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Problem
‣ Computing on large datasets is costly in terms 

of both compute time and storage space 

‣ Goal: reduce these costs for datasets that 
consist of (or can be converted to) dense 
vectors 

‣ E.g., image descriptors, not-too-sparse 
feature vectors, embeddings 

‣ Approach: compress the vectors and operate 
directly on compressed representations
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Roadmap

‣ Problem and Assumptions 

‣ Background and Related Work 

‣ Algorithm 

‣ Theoretical Results 

‣ Experimental Results 

‣ Conclusion
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Scenario / Assumptions
‣We have a collection of “data” vectors     

‣Vectors may be inserted/deleted at any 
time 

‣We receive “query" vectors     

‣Want dot products / distances between       
__and each vector in 

‣We have a training set and a training phase 
before any queries are received 

‣Vectors are all the same length 

‣Computing on CPU (GPU future work)
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Problem Statement Setup

Let q 2 RJ
be a query vector and let X =

{x1, . . . ,xN},xi 2 RJ
be a collection of database vectors.

Further let d : RJ ⇥ RJ ! R be a distance or similarity

function that can be written as:

d(q,x) = f

� JX

j=1

�(qj , xj)
�

(1)

where f : R ! R, � : R⇥ R ! R.

Construct three functions g : RJ ! G,
h : RJ ! H, and

ˆ

d : G ⇥ H ! R such that for a given

approximation loss L,

L = E

q,x[(d(q,x)� ˆ

d(g(q), h(x)))

2
] (2)

the computation time T ,

T = Tg + Th + Td (3)

is minimized, where Tg is the time to encode received

queries q using g, Th the time to encode X using h, and

Td the time to compute the approximate distances between

the encoded queries and encoded database

vectors.
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Background: K-Means Quantization
‣ Simple way to quantize a vector: k-means 

‣ Encoding is index of nearest centroid
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Background: K-Means Quantization
‣ Can approximate distance to vector with 

distance to its nearest centroid

d(       ,       )

d(       ,       )

Query q Data vector xi

Nearest cluster
centroid to xi

≈



Davis Blalock9

Background: K-Means Quantization
‣ K centroids ⇒ only K possible distances 

‣ Precompute them all, then use a look-up table (LUT) 

‣ E.g., distance to encoding 01 = LUT[01] = 4.2
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Background: Product Quantization

‣ Only K centroids is a problem 

‣ Small K ⇒ can’t capture distribution or 

distinguish distances 

‣ Large K ⇒ huge encoding cost 

‣ Solution: treat the vector as M separate 
subvectors and encode each separately 

‣ KM possible encodings
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Product 
Quantization 

Data Encoding
‣ Learn K-means 

centroids 
separately in each 
subspace 

‣ Run K-means 
quantization in 
each subspace 

‣ Concatenate 
encodings
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‣ For each query, 
compute lookup 
table for each 
subspace (each 
column on the 
right) 

‣ Sum distances from 
each subspace

Product 
Quantization 

Distances
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Product Quantization Complexity
‣ Encoding xi 

‣ K-means quantize each and concatenate encodings 

‣ O(KD) time, K = # of centroids,  D = dimensionality 

‣ Encoding q 

‣ Compute M look-up tables (LUTs) for the M 
subspaces 

‣ O(KD) time 

‣ Approximating d(q, xi) 

‣ Perform 1 lookup in each of the M LUTs 

‣ O(M) time (and M << D)
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Bolt
‣ Similar to PQ, but 10+ times faster 

‣While retaining compatibility with 
published extensions/complementary 
techniques 

‣ Idea 1: Use more subvectors, fewer centroids 

‣ Idea 2: Approximate look-up tables 

‣ Secret sauce is using both together…
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Bolt: M bigger, K smaller
‣ Encoding times are O(KD) — no M! 

‣ Everyone uses K=256 so each subspace is 
1byte 

‣ Use K = 16 instead; each subspace is 4 bits 

‣ No loss in capacity (in theory): 

‣ 8B PQ code → K = 256, M = 8 

‣ 2568 = 264 possible encodings 

‣ 8B Bolt code → K = 16, M = 16 

‣ 1616 = 264 possible encodings
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Bolt: M bigger, K smaller
‣ On its own, setting K = 16 is strictly worse for 

distance computations 

‣ Less ability to exploit structure  

‣ Slower 

‣ But when combined with Idea 2…
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Bolt:  Approximate LUTs
‣ Do lookup tables really need 32bit precision? 

‣ Quantize to 8 bits, [0,255]
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Bolt:  Approximate LUTs
‣ But directly quantizing fails miserably…
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Bolt:  Approximate LUTs
‣ Solution: Learn a quantization function for each 

LUT at training time 

‣ Find quantile α that minimizes quantization error 
when distances in [α, 1-α] are linearly scaled to   
[0, 255]

255

0

F�1(1� ↵)

F�1(↵)

‣ Cheap to evaluate, 
so just try α in    
{0, .005, …, .05} 
and take the best
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Bolt: Secret Sauce
‣ Using ideas 1 and 2, we have 16 centroids per 

LUT, and 1B per LUT entry 

‣ 16B LUTs, 4 bit indices into it 

‣Magic: Hardware vectorization! 

‣ 16B LUT fits in a SIMD register, not L1 
cache 

‣ Can do 32 lookups in parallel by byte 
shuffling
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Bolt:  Vectorization

for i = 1 to 32:  // PQ

code = codes[i]

for m = 1 to M:

dists[i] += LUTS[m][code[m]]

for m = 1 to M:  // Bolt

dists += LUTS[m, codes[:, m]] // O(1)

dists = zeros(32)

codes = 32xM block of X encodings

LUTS = Mx16 lookup tables for query



Davis Blalock22

Theoretical Guarantees

‣ Error in distance and dot product 
computations bounded by PQ quantization 
error + LUT quantization error 

‣ If distribution of LUT entries is any Gaussian, 
Subgaussian, Laplace, or Exponential, 
quantization error has O(exp(-ε)) 
concentration bound 

‣ Overall probability of error ε in distances 
using PQ-style approach is O(exp(-ε2))
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Experiments
‣Metrics: 

‣ # of vectors compressed / sec 

‣ # of distances computed / sec 

‣ Recall@R for nearest neighbors 

‣ Correlation of approx. distances with true 
distances 

‣ Comparisons: 

‣ PQ, OPQ, BLAS/raw floats, binary embedding 

‣ Bolt without quantization
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Encoding 
 Speed

‣Over 3GB/s 
for 8B codes 

‣ Throughput 
inversely 
proportional 
to code length
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Distance 
Computation 

 Speed
‣ Faster than even 

hardware popcnt 
used by binary 
embedding 

‣Matmul{#} refers to 
batching queries 

‣ 10x faster than PQ/
OPQ, 100x more 
than raw floats 
(Matmul1)
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Nearest 
Neighbor 

Recall
‣ Have to retrieve 

more points than 
other algorithms 
for a given level of 
compression 

‣ Our LUT 
quantization 
causes no loss in 
accuracy
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Dot Product 
Accuracy

‣ Bolt dot products 
are slightly less 
accurate than 
others 

‣ But highly accurate 
in absolute terms
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Matrix 
Multiplies
‣Multiplying 

matrices via dot 
products in a 
for loop is 
faster than 
BLAS, even 
when we must 
encode the 
matrices first
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Conclusion
‣ Bolt compresses vectors of data at multiple 

GB/s in a single thread 

‣ Bolt’s compressed representation can be used 
to compute approximate distances and dot 
products with: 

‣ High accuracy 

‣ Greater speed than any other algorithm, by 
a large margin 

‣ The key is vectorized table lookups enabled 
by learned quantization functions
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Questions?


