing the control flow (i.e. flow of
execution) of source programs to recover their high-level control flow structures. The
control flow of a given function is determined by its branching instructions and may
be expressed as a control flow graph (CFG), which is a connected graph with a single
entry node (the function entry point) and zero or more exit nodes (the function return
statements). A key insight provided by C. Cifuentes and S. Moll is that high-level control
flow primitives (such as 1-way conditionals and pre-test loops) may be expressed using
graph representations [2, 10], as illustrated in figure 7. The problem of recovering high-
level control flow primitives from CFGs may therefore be reformulated as the problem of
identifying subgraphs (i.e. the graph representation of a high-level control flow primitive)
in graphs (i.e. the CFG of a function) without considering node names. This problem is
commonly referred to as subgraph isomorphism search, the general problem of which is
NP-hard [11]. However, the problem which is required to be solved by the control flow
analysis stage may be simplified by exploiting known properties of CFGs (e.g. connected
graph with a single entry node).

if A {
B

}
C

(a) 1-way conditional;
entry: A, exit: C.

if A {
B

} else {
C

}
D

(b) 2-way conditional; en-
try: A, exit: D.

if A {
B
return

}
C

(c) 1-way condition with re-
turn statement in body; en-
try: A, exit: C.

while A {
B

}
C

(d) pre-test loop; entry: A,
exit: C.

do {
} while A
B

(e) post-test loop; entry: A,
exit: B.

A
B

(f) consecutive state-
ments; entry: A, exit:
B.

Figure 7: The pseudo-code and graph representation of various high-level control flow
primitives with denoted entry and exit nodes.

When the subgraph isomorphism of a high-level control flow primitive has been iden-
tified in the CFG of a function, it may be replaced by a single node that inherits the
predecessors of the subgraph entry node and the successors of the subgraph exit node; as

13

2.3 Evaluation of Intermediate Representations 2 LITERATURE REVIEW

illustrated in figure 8. By recording the node names of the identified subgraphs and the
name of their corresponding high-level control flow primitives, the high-level control flow
structure of a CFG may be recovered by successively identifying subgraph isomorphisms
and replacing them with single nodes until the entire CFG has been reduced into a sin-
gle node; as demonstrated by the step-by-step simplification of a CFG in appendix G.
Should the control flow analysis fail to reduce a CFG into a single node, the CFG is
considered irreducible with regards to the supported high-level control flow primitives
(see figure 7). To structure arbitrary irreducible graphs, S. Moll applied node splitting
(which translates irreducible graphs into reducible graphs by duplicating nodes) to pro-
duce functionally equivalent target programs [10]. In contrast, C. Cifuentes focused on
preserving the structural semantics of the source program (which may be required in
forensics investigations), and therefore used goto-statements in these cases to produce
unstructured target programs.

Figure 8: The left side illustrates the CFG of a function in which the graph representation
of a 1-way conditional (see figure 7a) has been identified, and the right side illustrates
the same CFG after the subgraph has been replaced with a single node (i.e. if0) that
inherits the predecessors of the subgraph entry node (i.e. 3) and the successors of the
subgraph exit node (i.e. list0).

2.3 Evaluation of Intermediate Representations

Decompilers face similar problems as both binary analysis tools and compilers. Therefore,
it seems reasonable that the intermediate representations (IRs) used in these domains
may be well suited for decompilation purposes. This section evaluates one IR from each
domain with regards to their suitability for recovering high-level control flow primitives
(objective 5) and expressions (objective 7).

2.3.1 REIL

The Reverse Engineering Intermediate Language (REIL) is a very simple and platform-
independent assembly language. The REIL instruction set contains only 17 different
instructions, each with exactly three (possibly empty) operands. The first two operands
are always used for input and the third for output (except for the conditional jump
instruction which uses the third operand as the jump target). Furthermore, each instruc-
tion has at most one effect on the global state and never any side-effects (such as setting
flags) [12, 13]. Thanks to the simplicity of REIL, a full definition of its instruction set has

14

2.3 Evaluation of Intermediate Representations 2 LITERATURE REVIEW

been provided in appendix A, which includes examples of each instruction and defines
their syntax and semantics (in pseudo C-code).

When translating native assembly (e.g. x86) into REIL, the original addresses of each
instruction is left shifted by 8 bits to allow 256 REIL instructions per address. Each
native instruction may therefore be translated into one or more REIL instructions (at
most 256), which is required to correctly map the semantics of complex instructions with
side-effects. This systematic approach of deriving instruction addresses has a fundamental
implication, REIL supports indirect branches (e.g. call rax) by design.

The language was originally designed to assist static code analysis and translators from
native assembly (x86, PowerPC-32 and ARM-32) to REIL are commercially available.
However, the project home page has not been updated since Google acquired zynamics
in 2011. Since then approximately 10 papers have been published which references REIL
and the adaptation of the language within the open source community seems limited.
As of the 4th of January 2015, only three implementations existed on GitHub (two in
Python45 and one in C6), and the most popular had less than 25 watchers, 80 stars and
15 forks.

A fourth implementation was released at the 15th of March 2015 however, and in less than
two weeks OpenREIL had become the most popular REIL implementation on GitHub.
The OpenREIL project extends the original REIL instruction set with signed versions of
the multiplication, division and modulo instructions, and includes convenience instruc-
tions for common comparison and binary operations. OpenREIL is currently capable of
translating x86 executables to REIL, and aims to include support for ARM and x86-64 in
the future. Furthermore, the OpenREIL project intends to implement support for trans-
lating REIL to LLVM IR, thus bridging the two intermediate representations [14].

2.3.2 LLVM IR

The LLVM compiler framework defines an intermediate representation called LLVM IR,
which works as a language-agnostic and platform-independent bridge between high-level
programming languages and low-level machine architectures. The majority of the opti-
misations of the LLVM compiler framework target LLVM IR, thus separating concerns
related to the source language and target architecture [15].

There exist three isomorphic forms of LLVM IR; a human-readable assembly represen-
tation, an in-memory data structure, and an efficient binary bitcode file format. Several
tools are provided by the LLVM compiler framework to convert LLVM IR between the
various representations. The LLVM IR instruction set is comparable in size to the MIPS
instruction set, and both use a load/store architecture [16, 17].

Function definitions in LLVM IR consist of a set of basic blocks. A basic block is a
sequence of zero or more non-branching instructions (e.g. add), followed by a terminating
instruction (i.e. a branching instruction; e.g. br, ret). The key idea behind a basic
block is that if one instruction of the basic block is executed, then all instructions are

4Binary Analysis and RE Framework: https://github.com/programa-stic/barf-project
5REIL translation library: https://github.com/c01db33f/pyreil
6Binary introspection toolkit: https://github.com/aoikonomopoulos/bit

15

https://github.com/programa-stic/barf-project
https://github.com/c01db33f/pyreil
https://github.com/aoikonomopoulos/bit

2.3 Evaluation of Intermediate Representations 2 LITERATURE REVIEW

executed. This concept vastly simplifies control flow analysis as multiple instructions
may be regarded as a single unit [10].

LLVM IR is represented in Static Single Assignment (SSA) form, which guarantees that
every variable is assigned exactly once, and that every variable is defined before being
used. These properties simplifies a range of optimisations (e.g. constant propagation,
dead code elimination). For the same reasons, the Boomerang decompiler uses an IR in
SSA form to simplify expression propagation [18].

In recent years other research groups have started developing decompilers [10, 19] and
reverse engineering components [8] which rely on LLVM IR. There may exist an IR which
is more suitable in theory, but in practice the collaboration and reuse of others’ efforts
made possible by the vibrant LLVM community is a strong merit in and of itself.

To conclude the evaluation, LLVM IR has been deemed suitable for the decompilation
pipeline. The middle-end of the decompilation pipeline requires an IR which provides
a clear separation between low-level machine architectures and high-level programming
languages, and LLVM IR was designed with the same requirements in mind. Furthermore,
the wide range of tools and optimisations provided by the LLVM compiler framework
may facilitate decompilation workflows. The control flow analysis (see section 2.2.3) of
the decompilation pipeline will benefit from the notion of basic blocks in LLVM IR.
Similarly, the data flow analysis will benefit from the SSA form of LLVM IR.

16

3 RELATED WORK

3 Related Work

This section evaluates a set of open source projects which may be utilised by the front-end
of the decompilation pipeline, to translate native code into LLVM IR (see section 3.1).
Section 3.2 reviews the design of the de facto decompiler used in industry, to gain a better
understanding of how it solves the non-trivial problems of decompilation (e.g. how to
separate code from data).

3.1 Native Code to LLVM IR

There exist several open source projects for translating native code (e.g. x86, ARM) into
LLVM IR. This section presents three such projects; Dagger, Fracture and MC-Semantics.
The Fracture project is still in early development (e.g. recursive descent disassembler is
on the roadmap), but shows a lot of promise and is currently capable of translating ARM
binaries into LLVM IR [20]. The Dagger and MC-Semantics projects are reviewed in
section 3.1.1 and 3.1.2, respectively.

3.1.1 Dagger

The Dagger project is a fork of the LLVM compiler framework, which extends its capa-
bilities by implementing a set of tools and libraries for translating native code into LLVM
IR. To facilitate the analysis of native code, the disassembly library of LLVM was ex-
tended to include support for recursive descent parsing (see section 2.2.2). Some of these
changes have already been submitted upstream and merged back into the LLVM project.
Once mature, the Dagger project aims to become a full part of the LLVM project.

The LLVM compiler framework defines a platform-independent representation of low-
level machine instructions called MC-instructions (or MCInst), which may be used to
describe the semantics of native instructions. For each supported architecture (e.g. x86-
64) there exists a table (in the TableGen format) which maps the semantics of native
machine instructions to MC-instructions. Similar to other project (e.g. Fracture and
MC-Semantics), the Dagger project uses these tables to disassemble native code into
MC-instructions as part of the decompilation process. The MC-instructions are then
lazily (i.e. without optimisation) translated into LLVM IR instructions [21]. Appendix C
demonstrates the decompilation of a simple Mach-o execute to LLVM IR, using using the
Dagger project.

3.1.2 MC-Semantics

The MC-Semantics project may be used to decompile native code into LLVM IR. MC-
Semantic conceptually consists of two components which separate concerns related to the
disassembly stage (see section 2.2.2) from those of the intermediate code generation stage.
Firstly, the control flow recovery component analyses binary files (e.g. ELF, PE files) and
disassembles their machine instructions (e.g. x86 assembly) to produce a serialized CFG
(in the Google Protocol Buffer format), which stores the basic blocks of each function and
the native instructions contained within. Secondly, the instruction translation component

17

3.2 Hex-Rays Decompiler 3 RELATED WORK

converts the native instructions of the serialized CFG into semantically equivalent LLVM
IR.

The clear separation between the two decompilation stages in MC-Semantics has enabled
two independent implementations of the control flow recovery component in two different
programming languages (i.e. C++ and Python), thus validating the language-agnostic
aspects of its design. The C++ component is called bin_descend and it implements a
recursive descent disassembler which translates the native code into serialized CFGs. As
described in section 2.2.2, implementing a disassembler which correctly separates code
from data is made difficult by a range of problems; e.g. indirect branches, intermixed
code and data in executable segments, and callback functions. Interactive disassemblers
(such as IDA) solve these issues by relying on human problem solving skills to resolve
ambiguities and inform the disassembler. The second implementation of the control
flow recovery component is an IDAPython script which produces serialized CFGs from
IDA Pro [8]. The interaction between the components of the MC-Semantics project is
illustrated in figure 9, and further demonstrated in appendix D.

Figure 9: The MC-Semantics project is conceptually divided into two independent com-
ponents. Firstly, the control flow recovery component disassembles binary files (e.g. exe-
cutables and shared libraries) and stores their native instructions in serialized CFGs (in
Google Protocol Buffer format). Secondly, the instruction translation component trans-
lates the native instructions of the serialized CFG into semantically equivalent LLVM
IR.

3.2 Hex-Rays Decompiler

The Interactive Disassembler (IDA) and the Hex-Rays decompiler are the de facto tools
used in industry for binary analysis, malware forensics and reverse engineering [22]. The
interactive capabilities of IDA enables users to guide the disassembler through non-trivial
problems (e.g. anti-disassembly techniques used by malware) related to the disassembly
phase, some of which have been outlined in section 2.2.2. This approach turns out to be
very powerful, as it is facilitated by human ingenuity and problem solving skills.

The Hex-Rays decompiler is implemented on top of IDA as a plugin, which separates
concerns related to the disassembly phase from the later decompilation stages. The
decompilation process of the Hex-Rays decompiler is divided into several distinct stages.
Firstly, the microcode generation stage translates machine instructions into Hex-Rays
Microcode, which is a RISC-like IR that is similar to REIL (see section 2.3.1). Secondly,
the optimisation stage removes dead code (e.g. unused conditional flag accesses) from
the unoptimised IR. Thirdly, the data flow analysis tracks the input and output registers
of functions, to determine their calling conventions. Fourthly, the structural analysis

18

3.2 Hex-Rays Decompiler 3 RELATED WORK

stage analyses the CFGs of functions to produce a control tree containing the recovered
high-level control flow primitives. The control flow recovery algorithm of the Hex-Rays
decompiler handles irreducible graphs by generating goto-statements, which is similar to
the approach taken by C. Cifuentes (see section 2.2.3). Fifthly, the pseudocode generation
stage translates the IR into unpolished pseudocode (in C syntax). Sixthly, the pseudocode
transformation stage improves the quality of the unpolished pseudocode by applying
source code transformations; e.g. translate while-loops into for-loops by locating the
initialisation and post-statements of the loop header. Lastly, the type analysis stage
analyses the generated pseudocode to determine and propagate variable types, by building
and solving type equations [23].

Unlike other decompilers, the type analysis stage is the last stage of the Hex-Rays de-
compiler. According to the lead developer of Hex-Rays, one benefit with postponing
the type analysis stage (which is normally conducted in the middle-end rather than the
back-end), is that more information is available to guide the type recovery and enforce
rigid constraints on the type equations. A major drawback with this approach is that
the type analysis has to be reimplemented for every back-end.

19

4 METHODOLOGY

4 Methodology

No single methodology was used for this project, but rather a combination of software de-
velopment techniques (such as test-driven development and continuous integration) which
have been shown to work well in practice for other open source projects. This project has
been developed in the open from day one, using public source code repositories and issue
trackers. To encourage open source adaptation, the software artefacts and the project
report have been released into the public domain, and are made available on GitHub; as
further described in section 1.2. Throughout the course of the project a public discussion
has been held with other members of the open source community to clarify the require-
ments and validate the design of the LLVM IR library, and to investigate inconsistent
behaviours in the LLVM reference implementation; as described in section 7.2.

4.1 Operational Prototyping

The software artefacts were implemented using two distinct stages. The aim of the first
stage was to get a better understanding of the problem domain, to identify suitable data
structures, and to arrive at a solid approach for solving the problem. To achieve these
objectives, a set of throwaway prototypes (see section 4.1.1) were iteratively implemented,
discarded and redesigned until the requirements of the artefact were well understood and
a mature design had emerged. The aim of the second stage was to develop a production
quality software artefact based on the insights gained from the first stage. To achieve this
objective, evolutionary prototyping (see section 4.1.2) was used to develop a solid founda-
tion for the software artefact and incrementally extend its capabilities by implementing
one feature at the time, starting with the features that were best understood.

This approach is very similar to the operational prototyping methodology, which was
proposed by A. Davis in 1992. One important concept in operational prototyping is
the notion of a quality baseline, which is implemented using evolutionary prototyping
and represents a solid foundation for the software artefact. Throwaway prototypes are
implemented on top of the quality baseline for poorly understood parts of the system,
to gain further insight into their requirements. The throwaway prototypes are discarded
once their part of the system is well-understood, at which point the well-understood parts
are carefully reimplemented and incorporated into the evolutionary prototype to establish
a new quality baseline [24]. In summary, throwaway prototyping is used to identify good
solutions to problems, while evolutionary prototyping is used to implement identified
solutions.

A major benefit with this approach is that it makes it easy to track the evolution of the
design, by referring back to the throwaway prototypes which gave new insight into the
problem domain; as demonstrated when tracking the evolution of the subgraph isomor-
phism search algorithm in section 7.4. A concrete risk with operational prototyping is
that throwaway prototypes may end up in production systems, if not discarded as in-
tended. As mentioned in section 4.1.1, the throwaway prototypes enable rapid iteration
cycles by ignoring several areas of quality software (e.g. maintainability, efficiency and
usability) and should therefore never end up in production systems. The use of revision
control systems could help mitigate this risk, as they tracks old versions of the source

20

4.2 Continuous Integration 4 METHODOLOGY

code which may lower the psychological threshold for removing code (e.g. the code is not
permanently removed, and may later be recovered if needed).

4.1.1 Throwaway Prototyping

Throwaway prototyping may be used in the early stages of development to gain insight
into a problem domain, by rapidly implementing prototypes which will be discarded upon
completion. These prototypes aim to challenge design decisions, stress test implementa-
tion strategies, identify further research requirements, and provide a better understanding
and intuition for the problem domain and potential solutions. Throwaway prototypes are
developed in an informal manner and are not intended to become part of the final arte-
fact. This allows rapid iterations, as several areas of quality software (e.g. maintainability,
efficiency and usability) may be ignored. When utilised appropriately, throwaway pro-
totyping makes the development very time effective as costly changes are applied early
on [24].

4.1.2 Evolutionary Prototyping

Evolutionary prototyping focuses on implementing the parts of the system which are well
understood, as acknowledged by the quote from A. Davis presented in figure 10. This
is in direct contrast to throwaway prototyping (see section 4.1.1), which aims to provide
insight into the requirements of the poorly understood parts of the system. From the
initial implementation, evolutionary prototypes are built as robust systems which evolve
over time. The evolutionary prototypes may lack functionality, but the functionality they
implement is generally of high enough quality to be used in production systems [24].

“. . . evolutionary prototyping acknowledges that we do not understand all the
requirements and builds only those that are well understood.”

Figure 10: An extract from Operational prototyping: A new development approach by A.
Davis in 1992 [24].

4.2 Continuous Integration

The Continuous Integration (CI) practice originated from the Extreme Programming
methodology [25] but has reached a much broader audience in recent years. Today most
large scale software projects rely on CI server farms to continuously compile and test new
versions of the source code. This project makes heavy use of CI to monitor the build
status, test cases and code coverage of each software artefact, as further described in
section 8.4.

21

5 REQUIREMENTS

5 Requirements

The requirements of each deliverable have been outlined in the succeeding subsections,
and are categorised using MoSCoW prioritization [26]; a definition of which is presented
in table 2. Each requirement is directly related to an objective as indicated by the require-
ments tables of the deliverables. The only objectives not covered by these requirements
are objective 1, 2 and 3 which relate to the literature review, and objective 7 which was
intentionally left as a future ambition.

Priority Description
MUST An essential requirement that must be satisfied
SHOULD An important requirement that should be satisfied if possible
COULD A desirable requirement that could be satisfied but it is not necessary
WON’T A future requirement that will not be satisfied in this release

Table 2: A summary of the MoSCoW (MUST, SHOULD, COULD, WON’T) priorities.

5.1 LLVM IR Library

The LLVM IR language defines several primitives directly related to code optimisation
and linking, neither of which convey any useful information for the decompilation pipeline.
It is therefore sufficient for this project to support a subset of the LLVM IR language
and the relevant requirements should be interpreted as referring to a subset of the lan-
guage.

The control flow recovery tool interacts with other components using LLVM IR. It is
therefore required to support reading from and writing to at least one of the represen-
tations of LLVM IR. The representations of LLVM IR are isomorphic and the standard
llvm-as and llvm-dis tools from the LLVM distribution may be used to convert between
the assembly language and bitcode representation of LLVM IR. Access to the bitcode rep-
resentation (R6 and R7) has therefore been deferred in favour of the assembly language
representation (R1 and R2) which has the benefit of being human-readable.

The control flow analysis library will inspect and manipulate an in-memory representa-
tion of LLVM IR (R3) to locate high-level control flow patterns and store these findings
respectively. Rather than working with sequential lists, the control flow analysis algo-
rithms will operate on CFGs of basic blocks (R4). To facilitate the implementation and
debugging of these algorithms, a visual representation of the CFGs would be beneficial
(R5).

To guarantee the language-agnostic interaction between components, objective 3 stated
that a formal grammar for the LLVM IR had to be located or produced (R8). Pre-
vious efforts have only managed to produce formal grammars for subsets of the LLVM
IR language [27, 28] and no such grammar has been officially endorsed. The difficult
nature of producing a formal grammar only became apparent after discussions with the
project supervisor. With this in mind, objective 3 has been re-evaluated as a future
ambition.

22

5.2 Control Flow Analysis Library 5 REQUIREMENTS

Obj. Req. Priority Description
4 R1 MUST Read the assembly language representation of LLVM IR
4 R2 MUST Write the assembly language representation of LLVM IR
4 R3 MUST Interact with an in-memory representation of LLVM IR
4 R4 MUST Generate CFGs from LLVM IR basic blocks
4 R5 COULD Visualise CFGs using the DOT graph description language
4 R6 WON’T Read the bitcode representation of LLVM IR
4 R7 WON’T Write the bitcode representation of LLVM IR
3 R8 WON’T Provide a formal grammar of LLVM IR

Table 3: Requirements of the LLVM IR library.

5.2 Control Flow Analysis Library

A decision was made early on to only support decompilation of compiler generated code
from structured high-level languages (R9). Support for arbitrary, unstructured and obfus-
cated code has been intentionally omitted (R18) to avoid a myriad of special cases.

The control flow analysis library must recover the high-level control flow primitives of pre-
test loops (R10), infinite loops (R11), 1-way conditionals (R12) and 2-way conditionals
(R13), as these are found in virtually every high-level language today [2]. Post-test
loops (R14) and n-way conditionals (R15) are also common - but not found in every
language (e.g. Go has no do-while loops and Python has no switch statements) -
and should therefore be recovered. Support for multi-exit loops (R16) and nested loops
(R17) could be included if time permits. The recovery of compound boolean expressions
is intentionally deferred (R19) as it would require analysis of instructions within basic
blocks in addition to the CFG analysis.

Obj. Req. Priority Description
5 R9 MUST Support analysis of reducible graphs
5 R10 MUST Recover pre-test loops (e.g. while)
5 R11 MUST Recover infinite loops (e.g. while(TRUE))
5 R12 MUST Recover 1-way conditionals (e.g. if)
5 R13 MUST Recover 2-way conditionals (e.g. if-else)
5 R14 SHOULD Recover post-test loops (e.g. do-while)
5 R15 SHOULD Recover n-way conditionals (e.g. switch)
5 R16 COULD Recover multi-exit loops
5 R17 COULD Recover nested loops
5 R18 WON’T Support analysis of irreducible graphs
5 R19 WON’T Recover compound boolean expressions

Table 4: Requirements of the control flow analysis library.

5.3 Control Flow Recovery Tool

The primary intention of this project is to create self-contained components which may
be used in the decompilation pipelines of other projects. It is therefore of vital impor-

23

5.3 Control Flow Recovery Tool 5 REQUIREMENTS

tance that the components are able to interact with tools written in other programming
languages (R21). The control flow recovery tool is one such component which aims to
recover a set of high-level control flow primitives from LLVM IR (R20).

Obj. Req. Priority Description
6 R20 MUST Identify high-level control flow primitives in LLVM IR
6 R21 MUST Support language-agnostic interaction with other components

Table 5: Requirements of the control flow recovery tool.

24

6 DESIGN

“The whole is more than the sum of its parts.” — Anonymous

6 Design

The principle of separation of concern has had a core influence on the design of the
decompilation system. It has motivated a system architecture based on the composition
of independent and self-contained components. End-users may either use the individual
component in separation, or combine a set of components into a custom decompilation
pipeline.

Several smaller components may conceptually be arranged in a pipeline of stages which
transform, massage or interpret the input in a certain way to solve larger tasks. A well
composed pipeline is capable of solving more complex problems than each of its com-
ponents, problems which may not even have been envisioned by the original component
authors [29]. This idea is embodied in the Unix philosophy and it has influenced soft-
ware construction profoundly [30]. Furthermore, systems which expose their individual
components to end-users facilitate dynamic workflows, as they enable users to adapt and
extend each part of the system by adding, removing, replacing or refining components in
one or more stages of the pipeline.

To enforce a strict separation of concerns, each component is given access to the least
amount of information required to successfully accomplish its task (e.g. the control flow
analysis stage operates on CFGs and is unaware of the underlying code).

The design of the decompilation system must allow language-agnostic interaction between
components written in different programming languages (refer to the aim of the project in
section 1.1). This requirement has been satisfied by communicating through well-defined
input and output (e.g. JSON, DOT, LLVM IR). A more detailed view of the system
architecture is presented in section 6.1.

6.1 System Architecture

The decompilation pipeline conceptually consists of three modules which separate the
general decompilation tasks (e.g. control flow analysis) from concerns related to the
source language and the target language. Firstly, the front-end translates a variety of
source languages (e.g. x86 or ARM assembly, C or Haskell source code, . . .) to LLVM IR
by utilizing several independent open source projects. Secondly, the middle-end structures
the LLVM IR by identifying high-level control flow primitives in the CFGs generated from
the intermediate representation. Lastly, the back-end translates the structured LLVM
IR into a high-level target programming language (e.g. Go). The interaction between
these modules is visualised in figure 11, and the individual components of the front-
end, middle-end and back-end modules are further described in section 6.2, 6.3 and 6.4
respectively.

The main benefit with this decompiler architecture is that it scales well when imple-
menting support for additional source languages (e.g. MIPS or PowerPC assembly) and
target languages (e.g. Python), as the general decompilation tasks only have to be im-
plemented once. The decompiler architecture is an adaptation of the one presented by

25

6.2 Front-end Components 6 DESIGN

Figure 11: The front-end of the decompilation pipeline translates a variety of inputs (e.g.
native code or source code) to LLVM IR; the middle-end structures the LLVM IR through
control flow analysis; and the back-end translates the structured LLVM IR to a high-level
programming language (e.g. Go).

C. Cifuentes back in 1994 (as described in section 2.2), which was heavily inspired by
the architecture of compilers that separated general optimisation tasks (e.g. constant
propagation) from concerns related to the source programming language (e.g. C) and the
target computer architecture (e.g. x86). The compiler architecture has been proven so
effective at separating concerns that it remains in use today by several production-quality
compilers [15, 31].

6.2 Front-end Components

The front-end module is responsible for converting a variety of inputs into LLVM IR.
Two common scenarios involve converting binary files (e.g. executables, shared libraries
and relocatable object code) and converting source code (e.g. C, Haskell, Rust, . . .)
into LLVM IR. The first scenario is presented in section 6.2.1 and the second in sec-
tion 6.2.2.

6.2.1 Native Code to LLVM IR

There exist several open source projects which translate native code (e.g. x86 assembly
of shared libraries in the PE file format) into LLVM IR. Three such projects have been
reviewed in section 3.1, which support different input file formats and machine architec-
tures. These projects may be used as-is by the front-end module to translate low-level
source languages into LLVM IR, as illustrated in figure 12.

6.2.2 Compilers

One important aspect of utilizing the IR of a compiler framework, is that the decompila-
tion pipeline automatically gains support for transpilation (i.e. translating one program-
ming language into another) in addition to reverse compilation. An increasing number
of open source compilers (e.g. Clang, GHC, rustc) are capable of translating a range of
source languages (e.g. C, Haskell, Rust) into LLVM IR. These compilers may be used

26

6.2 Front-end Components 6 DESIGN

Figure 12: The three open source projects MC-Semantics, Dagger and Fracture translate
native code of various architectures (e.g. x86, x86-64 and ARM) and file formats (e.g.
ELF, PE, COFF and Mach-o) to LLVM IR.

as-is by the front-end module (see figure 13), thereby extending the supported source
languages of the decompilation pipeline. Using this approach, the decompilation pipeline
may translate n source languages into m target languages by implementing n + m front-
end and back-end modules, instead of n ·m transpilers.

Figure 13: Several open source compilers translate high-level programming languages into
LLVM IR. Three such compilers are Clang, the Glasgow Haskell Compiler and the Rust
compiler which translate C, Haskell and Rust respectively into LLVM IR.

Another important aspect of utilizing LLVM IR, is that a wide range of optimisations
have been implemented already by the LLVM compiler framework. This allows the front-
end components to focus on translating the source languages into LLVM IR, without
having to worry about producing highly optimised output. The LLVM IR may later be
optimised by invoking the opt tool of LLVM to remove dead code, propagate constants,
and promote memory accesses to registers, for instance.

27

6.3 Middle-end Components 6 DESIGN

6.3 Middle-end Components

The middle-end module is responsible for lifting the low-level IR generated by the front-
end to a higher level. This is achieved through a set of decompilation stages, which iden-
tify high-level control flow primitives and, as a future ambition, propagate expressions.
The former decompilation stage consists of two self-contained components which sepa-
rate concerns related to the control flow analysis from the underlying details of LLVM IR.
The first component generates unstructured CFGs from LLVM IR, as further described
in section 6.3.1. And the second component structures the generated CFGs by identifying
high-level control flow primitives, as further described in section 6.3.2. The interaction
between the front-end, the ll2dot and restructure tools of the middle-end and the
back-end is illustrated in figure 14.

Figure 14: The middle-end module performs a control flow analysis on the LLVM IR in
two steps. Firstly, the ll2dot tool generates unstructured CFGs (in the DOT file format)
from LLVM IR. Secondly, the restructure tool produces a structured CFG (in JSON
format) by identifying high-level control flow primitives in the unstructured CFG.

6.3.1 Control Flow Graph Generation

The control flow graph generation component generates a CFG for each function of a
given LLVM IR assembly file. As described in section 2.3.2, a function definition in
LLVM IR consists of a set of basic blocks; and a basic block consists of zero or more non-
branching instructions followed by a terminating instruction (such as br or ret) which
changes the control flow. Therefore, the control flow graph generation component may
focus on analysing the last instruction of each basic block, as they will determine the
control flow.

To generate the CFG of a given function, a directed graph is created and populated with
one node per basic block, and with zero or more directed edges between the nodes of the
graph. The node names are determined by the basic block labels, and the directed edges
are determined by the terminating instructions, as illustrated in figure 15.

The ll2dot tool generates CFGs from LLVM IR in the DOT file format, which is a
well-defined textual representation of graphs used by the Graphviz project. One benefit
of expressing CFGs in this format, is that the existing Graphviz tools may be facilitated
to produce image representations of the CFGs; as demonstrated in appendix F.

28

6.3 Middle-end Components 6 DESIGN

1 define i32 @f(i1 %cond) {
2 foo:
3 br i1 %cond , label %bar , label %baz
4 bar:
5 ret i32 42
6 baz:
7 ret i32 37
8 }

Figure 15: The return instructions of basic block bar and baz produces no directed edges,
while the conditional branch instruction of basic block foo produces two directed edges
in the CFG, one for each target branch (i.e. bar and baz).

6.3.2 Control Flow Analysis

The key idea behind the control flow analysis (see section 2.2.3), is that high-level control
flow primitives may be represented using directed graphs. The problem of structuring
low-level code may therefore be rephrased as the problem of identifying subgraphs (e.g.
the graph representation of high-level control flow primitives) in graphs (e.g. the CFGs
of low-level code) without considering node names, as illustrated in figure 16. This
problem is generally referred to as subgraph isomorphism search, which has been well
studied [11]. Rephrasing the problem in this manner aligns with the design principle of
giving each component access to the least amount of information required to successfully
accomplish its task. The control flow analysis component is only given access to control
flow information (e.g. CFGs), and is oblivious of the underlying LLVM IR. This enables
the component to be reused as-is when analysing the control flow of other languages, such
as REIL.

if A {
B

}
C

Figure 16: The left side contains the pseudo-code (top left) and graph representation
(bottom left) of an if-statement; if A is true then do B followed by C, otherwise do C.
The right side highlights (in red) an identified isomorphism of the if-statement’s graph
representation, in the CFG of the main function presented in appendix E.

The restructure tool uses subgraph isomorphism search algorithms to locate isomor-
phisms of the graph representations of high-level control flow primitives in the CFG of a
given function. The CFG is simplified by recursively replacing the identified subgraphs
with single nodes until the entire CFG has been reduced into a single node; a step-by-step
demonstration of which is presented in appendix G. By recoding the node names of the

29

6.4 Back-end Components 6 DESIGN

identified subgraph isomorphisms and the name of their corresponding high-level control
flow primitives, a structured CFG may be produced in which all nodes are known to
belong to a high-level control flow primitive; as demonstrated in appendix H.

The pseudo-code and graph representations of the supported high-level control flow prim-
itives are presented in figure 7 of section 2.2.3. Should the control flow analysis fail to
reduce a CFG into a single node, the CFG is considered irreducible with regards to the
supported high-level control flow primitives, in which case a structured CFG cannot be
produced.

The restructure tool relies entirely on subgraph isomorphism search to produce struc-
tured CFGs (in JSON format) from unstructured CFGs (in the DOT file format). The
supported high-level control flow primitives are defined using DOT files, thus promoting a
data-driven design which separates data regarding the primitives from the implementation
of the restructure tool. A major benefit with this approach is that the restructure
tool may search for any high-level control flow primitive that can be expressed in the
DOT file format, without any modification to the source code of restructure.

One limitation with this approach is that it does not support graph representations
of high-level control flow primitives with a variable number of nodes, as they cannot
be described in the DOT file format. For this reason, the restructure tool does not
support the recovery of n-way conditionals (e.g. switch-statements). Furthermore, the
current design enforces a single-entry/single-exit invariant on the graph representation of
high-level control flow primitives. This prevents the recovery of infinite loops, as their
graph representation has no exit node. A discussion of how these issues may be mitigated
in the future is provided in section 10.2.1.

6.4 Back-end Components

The back-end module translates structured LLVM IR into a target high-level program-
ming language, using two distinct stages. Firstly, the code generation stage translates
LLVM IR into unpolished Go code by converting the individual instructions into equiv-
alent Go statements and creating high-level control flow primitives for the various basic
blocks, using the information of the structured CFGs (see section 6.3.2). Secondly, the
post-processing stage improves the quality of the unpolished Go code, through a series
of source code transformations. The interaction between the middle-end, and the ll2go
and go-post tools of the back-end is illustrated in figure 17.

The clear distinction between the two back-end stages aligns with the design principle of
separation of concern. The code generation stage may focus on converting LLVM IR into
equivalent Go code, without having to worry about the quality of the produced code.
Similarly, the post-processing stage may focus on simplifying the Go code and make it
more idiomatic, without any knowledge of the underlying LLVM IR. This enables the
post-processing component to be reused as-is by other projects to improve the quality of
Go code.

A tighter integration between the two stages could potentially produce a higher quality
output, but there are no known issues preventing the decoupled stages from producing
output of equivalent quality.

30

6.4 Back-end Components 6 DESIGN

Figure 17: The back-end module decompiles structured LLVM IR into Go source code,
using two components. The ll2go tool translates structured LLVM IR assembly into
unpolished Go code, which is post-processed by the go-post tool to improve the quality
of the output.

The decompilation pipeline aims to keep the back-end module as simple as possible, by
delegating general decompilation tasks (e.g. control flow analysis, data flow analysis) to
the middle-end module. This reduces the efforts required to implement additional back-
ends, which add support for new target programming languages (e.g. Python).

6.4.1 Post-processing

The post-processing stage post-processes the unpolished Go source code from the earlier
stages of the decompilation pipeline, by applying a set of source code transformations.
The go-post tool improves the quality of Go source code by declaring unresolved iden-
tifiers, applying Go conventions for exit status codes, propagating temporary variables
into expressions, simplifying binary operations, removing dead assignment statements,
and promoting the initialisation statement and post-statement of for-loops to the loop
header; as demonstrated by the step-by-step refinement of the unpolished source code in
presented appendix J.

31

7 IMPLEMENTATION

7 Implementation

This section motivates the language choice of the decompilation pipeline, describes the
implementation process, and provides insight into how the software artefacts evolved from
the challenges that were encountered.

7.1 Language Considerations

As stated by H. Mayer in 1989, “No programming language is perfect. There is not even a
single best language; there are only languages well suited or perhaps poorly suited for par-
ticular purposes. Understanding the problem and associated programming requirements is
necessary for choosing the language best suited for the solution.” [32] This project seeks to
explore the potential of a compositional approach to decompilation, and the components
of the decompilation pipeline will require support for analysing and manipulating source
code, and interacting with LLVM IR. The Go programming language emphasises com-
position at its core and provides extensive support for source code analysis, as indicated
by the vast number of tools developed for analysing and manipulating Go source code
(examples of such tools are given in section 8.4). As the LLVM compiler framework is
written in C++, several projects (e.g. Dagger, Fracture, MC-Semantics) have chosen this
language for interacting with LLVM IR. Meanwhile, a mature LLVM IR library is yet to
be written for Go.

In 2012 Rob Pike (one of the Go language inventors) gave a talk titled “Less is expo-
nentially more” which included a personal description of the historic events leading up
to the inception of Go. The starting point of the language was C, not C++, which Go
aimed to simplify further by removing cruft. This is in direct contrast to the direction
of C++ which gains more features with each passing release. The less is more mindset
is deeply rooted in the mentality of Go developers, and there is a strong emphasis on
the use of composition to solve problems, as indicated by the following extract from Rob
Pike’s talk.

“If C++ and Java are about type hierarchies and the taxonomy of types, Go is
about composition.

Doug McIlroy, the eventual inventor of Unix pipes, wrote in 1964 (!):

“We should have some ways of coupling programs like garden hose–
screw in another segment when it becomes necessary to massage
data in another way. This is the way of IO also.”

That is the way of Go also. Go takes that idea and pushes it very far. It is a
language of composition and coupling.”

— Rob Pike, 2012 [33]

Every aspect of Go development embodies the Unix philosophy (see figure 18), which is
no surprise as Ken Thompson (one of the original inventors of Unix) is part of the core
Go team.

32

7.2 LLVM IR Library 7 IMPLEMENTATION

“Write programs that do one thing and do it well. Write programs to work
together.”

Figure 18: The Unix philosophy [30].

To conclude the language considerations, Go has been chosen as the primary language
for the decompilation pipeline based on its simplicity and emphasis on composition.
Furthermore, the Go standard library includes production quality support for lexing and
parsing of Go source code. The language may therefore be a good candidate for developing
lexers and parsers for LLVM IR, as will be further discussed in section 7.2.

7.2 LLVM IR Library

Early on in the project it was believed that the control flow analysis stage would operate
on CFGs that were tightly coupled with an in-memory representation of LLVM IR. This
motivated the search for a LLVM IR library with a carefully considered API and set of
data structures (objective 4). While there existed a library which provides Go bindings
for LLVM, the API of this library felt awkward to use and was too heavily influenced by
the underlying C and C++ libraries; as further described in section 7.3. The interaction
with the LLVM IR library would critically influence the design and implementation of
the decompilation components. For this reason it was decided that a set of pure Go
libraries would be implemented for interacting with LLVM IR, even if it would require a
considerable amount of work.

The LLVM IR libraries were intentially developed as reusable components for compilers,
decompilers and other semantic analysis tools. To assess the requirements of LLVM-
based compilers, a public discussion was held with the developers of the open source
llgo compiler, who clarified its specific requirements7. Fredrik Ehnbom, who is one
of the llgo developers, has remained involved with the development of the LLVM IR
libraries, by participating in API discussions, conducting code reviews, and submitting
patches for performance improvements8 (these code changes have not yet been merged,
as the project artefacts are required to be developed independently).

The first component to be implemented was the LLVM IR lexer, which tokenizes LLVM
IR assembly. In addition to the LLVM IR language specification, the implementation of
the reference lexer in LLVM was reviewed to establish a full listing of the valid tokens in
LLVM IR. This review uncovered two tokens which were defined but never used in the
code base of LLVM. In collaboration with members of the LLVM community, a patch
was commited to the LLVM code base which removed these tokens9.

The design of the LLVM IR lexer has been hugely influenced by a talk given by Rob Pike
in 2011, titled “Lexical Scanning in Go” [34]. In this talk, Pike introduces the notion of
a state function which is a function that returns a state function. The state of the lexer
is represented by the active state function, which may transition into another stage by
returning the corresponding state function. For instance, when lexLineComment is active,
the context of the lexer is known to be a line comment. Any character is valid within

7Requirements: https://github.com/llir/llvm/issues/3
8Use binary search for keyword lexing: https://github.com/llir/llvm/pull/11
9Remove unused tokens from AsmParser: http://reviews.llvm.org/D7248

33

https://github.com/llir/llvm/issues/3
https://github.com/llir/llvm/pull/11
http://reviews.llvm.org/D7248

7.3 Go Bindings for LLVM 7 IMPLEMENTATION

line comments, except new lines which terminate the token; at which point an unknown
token on the succeeding line is lexed by returning the lexToken state function.

The LLVM IR assembly language requires no separators (e.g. whitespace characters,
semicolons) between tokens. This made it very difficult to determine where one token
ends and another starts, as further indicated by inconsistent behaviour for separating
tokens in the reference implementation of the LLVM lexer. The solution to this issue was
inspired by the Go language specification10 which states that “the next token is the longest
sequence of characters that form a valid token”, thus defining a consistent behaviour.

A formal grammar of the LLVM IR language would have facilitate the implementation
of the LLVM IR libraries. As no such grammar had been officially endorsed, other
sources were cross-referenced to learn about the low-level details of the language, such as
its token set and details regarding the type system. This work uncovered a number of
potential inconsistencies between the language reference, the implementation, and official
blog posts. After discussing these issues with more experienced LLVM developers on the
LLVM-dev mailing list, it could be concluded that some issues highlighted inconsistent
behaviours while others were working as intended.

The cheer size of LLVM IR was at times discouraging and the project time constrains
forced the implementation of subsets within every aspect of the language. LLVM IR may
have started out as a simple, minimalistic and platform-independent low-level IR, but
this is no longer the case. As time went by and as the project rose in popularity, more
and more developers joined the project. In 2014 more than five hundred commits were
submitted to the LLVM code base each month. Keeping these changes consistent and
the overall system simple is a massive challenge.

It was at times very tempting to switch to REIL instead of LLVM IR, as REIL is a
minimal, consistent and clean language. The adaptation of REIL in the open source
community was however limited, and there had been no public news announcements
since Google acquired the company back in 2011. Furthermore, the REIL language lacks
the notion of basic blocks which would complicate the control flow analysis.

After months of development it had become clear that the task of implementing libraries
for LLVM IR was way more time consuming than initially anticipated. The project time
constrains forced the re-evaluation of using the Go bindings for LLVM, which gave rise
to a seemingly small but hugely influential idea. The control flow analysis stage should
operate entirely on graph data structures, thus making it unaware of LLVM IR. This
idea effectively mitigated the risk of being influenced by the API of the Go bindings for
LLVM, and gave rise to the data-driven design of the control flow analysis component, as
further described in section 6.3.2. From this point on, the focus shifted to implementing
working artefacts which utilised the Go bindings for LLVM IR.

7.3 Go Bindings for LLVM

In the beginning of February 2015 a decision was made to defer the development of the
LLVM IR library (see section 7.2) and make use of the Go bindings for LLVM instead.
This decision was motivated by time constraints and has had both positive and negative

10The Go Programming Language Specification: https://golang.org/ref/spec

34

https://golang.org/ref/spec

7.4 Subgraph Isomorphism Search Library 7 IMPLEMENTATION

implications for the project. Most importantly, it became possible to rapidly implement
working prototypes of the artefacts once the focus shifted from utility library development
to core component development. Furthermore, when LLVM 3.6 was released in the end
of February 2015, the components automatically gained support for the new LLVM IR
metadata syntax which was introduced in this release.

Several components (e.g. ll2dot, ll2go) use the Go bindings for LLVM11 to interact with
LLVM IR assembly. The API of the Go bindings mimics that of the C bindings, which
feels awkward as it bypasses the safety of the type system. A fundamental concept of the
API is the notion of a value, which represents a computed value that may be used as an
operand of other values. This recursive description captures the semantics of instructions
and constants. The API provides a unified Value type, which defines 145 methods for
interacting with the underlying value types. It is the callers responsibility to only invoke
the subset of methods actually implemented by the underlying type. In practice this
approach results in fragile applications which may crash during runtime; with assertions
such as “cast<Ty>() argument of incompatible type!” when invoking the Opcode method
instead of the InstructionOpcode method on an instruction value. The former method
may only be invoked on constants, which uses a subset of the instruction opcodes for
constant expressions. A more sound approach would solve these issues by refining the
Value interface be the intersect rather than the union of all methods implemented on
the underlying value types.

The control flow analysis stage of the decompilation pipeline requires access to the names
of unnamed basic blocks, but these names are not accessible from the API of the Go
bindings for LLVM as they are generated on the fly by the assembly printer. To work
around this issue, the assembly printer of LLVM 3.6 was patched to always print the
generated names of unnamed basic blocks (see appendix B). Once patched, the debug
facilities of LLVM could be utilised to print the assembly to temporary files, which may be
parsed to gain access to the names of unnamed basic blocks. This solution works, but it
is considered highly temporary and may cause security implications (as further described
in section 8.3). When the pure Go LLVM IR library (see section 7.2) reaches maturity
it will replace the use of the Go bindings for LLVM, thus mitigating the aforementioned
issues.

7.4 Subgraph Isomorphism Search Library

Implementing the subgraph isomorphism search algorithm was without doubt the most
difficult endeavour of the entire project. It took roughly five iterations of implementing,
evaluating and rethinking the algorithm to find an approach which felt right and another
two iterations to develop a working implementation which passed all the test cases.

As mentioned in section 8.2, an early throwaway prototype provided a partial implemen-
tation of the subgraph isomorphism algorithm proposed by Ullman. The prototype was
intended to provide insight into the subgraph isomorphism problem domain, and was
eventually discarded.

The second throwaway prototype was specifically designed to exploit known properties
of CFG (e.g. connected graphs with a single entry node) to limit the search space.

11Go bindings for LLVM: https://godoc.org/llvm.org/llvm/bindings/go/llvm

35

https://godoc.org/llvm.org/llvm/bindings/go/llvm

7.4 Subgraph Isomorphism Search Library 7 IMPLEMENTATION

Focusing on connected graphs drastically simplified the general problem of subgraph
isomorphism search, and enabled algorithms which traverse the graph from a given start
node to identify subgraph isomorphisms. The second prototype had many issues (e.g.
non-deterministic, unable to handle graph cycles), but provided valuable insight into how
a subgraph isomorphism search algorithm may be designed when focusing on connected
graphs.

In contrast to its predecessor, the third prototype separated subgraph isomorphism can-
didate discovery from candidate validation logic. A subgraph isomorphism candidate is
a potential isomorphism of a subgraph in a graph, which provides a mapping from sub-
graph node names to graph node names. Should the source and the destination nodes
of each directed edge in the subgraph translate through the candidate node mapping to
corresponding nodes (with a directed edge from the source to the destination node) in
the graph, and should furthermore each node in the subgraph have the same number of
directed edges as the nodes of the candidate (with a few caveats regarding entry and exit
nodes), then the candidate is considered a valid isomorphism of the subgraph in the graph.
The third prototype was still incomplete (mainly with regards to candidate discovery)
when discarded, but the separation of candidate discovery and candidate validation logic
has had a large influence on its succeeding prototypes.

As described in section 6.3.2 and further evaluated in section 9.2.1, the current implemen-
tation of the subgraph isomorphism search algorithm enforces a single-entry/single-exit
invariant on the subgraphs to simplify control flow analysis. This allows identified sub-
graphs to be replaced with single nodes, which inherit the predecessors of the subgraph
entry node and successors of the subgraph exit node. For this reason, the candidate vali-
dation logic disregards the directed edges from predecessors of subgraph entry nodes and
the directed edges to successors of subgraph exit nodes, when validating subgraph iso-
morphism candidates; which should clarify the aforementioned caveats of the preceding
paragraph.

Similar to the third prototype, the fourth throwaway prototype separated candidate dis-
covery from candidate validation. In addition, it introduced the concept of treating
candidate node mappings as equations which may be solved, or at least partially solved.
The candidate node mappings were extended from one-to-one node mappings (one sub-
graph node name maps to exactly one graph node name) to node pair mappings, which
represent one-to-many node mappings (one subgraph node name maps to zero or more
graph node names). The candidate discovery logic was extended to record all poten-
tial candidate nodes for a given subgraph node, when traversing the graph in search of
candidates. A simple equation solver was implemented which was capable of identify-
ing unique node pair mappings and propagate this information to successively simplify
equations until they are either solved or require other methods for solving; an example of
which is presented in figure 19. The equation solver would however fail to find a solution
if two node pair mappings had the same candidate nodes, as illustrated in figure 20

The fifth throwaway prototype extended the capabilities of the simple equation solver by
trying different candidate node mappings recursively until a valid subgraph isomorphism
was found or known not to exist. These equations were solved concurrently using Go
routines (independently executing functions, which are multiplexed onto system threads)
which relayed the answers back using channels (typed and synchronised communication
channels).

36

7.5 Documentation 7 IMPLEMENTATION

"A": ["X", "Y", "Z"]
"B": ["Y", "Z"]
"C": ["Z"]

(a) Step 1.

"A": ["X", "Y"]
"B": ["Y"]
"C": ["Z"]

(b) Step 2.

"A": ["X"]
"B": ["Y"]
"C": ["Z"]

(c) Step 3.

Figure 19: In step 1, the unique node pair mapping between the subgraph node name
C and the graph node name Z is identified, and the remaining node pair mappings are
simplified by removing Z from their candidate nodes. Similarly, in step 2, the unique
node pair mapping between B and Y is identified; thus simplifying the equation further.
Lastly, in step 3, the unique node pair mapping between A and X is identified, and the
equation is thereby solved.

"A": ["X", "Y"]
"B": ["X", "Y"]

Figure 20: An equation which the simple equation solver of the forth prototype would
fail to solve, as it cannot be simplified by identifying unique node pair mappings.

At this stage, the algorithm design had started to feel mature and the focus shifted from
implementing throwaway prototypes to building a solid foundation. Starting with the
parts of the system that were best understood, one part or concept at the time were
removed from the throwaway prototype and carefully reimplemented in a new library
through a series of steps. Firstly, the API of the new library was taken into careful
consideration, and a set of stub functions and core data structures were added and thor-
oughly documented. Secondly, test cases were written for each stub function of the library.
Lastly, the stub functions were implemented one at the time and verified against the test
cases.

While the new implementation passed most test cases, there were a few corner cases for
which the library produced incorrect results. The concurrent nature of the library made
it difficult to debug, and a decision was made to reimplement the equation solver without
concurrency. This resulted in a cleaner implementation which was easy to debug and
successfully passed all test cases.

The final implementation of the subgraph isomorphism search algorithm is a cleaned
up and thoroughly tested version of the non-concurrent library, which has a 94.8% code
coverage; as further described in section 8.1.1. The final implementation was developed in
the “isobug” branch on GitHub, and merged12 once stable into the “master” branch.

7.5 Documentation

A set of source code analysis tools are used to automate the generation and presentation
of documentation. The main benefit of this approach is that only one version of the doc-
umentation has to be maintained and it is kept within the source code, thus preventing
it from falling out of sync with the implementation. Unix manual pages are generated

12Fix subgraph isomorphism search: https://github.com/decomp/decomp/issues/183

37

https://github.com/decomp/decomp/issues/183

7.5 Documentation 7 IMPLEMENTATION

for command line tools using mango13, which locates the relevant comments and com-
mand line flag definitions in the source code. Library documentation is presented using
godoc14 (a tool similar to doxygen), and may be accessed through a web or command
line interface.

The GoDoc.org server hosts an instance of godoc which presents the documentation of
publicly available source code repositories. An online version of the documentation has
been made available for each artefact using this service.

• Library for interacting with LLVM IR (work in progress)
https://godoc.org/github.com/llir/llvm

• Control flow graph generation tool
https://godoc.org/decomp.org/decomp/cmd/ll2dot

• Subgraph isomorphism search algorithms and related tools
https://godoc.org/decomp.org/decomp/graphs

• Control flow recovery tool
https://godoc.org/decomp.org/decomp/cmd/restructure

• Go code generation tool (proof of concept)
https://godoc.org/decomp.org/decomp/cmd/ll2go

• Go post-processing tool
https://godoc.org/decomp.org/decomp/cmd/go-post

13Generate Man pages from Go source: https://github.com/slyrz/mango
14Godoc extracts and generates documentation for Go programs: https://golang.org/cmd/godoc

38

https://godoc.org/github.com/llir/llvm
https://godoc.org/decomp.org/decomp/cmd/ll2dot
https://godoc.org/decomp.org/decomp/graphs
https://godoc.org/decomp.org/decomp/cmd/restructure
https://godoc.org/decomp.org/decomp/cmd/ll2go
https://godoc.org/decomp.org/decomp/cmd/go-post
https://github.com/slyrz/mango
https://golang.org/cmd/godoc

8 VERIFICATION

8 Verification

This section describes the methods used to verify the correctness, measure the perfor-
mance and assess security of the software artefacts. It concludes with a discussion on
how CI is utilised to automatically and continuously verify these aspects.

8.1 Test Cases

As stated by Edsger W. Dijkstra in 1969, “testing shows the presence, not the absence
of bugs.” [35] For this reason, several independent methods were utilised to verify the
correctness of the decompilation components and their utility libraries, including the
automatic generation of C programs (with a large number of nested if-statements) which
were used to stress test each component of the decompilation pipeline; as further described
in section 8.2.

A lot of thought went into designing test cases which attempt to break the code, exploit as-
sumptions, and exercise tricky corner cases (e.g. no whitespace characters between tokens
in LLVM IR). These tests were often written prior to the implementation of the software
artefacts, to reduce the risk of testing what was built rather than what was intended to
be built (as specified by the requirements). The test cases have successfully identified
a large number of bugs in the software artefacts, and even uncovered inconsistent be-
haviour in the reference implementation of the LLVM IR lexer; as further described in
section 7.2. To facilitate extensibility, the test cases were often implemented using a table
driven design which separate the test case data from the test case implementation.

An extract of the test cases used to verify the candidate discovery logic, the equation
solver and the candidate validation logic of the subgraph isomorphism search library is
presented in figure 21. These test cases are automatically executed by the CI service any
time a new change is committed to the source code repository, as further described in
section 8.4.

$ go test -v decomp.org/decomp/graphs/iso
=== RUN TestCandidates
--- PASS: TestCandidates (0.02s)
=== RUN TestEquationSolveUnique
--- PASS: TestEquationSolveUnique (0.00s)
=== RUN TestEquationIsValid
--- PASS: TestEquationIsValid (0.22s)
=== RUN TestIsomorphism
--- PASS: TestIsomorphism (0.18s)
=== RUN TestSearch
--- PASS: TestSearch (0.20s)
PASS
ok decomp.org/decomp/graphs/iso 0.62s

Figure 21: An extract of the test cases used to verify the subgraph isomorphism search
library, as visualised by go test.

39

8.1 Test Cases 8 VERIFICATION

8.1.1 Code Coverage

Code coverage is a measurement for tracking what parts of the code that gets executed
when running test cases. The Go project takes an interesting approach to tracking code
coverage, which utilises the production quality source code analysis and transformation
libraries available in Go. Instead of generating platform-dependent assembly which tracks
the execution of various branches, Go inject unique tracking statements on each line of the
original source code. This approach is platform-independent by design, and may easily be
extended to support heat maps which track how often each line gets executed [36].

As the lexer of any language is a fundamental building block on which other libraries and
components depend, the test cases of the LLVM IR lexer aimed for a 100% code coverage
of any code not related to input/output errors (e.g. “file not found”); as illustrated in
figure 22. This rigorous testing uncovered several faulty assumptions in the lexing logic,
which were later corrected.

$ go test -coverprofile=lexer.out github.com/llir/llvm/asm/lexer
$ go tool cover -func=lexer.out
llvm/asm/lexer/lexer.go:36: ParseFile 80.0%
llvm/asm/lexer/lexer.go:118: emit 100.0%
llvm/asm/lexer/lexer.go:139: next 100.0%
llvm/asm/lexer/lexer.go:158: accept 100.0%
llvm/asm/lexer/state.go:38: lexToken 100.0%
llvm/asm/lexer/state.go:131: lexComment 100.0%
...
llvm/asm/lexer/state.go:364: lexQuote 100.0%
llvm/asm/lexer/state.go:585: unescape 100.0%
total: (statements) 97.6%

Figure 22: A summary of the code coverage for a selection of the LLVM IR lexer functions,
as visualised by the cover tool.

A brief summary of the code coverage for the various software artefacts is presented in
figure 6.

Code coverage Component
97.6% LLVM IR lexer15

0.0% Control flow generation tool
94.8% Subgraph isomorphism search library16

40.0% Control flow recovery tool17

0.0% Code generation tool
38.0% Post-processing tool18

Table 6: A summary of the code coverage of each component, presented roughly in the
same order as they appear in the decompilation pipeline.

15As of Git revision bbba2831ad079074516041907d16c347e388a310
16As of Git revision 70967487ea73284c68a89e3fc566bc706603b6f7
17As of Git revision 019e846bc7058f8fb9f7517568505c96eeed97bf
18As of Git revision 02d38d1fbbf1c05bb11de89360a7cd8c38329a14

40

8.2 Performance 8 VERIFICATION

Code coverage heat maps may be used to gain clarity in how often a line gets executed
by the test cases. The use of heat maps were invaluable when stress testing the various
prototypes of the subgraph isomorphism search algorithm, as they were able to identify
several tricky corner cases; such as the ones illustrated in figure 23

Figure 23: An extract from the code coverage heat maps of the subgraph isomorphism
search algorithm, which has identified two corner cases that may require further valida-
tion. The first return statement is seldomly executed (as indicated by the grey colour),
and the second return statement is never executed.

8.2 Performance

The performance characteristics of the various components have been considered dur-
ing every stage of the development process, but the initial prototypes have prioritised
correctness and simplicity over performance. These prototypes have aimed at identify-
ing suitable data structures and algorithms for the problems, through iterative redesigns
and reimplementations. Once the major design decisions stabilised, production quality
prototypes were being developed and thoroughly tested. To limit the risk of premature
optimisations, micro-level performance work was intentionally postponed to the later
stages of development.

Components with straight forward implementations (e.g. the LLVM IR library) have been
profiled to identify performance bottle necks, as further described in section 8.2.1. When
estimating the time complexity of various subgraph isomorphism search algorithms how-
ever, algorithm research and the use of intuition proved far more valuable. One of the first
throw-away prototypes provided a partial implementation of the subgraph isomorphism
algorithm proposed by Ullman. After further research the prototype was eventually dis-
carded as the Ullman algorithm had been proven to scale poorly for randomly connected
graphs with more than 700 nodes [37]. To put this into perspective, the main function

41

8.2 Performance 8 VERIFICATION

of the c419 compiler consists of 248 basic blocks; in other words, the CFG of the main
function is a connected graph (every node is reachable from the entry node) with 248
nodes. This leaves a margin (for the number of basic blocks in functions) of less than an
order of magnitude before the Ullman algorithm starts to perform poorly.

There exist several subgraph isomorphism algorithms which scale better than the Ullman
algorithm for graphs with a large number of nodes; such as the VF2 algorithm for dense
graphs and McKay’s nauty algorithm for sparse graphs [37, 11]. In the case of the c4
compiler, the CFGs are sparse with 1.35 edges per node in average, which would favour
the nauty algorithm. The specific properties of CFGs (e.g. sparse connected graphs)
guided the design of the subgraph isomorphism search algorithm, as further described in
section 7.4.

To stress test the implementation of the decompilation components and to get an estimate
of their time complexities, a set of C programs were automatically generated20 with 2x

nested if-statements (where 7 ≤ x ≤ 12). These C programs were converted to LLVM IR
and decompiled into Go using the same steps as described in appendix E, F, H, I and J.
The time complexity of each step may be estimated by monitoring how the execution
time changes with regards to n, where n represents the number of nodes in the CFG of
the generated programs; as summarised in table 7. The CFG of each generated program
contains exactly twice as many nodes as nested if-statements; i.e. n = 2x+1.

Component n = 256 n = 512 n = 1024 n = 2048 n = 4096 n = 8192
ll2dot 1.14s 4.01s 15.27s 1m 0s 3m 56s 15m 44s
restructure 0.97s 4.37s 21.37s 2m 6s 11m 1s 85m 58s
ll2go 2.85s 10.59s 40.95s 2m 41s 10m 47s 45m 13s
go-post
unresolved 0.09s 0.29s 1.01s 3.70s 13.87s 53.35s
mainret 0.09s 0.28s 1.00s 3.70s 13.91s 52.91s
localid 3m 46s 57m 35s - - - -
assignbinop 0.02s 0.03s 0.07s 0.21s 0.72s 2.63s
deadassign 0.08s 0.26s 0.95s 3.40s 13.00s 49.96s
forloop 0.01s 0.03s 0.06s 0.15s 0.45s 1.63s

Table 7: The first column specifies the component being tested, and each consecutive
column presents the execution time of the component (based on the average of three
consecutive runs) in relation to n, which represents the number of nodes in the CFG.
Each row below the go-post component represents a specific post-processing rewrite rule
(e.g. mainret), as further described in appendix J. The steps which execute in polynomial
time with regards to n have been highlighted in green, while the steps which execute in
exponential time with regards to n have been highlighted in red.

Each step of the decompilation pipeline completed in reasonable time (i.e. polynomial
time with regards to n) except for one, namely the “localid” rewrite rule (see figure 36
of appendix J) of the post-processing stage. As discussed in section 9, most of the
post-processing rewrite rules are considered experimental and the “localid” rewrite rule
suffers from both inaccuracy and performance issues. The “localid” rewrite rule optionally

19C in four functions: https://github.com/rswier/c4
20Generate nested C programs: https://gist.github.com/mewmew/677994ee8da60bee1de9

42

https://github.com/rswier/c4
https://gist.github.com/mewmew/677994ee8da60bee1de9

8.2 Performance 8 VERIFICATION

provides rudimentary expression propagation support, and will be removed when proper
data flow analysis has been implemented by the middle-end (see section 10.2.1).

As the size of n doubles in table 7, the execution time of ll2dot roughly quadruples. The
time complexity of ll2dot is therefore estimated to be Ω(n2). Please note that this may
not hold true for larger values of n, as a formal time complexity analysis of the algorithm is
yet to be conducted. Similarly, as the size of n double, the execution time of restructure
roughly octuples. The time complexity of restructure is therefore estimated to be Ω(n3).
The same logic and caveats may be applied to the other components to estimate their
time complexities; a summary of which is presented below.

• ll2dot: Ω(n2)

• restructure: Ω(n3)

• ll2go: Ω(n2)

• go-post

– unresolved : Ω(n2)

– mainret : Ω(n2)

– localid : exponential time complexity

– assignbinop: Ω(n2)

– deadassign: Ω(n2)

– forloop: Ω(n2)

In summary, profiling is great for optimising the implementations of simple problems.
Algorithm research, time complexity theory and intuition is essential for implementing
performant solutions to complex problems. Furthermore, knowledge about specific prop-
erties of the problem may be exploited to design performant algorithms.

8.2.1 Profiling

The initial implementation of the LLVM IR lexer (see section 7.2) focused on correctness,
and strived to be as simple and straight forward as possible. Once feature complete and
thoroughly tested, the lexer was profiled for the first time and a major performance bot-
tleneck was identified; as illustrated in figure 24. When scanning letters, the lexLetter
function used a hash map to check if the scanned letters were part of a keyword. As
letters make up the majority of the characters in LLVM IR source files, this caused an
extensive number of hash map iterations which accounted for roughly 70% of the total
execution time. To fix this issue, a benchmark test was implemented to measure the
performance changes between the original and the updated version; as further described
in section 8.2.2. At this stage, only CPU profiling has been utilised to identify perfor-
mance bottlenecks. Future work may leverage memory profiling to further improve the
performance of the decompilation components.

43

8.2 Performance 8 VERIFICATION

Figure 24: A major performance bottleneck was located when profiling the LLVM IR
lexer for the first time. Roughly 70% of the total execution time was spent doing hash
map iterations (i.e. runtime.mapiternext).

44

8.3 Security Assessment 8 VERIFICATION

8.2.2 Benchmarks

Benchmark tests were implemented to reliably measure any performance changes before
trying to resolve performance issues. An updated version of the LLVM IR library used
arrays instead of hash maps to identify keywords when scanning letters, which resolved
the performance issue identified in section 8.2.1. The updated version of the LLVM IR
lexer is roughly 3.6 times faster than the original version, as illustrated in figure 25.

$ git checkout old; go test -bench=ParseString > old.txt
$ git checkout new; go test -bench=ParseString > new.txt
$ benchcmp old.txt new.txt
benchmark old ns/op new ns/op delta
BenchmarkParseString 737625 204010 -72.34%

Figure 25: Benchmark run time delta between the original and the optimised version of
the LLVM IR lexer, as visualised by benchcmp21. The optimised version is roughly 3.6
times faster than the original version of the lexer.

8.3 Security Assessment

To assess the security of the decompiler pipeline, lets imagine a scenario in which users
are given access to the implementation details and source code of the entire system and
may provide arbitrary input to any of its components. A potential scenario could involve
a web site which provides decompilation as a service and allows its users to interact with
the various stages of the decompiler pipeline. The Retargetable Decompiler22 provides
such a service, except it only allows users to interact with the binary analysis stage of the
pipeline (see section 2.2.1) and its source code is proprietary. The scope of this security
assessment will be limited to the various components of the decompiler pipeline and their
interaction. In particular security issues related to the operating system, network stack,
web server and web site (e.g. SQL-injection and XSS vulnerabilities) of the decompilation
service are intentionally excluded from the scope of the security assessment.

The objective of an attacker may be to escalate their privileges in a system by exploiting
it to execute actions not intended by design. Since the security of any system is only as
strong as its weakest link, it is critical to identify and isolate likely targets for attacks.
Projects which consist of or depend on large C or C++ code bases may exhibit memory
safety issues, such as buffer overflows or use-after-free vulnerabilities. These issues are
considered low-hanging fruit for attackers and have a long history of successful exploita-
tion [38]. Several modern programming languages (including Go) provide memory safety
guarantees and may solve these issues by inserting bounds-checking for array accesses
and using garbage collection for memory management. Code written in memory safe
languages may still contain other security vulnerabilities caused by logic errors or insuf-
ficient validation, sanitation and parametrization of input (e.g. command injection and
directory traversal vulnerabilities).

21Display performance changes between benchmarks: https://golang.org/x/tools/cmd/benchcmp
22Retargetable Decompiler: https://retdec.com/

45

https://golang.org/x/tools/cmd/benchcmp
https://retdec.com/

8.3 Security Assessment 8 VERIFICATION

The number of lines of code in a project may give an indication to the project’s com-
plexity and to some extent its potential attack surface. As summarised in table 8 every
component, except restructure, of the decompiler pipeline depends on LLVM; the code
base of which contains approximately 800 000 lines of C++ source code. Even if only
a portion of the code will be linked into the executables it is an interesting target for
attacks. One thing to keep in mind is that there are several high-end users of the LLVM
project (such as Apple, Intel, NVIDIA and Sony [39]) and it has a well established code
reviewing process. Some of the LLVM developers are also very well educated in common
security vulnerabilities and have developed the Clang Static Analyzer, which is a static
source code analysis tool that locates bugs (such as buffer overflows and use-after-free
issues) in C and C++ programs [40]. The LLVM project may contain several security
issues due to its size, but they are most likely difficult to discover since the low-hanging
fruit have been caught already by the Clang Static Analyzer. Similarly, Google Protocol
Buffers are used extensively by several companies and organisations and the likelihood of
discovering a simple security vulnerability in its code base is low.

Project Language Lines Dependencies
Front-end

Dagger C++ 2 000 LLVM
Fracture C++ 20 000 LLVM
MC-Semantics C++ 25 000 LLVM and Google Protocol Buffers

Middle-end
ll2dot Go 500 LLVM and dot
restructure Go 300 graphs and dot

Back-end
ll2go Go 1 500 LLVM and llvm (Go)
go-post Go 3 000 -

Dependencies
LLVM C++ 800 000 -
Google Protocol Buffers C++ 125 000 -
dot Go 7 000 -
llvm (Go) Go 5 000 -
graphs Go 2 000 -

Table 8: A rough summary of each project specifying their programming language, total
number of lines of code and dependencies.

There are still three potential targets which may contain memory related vulnerabilities,
namely the front-end projects which translate binary executables, object code and shared
libraries to LLVM IR. Insufficient validation during the parsing of headers (e.g. trusting
the values of section header fields in ELF files) may lead to security vulnerabilities. The
front-end projects rely extensively on parsing logic for the binary analysis stage (see
section 2.2.1), and are therefore susceptible to security vulnerabilities.

The security implications of various design decisions have been taken into consideration
during the development process of the Go components. The Go runtime guarantees mem-
ory safety by inserting bounds-checking for array accesses and using garbage collection
for memory management. Furthermore, the Go project focuses on addressing security is-
sues at the language-level rather than relying on security through obscurity (e.g. address

46

8.4 Continuous Integration 8 VERIFICATION

space layout randomization) to mitigate these issues at the OS-level, as further explained
and justified by the quote of Russ Cox (who works on the Go compiler and runtime)
presented in figure 26.

“Address space randomization is an OS-level workaround for a language-level
problem, namely that simple C programs tend to be full of exploitable buffer
overflows. Go fixes this at the language level, with bounds-checked arrays
and slices and no dangling pointers, which makes the OS-level workaround
much less important. In return, we receive the incredible debuggability of
deterministic address space layout. I would not give that up lightly.”

Figure 26: Reply by Russ Cox to a discussion regarding ASLR, on the Go mailing list23.

There is one know issue with the Go bindings for LLVM IR which may compromise
the integrity of the output from the decompilation pipeline. The ll2dot and ll2go
components require access to the names of unnamed basic blocks, but these names are
not accessible from the API of the LLVM IR library as they are generated on the fly by
the assembly printer. As a work around, the debug facilities of the LLVM IR library have
been utilised to print the assembly to temporary files, which are parsed to gain access
to the names of unnamed basic blocks. These temporary files may be tampered with, if
not sufficiently protected by access permissions, which may compromise the integrity of
the control flow analysis stage. A pure Go library for interacting with LLVM IR is being
developed (see section 7.2) which will include native support for calculating the names
of unnamed basic blocks, thus mitigating this security issue.

To conclude, the security assessment was conducted to identify potential security issues
and provide an intuition for the general security of the decompilation system. In sce-
narios such as the one described above (i.e. users may provide arbitrary input), it is
advisable to further harden the decompilation system by utilizing defence in depth (i.e.
several independent layers of security) and the principle of least privilege (e.g. use jails
in FreeBSD and LXC in Linux).

8.4 Continuous Integration

This project makes use of Travis CI, which is tightly integrated with GitHub, to run
a series of automated tests for each commit to the source code repository. The tests
are varied and range from identifying source code formatting and coding style issues to
monitoring the build status and test coverage. A future ambition is to run benchmarks
for each commit to quickly identify performance regressions.

8.4.1 Source Code Formatting

Instead of relying on a formatting style guide the Go project enforces a single formatting
style using gofmt (a tool similar to indent) which automatically formats Go source
code. The adoption of this tool is widespread within the Go community as indicated by

23Secure Go binaries: https://groups.google.com/d/msg/golang-nuts/Jd9tlNc6jUE/
6dLasvOs4nIJ

47

https://groups.google.com/d/msg/golang-nuts/Jd9tlNc6jUE/6dLasvOs4nIJ
https://groups.google.com/d/msg/golang-nuts/Jd9tlNc6jUE/6dLasvOs4nIJ

8.4 Continuous Integration 8 VERIFICATION

a survey conducted back in 2013. The survey found that 70% of the publicly available
Go packages were formatted according to the rules of gofmt [41], a figure which is likely
to have increased since then.

Using a single formatting style for all Go source code may at first seem like a small deal,
but the advantages are vast. It becomes easier to write code as one may focus on the
problem at hand rather than minor formatting issues. Similarly it becomes easier to read
code when it is formatted in a familiar and uniform manner. Developers may focus their
entire attention at understanding the semantics of the code, without being distracted by
inconsistent or unfamiliar formatting. And perhaps most importantly, it prevents useless
discussions about which formatting style is the right one.

Several text editors supports adding pre-save hooks which executes a command to pre-
process the text before saving it. This mechanism may be used with the gofmt tool to
automatically enforce its formatting style each time a source file is saved. One of the CI
tests catches and reports incorrectly formatted source code, should a programmer forget
to install such a hook.

8.4.2 Coding Style

Best practices for writing effective Go code have been outlined in the Effective Go24 and
Go Code Review Comments25 documents. They supplement the Go language specification
and describe a set of idioms and conventions used in idiomatic Go code. Great care has
been taken to follow these principles when developing, and a CI test has been integrated
which utilises the golint26 tool to automatically detect and report issues related to
coding style (e.g. naming, documentation and error message conventions).

8.4.3 Code Correctness

Source code analysis tools may be used to identify common coding mistakes, such as
printf calls with conflicting arguments and format specifiers. A CI test has been in-
tegrated which utilises go vet27 to examine the source code and report suspicious con-
structs (e.g. unreachable code, invalid printf calls).

8.4.4 Build Status

The Go build system relies on a few well-established conventions to remain configuration-
free (e.g. no Makefiles, or configure scripts). These conventions specify how to locate
the source code of a package based on its import path (e.g. github.com/user/repo/pkg).
In combination with explicit import declarations in the source code, these conventions
enable Go packages and tools to be built using only the information present in the source
files [42].

24Effective Go: https://golang.org/doc/effective_go.html
25Go Code Review Comments: http://golang.org/wiki/CodeReviewComments
26Golint is a linter for Go source code: https://github.com/golang/lint
27Vet reports suspicious constructs in Go source code: https://golang.org/x/tools/cmd/vet

48

https://golang.org/doc/effective_go.html
http://golang.org/wiki/CodeReviewComments
https://github.com/golang/lint
https://golang.org/x/tools/cmd/vet

8.4 Continuous Integration 8 VERIFICATION

The CI service, which monitors the build status of each component and their dependen-
cies, may leverage the configuration-free build system of Go to simplify its dependency
management. Travis CI has been configured to invoke go get28, which recursively down-
loads and installs the dependencies of each component; the location of which is derived
from the source code.

8.4.5 Test Cases

Travis CI has been configured to run the test cases for each component with race detec-
tion29 enabled. In addition to monitoring the status of test cases, this may help identify
data race conditions which occur when concurrent code read from and write to the same
memory locations.

8.4.6 Code Coverage

Tracking of changes to code coverage has been tightly integrated with the CI. Travis CI
has been configured to send code coverage information to the Coveralls30 service, after
each successful build. The Coveralls service tracks changes in code coverage between
commits, and reports these changes when merging branches on GitHub; as illustrated in
figure 27.

Figure 27: The Coveralls service automatically reports code coverage changes when merg-
ing branches on GitHub. In this case the code coverage decreased from 100% to 94% when
merging the LLVM IR lexer functionality.

28Download and install packages and dependencies: https://golang.org/cmd/go/
29Introducing the Go Race Detector: https://blog.golang.org/race-detector
30Coveralls - Test Coverage History & Statistics: https://coveralls.io/

49

https://golang.org/cmd/go/
https://blog.golang.org/race-detector
https://coveralls.io/

9 EVALUATION

9 Evaluation

This section evaluates the artefacts of the decompilation system against the requirements
outlined in section 5. To assess the capabilities of the individual components, relevant
decompilation scenarios have been considered. The current state of each component is
summarised in the succeeding paragraphs, and future work to validate the design, improve
the reliability, and extend the capabilities of the decompilation pipeline is presented in
section 10.2.

The ll2dot component (see section 6.3.1) is considered stable, but there are known
issues which may affect the reliability and the integrity of the produced CFGs; as further
described in section 8.3. Future work which seeks to address these issues is presented in
section 10.2.2.

The subgraph isomorphism search library (see section 7.4) is considered production qual-
ity, and the test cases of the iso31 package have a code coverage of 94.8%; as outlined
in section 8.1.1. The restrictions imposed by this library on the subgraph (e.g. single-
entry/single-exit invariant and fixed number of nodes) limits infinite loops and n-way
conditionals from being modelled, as further discussed in section 6.3.2. Section 10.2.1
presents a discussion of potential approaches which may relax these restrictions in the
future.

The restructure component (see section 6.3.2) is considered production quality, and
the test cases of the restructure command have a code coverage of 40.0%; as outlined
in section 8.1.1. The restructure command is believed to be capable of structuring the
CFG of any source program which may be constructed from the set of supported high-
level control flow primitives (which are described in figure 7 of section 2.2.3), including
source programs with arbitrarily nested primitives. Any future work which improves the
reliability and the capabilities of the subgraph isomorphism search library will directly
impact the restructure tool, as it relies entirely on subgraph isomorphism search to
recover high-level control flow primitives.

The ll2go component (see section 6.4) is considered a proof of concept implementation.
It was implemented primarily to stress test the design of the decompilation pipeline,
and only supports a small subset (e.g. all arithmetic instructions and some terminator
instructions) of the LLVM IR language. The ll2go tool is affected by the same reliability
issues as the ll2dot command, which are caused by the Go bindings for LLVM; as further
described in section 7.3. To address these issues a pure Go library is being developed for
interacting with LLVM IR, as further described in section 10.2.2. A future version of the
ll2go tool would discard the current implementation and start fresh, learning from the
mistakes and the building upon the insights.

Lastly, the go-post component (see section 6.4.1) is considered alpha quality, and the test
cases of the go-post command have a code coverage of 38.0%; as outlined in section 8.1.1.
The go-post tool was primarily implemented to evaluate the feasibility of applying source
code transformations to make the decompiled Go code more idiomatic. Implementing
these post-processing rules were surprisingly easy, and it was often possible to go from
the conceptual idea of a rewrite rule to a working implementation in a matter of hours.
While some rewrite rules are reliable (e.g. the “mainret” rewrite rule, which is presented

31Subgraph isomorphism search library: https://decomp.org/decomp/graphs/iso

50

https://decomp.org/decomp/graphs/iso

9.1 LLVM IR Library 9 EVALUATION

in 35 of appendix J), most are considered experimental. For instance, the “localid” rewrite
rule (see figure 36 of appendix J) is known to produce incorrect rewrites when applied to
complex programs, but it works for simple programs and provides rudimentary support for
expression propagation. A proper implementation of expression propagation would rely
on the future implementation of the data flow analysis component, which is mentioned
in 10.2.1.

9.1 LLVM IR Library

In total four essential (R1, R2, R3 and R4), one desirable (R5), and three future (R6,
R7 and R8) requirements were identified for the LLVM IR library (see section 5.1).
The modified Go bindings for LLVM (see section 7.3), the control flow graph generation
component (see section 6.3.1) and the dot32 tool of the Graphviz project, collectively sat-
isfies all five requirements (not counting future requirements); as summarised in table 9.
Section 9.1.1 and 9.1.2 provides a detailed evaluation of the essential and the desirable
requirements, respectively.

Sat. Req. Priority Description
Yes R1 MUST Read the assembly language representation of LLVM IR
Yes R2 MUST Write the assembly language representation of LLVM IR
Yes R3 MUST Interact with an in-memory representation of LLVM IR
Yes R4 MUST Generate CFGs from LLVM IR basic blocks
Yes R5 COULD Visualise CFGs using the DOT graph description language
N/A R6 WON’T Read the bitcode representation of LLVM IR
N/A R7 WON’T Write the bitcode representation of LLVM IR
N/A R8 WON’T Provide a formal grammar of LLVM IR

Table 9: A summary of the evaluation against requirements of the LLVM IR library, which
specifies what requirements (abbreviated as “Req.”) that have been satisfied (abbreviated
as “Sat.”).

9.1.1 Essential Requirements

The modified Go bindings for LLVM (see section 7.3) includes read (R1) and write (R2)
support for the assembly language representation of LLVM IR, and enables interaction
with an in-memory representation of LLVM IR (R3). The ll2dot tool depends on
R1 and R3 for parsing LLVM IR assembly files and inspecting their in-memory repre-
sentation, which is required to gain access to information about the basic blocks of each
function and their terminating instructions. This information determines the node names
and the directed edges, when generating CFGs from LLVM IR; as further described in
section 6.3.1. Appendix F demonstrates that the ll2dot tool is capable of generating
CFGs from LLVM IR (R4), thus proving that R1, R3 and R4 have been satisfied.

To support generating CFGs for LLVM IR assembly which contains unnamed basic blocks,
the ll2dot tool requires access to the names of unnamed basic blocks. These names are

32Drawing Graphs with dot: http://www.graphviz.org/pdf/dotguide.pdf

51

http://www.graphviz.org/pdf/dotguide.pdf

9.2 Control Flow Analysis Library 9 EVALUATION

not available from the API of the original Go bindings for LLVM however, as they are
generated on the fly by the assembly printer. To work around this issue, the assembly
printer of LLVM 3.6 was patched to always print the generated names of unnamed basic
blocks (see appendix B). With this patch in place, the debug facilities of the modified Go
bindings for LLVM could be utilised to write (R2) the assembly to temporary files, which
were parsed to gain access to the names of unnamed basic blocks; as further described in
section 7.3. The generated CFG presented in appendix F contains the names of unnamed
basic blocks (e.g. basic blocks with numeric names), thus proving that R2 has been
satisfied.

9.1.2 Desirable Requirements

The CFGs generated by the ll2dot tool (see section 6.3.1) are described in the DOT
graph description language. One benefit of expressing CFGs in this format, is that it
enables the reuse of existing software to visualise the CFGs (R5). Appendix F demon-
strates how the dot tool of the Graphviz project may be utilised to produce an image
representation of CFGs, which are expressed in the DOT file format.

9.2 Control Flow Analysis Library

In total five essential (R9, R10, R11, R12 and R13), two important (R14 and R15),
two desirable (R16 and R17), and two future (R18 and R19) requirements were iden-
tified for the control flow analysis library (see section 5.2). The current implementation
of the subgraph isomorphism search library satisfies six out of nine requirements (not
counting future requirements), and fails to satisfy one essential, one important, and one
desirable requirement; as summarised in table 10. Section 9.2.1, 9.2.2 and 9.2.3 provides
a detailed evaluation of the essential, the important and the desirable requirements, re-
spectively.

Sat. Req. Priority Description
Yes R9 MUST Support analysis of reducible graphs
Yes R10 MUST Recover pre-test loops (e.g. while)
No R11 MUST Recover infinite loops (e.g. while(TRUE))
Yes R12 MUST Recover 1-way conditionals (e.g. if)
Yes R13 MUST Recover 2-way conditionals (e.g. if-else)
Yes R14 SHOULD Recover post-test loops (e.g. do-while)
No R15 SHOULD Recover n-way conditionals (e.g. switch)
No R16 COULD Recover multi-exit loops
Yes R17 COULD Recover nested loops
N/A R18 WON’T Support analysis of irreducible graphs
N/A R19 WON’T Recover compound boolean expressions

Table 10: A summary of the evaluation against requirements of the control flow analysis
library, which specifies what requirements (abbreviated as “Req.”) that have been satisfied
(abbreviated as “Sat.”).

52

9.2 Control Flow Analysis Library 9 EVALUATION

9.2.1 Essential Requirements

The current implementation of the subgraph isomorphism search library supports analysis
of reducible graphs (R9), as demonstrated by the step-by-step analysis of a reducible CFG
in appendix G.

The successful recovery of pre-test loops (R10) and 1-way conditionals (R12) is demon-
strated in four steps, through the use of components which depend on the subgraph iso-
morphism search library. Firstly, the ll2dot tool (see section 6.3.1) is used to generate
an unstructured CFG for each function of an LLVM IR assembly file; as demonstrated in
appendix F. Secondly, the restructure tool (see section 6.3.2) analyses the unstructured
CFG of an LLVM IR assembly function to produce a structured CFG; as demonstrated in
appendix H. Thirdly, the ll2go tool (see section 6.4) uses the high-level control flow in-
formation of the structured CFG to decompile the LLVM IR function into unpolished Go
code; as demonstrated in appendix I. Lastly, the go-post tool improves the quality of the
unpolished Go code, by applying a set of source code transformations; as demonstrated
in appendix J. The final Go output, which is presented on the right side of figure 40 in
appendix J, contains both a for-loop and an if-statement, thus proving that pre-test
loops and 1-way conditionals may be recovered.

The successful decompilation of 2-way conditionals (R13) is demonstrated in appendix K,
which provides a contrived example that implicitly uses the same decompilation steps as
described above. The final Go output, which is presented on the right side of figure 41 in
appendix K, contains an if-else statement, thus proving that 2-way conditionals may
be recovered.

The current design of the control flow analysis stage enforces a single-entry/single-exit
invariant on the graph representation of high-level control flow primitives. In other words,
high-level control flow primitives must be modelled as directed graphs with a single entry
and a single exit node. This invariant simplifies the control flow analysis, as it allows
identified subgraphs to be merged into single nodes, which inherit the predecessors of
the entry node and the successors of the exit node; as demonstrated by the step-by-
step simplification of the CFG in appendix G. This restriction prevents infinite loops
(R11) from being modelled however, as they have no exit node. Future work will try
to determine if this invariant may be relaxed to include single-entry/no-exit graphs, as
further described in section 10.2.1.

9.2.2 Important Requirements

The successful decompilation of post-test loops (R14) is demonstrated in appendix L,
which provides a contrived example that implicitly uses the same decompilation steps as
described above. The final Go output, which is presented on the right side of figure 42
in appendix L, contains an infinite for-loop with a conditional break statement as the
last statement of the loop body (which is semantically equivalent to a post-test loop),
thus proving that post-test loops may be recovered. Even though Go does not provide
native support for post-test loops, the back-end was capable of translating the source
program into semantically equivalent Go code, by combining a set of primitives available
in Go. The same approach may be used to support missing primitives for other target
programming languages (e.g. switch-statements in Python).

53

9.3 Control Flow Recovery Tool 9 EVALUATION

A data-driven design separates the implementation of the control flow analysis component
from the definition of supported high-level control flow primitives, which are expressed
in the DOT file format. The design is motivated by the principle of separation of con-
cern (e.g. the control flow analysis may be reused to analyse the control flow of REIL)
and extensibility (e.g. support for new high-level control flow primitives may be added
without changing the source code), as further described in section 6.3.2. One limitation
with this design however, is that it does not support n-way conditionals (R15) or any
other high-level control flow primitives with a variable number of nodes in their graph
representations, as these cannot be expressed in the DOT file format. A discussion on
how to mitigate this issue in the future is provided in section 10.2.1.

9.2.3 Desirable Requirements

Implementation strategies for desirable requirements were only considered as time permit-
ted. The support for multi-exit loops (R16) was intentionally omitted from this release,
to allocate time for the essential requirements. More research is required to determine
how the current design of the control flow analysis stage may be refined to support the
recovery of multi-exit loops.

The successful decompilation of nested loops (R17) is demonstrated in appendix K,
which provides a contrived example that implicitly uses the same decompilation steps as
described above. The final Go output, which is presented on the right side of figure 41 in
appendix K, contains nested for-loops (one inner loop and one outer loop), thus proving
that nested loops may be recovered.

9.3 Control Flow Recovery Tool

In total two essential (R20 and R21) requirements were identified for the control flow
recovery tool (see section 5.3).

The control flow analysis component (see section 6.3.2) satisfies both requirements (not
counting future requirements); as summarised in table 11. Section 9.3.1 provides a de-
tailed evaluation of the essential requirements.

Sat. Req. Priority Description
Yes R20 MUST Identify high-level control flow primitives in LLVM IR
Yes R21 MUST Support language-agnostic interaction with other components

Table 11: A summary of the evaluation against requirements of the control flow recovery
tool, which specifies what requirements (abbreviated as “Req.”) that have been satisfied
(abbreviated as “Sat.”).

9.3.1 Essential Requirements

In collaboration, the ll2dot and restructure tools are capable of identifying high-level
control flow primitives in LLVM IR (R20). Firstly, the ll2dot tool generates CFGs (in
the DOT file format) for each function of the LLVM IR, as described in section 6.3.1

54

9.3 Control Flow Recovery Tool 9 EVALUATION

and demonstrated in appendix F. Secondly, the restructure tool structures the CFGs
to recover high-level control-flow primitives from the underlying LLVM IR, as described
in section 6.3.2 and demonstrated in appendix H.

The components of the decompilation pipeline support language-agnostic interaction with
other components (R21), as they only communicate using well-defined input and output;
specifically LLVM IR33, DOT34, JSON35 and Go36 input and output. The interaction
between the components of the decompilation pipeline is demonstrated in four steps, when
decompilation LLVM IR to Go. Firstly, the control flow graph generation component (see
section 6.3.1) parses LLVM IR assembly to produce an unstructured CFG (in the DOT file
format); as demonstrated in appendix F. Secondly, the control flow analysis component
(see section 6.3.2) analyses the unstructured CFG (in the DOT file format) to produce
a structured CFG (in JSON format); as demonstrated in appendix H. Thirdly, the code
generation component (see section 6.4) decompiles the structured LLVM IR assembly
into unpolished Go code; as demonstrated in appendix I. Lastly, the post-processing tool
(see section 6.4.1) improves the quality of the unpolished Go code, by applying a set of
source code transformations; as demonstrated in appendix J.

33LLVM Language Reference Manual: http://llvm.org/docs/LangRef.html
34The DOT Language: http://www.graphviz.org/doc/info/lang.html
35The JSON Data Interchange Format: https://tools.ietf.org/html/rfc7159
36The Go Programming Language Specification: https://golang.org/ref/spec

55

http://llvm.org/docs/LangRef.html
http://www.graphviz.org/doc/info/lang.html
https://tools.ietf.org/html/rfc7159
https://golang.org/ref/spec

10 CONCLUSION

10 Conclusion

This section concludes the project report with subjective reflections from the author. For
the remainder of this section I will switch to a first person narrative.

10.1 Project Summary

Reverse engineering has fascinated me for quite some time and I have experimented with
a variety of tools, ranging from disassemblers and decompilers to debuggers and tracers.
Many tools have been outstanding on an individual level and some have featured powerful
extensibility through plugin and scripting support. I have never been bothered by the
capabilities of these tools, but rather by the workflow they enforce.

The de facto tools for binary analysis are monolithic in nature with regards to the end-
user, as they do not expose their individual components. Imagine trying to reuse the
control flow analysis of IDA and the Hex-Rays Decompiler to implement control flow
aware folding support in an IDE for x86 assembly development (e.g. group and toggle
assembly code segments based on their corresponding high-level control flow structures).
This idea is not limited by any technical issues; IDA Pro and the Hex-Rays Decom-
piler have support for recovering high-level control flow primitives from x86 assembly. If
the IDE was given access to the control flow analysis component it would be trivial to
implement sophisticated folding support for x86 assembly.

Having worked extensively within a Unix environment, I have grown accustomed to a
workflow that allows you to combine individual tools in amazing ways; pipe the input
from one tool into another which transforms, massages or interprets the data in a specific
way to solve a given task. This background has instilled me with a belief that the
decompilation workflow could be facilitated by implementing a decompilation pipeline
composed of independent and reusable components. Throughout the course of this project
several independent components have been implemented, including a control flow graph
generation tool which generates CFGs (in the DOT file format) from LLVM IR assembly,
a control flow recovery tool which identifies high-level control flow primitives in CFGs, a
code generation tool which translates structured LLVM IR assembly into unpolished Go
source code, and a post-processing tool which polishes Go source code to make it more
idiomatic.

These components have been combined with open source tools from other projects to
form the foundation of a decompilation pipeline, which may translate a variety of source
languages into the Go programming language. The decompilation pipeline has been
proven capable of recovering nested pre-test and post-test loops (e.g. for and do-while
loops), and 1-way and 2-way conditionals (e.g. if and if-else statements) from LLVM
IR assembly. While the project has succeeded at implementing a proof of concept de-
compilation pipeline, creating the One True decompilation pipeline has been considered
a non-goal [43]. The aim of the project has always been to explore the feasibility and
potential of a decompilation pipeline composed of independent and reusable components
which interact through well-defined input and output.

To conclude, the project has demonstrated the feasibility of compositional decompilation
through the implementation of a proof of concept decompilation pipeline which exposes its

56

10.2 Future Work 10 CONCLUSION

components to the end-user. The true potential of this approach is still being evaluated.
It largely depends on the innovativeness of the end-users, as the design encourages end-
users to replace, refine and interact with each stage of the decompilation pipeline, and to
use the self-contained components for other purposes not yet envisioned by the component
authors. Future plans for stress testing the design are detailed in section 10.2.

10.2 Future Work

The primary focus for planned future work is to stress test the design of the decompilation
pipeline and its individual components. A secondary focus is to improve the quality and
the reliability of the components. A tertiary focus is to extend the capabilities of the
decompilation pipeline. This prioritization strives to validate the core of the system
before extending it.

10.2.1 Design Validation

The principle of separation of concern has influenced every aspect of the design of the de-
compilation pipeline and its individual components. Conceptually, the components of the
decompilation pipeline are grouped into three modules which separate concerns regard-
ing the source language (front-end module), the general decompilation tasks (middle-end
module), and the target language (back-end module). This conceptual separation is a
vital aspect of the decompilation pipeline design, and it will therefore be thoroughly
examined. Should a component violate the principle of separation of concern, either
in isolation or within the system as a whole, it must be redesigned or reimplemented.
To identify such issues, key areas of the decompilation pipeline will be extended to put
pressure on the design.

Firstly, an additional back-end (e.g. support for Python as a target language) will be im-
plemented to put pressure on the design of the middle-end module. The second back-end
would only be able to leverage the target-independent information of the general decom-
pilation tasks (e.g. control flow analysis) if the middle-end module was implemented
correctly.

Secondly, a key component (e.g. data flow analysis) will be implemented in a separate
programming language (e.g. Haskell, Rust, Prolog, . . .) to validate the language-agnostic
aspects of the design. This component would only be able to interact with the rest of the
decompilation pipeline, through well-defined input and output (e.g. LLVM IR, JSON,
DOT, . . .), if the other components were implemented correctly.

The separation of the front-end and the middle-end has already been validated. These
modules are only interacting through an intermediate representation (i.e. LLVM IR), and
a variety of source languages are already supported by the front-end module which consists
of components from several independent open source project (e.g. Dagger, Fracture, MC-
Semantic, Clang, . . .).

The design of the control flow analysis component has both advantages and limitations,
as discussed in section 6.3.2. The most significant limitation is the lack of support for
control flow primitives with a variable number of nodes in their graph representations

57

10.2 Future Work 10 CONCLUSION

(e.g. n-way conditionals). To gain a better understanding of this issue, an analysis of
control flow primitives from different high-level languages will be conducted. Should the
n-node control flow primitives prove to be rare, hard-coded support for n-way conditionals
(e.g. switch-statements) and similar control flow primitives would suffice. Otherwise, a
general solution to the problem will be required (such as the introduction of a domain
specific language which describes dynamic properties of the nodes and edges in DOT
files). The OpenCL decompiler presented by S. Moll solved this problem by converting
n-way conditionals into sets of 2-way conditionals [10].

As described in section 9.2, the current implementation of the control flow analysis com-
ponent enforces a single-entry/single-exit invariant on the graph representations of high-
level control flow primitives. This invariant prevents the recovery of infinite loops, as
their graph representation has no exit node. At this stage it is unclear whether a refined
implementation may relax the invariant to support single-entry/no-exit graphs, or if the
limitation is inherent to the design. This issue requires further investigation before a
potential solution may be proposed.

10.2.2 Reliability Improvements

As described in section 7.3, there are many reliability issues caused by the Go bindings
for LLVM. To mitigate these issues a pure Go library is being developed for interacting
with LLVM IR (see section 7.2). This library will be reusable by other projects, and the
requirements of the third-party Go compiler llgo37 are actively being tracked38.

To ensure reliable interoperability between components written in different programming
languages, the intermediate representation (i.e. LLVM IR) of the decompilation pipeline
must be well-defined. Previous efforts to produce a formal grammar for LLVM IR have
only focused on subsets of the language (as mentioned in section 5.1), and no such gram-
mar has been officially endorsed. Producing an official formal specification for LLVM IR
would require huge efforts, but it would enable interesting opportunities. For instance,
with a formal grammar it would be possible to create a tool which automatically gener-
ates grammatically correct LLVM IR assembly which may be used to verify the various
implementation of LLVM IR. This approach has been used by the GoSmith tool to gen-
erate random, but legal, Go programs which have uncovered 31 bugs in the official Go
compiler, 18 bugs in the Gccgo compiler, 5 bugs in the llgo compiler, and 3 bugs in the
Go language specification [44].

10.2.3 Extended Capabilities

The official Go compiler was automatically translated from C to Go in preparation for
the 1.5 release (to be released in August 2015) [45]. To make the C-style Go source code
more idiomatic, Russ Cox wrote a tool called grind39 which moves variable declarations
closer to their usage. This tool is a perfect fit for the decompilation pipeline, and may
be used as-is to extend the post-processing stage of the Go back-end.

37LLVM-based compiler for Go: https://llvm.org/svn/llvm-project/llgo/trunk/README.TXT
38Requirements · Issue #3: https://github.com/llir/llvm/issues/3
39Grind polishes Go programs: https://github.com/rsc/grind

58

https://llvm.org/svn/llvm-project/llgo/trunk/README.TXT
https://github.com/llir/llvm/issues/3
https://github.com/rsc/grind

10.3 Personal Development 10 CONCLUSION

In the far future, a type analysis component will be implement to support type recov-
ery during decompilation. As type analysis requires type constraints equations to be
solved, the component will be implemented in a language with good support support
for constraints programming (e.g. Prolog). At this stage, more research is required to
determine how generic type inference algorithms (e.g. Algorithm W [46]) may influence
the design.

10.3 Personal Development

This is the largest project I have undertaken in my life and I feel satisfied with the outcome
and proud of what I have been able to accomplished. It has re-enforced my belief that any
problem is solvable when broken into smaller subproblems and instilled me with a feeling
that anything is possible. The project has allowed me to mature as a software engineer
and I now feel more confident in utilizing best practices such as test-driven development
and CI. I have also matured as a developer and gained experience with implementing a
semi-large project and structuring it into several smaller self-contained projects.

If I were to redo the project today, I wish someone would have told me about the critical
importance of effective time management, and then told me again to let it sink in. In
the beginning of the project I used coarse time management and assigned bi-weekly
deadlines to larger tasks. While some tasks were completed ahead of schedule, many were
postponed. Later on it became apparent that accurate time estimates could only be given
when larger tasks were broken down into sufficiently small sub-tasks. Towards the end of
the project I used more granular time management, prioritised tasks, and split larger tasks
into sub-tasks that could be completed in a couple of days. For software development
tasks the former technique (coarse time management) worked well and for report writing
tasks the latter technique (granular time management) was most effective.

10.4 Final Thoughts

My happiest moment during the project was when the larger components started working
and could be connected to form a complete system. It feels great having started out
with a vague idea of how the decompiler could work, gradually gaining new insights and
refining its design after researching and building on the knowledge of others, developing
and iteratively reimplementing the various components until they felt just right, finally
arriving at a working prototype and seeing the full system in action! If there is one key
idea I want to leave you with it is that the composition of independent components, each
with a single purpose and well-defined input and output, is a powerful concept for solving
complex problems.

59

REFERENCES REFERENCES

References

[1] C. Palahniuk, Survivor. W. W. Norton, 1999.

[2] C. Cifuentes, Reverse Compilation Techniques. PhD thesis, Queensland University
of Technology, 1994. [Online] Available: http://www.ci.tuwien.ac.at/~grill/
decompilation_thesis.pdf. [Accessed: 22 Feb 2016].

[3] E. W. Dijkstra, “The humble programmer.” ACM Turing Lecture 1972, 1972. [On-
line] Available: http://dl.acm.org/ft_gateway.cfm?id=1283927&type=pdf. [Ac-
cessed: 22 Feb 2016].

[4] E. Youngdale, “The ELF object file format by dissection,” Linux Journal, vol. 13,
1995. [Online] Available: http://www.linuxjournal.com/article/1060. [Ac-
cessed: 22 Feb 2016].

[5] I. Intel, “Intel 64 and IA-32 architectures software devel-
oper’s manual,” 2015. [Online] Available: https://www-ssl.
intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-manual-325462.pdf. [Accessed:
22 Feb 2016].

[6] I. ARM, “ARMv8-A architecture reference manual,” 2015. [Online] Available:
https://silver.arm.com/download/download.tm?pv=2113558. [Accessed: 22 Feb
2016].

[7] I. ARM, “Harvard vs. Von Neumann.” ARM home page, 2009. [On-
line] Available: http://infocenter.arm.com/help/topic/com.arm.doc.faqs/
ka11516.html. [Accessed: 22 Feb 2016].

[8] A. Dinaburg and A. Ruef, “McSema: Static translation of x86 instruction semantics
to LLVM.” Talk given at ReCON 2014, 2014. [Online] Available: http://www.
trailofbits.com/resources/McSema.pdf. [Accessed: 22 Feb 2016].

[9] M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On Guide to
Dissecting Malicious Software. No Starch Press, 2012.

[10] S. Moll, “Decompilation of LLVM IR,” BSc thesis, Saarland University, 2011. [Online]
Available: http://www.cdl.uni-saarland.de/publications/theses/moll_bsc.
pdf. [Accessed: 22 Feb 2016].

[11] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee, “An in-depth comparison of sub-
graph isomorphism algorithms in graph databases,” in Proceedings of the VLDB En-
dowment, vol. 6, pp. 133–144, VLDB Endowment, 2012. [Online] Available: http://
db.disi.unitn.eu/pages/VLDBProgram/pdf/research/p185-han.pdf. [Accessed:
22 Feb 2016].

[12] T. Dullien and S. Porst, “REIL: A platform-independent intermediate representa-
tion of disassembled code for static code analysis,” Proceeding of CanSecWest, 2009.
[Online] Available: http://www.zynamics.com/downloads/csw09.pdf. [Accessed:
22 Feb 2016].

60

http://www.ci.tuwien.ac.at/~grill/decompilation_thesis.pdf
http://www.ci.tuwien.ac.at/~grill/decompilation_thesis.pdf
http://dl.acm.org/ft_gateway.cfm?id=1283927&type=pdf
http://www.linuxjournal.com/article/1060
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://silver.arm.com/download/download.tm?pv=2113558
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka11516.html
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka11516.html
http://www.trailofbits.com/resources/McSema.pdf
http://www.trailofbits.com/resources/McSema.pdf
http://www.cdl.uni-saarland.de/publications/theses/moll_bsc.pdf
http://www.cdl.uni-saarland.de/publications/theses/moll_bsc.pdf
http://db.disi.unitn.eu/pages/VLDBProgram/pdf/research/p185-han.pdf
http://db.disi.unitn.eu/pages/VLDBProgram/pdf/research/p185-han.pdf
http://www.zynamics.com/downloads/csw09.pdf

REFERENCES REFERENCES

[13] “REIL - the reverse engineering intermediate language.” [Online] Available: http://
www.zynamics.com/binnavi/manual/html/reil_language.htm. [Accessed: 22 Feb
2016].

[14] “Open source library that implements translator and tools for REIL (reverse en-
gineering intermediate language).” GitHub repository. [Online] Available: https:
//github.com/Cr4sh/openreil. [Accessed: 22 Feb 2016].

[15] C. Lattner, “LLVM,” The Architecture of Open Source Applications, 2011. [Online]
Available: http://www.aosabook.org/en/llvm.html. [Accessed: 22 Feb 2016].

[16] “MIPS instruction reference,” 1998. [Online] Available: http://www.mrc.uidaho.
edu/mrc/people/jff/digital/MIPSir.html. [Accessed: 22 Feb 2016].

[17] “LLVM language reference manual.” [Online] Available: http://llvm.org/docs/
LangRef.html. [Accessed: 22 Feb 2016].

[18] M. J. Van Emmerik, Static Single Assignment for Decompilation. PhD thesis, The
University of Queensland, 2007. [Online] Available: http://www.backerstreet.
com/decompiler/vanEmmerik_ssa.pdf. [Accessed: 22 Feb 2016].

[19] L. Ďurfina, J. Křoustek, P. Zemek, D. Kolář, T. Hruška, K. Masařík, and A. Meduna,
“Design of a retargetable decompiler for a static platform-independent malware anal-
ysis,” in Information Security and Assurance, pp. 72–86, Springer, 2011. [Online]
Available: http://www.sersc.org/journals/IJSIA/vol5_no4_2011/8.pdf. [Ac-
cessed: 22 Feb 2016].

[20] R. T. C. III, “Fracture: Inverting llvm’s target independent code generator.” LLVM
Developer’s Conference 2013, 2013. [Online] Available: http://llvm.org/devmtg/
2013-11/slides/Carback-Poster.pdf. [Accessed: 22 Feb 2016].

[21] “Dagger - the DC layer.” The Dagger home page, 2014. [Online] Available: http:
//dagger.repzret.org/overview-dc/. [Accessed: 22 Feb 2016].

[22] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley, “Native x86 decompilation using
semantics-preserving structural analysis and iterative control-flow structuring,” in
Proceedings of the USENIX Security Symposium, p. 16, 2013. [Online] Available:
http://users.ece.cmu.edu/~ejschwar/papers/usenix13.pdf. [Accessed: 22 Feb
2016].

[23] I. Guilfanov, “Decompilers and beyond,” Black Hat USA, 2008. [Online] Avail-
able: https://www.hex-rays.com/products/ida/support/ppt/decompilers_
and_beyond_white_paper.pdf. [Accessed: 22 Feb 2016].

[24] A. M. Davis, “Operational prototyping: A new development approach,” Software,
IEEE, vol. 9, no. 5, pp. 70–78, 1992. [Online] Available: http://www-di.inf.
puc-rio.br/~karin/pos/davis.pdf. [Accessed: 22 Feb 2016].

[25] K. Beck, Extreme programming explained: embrace change. Addison-Wesley Profes-
sional, 2000.

[26] K. Brennan et al., A Guide to the Business Analysis Body of Knowledger. Iiba, 2009.

61

http://www.zynamics.com/binnavi/manual/html/reil_language.htm
http://www.zynamics.com/binnavi/manual/html/reil_language.htm
https://github.com/Cr4sh/openreil
https://github.com/Cr4sh/openreil
http://www.aosabook.org/en/llvm.html
http://www.mrc.uidaho.edu/mrc/people/jff/digital/MIPSir.html
http://www.mrc.uidaho.edu/mrc/people/jff/digital/MIPSir.html
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html
http://www.backerstreet.com/decompiler/vanEmmerik_ssa.pdf
http://www.backerstreet.com/decompiler/vanEmmerik_ssa.pdf
http://www.sersc.org/journals/IJSIA/vol5_no4_2011/8.pdf
http://llvm.org/devmtg/2013-11/slides/Carback-Poster.pdf
http://llvm.org/devmtg/2013-11/slides/Carback-Poster.pdf
http://dagger.repzret.org/overview-dc/
http://dagger.repzret.org/overview-dc/
http://users.ece.cmu.edu/~ejschwar/papers/usenix13.pdf
https://www.hex-rays.com/products/ida/support/ppt/decompilers_and_beyond_white_paper.pdf
https://www.hex-rays.com/products/ida/support/ppt/decompilers_and_beyond_white_paper.pdf
http://www-di.inf.puc-rio.br/~karin/pos/davis.pdf
http://www-di.inf.puc-rio.br/~karin/pos/davis.pdf

REFERENCES REFERENCES

[27] R. Kotler, “A formal specification for LLVM assembly language.” Google Code
repository, 2011. [Online] Available: https://github.com/decomp-mirror/
llvm-assembly-language-formal-specification. [Accessed: 22 Feb 2016].

[28] J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic, “Formalizing the LLVM
intermediate representation for verified program transformations,” ACM SIGPLAN
Notices, vol. 47, no. 1, pp. 427–440, 2012. [Online] Available: http://www.cis.
upenn.edu/~stevez/papers/ZNMZ12.pdf. [Accessed: 22 Feb 2016].

[29] D. Cheney, “Simplicity and collaboration,” in Proceedings of Gophercon
India, 2015. [Online] Available: http://dave.cheney.net/2015/03/08/
simplicity-and-collaboration. [Accessed: 22 Feb 2016].

[30] E. S. Raymond, The art of Unix programming. Addison-Wesley Professional, 2003.
[Online] Available: http://www.faqs.org/docs/artu/ch01s06.html. [Accessed:
22 Feb 2016].

[31] D. Novillo, “GCC internals,” in International Symposium on Code Gen-
eration and Optimization (CGO), San Jose, California, 2007. [On-
line] Available: http://www.airs.com/dnovillo/200711-GCC-Internals/
200711-GCC-Internals-1-condensed.pdf. [Accessed: 22 Feb 2016].

[32] H. G. Mayer, Advanced C programming on the IBM PC. Windcrest, 1989.

[33] R. Pike, “Less is exponentially more.” Blog post, 2012. [Online] Available: http://
commandcenter.blogspot.co.uk/2012/06/less-is-exponentially-more.html.
[Accessed: 22 Feb 2016].

[34] R. Pike, “Lexical scanning in go.” Talk given at Google Technology User Group in
2011. [Online] Available: https://www.youtube.com/watch?v=HxaD_trXwRE. [Ac-
cessed: 22 Feb 2016].

[35] J. N. Buxton and B. Randell, Software Engineering Techniques: Report on a Con-
ference Sponsored by the NATO Science Committee. NATO Science Committee;
available from Scientific Affairs Division, NATO, 1970. [Online] Available: http:
//homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF. [Accessed: 22
Feb 2016].

[36] R. Pike, “The cover story.” The Go Blog. [Online] Available: https://blog.golang.
org/cover. [Accessed: 22 Feb 2016].

[37] P. Foggia, C. Sansone, and M. Vento, “A performance comparison of five algo-
rithms for graph isomorphism,” in Proceedings of the 3rd IAPR TC-15 Workshop
on Graph-based Representations in Pattern Recognition, pp. 188–199, 2001.
[Online] Available: http://www.researchgate.net/profile/Maximo_Vento/
publication/228854771_A_performance_comparison_of_five_algorithms_
for_graph_isomorphism/links/0fcfd50acf6509462c000000.pdf. [Accessed: 22
Feb 2016].

[38] A. One, “Smashing the stack for fun and profit,” Phrack Magazine, vol. 49, 1996. [On-
line] Available: http://phrack.org/issues/49/14.html. [Accessed: 22 Feb 2016].

[39] “LLVM users.” LLVM home page. [Online] Available: http://llvm.org/Users.
html. [Accessed: 22 Feb 2016].

62

https://github.com/decomp-mirror/llvm-assembly-language-formal-specification
https://github.com/decomp-mirror/llvm-assembly-language-formal-specification
http://www.cis.upenn.edu/~stevez/papers/ZNMZ12.pdf
http://www.cis.upenn.edu/~stevez/papers/ZNMZ12.pdf
http://dave.cheney.net/2015/03/08/simplicity-and-collaboration
http://dave.cheney.net/2015/03/08/simplicity-and-collaboration
http://www.faqs.org/docs/artu/ch01s06.html
http://www.airs.com/dnovillo/200711-GCC-Internals/200711-GCC-Internals-1-condensed.pdf
http://www.airs.com/dnovillo/200711-GCC-Internals/200711-GCC-Internals-1-condensed.pdf
http://commandcenter.blogspot.co.uk/2012/06/less-is-exponentially-more.html
http://commandcenter.blogspot.co.uk/2012/06/less-is-exponentially-more.html
https://www.youtube.com/watch?v=HxaD_trXwRE
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF
https://blog.golang.org/cover
https://blog.golang.org/cover
http://www.researchgate.net/profile/Maximo_Vento/publication/228854771_A_performance_comparison_of_five_algorithms_for_graph_isomorphism/links/0fcfd50acf6509462c000000.pdf
http://www.researchgate.net/profile/Maximo_Vento/publication/228854771_A_performance_comparison_of_five_algorithms_for_graph_isomorphism/links/0fcfd50acf6509462c000000.pdf
http://www.researchgate.net/profile/Maximo_Vento/publication/228854771_A_performance_comparison_of_five_algorithms_for_graph_isomorphism/links/0fcfd50acf6509462c000000.pdf
http://phrack.org/issues/49/14.html
http://llvm.org/Users.html
http://llvm.org/Users.html

REFERENCES REFERENCES

[40] “Clang static analyzer.” LLVM home page. [Online] Available: http://
clang-analyzer.llvm.org/. [Accessed: 22 Feb 2016].

[41] A. Gerrand, “go fmt your code.” The Go Blog. [Online] Available: https://blog.
golang.org/go-fmt-your-code. [Accessed: 22 Feb 2016].

[42] “About the go command.” The Go home page. [Online] Available: https://golang.
org/doc/articles/go_command.html. [Accessed: 22 Feb 2016].

[43] T. Gray, “Goals, non-goals, and anti-goals,” 2013. [Online] Available: https:
//docs.google.com/document/d/1Y3Q1ySsHxNOk_WaPcQhR0YXwJQjZ4wPip_
w69VB9Eb8/edit. [Accessed: 22 Feb 2016].

[44] D. Vyukov, “GoSmith - random go program generator.” Google Code repository. [On-
line] Available: https://github.com/dvyukov/gosmith. [Accessed: 22 Feb 2016].

[45] R. Cox, “Go 1.3+ compiler overhaul.” Google Docs. [Online] Available: https:
//golang.org/s/go13compiler. [Accessed: 22 Feb 2016].

[46] L. Damas and R. Milner, “Principal type-schemes for functional programs,” in Pro-
ceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pp. 207–212, ACM, 1982.

63

http://clang-analyzer.llvm.org/
http://clang-analyzer.llvm.org/
https://blog.golang.org/go-fmt-your-code
https://blog.golang.org/go-fmt-your-code
https://golang.org/doc/articles/go_command.html
https://golang.org/doc/articles/go_command.html
https://docs.google.com/document/d/1Y3Q1ySsHxNOk_WaPcQhR0YXwJQjZ4wPip_w69VB9Eb8/edit
https://docs.google.com/document/d/1Y3Q1ySsHxNOk_WaPcQhR0YXwJQjZ4wPip_w69VB9Eb8/edit
https://docs.google.com/document/d/1Y3Q1ySsHxNOk_WaPcQhR0YXwJQjZ4wPip_w69VB9Eb8/edit
https://github.com/dvyukov/gosmith
https://golang.org/s/go13compiler
https://golang.org/s/go13compiler

APPENDICES

Appendices

A The REIL Instruction Set

Listing 3: A full definition of the REIL instruction set.
1 ; === [Arithmetic instructions] ===
2

3 ; ADD (Addition)
4 ; Syntax: add op1 , op2 , dst
5 ; op1: int or reg
6 ; op2: int or reg
7 ; dst: reg
8 ; Semantics: dst = op1 + op2
9 add (t1 , b4), (t2, b4), (t3, b8) ; t3 = t1 + t2

10

11 ; SUB (Subtraction)
12 ; Syntax: sub op1 , op2 , dst
13 ; op1: int or reg
14 ; op2: int or reg
15 ; dst: reg
16 ; Semantics: dst = op1 - op2
17 sub (t1 , b4), (42, b4), (t2, b8) ; t2 = t1 - 42
18

19 ; MUL (Unsigned multiplication)
20 ; Syntax: mul op1 , op2 , dst
21 ; op1: int or reg
22 ; op2: int or reg
23 ; dst: reg
24 ; Semantics: dst = op1 * op2
25 mul (37, b4), (t1, b4), (t2, b8) ; t2 = 37 * t1
26

27 ; DIV (Unsigned division)
28 ; Syntax: div op1 , op2 , dst
29 ; op1: int or reg
30 ; op2: int or reg
31 ; dst: reg
32 ; Semantics: dst = op1 / op2
33 div (4000, b4), (20, b4), (t1, b4) ; t1 = 4000 / 20
34

35 ; MOD (Unsigned modulo)
36 ; Syntax: mod op1 , op2 , dst
37 ; op1: int or reg
38 ; op2: int or reg
39 ; dst: reg
40 ; Semantics: dst = op1 % op2
41 mod (t1 , b4), (3, b4), (eax , b4) ; eax = t1 % 3
42

43 ; BSH (Logical shift)
44 ; Syntax: bsh op1 , op2 , dst
45 ; op1: int or reg
46 ; op2: int or reg
47 ; dst: reg
48 ; Semantics: dst = op1 << op2 (right shifts if op2 < 0)
49 bsh (ebx , b4), (-4, b4), (t1, b8) ; t1 = ebx >> 4
50

51 ; === [Bitwise instructions] ===

64

A The REIL Instruction Set APPENDICES

52

53 ; AND (Bitwise AND)
54 ; Syntax: and op1 , op2 , dst
55 ; op1: int or reg
56 ; op2: int or reg
57 ; dst: reg
58 ; Semantics: dst = op1 & op2
59 and (t1 , b4), (t2, b4), (t3, b4) ; t3 = t1 & t2
60

61 ; OR (Bitwise OR)
62 ; Syntax: or op1 , op2 , dst
63 ; op1: int or reg
64 ; op2: int or reg
65 ; dst: reg
66 ; Semantics: dst = op1 | op2
67 or (t1, b4), (4, b4), (t2, b4) ; t2 = t1 | 4
68

69 ; XOR (Bitwise XOR)
70 ; Syntax: xor op1 , op2 , dst
71 ; op1: int or reg
72 ; op2: int or reg
73 ; dst: reg
74 ; Semantics: dst = op1 ^ op2
75 xor (0, b4), (eax , b4), (t1, b4) ; t1 = 0 ^ eax
76

77 ; === [Data transfer instructions] ===
78

79 ; LDM (Load from memory)
80 ; Syntax: ldm op1 , , dst
81 ; op1: int or reg
82 ; op2: empty
83 ; dst: reg
84 ; Semantics: dst = mem[op1] (load a value the size of dst from←↩

memory)
85 ldm (16392 , b4), , (t1 , b2) ; t1 = *(uint16 *)mem[0 x4008]
86

87 ; STM (Store to memory)
88 ; Syntax: stm op1 , , dst
89 ; op1: int or reg
90 ; op2: empty
91 ; dst: int or reg
92 ; Semantics: mem[dst] = op1 (store a value the size of op1 to ←↩

memory)
93 stm (t1 , b8), , (16392 , b4) ; *(uint64 *)mem[0x4008] = t1
94

95 ; STR (Store to register)
96 ; Syntax: str op1 , , dst
97 ; op1: int or reg
98 ; op2: empty
99 ; dst: reg

100 ; Semantics: dst = op1
101 str (12, b4), , (t1, b4) ; t1 = 12
102

103 ; === [Conditional instructions] ===
104

105 ; BISZ (Boolean is zero)
106 ; Syntax: bisz op1 , , dst
107 ; op1: int or reg

65

A The REIL Instruction Set APPENDICES

108 ; op2: empty
109 ; dst: reg
110 ; Semantics: dst = (op1 == 0)
111 bisz (t1 , b4), , (t2 , b1) ; t2 = (t1 == 0)
112

113 ; JCC (Conditional jump)
114 ; Syntax: jcc op1 , , dst
115 ; op1: int or reg
116 ; op2: empty
117 ; dst: subaddr
118 ; Semantics: if (op1 != 0) goto dst
119 jcc (t1 , b4), , (11008 , b1) ; if (t1 != 0) goto 0x2B00
120

121 ; === [Other instructions] ===
122

123 ; UNDEF (Undefine a register)
124 ; Syntax: undef , , dst
125 ; op1: empty
126 ; op2: empty
127 ; dst: reg
128 ; Semantics: // Undefine dst , its value is now unknown
129 undef , , (t1 , b4) ; Undefine t1 , its value is now unknown
130

131 ; UNKN (Unknown instruction)
132 ; Syntax: unkn , ,
133 ; op1: empty
134 ; op2: empty
135 ; dst: empty
136 ; Semantics: // Unknown instruction from source architecture
137 unkn , , ; Unknown instruction from source architecture
138

139 ; NOP (No operation)
140 ; Syntax: nop , ,
141 ; op1: empty
142 ; op2: empty
143 ; dst: empty
144 ; Semantics: // No operation
145 nop , , ; No operation

66

B Patch for Unnamed Basic Blocks of LLVM APPENDICES

B Patch for Unnamed Basic Blocks of LLVM

The following patch ensures that the assembly printer of LLVM 3.6.0 always prints the
generated names of unnamed basic blocks.

Listing 4: Always print the generated names of unnamed basic blocks.
1 diff --git a/lib/IR/AsmWriter.cpp b/lib/IR/AsmWriter.cpp
2 index c494d6c ..1 a96956 100644
3 --- a/lib/IR/AsmWriter.cpp
4 +++ b/lib/IR/AsmWriter.cpp
5 @@ -2025,13 +2025 ,14 @@ void AssemblyWriter :: printBasicBlock(const ←↩

BasicBlock *BB) {
6 Out << "\n";
7 PrintLLVMName(Out , BB->getName (), LabelPrefix);
8 Out << ':';
9 - } else if (!BB->use_empty ()) { // Don 't print block # of no ←↩

uses ...
10 - Out << "\n; <label >:";
11 + } else { // Print block # for unnamed basic blocks.
12 + Out << "\n";
13 int Slot = Machine.getLocalSlot(BB);
14 if (Slot != -1)
15 Out << Slot;
16 else
17 Out << "<badref >";
18 + Out << ':';
19 }
20

21 if (!BB->getParent ()) {

67

C Dagger Example APPENDICES

C Dagger Example

To demonstrate the capabilities of Dagger, the relocatable object code of a simple “hello
world” C program was analysed. For reference, the disassembly of the relocatable object
code is presented in listing 5. Firstly, the llvm-dec tool parsed the relocatable object
code (i.e. Mach-o file), disassembled its machine instructions (i.e. x86-64 assembly) and
converted each native instruction to semantically equivalent, unoptimised LLVM IR; the
listing of which was omitted for the sake of brevity. Lastly, the optimiser of the LLVM
compiler framework analysed the unoptimised LLVM IR to produce an optimised version,
which is presented in listing 6.

Listing 5: Disassembly of the relocatable object code which was produced from a simple
“hello world” C program.

1 main:
2 push rbp
3 mov rbp , rsp
4 sub rsp , 32
5 lea rax , hello
6 mov [rbp -4], 0
7 mov [rbp -8], edi
8 mov [rbp -16], rsi
9 mov rdi , rax

10 mov al , 0
11 call printf
12 mov ecx , 0
13 mov [rbp -20], eax
14 mov eax , ecx
15 add rsp , 32
16 pop rbp
17 ret
18

19 hello:
20 db 'hello world ' ,10,0

Listing 6: Decompiled LLVM IR, which was produced by Dagger when analysing the
relocatable object code which contained the disassembly presented in listing 5.

1 ; ModuleID = 'hello.ll '
2

3 %regset = type { i16 , i16 , i32 , i16 , i16 , i16 , i16 , i64 , i64 , i64 , i64←↩
, i64 , i64 , i64 , i64 , i64 , i16 , i64 , i64 , i64 , i64 , i64 , i64 , i64 ,←↩
i64 , i64 , i64 , i64 , i64 , i64 , i64 , i64 , i64 , i32 , i32 , i32 , i32 , ←↩

i32 , i32 , i32 , i32 , i80 , i80 , i80 , i80 , i80 , i80 , i80 , i64 , i64 , ←↩
i64 , i64 , i64 , i64 , i64 , i64 , i64 , i64 , i64 , i64 , i64 , i64 , i64 , ←↩
i64 , i64 , i64 , i64 , i64 , i64 , i64 , i64 , i64 , i80 , i80 , i80 , i80 , ←↩
i80 , i80 , i80 , i80 , i512 , i512 , i512 , i512 , i512 , i512 , i512 , i512←↩
, i512 , i512 , i512 , i512 , i512 , i512 , i512 , i512 , i512 , i512 , i512←↩
, i512 , i512 , i512 , i512 , i512 , i512 , i512 , i512 , i512 , i512 , i512←↩
, i512 , i512 }

4

5 define void @fn_0(%regset* noalias nocapture) {
6 entry_fn_0:
7 %RIP_ptr = getelementptr inbounds %regset , %regset* %0, i64 0, i32 ←↩

13
8 %RBP_ptr = getelementptr inbounds %regset , %regset* %0, i64 0, i32 8
9 %RBP_init = load i64 , i64* %RBP_ptr , align 4

68

C Dagger Example APPENDICES

10 %RSP_ptr = getelementptr inbounds %regset , %regset* %0, i64 0, i32 ←↩
15

11 %RSP_init = load i64 , i64* %RSP_ptr , align 4
12 %EFLAGS_ptr = getelementptr inbounds %regset , %regset* %0, i64 0, ←↩

i32 2
13 %EFLAGS_init = load i32 , i32* %EFLAGS_ptr , align 4
14 %RAX_ptr = getelementptr inbounds %regset , %regset* %0, i64 0, i32 7
15 %RDI_ptr = getelementptr inbounds %regset , %regset* %0, i64 0, i32 ←↩

11
16 %RDI_init = load i64 , i64* %RDI_ptr , align 4
17 %RSI_ptr = getelementptr inbounds %regset , %regset* %0, i64 0, i32 ←↩

14
18 %RSI_init = load i64 , i64* %RSI_ptr , align 4
19 %RCX_ptr = getelementptr inbounds %regset , %regset* %0, i64 0, i32 ←↩

10
20 %RCX_init = load i64 , i64* %RCX_ptr , align 4
21 %1 = add i64 %RSP_init , -8
22 %2 = inttoptr i64 %1 to i64*
23 store i64 %RBP_init , i64* %2, align 4
24 %RSP_2 = add i64 %RSP_init , -40
25 %3 = add i64 %RSP_init , -12
26 %4 = inttoptr i64 %3 to i32*
27 store i32 0, i32* %4 , align 4
28 %EDI_0 = trunc i64 %RDI_init to i32
29 %5 = add i64 %RSP_init , -16
30 %6 = inttoptr i64 %5 to i32*
31 store i32 %EDI_0 , i32* %6, align 4
32 %7 = add i64 %RSP_init , -24
33 %8 = inttoptr i64 %7 to i64*
34 store i64 %RSI_init , i64* %8, align 4
35 %RSP_3 = add i64 %RSP_init , -48
36 %9 = inttoptr i64 %RSP_3 to i64*
37 store i64 39, i64* %9 , align 4
38 %ZF_0 = icmp eq i64 %RSP_2 , 0
39 %10 = tail call { i64 , i1 } @llvm.ssub.with.overflow.i64(i64 %1, i64←↩

32)
40 %OF_0 = extractvalue { i64 , i1 } %10 , 1
41 %11 = tail call { i64 , i1 } @llvm.usub.with.overflow.i64(i64 %1, i64←↩

32)
42 %CF_0 = extractvalue { i64 , i1 } %11 , 1
43 %12 = trunc i64 %RSP_2 to i8
44 %13 = tail call i8 @llvm.ctpop.i8(i8 %12)
45 %14 = and i8 %13 , 1
46 %15 = and i32 %EFLAGS_init , -2262
47 %16 = zext i1 %CF_0 to i32
48 %17 = xor i8 %14 , 1
49 %18 = zext i8 %17 to i32
50 %19 = shl nuw nsw i32 %18 , 2
51 %20 = zext i1 %ZF_0 to i32
52 %21 = shl nuw nsw i32 %20 , 6
53 %22 = lshr i64 %RSP_2 , 56
54 %.tr = trunc i64 %22 to i32
55 %23 = and i32 %.tr , 128
56 %24 = zext i1 %OF_0 to i32
57 %25 = shl nuw nsw i32 %24 , 11
58 %26 = or i32 %21 , %15
59 %27 = or i32 %26 , %23
60 %28 = or i32 %27 , %16

69

C Dagger Example APPENDICES

61 %29 = or i32 %28 , %25
62 %EFLAGS_1 = or i32 %29 , %19
63 store i32 %EFLAGS_1 , i32* %EFLAGS_ptr , align 4
64 store i64 0, i64* %RAX_ptr , align 4
65 store i64 %1, i64* %RBP_ptr , align 4
66 store i64 %RCX_init , i64* %RCX_ptr , align 4
67 store i64 15, i64* %RDI_ptr , align 4
68 store i64 39, i64* %RIP_ptr , align 4
69 store i64 %RSI_init , i64* %RSI_ptr , align 4
70 store i64 %RSP_3 , i64* %RSP_ptr , align 4
71 tail call void @fn_27(%regset* %0)
72 %EFLAGS_4 = load i32 , i32* %EFLAGS_ptr , align 4
73 %RAX_3 = load i64 , i64* %RAX_ptr , align 4
74 %EAX_4 = trunc i64 %RAX_3 to i32
75 %RBP_3 = load i64 , i64* %RBP_ptr , align 4
76 %RDI_1 = load i64 , i64* %RDI_ptr , align 4
77 %RSI_1 = load i64 , i64* %RSI_ptr , align 4
78 %RSP_8 = load i64 , i64* %RSP_ptr , align 4
79 %30 = add i64 %RBP_3 , -20
80 %31 = inttoptr i64 %30 to i32*
81 store i32 %EAX_4 , i32* %31 , align 4
82 %RSP_5 = add i64 %RSP_8 , 32
83 %RSP_6 = add i64 %RSP_8 , 40
84 %32 = inttoptr i64 %RSP_5 to i64*
85 %RBP_2 = load i64 , i64* %32 , align 4
86 %RSP_7 = add i64 %RSP_8 , 48
87 %33 = inttoptr i64 %RSP_6 to i64*
88 %RIP_18 = load i64 , i64* %33 , align 4
89 %ZF_1 = icmp eq i64 %RSP_5 , 0
90 %34 = tail call { i64 , i1 } @llvm.sadd.with.overflow.i64(i64 %RSP_8 ,←↩

i64 32)
91 %OF_1 = extractvalue { i64 , i1 } %34 , 1
92 %CF_1 = icmp ugt i64 %RSP_8 , -33
93 %35 = trunc i64 %RSP_5 to i8
94 %36 = tail call i8 @llvm.ctpop.i8(i8 %35)
95 %37 = and i8 %36 , 1
96 %38 = and i32 %EFLAGS_4 , -2262
97 %39 = zext i1 %CF_1 to i32
98 %40 = or i32 %39 , %38
99 %41 = xor i8 %37 , 1

100 %42 = zext i8 %41 to i32
101 %43 = shl nuw nsw i32 %42 , 2
102 %44 = zext i1 %ZF_1 to i32
103 %45 = shl nuw nsw i32 %44 , 6
104 %46 = lshr i64 %RSP_5 , 56
105 %.tr20 = trunc i64 %46 to i32
106 %47 = and i32 %.tr20 , 128
107 %48 = zext i1 %OF_1 to i32
108 %49 = shl nuw nsw i32 %48 , 11
109 %50 = or i32 %40 , %45
110 %51 = or i32 %50 , %47
111 %52 = or i32 %51 , %49
112 %EFLAGS_3 = or i32 %52 , %43
113 store i32 %EFLAGS_3 , i32* %EFLAGS_ptr , align 4
114 store i64 0, i64* %RAX_ptr , align 4
115 store i64 %RBP_2 , i64* %RBP_ptr , align 4
116 store i64 0, i64* %RCX_ptr , align 4
117 store i64 %RDI_1 , i64* %RDI_ptr , align 4

70

C Dagger Example APPENDICES

118 store i64 %RIP_18 , i64* %RIP_ptr , align 4
119 store i64 %RSI_1 , i64* %RSI_ptr , align 4
120 store i64 %RSP_7 , i64* %RSP_ptr , align 4
121 ret void
122 }
123

124 declare void @fn_27(%regset *)
125

126 ; Function Attrs: nounwind readnone
127 declare { i64 , i1 } @llvm.ssub.with.overflow.i64(i64 , i64) #0
128

129 ; Function Attrs: nounwind readnone
130 declare { i64 , i1 } @llvm.usub.with.overflow.i64(i64 , i64) #0
131

132 ; Function Attrs: nounwind readnone
133 declare i8 @llvm.ctpop.i8(i8) #0
134

135 ; Function Attrs: nounwind readnone
136 declare { i64 , i1 } @llvm.sadd.with.overflow.i64(i64 , i64) #0
137

138 define i32 @main(i32 , i8**) {
139 %3 = alloca %regset , align 8
140 %4 = alloca [8192 x i8], align 1
141 %5 = ptrtoint [8192 x i8]* %4 to i64
142 %6 = add i64 %5, 8184
143 %7 = inttoptr i64 %6 to i64*
144 store i64 -1, i64* %7 , align 4
145 %8 = getelementptr inbounds %regset , %regset* %3 , i64 0, i32 15
146 store i64 %6, i64* %8 , align 8
147 %9 = getelementptr inbounds %regset , %regset* %3 , i64 0, i32 11
148 %10 = zext i32 %0 to i64
149 store i64 %10 , i64* %9 , align 8
150 %11 = getelementptr inbounds %regset , %regset* %3, i64 0, i32 14
151 %12 = ptrtoint i8** %1 to i64
152 store i64 %12 , i64* %11 , align 8
153 %13 = getelementptr inbounds %regset , %regset* %3 , i64 0, i32 2
154 store i32 514, i32* %13 , align 4
155 call void @fn_0(%regset* %3)
156 %14 = getelementptr inbounds %regset , %regset* %3 , i64 0, i32 7
157 %15 = load i64 , i64* %14 , align 8
158 %16 = trunc i64 %15 to i32
159 ret i32 %16
160 }
161

162 ; Function Attrs: nounwind
163 define void @main_init_regset(%regset* nocapture , i8*, i32 , i32 , i8**)←↩

#1 {
164 %6 = ptrtoint i8* %1 to i64
165 %7 = zext i32 %2 to i64
166 %8 = add i64 %6, -8
167 %9 = add i64 %8, %7
168 %10 = inttoptr i64 %9 to i64*
169 store i64 -1, i64* %10 , align 4
170 %11 = getelementptr inbounds %regset , %regset* %0 , i64 0, i32 15
171 store i64 %9, i64* %11 , align 4
172 %12 = getelementptr inbounds %regset , %regset* %0 , i64 0, i32 11
173 %13 = zext i32 %3 to i64
174 store i64 %13 , i64* %12 , align 4

71

C Dagger Example APPENDICES

175 %14 = getelementptr inbounds %regset , %regset* %0, i64 0, i32 14
176 %15 = ptrtoint i8** %4 to i64
177 store i64 %15 , i64* %14 , align 4
178 %16 = getelementptr inbounds %regset , %regset* %0, i64 0, i32 2
179 store i32 514, i32* %16 , align 4
180 ret void
181 }
182

183 ; Function Attrs: nounwind readonly
184 define i32 @main_fini_regset(%regset* nocapture readonly) #2 {
185 %2 = getelementptr inbounds %regset , %regset* %0 , i64 0, i32 7
186 %3 = load i64 , i64* %2, align 4
187 %4 = trunc i64 %3 to i32
188 ret i32 %4
189 }
190

191 attributes #0 = { nounwind readnone }
192 attributes #1 = { nounwind }
193 attributes #2 = { nounwind readonly }

72

D MC-Semantics Example APPENDICES

D MC-Semantics Example

As described in section 3.1.2, MC-Semantics consists of two components which collectively
decompile native code into LLVM IR. To demonstrate the capabilities of MC-Semantics,
the relocatable object code of a simple C program (see listing 10) was analysed. For
reference, the disassembly of the relocatable object code is presented in listing 7. Firstly,
the control flow recovery component parsed the relocatable object code (i.e. ELF file)
and disassembled its machine instructions (i.e. x86 assembly) to produce a serialized
CFG (in the Google Protocol Buffer format), an extract of which is presented in listing 8.
Secondly, the instruction translation component converted the native instruction of the
serialized CFG into semantically equivalent, unoptimised LLVM IR; the listing of which
was omitted for the sake of brevity. Lastly, the optimiser of the LLVM compiler framework
analysed the unoptimised LLVM IR to produce an optimised version, which is presented
in listing 9.

Listing 7: Disassembly of the relocatable object code which was produced from the C
source code presented in listing 10.

1 main:
2 push ebp
3 mov ebp , esp
4 sub esp , 20
5 mov eax , [ebp +12]
6 mov ecx , [ebp +8]
7 mov dword [ebp -4], 0
8 mov [ebp -8], ecx
9 mov [ebp -12], eax

10 mov dword [ebp -20], 0
11 mov dword [ebp -16], 0
12

13 loc_loop_cond:
14 cmp dword [ebp -16], 10
15 jge loc_ret
16 cmp dword [ebp -20], 100
17 jge loc_skip_if_body
18 imul eax , [ebp -16], 3
19 add eax , [ebp -20]
20 mov [ebp -20], eax
21

22 loc_skip_if_body:
23 jmp loc_loop_post
24

25 loc_loop_post:
26 mov eax , [ebp -16]
27 add eax , 1
28 mov [ebp -16], eax
29 jmp loc_loop_cond
30

31 loc_ret:
32 mov eax , [ebp -20]
33 add esp , 20
34 pop ebp
35 ret

73

D MC-Semantics Example APPENDICES

Listing 8: An extract of the textual representation of a serialized CFG (in Google Protocol
Buffer format), which was generated by the control flow recovery component of MC-
Semantics when analysing the relocatable object code which contained the disassembly
presented in listing 7.

1 internal_funcs {
2 blocks {
3 insts {
4 inst_bytes: "U"
5 inst_addr: 0
6 true_target: -1
7 false_target: -1
8 inst_len: 1
9 reloc_offset: 0

10 }
11 // ...
12 insts {
13 inst_bytes: "\017\215/\000\000\000"
14 inst_addr: 46
15 true_target: 99
16 false_target: 52
17 inst_len: 6
18 reloc_offset: 0
19 }
20 base_address: 0
21 block_follows: 99
22 block_follows: 52
23 }
24 // ...
25 blocks {
26 insts {
27 inst_bytes: "\351\000\000\000\000"
28 inst_addr: 78
29 true_target: 83
30 false_target: -1
31 inst_len: 5
32 reloc_offset: 0
33 }
34 base_address: 78
35 block_follows: 83
36 }
37 entry_address: 0
38 }
39 module_name: "example1"
40 entries {
41 entry_name: "main"
42 entry_address: 0
43 }

Listing 9: Decompiled LLVM IR, which was produced by MC-Semantics when analysing
the relocatable object code which contained the disassembly presented in listing 7.

1 ; ModuleID = 'example1.ll '
2 target datalayout = "e-p:32:32 - f64 :32:64 - f80:32-n8:16:32 - S128"
3 target triple = "i686 -pc-linux -gnu"
4

5 %struct.rlimit = type { i32 , i32 }
6

74

D MC-Semantics Example APPENDICES

7 define i32 @main(i32 , i32) {
8 driverBlock:
9 %rl = alloca %struct.rlimit , align 8

10 %2 = bitcast %struct.rlimit* %rl to i64*
11 store i64 0, i64* %2 , align 8
12 %3 = ptrtoint %struct.rlimit* %rl to i32
13 %4 = call i32 @getrlimit(i32 3, i32 %3)
14 %5 = getelementptr %struct.rlimit* %rl , i32 0, i32 0
15 %6 = load i32* %5, align 8
16 %7 = call i32 @mmap(i32 0, i32 %6, i32 3, i32 131106 , i32 -1, i32 0)
17 %8 = add i32 %7, %6
18 %9 = add i32 %8, -52
19 %10 = inttoptr i32 %9 to i32*
20 store i32 %1, i32* %10 , align 4
21 %11 = add i32 %8 , -56
22 %12 = inttoptr i32 %11 to i32*
23 store i32 %0, i32* %12 , align 4
24 %13 = add i32 %8 , -84
25 %14 = load i32* %10 , align 4
26 %15 = add i32 %8 , -68
27 %16 = inttoptr i32 %15 to i32*
28 store i32 0, i32* %16 , align 4
29 %17 = add i32 %8 , -72
30 %18 = inttoptr i32 %17 to i32*
31 store i32 %0, i32* %18 , align 4
32 %19 = add i32 %8 , -76
33 %20 = inttoptr i32 %19 to i32*
34 store i32 %14 , i32* %20 , align 4
35 %21 = inttoptr i32 %13 to i32*
36 store i32 0, i32* %21 , align 4
37 %22 = add i32 %8 , -80
38 %23 = inttoptr i32 %22 to i32*
39 store i32 0, i32* %23 , align 4
40 br label %block_0x34.i
41

42 block_0x34.i: ; preds = ←↩
%block_0x53.i, %driverBlock

43 %24 = phi i32 [0, %driverBlock], [%34 , %block_0x53.i]
44 %25 = load i32* %21 , align 4
45 %26 = add i32 %25 , -100
46 %27 = icmp slt i32 %26 , 0
47 %28 = sub i32 99, %25
48 %29 = and i32 %28 , %25
49 %30 = icmp slt i32 %29 , 0
50 %tmp57.i = xor i1 %27 , %30
51 br i1 %tmp57.i, label %block_0x41.i, label %block_0x53.i
52

53 block_0x41.i: ; preds = ←↩
%block_0x34.i

54 %31 = mul i32 %24 , 3
55 %32 = add i32 %31 , %25
56 store i32 %32 , i32* %21 , align 4
57 %.pre.i = load i32* %23 , align 4
58 br label %block_0x53.i
59

60 block_0x53.i: ; preds = ←↩
%block_0x41.i, %block_0x34.i

61 %33 = phi i32 [%.pre.i, %block_0x41.i], [%24 , %block_0x34.i]

75

D MC-Semantics Example APPENDICES

62 %34 = add i32 %33 , 1
63 store i32 %34 , i32* %23 , align 4
64 %35 = add i32 %33 , -9
65 %36 = icmp slt i32 %35 , 0
66 %37 = sub i32 8, %33
67 %38 = and i32 %34 , %37
68 %39 = icmp slt i32 %38 , 0
69 %tmp59.i = xor i1 %36 , %39
70 br i1 %tmp59.i, label %block_0x34.i, label %sub_0.exit
71

72 sub_0.exit: ; preds = ←↩
%block_0x53.i

73 %40 = load i32* %21 , align 4
74 %rl1 = alloca %struct.rlimit , align 8
75 %41 = bitcast %struct.rlimit* %rl1 to i64*
76 store i64 0, i64* %41 , align 8
77 %42 = ptrtoint %struct.rlimit* %rl1 to i32
78 %43 = call i32 @getrlimit(i32 3, i32 %42)
79 %44 = getelementptr %struct.rlimit* %rl1 , i32 0, i32 0
80 %45 = load i32* %44 , align 8
81 %46 = tail call i32 @munmap(i32 %7 , i32 %45)
82 ret i32 %40
83 }
84

85 declare i32 @getrlimit(i32 , i32)
86

87 declare i32 @mmap(i32 , i32 , i32 , i32 , i32 , i32)
88

89 declare i32 @munmap(i32 , i32)

76

E Clang Example APPENDICES

E Clang Example

The Clang compiler supports emitting LLVM IR from C source code. Using the Clang
compiler and the LLVM IR optimiser of the LLVM compiler framework, the source code
of the simple C program presented in listing 10 was translated into the LLVM IR assembly
presented in listing 11.

Listing 10: The source code of a simple C program which iterates over a pre-test loop to
conditionally increment an accumulator. The final value of the accumulator x determines
the status code of the program.

1 int main(int argc , char **argv) {
2 int i, x;
3 x = 0;
4 for (i = 0; i < 10; i++) {
5 if (x < 100) {
6 x += 3*i;
7 }
8 }
9 return x;

10 }

Listing 11: An optimised version of the LLVM IR assembly, which was emitted by Clang
when compiling the C source code of listing 10.

1 define i32 @main(i32 %argc , i8** %argv) {
2 br label %1
3

4 ; <label >:1 ; preds = %9 , %0
5 %i.0 = phi i32 [0, %0], [%10 , %9]
6 %x.0 = phi i32 [0, %0], [%x.1, %9]
7 %2 = icmp slt i32 %i.0, 10
8 br i1 %2, label %3, label %11
9

10 ; <label >:3 ; preds = %1
11 %4 = icmp slt i32 %x.0, 100
12 br i1 %4, label %5, label %8
13

14 ; <label >:5 ; preds = %3
15 %6 = mul nsw i32 3, %i.0
16 %7 = add nsw i32 %x.0, %6
17 br label %8
18

19 ; <label >:8 ; preds = %5 , %3
20 %x.1 = phi i32 [%7, %5], [%x.0, %3]
21 br label %9
22

23 ; <label >:9 ; preds = %8
24 %10 = add nsw i32 %i.0, 1
25 br label %1
26

27 ; <label >:11 ; preds = %1
28 ret i32 %x.0
29 }

77

F Control Flow Graph Generation Example APPENDICES

F Control Flow Graph Generation Example

The ll2dot tool generates CFGs (in the DOT file format) from LLVM IR assembly files,
as described in section 6.3.2. Using the ll2dot tool, a CFG was generated from the
main function of the LLVM IR assembly in listing 11. A textual representation and an
image representation of the generated CFG are presented on the left and the right side
of figure 28 respectively. The image representation was generated using the dot40 tool of
the Graphviz project, by invoking the command dot -Tpng main.png main.dot.

1 digraph main {
2 0->1;
3 1->11 [label="false"];
4 1->3 [label="true"];
5 3->8 [label="false"];
6 3->5 [label="true"];
7 5->8;
8 8->9;
9 9->1;

10 0 [label="entry"];
11 1;
12 11;
13 3;
14 5;
15 8;
16 9;
17 }

Figure 28: A textual representation in the DOT file format (left) and an image represen-
tation (right) of the CFG which was generated from the main function of the LLVM IR
assembly in listing 11, using the ll2dot tool.

40Drawing Graphs with dot: http://www.graphviz.org/pdf/dotguide.pdf

78

http://www.graphviz.org/pdf/dotguide.pdf

G Control Flow Analysis Example APPENDICES

G Control Flow Analysis Example

This section provides a step-by-step demonstration of how the control flow analysis is
conducted by analysing the stmt function of the c441 compiler. For a detailed description
of the control flow analysis stage, please refer to section 6.3.2. The control flow analysis
operates exclusively on CFGs, which are generated by a set of components prior to the
control flow analysis stage. Firstly, the C source code of the c4 compiler is translated into
LLVM IR by the Clang compiler of the front-end. Secondly, the LLVM IR is optionally
optimised by the opt tool of the LLVM compiler framework. Lastly, a CFG is generated
for each function of the LLVM IR using the ll2dot tool. For this demonstration, the
CFG of the stmt function is the starting point of the control flow analysis stage.

The first step of the control flow analysis recursively locates subgraph isomorphisms of
the graph representation of pre-test loops (see figure 7d) in the original CFG of the stmt
function, and replaces these subgraphs with single nodes as illustrated in figure 29.

The second step further simplifies the CFG of step 1 by recursively replacing the sub-
graph isomorphisms of the graph representation of consecutive statements (see figure 7f)
with single nodes, as illustrated in figure 30.

The third step further simplifies the CFG of step 2 by recursively replacing the subgraph
isomorphisms of the graph representation of 1-way conditionals (see figure 7a) with single
nodes, as illustrated in figure 31.

The fourth step further simplifies the CFG of step 3 by recursively replacing the sub-
graph isomorphisms of the graph representation of 1-way conditionals with body return
statements (see figure 7c) with single nodes, as illustrated in figure 32.

The last step of the control flow analysis stage reduces the CFG of step 4 into a single
node by recursively replacing the subgraph isomorphisms of the graph representation of
2-way conditionals (see figure 7b) with single nodes, as illustrated in figure 33.

When the CFG has been reduced into a single node, a structured CFG may be generated
which maps each node to a high-level control flow primitive; as further described in
appendix H. Should the control flow analysis fail to reduce the CFG into a single node,
the CFG is considered irreducible with regards to the supported high-level control flow
primitives, a summary of which are presented in figure 7 of section 2.2.3.

41C in four functions: https://github.com/rswier/c4

79

https://github.com/rswier/c4

G Control Flow Analysis Example APPENDICES

Figure 29: Step 1. The original CFG of the stmt function (left) and a simplified CFG
(right) after identifying pre-test loops (see figure 7d).

80

G Control Flow Analysis Example APPENDICES

Figure 30: Step 2. The CFG from step 1 (left) and a simplified CFG (right) after
identifying consecutive statements (see figure 7f).

81

G Control Flow Analysis Example APPENDICES

Figure 31: Step 3. The CFG from step 2 (left) and a simplified CFG (right) after
identifying 1-way conditionals (see figure 7a).

82

G Control Flow Analysis Example APPENDICES

Figure 32: Step 4. The CFG from step 3 (left) and a simplified CFG (right) after
identifying 1-way conditionals with body return statements (see figure 7c).

83

G Control Flow Analysis Example APPENDICES

Figure 33: Step 5. The CFG from step 4 (left) and a simplified CFG (right) after
identifying 2-way conditionals (see figure 7b).

84

H Restructure Example APPENDICES

H Restructure Example

The restructure tool produces structured CFGs (in JSON format) from unstructured
CFGs (in the DOT file format), as described in section 6.3.2. Listing 12 demonstrates the
output of the restructure tool when analysing the CFG of the main function presented in
figure 28.

Listing 12: The structured CFG (in JSON format) produced by the restructure tool
when analysing the CFG of the main function presented in figure 28.

1 [
2 {
3 "prim": "list",
4 "node": "list0",
5 "nodes": {
6 "A": "8",
7 "B": "9"
8 }
9 },

10 {
11 "prim": "if",
12 "node": "if0",
13 "nodes": {
14 "A": "3",
15 "B": "5",
16 "C": "list0"
17 }
18 },
19 {
20 "prim": "pre_loop",
21 "node": "pre_loop0",
22 "nodes": {
23 "A": "1",
24 "B": "if0",
25 "C": "11"
26 }
27 },
28 {
29 "prim": "list",
30 "node": "list0",
31 "nodes": {
32 "A": "0",
33 "B": "pre_loop0"
34 }
35 }
36]

85

I Code Generation Example APPENDICES

I Code Generation Example

The ll2go tool translates LLVM IR assembly into unpolished Go source code, as de-
scribed in section 6.4. Using the ll2go tool, the LLVM IR assembly of listing 11 was
translated into the unpolished Go source code presented in listing 13. Please note that
the ll2go tool produces unpolished Go source code which may not compile, as it does not
follow Go conventions for program status codes and may include undeclared identifiers.
Appendix J demonstrates how the post-processing stage may improve the quality of the
unpolished Go source code.

Listing 13: Unpolished Go source code, which was produced by the ll2go tool when
translating the LLVM IR of listing 11 into Go.

1 package main
2

3 func main() {
4 i = 0
5 x = 0
6 for i < 10 {
7 _4 := x < 100
8 x = x
9 if _4 {

10 _6 := 3 * i
11 _7 := x + _6
12 x = _7
13 }
14 _10 := i + 1
15 i = _10
16 x = x
17 }
18 return x
19 }

86

J Post-processing Example APPENDICES

J Post-processing Example

This section demonstrates the rewriting capabilities of the go-post tool, by successively
simplifying the unpolished Go source code presented in the left side of figure 34, through
a series of six rewrites which are illustrated in figure 34, 35, 36, 37, 38 and 39 respec-
tively.

For comparison, the original C source code is presented alongside of the decompiled
Go output from rewrite 6 in figure 40. Please note that the middle-end and back-
end modules of the decompilation pipeline are only given access to the LLVM IR (see
listing 11) produced by the front-end (as described in appendix E), and are completely
unaware of the original C source code. When decompiling LLVM IR generated from
native code, the original names of identifiers may be missing.

1 package main
2

3 func main() {
4 i = 0
5 x = 0
6 for i < 10 {
7 _4 := x < 100
8 x = x
9 if _4 {

10 _6 := 3 * i
11 _7 := x + _6
12 x = _7
13 }
14 _10 := i + 1
15 i = _10
16 x = x
17 }
18 return x
19 }

1 package main
2

3 func main() {
4 i := 0
5 x := 0
6 for i < 10 {
7 _4 := x < 100
8 x = x
9 if _4 {

10 _6 := 3 * i
11 _7 := x + _6
12 x = _7
13 }
14 _10 := i + 1
15 i = _10
16 x = x
17 }
18 return x
19 }

Figure 34: Rewrite 1. The original unpolished Go source code (left) and the simplified
Go source code (right) after declaring unresolved identifiers. The assignment statements
of line 4 and 5 have been rewritten into declare-and-initialise statements. This transfor-
mation was applied by invoking go-post -r unresolved.

87

J Post-processing Example APPENDICES

1 package main
2

3 func main() {
4 i := 0
5 x := 0
6 for i < 10 {
7 _4 := x < 100
8 x = x
9 if _4 {

10 _6 := 3 * i
11 _7 := x + _6
12 x = _7
13 }
14 _10 := i + 1
15 i = _10
16 x = x
17 }
18 return x
19 }

1 package main
2

3 import "os"
4

5 func main() {
6 i := 0
7 x := 0
8 for i < 10 {
9 _4 := x < 100

10 x = x
11 if _4 {
12 _6 := 3 * i
13 _7 := x + _6
14 x = _7
15 }
16 _10 := i + 1
17 i = _10
18 x = x
19 }
20 os.Exit(x)
21 }

Figure 35: Rewrite 2. The Go source code from rewrite 1 (left) and the simplified
Go source code (right) after applying Go conventions for exit status codes. The return
statement of line 18 have been rewritten into an os.Exit function call and the “os”
package have been imported on line 3. This transformation was applied by invoking
go-post -r mainret

1 package main
2

3 import "os"
4

5 func main() {
6 i := 0
7 x := 0
8 for i < 10 {
9 _4 := x < 100

10 x = x
11 if _4 {
12 _6 := 3 * i
13 _7 := x + _6
14 x = _7
15 }
16 _10 := i + 1
17 i = _10
18 x = x
19 }
20 os.Exit(x)
21 }

1 package main
2

3 import "os"
4

5 func main() {
6 i := 0
7 x := 0
8 for i < 10 {
9 x = x

10 if x < 100 {
11 x = x + 3*i
12 }
13 i = i + 1
14 x = x
15 }
16 os.Exit(x)
17 }

Figure 36: Rewrite 3. The Go source code from rewrite 2 (left) and the simplified Go
source code (right) after propagating temporary variables into expressions. The tempo-
rary variables declared at line 9, 12, 13 and 16 have been propagated into the expressions
at line 10, 11 and 13. This transformation was applied by invoking go-post -r localid

88

J Post-processing Example APPENDICES

1 package main
2

3 import "os"
4

5 func main() {
6 i := 0
7 x := 0
8 for i < 10 {
9 x = x

10 if x < 100 {
11 x = x + 3*i
12 }
13 i = i + 1
14 x = x
15 }
16 os.Exit(x)
17 }

1 package main
2

3 import "os"
4

5 func main() {
6 i := 0
7 x := 0
8 for i < 10 {
9 x = x

10 if x < 100 {
11 x += 3 * i
12 }
13 i++
14 x = x
15 }
16 os.Exit(x)
17 }

Figure 37: Rewrite 4. The Go source code from rewrite 3 (left) and the simplified
Go source code (right) after simplifying binary assignment statements. The assignment
statements on line 11 and 13 have been rewritten into an addition assignment operation
and an increment statement respectively. This transformation was applied by invoking
go-post -r assignbinop

1 package main
2

3 import "os"
4

5 func main() {
6 i := 0
7 x := 0
8 for i < 10 {
9 x = x

10 if x < 100 {
11 x += 3 * i
12 }
13 i++
14 x = x
15 }
16 os.Exit(x)
17 }

1 package main
2

3 import "os"
4

5 func main() {
6 i := 0
7 x := 0
8 for i < 10 {
9 if x < 100 {

10 x += 3 * i
11 }
12 i++
13 }
14 os.Exit(x)
15 }

Figure 38: Rewrite 5. The Go source code from rewrite 4 (left) and the simplified
Go source code (right) after removing dead assignment statements. The assignment
statements on line 9 and 14 have been removed. This transformation was applied by
invoking go-post -r deadassign

89

J Post-processing Example APPENDICES

1 package main
2

3 import "os"
4

5 func main() {
6 i := 0
7 x := 0
8 for i < 10 {
9 if x < 100 {

10 x += 3 * i
11 }
12 i++
13 }
14 os.Exit(x)
15 }

1 package main
2

3 import "os"
4

5 func main() {
6 x := 0
7 for i := 0; i < 10; i++ {
8 if x < 100 {
9 x += 3 * i

10 }
11 }
12 os.Exit(x)
13 }

Figure 39: Rewrite 6. The Go source code from rewrite 5 (left) and the simplified Go
source code (right) after propagating the initialisation statement on line 6 and the post-
statement on line 12 to the for-loop header on line 7. This transformation was applied
by invoking go-post -r forloop

1 int main(int argc , char **argv) {
2 int i, x;
3 x = 0;
4 for (i = 0; i < 10; i++) {
5 if (x < 100) {
6 x += 3*i;
7 }
8 }
9 return x;

10 }

1 package main
2

3 import "os"
4

5 func main() {
6 x := 0
7 for i := 0; i < 10; i++ {
8 if x < 100 {
9 x += 3 * i

10 }
11 }
12 os.Exit(x)
13 }

Figure 40: The original C source code (left) and the decompiled Go output from rewrite
6 (right).

90

K Decompilation of Nested Primitives APPENDICES

K Decompilation of Nested Primitives

The following section demonstrates the decompilation of a source program which contains
nested primitives. For comparison, the original C source code is presented alongside of
the decompiled Go output in figure 41. Please note that the middle-end and back-
end modules of the decompilation pipeline are only given access to the LLVM IR (see
listing 14) produced by the front-end (as described in appendix E), and are completely
unaware of the original C source code. When decompiling LLVM IR generated from
native code, the original names of identifiers may be missing.

1 int main(int argc , char **argv) {
2 int i, j, sum;
3 sum = 0;
4 for (i = 0; i < 5; i++) {
5 for (j = 0; j < 7; j++) {
6 if (i < j) {
7 sum += i;
8 } else {
9 sum += j;

10 }
11 }
12 }
13 return sum % 256;
14 }

1 package main
2

3 import "os"
4

5 func main() {
6 sum := 0
7 for i := 0; i < 5; i++ {
8 for j := 0; j < 7; j++ {
9 if i < j {

10 sum += i
11 } else {
12 sum += j
13 }
14 }
15 }
16 os.Exit(sum % 256)
17 }

Figure 41: The original C source code (left) and the decompiled Go output (right).

Listing 14: The LLVM IR assembly which was produced by Clang when compiling the C
source code presented on the left side of listing 41.

1 define i32 @main(i32 %argc , i8** %argv) {
2 br label %1
3

4 ; <label >:1 ; preds = %16 , %0
5 %i.0 = phi i32 [0, %0], [%17 , %16]
6 %sum.0 = phi i32 [0, %0], [%sum.1, %16]
7 %2 = icmp slt i32 %i.0, 5
8 br i1 %2, label %3, label %18
9

10 ; <label >:3 ; preds = %1
11 br label %4
12

13 ; <label >:4 ; preds = %13 , %3
14 %j.0 = phi i32 [0, %3], [%14 , %13]
15 %sum.1 = phi i32 [%sum.0, %3], [%sum.2, %13]
16 %5 = icmp slt i32 %j.0, 7
17 br i1 %5, label %6, label %15
18

19 ; <label >:6 ; preds = %4
20 %7 = icmp slt i32 %i.0, %j.0
21 br i1 %7, label %8, label %10
22

23 ; <label >:8 ; preds = %6

91

K Decompilation of Nested Primitives APPENDICES

24 %9 = add nsw i32 %sum.1, %i.0
25 br label %12
26

27 ; <label >:10 ; preds = %6
28 %11 = add nsw i32 %sum.1, %j.0
29 br label %12
30

31 ; <label >:12 ; preds = %10 , %8
32 %sum.2 = phi i32 [%9, %8], [%11 , %10]
33 br label %13
34

35 ; <label >:13 ; preds = %12
36 %14 = add nsw i32 %j.0, 1
37 br label %4
38

39 ; <label >:15 ; preds = %4
40 br label %16
41

42 ; <label >:16 ; preds = %15
43 %17 = add nsw i32 %i.0, 1
44 br label %1
45

46 ; <label >:18 ; preds = %1
47 %19 = srem i32 %sum.0, 256
48 ret i32 %19
49 }

92

L Decompilation of Post-test Loops APPENDICES

L Decompilation of Post-test Loops

The following section demonstrates the decompilation of a source program which contains
post-test loops. For comparison, the original C source code is presented alongside of
the decompiled Go output in figure 42. Please note that the middle-end and back-
end modules of the decompilation pipeline are only given access to the LLVM IR (see
listing 15) produced by the front-end (as described in appendix E), and are completely
unaware of the original C source code. When decompiling LLVM IR generated from
native code, the original names of identifiers may be missing.

1 #include <stdio.h>
2

3 int main(int argc , char **argv) {
4 int i, n;
5

6 i = 0;
7 n = 1;
8 do {
9 if (i < 10) {

10 i++;
11 n *= 2;
12 } else {
13 i += 3;
14 n *= 4;
15 }
16 } while(i < 15);
17 return n%123;
18 }

1 package main
2

3 import "os"
4

5 func main() {
6 i := 0
7 n := 1
8 for {
9 if i < 10 {

10 i++
11 n *= 2
12 } else {
13 i += 3
14 n *= 4
15 }
16 if !(i < 15) {
17 break
18 }
19 }
20 os.Exit(n % 123)
21 }

Figure 42: The original C source code (left) and the decompiled Go output (right).

Listing 15: The LLVM IR assembly which was produced by Clang when compiling the C
source code presented on the left side of listing 42.

1 define i32 @main(i32 %argc , i8** %argv) {
2 br label %1
3

4 ; <label >:1 ; preds = %10 , %0
5 %i.0 = phi i32 [0, %0], [%i.1, %10]
6 %n.0 = phi i32 [1, %0], [%n.1, %10]
7 %2 = icmp slt i32 %i.0, 10
8 br i1 %2, label %3, label %6
9

10 ; <label >:3 ; preds = %1
11 %4 = add nsw i32 %i.0, 1
12 %5 = mul nsw i32 %n.0, 2
13 br label %9
14

15 ; <label >:6 ; preds = %1
16 %7 = add nsw i32 %i.0, 3
17 %8 = mul nsw i32 %n.0, 4
18 br label %9
19

93

L Decompilation of Post-test Loops APPENDICES

20 ; <label >:9 ; preds = %6 , %3
21 %i.1 = phi i32 [%4, %3], [%7, %6]
22 %n.1 = phi i32 [%5, %3], [%8, %6]
23 br label %10
24

25 ; <label >:10 ; preds = %9
26 %11 = icmp slt i32 %i.1, 15
27 br i1 %11 , label %1, label %12
28

29 ; <label >:12 ; preds = %10
30 %13 = srem i32 %n.1, 123
31 ret i32 %13
32 }

94

	Introduction
	Project Aim and Objectives
	Deliverables
	Disposition

	Literature Review
	The Anatomy of an Executable
	Decompilation Phases
	Binary Analysis
	Disassembly
	Control Flow Analysis

	Evaluation of Intermediate Representations
	REIL
	LLVM IR

	Related Work
	Native Code to LLVM IR
	Dagger
	MC-Semantics

	Hex-Rays Decompiler

	Methodology
	Operational Prototyping
	Throwaway Prototyping
	Evolutionary Prototyping

	Continuous Integration

	Requirements
	LLVM IR Library
	Control Flow Analysis Library
	Control Flow Recovery Tool

	Design
	System Architecture
	Front-end Components
	Native Code to LLVM IR
	Compilers

	Middle-end Components
	Control Flow Graph Generation
	Control Flow Analysis

	Back-end Components
	Post-processing

	Implementation
	Language Considerations
	LLVM IR Library
	Go Bindings for LLVM
	Subgraph Isomorphism Search Library
	Documentation

	Verification
	Test Cases
	Code Coverage

	Performance
	Profiling
	Benchmarks

	Security Assessment
	Continuous Integration
	Source Code Formatting
	Coding Style
	Code Correctness
	Build Status
	Test Cases
	Code Coverage

	Evaluation
	LLVM IR Library
	Essential Requirements
	Desirable Requirements

	Control Flow Analysis Library
	Essential Requirements
	Important Requirements
	Desirable Requirements

	Control Flow Recovery Tool
	Essential Requirements

	Conclusion
	Project Summary
	Future Work
	Design Validation
	Reliability Improvements
	Extended Capabilities

	Personal Development
	Final Thoughts

	References
	Appendices
	The REIL Instruction Set
	Patch for Unnamed Basic Blocks of LLVM
	Dagger Example
	MC-Semantics Example
	Clang Example
	Control Flow Graph Generation Example
	Control Flow Analysis Example
	Restructure Example
	Code Generation Example
	Post-processing Example
	Decompilation of Nested Primitives
	Decompilation of Post-test Loops

