
Bolt: Accelerated Data
Mining with Fast

Vector Compression
Davis Blalock
MIT CSAIL

Cambridge, Ma, USA
dblalock@mit.edu

John Guttag
MIT CSAIL

Cambridge, Ma, USA
guttag@mit.edu

mailto:?subject=
mailto:?subject=

Davis Blalock2

Problem
‣ Computing on large datasets is costly in terms

of both compute time and storage space

‣ Goal: reduce these costs for datasets that
consist of (or can be converted to) dense
vectors

‣ E.g., image descriptors, not-too-sparse
feature vectors, embeddings

‣ Approach: compress the vectors and operate
directly on compressed representations

Davis Blalock3

Roadmap

‣ Problem and Assumptions

‣ Background and Related Work

‣ Algorithm

‣ Theoretical Results

‣ Experimental Results

‣ Conclusion

Davis Blalock4

Scenario / Assumptions
‣We have a collection of “data” vectors

‣Vectors may be inserted/deleted at any
time

‣We receive “query" vectors

‣Want dot products / distances between
__and each vector in

‣We have a training set and a training phase
before any queries are received

‣Vectors are all the same length

‣Computing on CPU (GPU future work)

X

q

q X

Davis Blalock5

Problem Statement Setup

Let q 2 RJ
be a query vector and let X =

{x1, . . . ,xN},xi 2 RJ
be a collection of database vectors.

Further let d : RJ ⇥ RJ ! R be a distance or similarity

function that can be written as:

d(q,x) = f

� JX

j=1

�(qj , xj)
�

(1)

where f : R ! R, � : R⇥ R ! R.

Construct three functions g : RJ ! G,
h : RJ ! H, and

ˆ

d : G ⇥ H ! R such that for a given

approximation loss L,

L = E

q,x[(d(q,x)� ˆ

d(g(q), h(x)))

2
] (2)

the computation time T ,

T = Tg + Th + Td (3)

is minimized, where Tg is the time to encode received

queries q using g, Th the time to encode X using h, and

Td the time to compute the approximate distances between

the encoded queries and encoded database

vectors.

Davis Blalock6

Problem Statement

Let q 2 RJ
be a query vector and let X =

{x1, . . . ,xN},xi 2 RJ
be a collection of database vectors.

Further let d : RJ ⇥ RJ ! R be a distance or similarity

function that can be written as:

d(q,x) = f

� JX

j=1

�(qj , xj)
�

(1)

where f : R ! R, � : R⇥ R ! R.

Construct three functions g : RJ ! G, h : RJ ! H, and

ˆ

d : G ⇥H ! R such that for a given approximation loss L,

L = E

q,x[(d(q,x)� ˆ

d(g(q), h(x)))

2
] (2)

the computation time T ,

T = Tg + Th + Td (3)

is minimized, where Tg is the time to encode received

queries q using g, Th the time to encode X using h, and

Td the time to compute the approximate distances between

the encoded queries and encoded database vectors.

Davis Blalock7

Background: K-Means Quantization
‣ Simple way to quantize a vector: k-means

‣ Encoding is index of nearest centroid

00

01

10

11

Centroids
In

d
ic

es

Data Vector

+

Encoding

01

Davis Blalock8

Background: K-Means Quantization
‣ Can approximate distance to vector with

distance to its nearest centroid

d(,)

d(,)

Query q Data vector xi

Nearest cluster
centroid to xi

≈

Davis Blalock9

Background: K-Means Quantization
‣ K centroids ⇒ only K possible distances

‣ Precompute them all, then use a look-up table (LUT)

‣ E.g., distance to encoding 01 = LUT[01] = 4.2

Query q
00

01

10

11

Centroids
In

d
ic

es+

LUT

00

01

10

11

In
d
ic

es

9.6

4.2

1.3

3.7

Davis Blalock10

Background: Product Quantization

‣ Only K centroids is a problem

‣ Small K ⇒ can’t capture distribution or

distinguish distances

‣ Large K ⇒ huge encoding cost

‣ Solution: treat the vector as M separate
subvectors and encode each separately

‣ KM possible encodings

Davis Blalock11

Product
Quantization

Data Encoding
‣ Learn K-means

centroids
separately in each
subspace

‣ Run K-means
quantization in
each subspace

‣ Concatenate
encodings

Davis Blalock12

‣ For each query,
compute lookup
table for each
subspace (each
column on the
right)

‣ Sum distances from
each subspace

Product
Quantization

Distances

Davis Blalock13

Product Quantization Complexity
‣ Encoding xi

‣ K-means quantize each and concatenate encodings

‣ O(KD) time, K = # of centroids, D = dimensionality

‣ Encoding q

‣ Compute M look-up tables (LUTs) for the M
subspaces

‣ O(KD) time

‣ Approximating d(q, xi)

‣ Perform 1 lookup in each of the M LUTs

‣ O(M) time (and M << D)

Davis Blalock14

Bolt
‣ Similar to PQ, but 10+ times faster

‣While retaining compatibility with
published extensions/complementary
techniques

‣ Idea 1: Use more subvectors, fewer centroids

‣ Idea 2: Approximate look-up tables

‣ Secret sauce is using both together…

Davis Blalock15

Bolt: M bigger, K smaller
‣ Encoding times are O(KD) — no M!

‣ Everyone uses K=256 so each subspace is
1byte

‣ Use K = 16 instead; each subspace is 4 bits

‣ No loss in capacity (in theory):

‣ 8B PQ code → K = 256, M = 8

‣ 2568 = 264 possible encodings

‣ 8B Bolt code → K = 16, M = 16

‣ 1616 = 264 possible encodings

Davis Blalock16

Bolt: M bigger, K smaller
‣ On its own, setting K = 16 is strictly worse for

distance computations

‣ Less ability to exploit structure

‣ Slower

‣ But when combined with Idea 2…

Davis Blalock17

Bolt: Approximate LUTs
‣ Do lookup tables really need 32bit precision?

‣ Quantize to 8 bits, [0,255]

LUT
00
01

10

11

In
d
ic

es

9.6128…

4.2729…

1.3371…

3.7045…

LUT
00
01

10

11
In

d
ic

es

217

96

30

83

Davis Blalock18

Bolt: Approximate LUTs
‣ But directly quantizing fails miserably…

D
is

ta
nc

e
to

 Q
ue

ry

Lookup Table Index (0 to 7)

Distribution of Distances in Glove1M Lookup Tables

Davis Blalock19

Bolt: Approximate LUTs
‣ Solution: Learn a quantization function for each

LUT at training time

‣ Find quantile α that minimizes quantization error
when distances in [α, 1-α] are linearly scaled to
[0, 255]

255

0

F�1(1� ↵)

F�1(↵)

‣ Cheap to evaluate,
so just try α in
{0, .005, …, .05}
and take the best

Davis Blalock20

Bolt: Secret Sauce
‣ Using ideas 1 and 2, we have 16 centroids per

LUT, and 1B per LUT entry

‣ 16B LUTs, 4 bit indices into it

‣Magic: Hardware vectorization!

‣ 16B LUT fits in a SIMD register, not L1
cache

‣ Can do 32 lookups in parallel by byte
shuffling

Davis Blalock21

Bolt: Vectorization

for i = 1 to 32: // PQ

code = codes[i]

for m = 1 to M:

dists[i] += LUTS[m][code[m]]

for m = 1 to M: // Bolt

dists += LUTS[m, codes[:, m]] // O(1)

dists = zeros(32)

codes = 32xM block of X encodings

LUTS = Mx16 lookup tables for query

Davis Blalock22

Theoretical Guarantees

‣ Error in distance and dot product
computations bounded by PQ quantization
error + LUT quantization error

‣ If distribution of LUT entries is any Gaussian,
Subgaussian, Laplace, or Exponential,
quantization error has O(exp(-ε))
concentration bound

‣ Overall probability of error ε in distances
using PQ-style approach is O(exp(-ε2))

Davis Blalock23

Experiments
‣Metrics:

‣ # of vectors compressed / sec

‣ # of distances computed / sec

‣ Recall@R for nearest neighbors

‣ Correlation of approx. distances with true
distances

‣ Comparisons:

‣ PQ, OPQ, BLAS/raw floats, binary embedding

‣ Bolt without quantization

Davis Blalock24

Encoding
 Speed

‣Over 3GB/s
for 8B codes

‣ Throughput
inversely
proportional
to code length

Davis Blalock25

Distance
Computation

 Speed
‣ Faster than even

hardware popcnt
used by binary
embedding

‣Matmul{#} refers to
batching queries

‣ 10x faster than PQ/
OPQ, 100x more
than raw floats
(Matmul1)

Davis Blalock26

Nearest
Neighbor

Recall
‣ Have to retrieve

more points than
other algorithms
for a given level of
compression

‣ Our LUT
quantization
causes no loss in
accuracy

Davis Blalock27

Dot Product
Accuracy

‣ Bolt dot products
are slightly less
accurate than
others

‣ But highly accurate
in absolute terms

Davis Blalock28

Matrix
Multiplies
‣Multiplying

matrices via dot
products in a
for loop is
faster than
BLAS, even
when we must
encode the
matrices first

Davis Blalock29

Conclusion
‣ Bolt compresses vectors of data at multiple

GB/s in a single thread

‣ Bolt’s compressed representation can be used
to compute approximate distances and dot
products with:

‣ High accuracy

‣ Greater speed than any other algorithm, by
a large margin

‣ The key is vectorized table lookups enabled
by learned quantization functions

Davis Blalock30

Questions?

