Bolt: Accelerated Data
Mining with Fast
Vector Compression

Davis Blalock John Guttag
MIT CSAIL MIT CSAIL
Cambridge, Ma, USA Cambridge, Ma, USA

dblalock@mit.edu guttag@mit.edu

I I I N . [&%
W I Massachusetts Institute of Technology

CSAIL

mailto:?subject=
mailto:?subject=

Problem

» Computing on large datasets is costly in terms
of both compute time and storage space

» Goal: reduce these costs for datasets that
consist of (or can be converted to) dense
vectors

» E.g., image descriptors, not-too-sparse
feature vectors, embeddings

» Approach: compress the vectors and operate
directly on compressed representations

|I||' 2 Davis Blalock

Roadmap

» Problem and Assumptions

» Background and Related Work
» Algorithm

» Theoretical Results

» Experimental Results

» Conclusion

|I||' 3 Davis Blalock

Scenario / Assumptions

»We have a collection of “data” vectors X

»Vectors may be inserted/deleted at any
time

»We receive “query” vectors q

»Want dot products / distances between
q and each vector in X

»We have a training set and a training phase
before any queries are received

»Vectors are all the same length
» Computing on CPU (GPU future work)

|I|’|' 4 Davis Blalock

Problem Statement Setup

let q € R’ be a query vector and let X =
{x1,...,xn5},%; € R’ be a collection of database vectors.
Further let d : R/ x R/ — R be a distance or similarity
function that can be written as:

d(a,x) = f(D_ (g, z;)) (1)

where f: R —- R, 0: R xR — R.

Illil- 3 Davis Blalock

Problem Statement

Construct three functions g : R = G, h: R = H, and
d: G x H — R such that for a given approximation loss L,

L = Eqx[(d(q,%) — d(g(q), h(x)))’] (2)
the computation time 7',
T:Tg—I—Th—|—Td (3)

1s minimized, where T, is the time to encode received
queries q using g, 13 the time to encode X using h, and
T, the time to compute the approximate distances between
the encoded queries and encoded database vectors.

Illil- 6 Davis Blalock

Background: K-Means Quantization

» Simple way to quantize a vector: k-means
» Encoding is index of nearest centroid

Data Vector Centroids Encoding
00

Illil- 7 Davis Blalock

Background: K-Means Quantization

» Can approximate distance to vector with
distance to its nearest centroid

Query g ~, e Data vector x;

d(AN,)
~
d(AN,70)

Nearest cluster
centroid to X;

Illil- 8 Davis Blalock

Background: K-Means Quantization

» K centroids = only K possible distances
» Precompute them all, then use a look-up table (LUT)
» E.g., distance to encoding 01 = LUT[01] = 4.2

Illil- 9 Davis Blalock

Background: Product Quantization

» Only K centroids is a problem
» Small K = can’t capture distribution or
distinguish distances

» Large K = huge encoding cost
» Solution: treat the vector as M separate

subvectors and encode each separately
» KM possible encodings

Illil- 10 Davis Blalock

P I"Od U Ct (Data Vector . N

Quantization /\/\r —

_ ' dimensions :J
Data Encoding ______ +
Centroids)
» Learn K-means : |
| 00|\ iglpt
centroids i [}\MMN\
separately in each | £ 01 TN — —]
subspace “10 g S\
» Run K-means : :
N o1 ﬂ_ﬂ_:/\/\:uuou
qgquantization in {}
each subspace
Data Vector Encoding
» Concatenate [00 ' 10 ' 01 J
encodings | |

Illil- 11 Davis Blalock

P I"Od uct [Data Vector Encoding]

Quantization o 1o
. +
D'Stan ces Query Distances to Centroids)
00 | |
» For each query, 3 ; 0 ;]
compute lookup g0l 1 3 2
table for each 0 o 1
subspace (each | |
column on the s 3 4

right) @
» Sum distances from Approximate Distance
each subspace 3 + 1 + 2

Illil- 12 Davis Blalock

Product Quantization Complexity

» Encoding Xx;
» K-means quantize each and concatenate encodings
» O(KD) time, K = # of centroids, D = dimensionality
» Encoding ¢

» Compute M look-up tables (LUTs) for the M
subspaces

» O(KD) time

» Approximating d(q, xi)
» Perform 1 lookup in each of the M LUTs
» O(M) time (and M << D)

Illil- 13 Davis Blalock

Bolt

» Similar to PQ, but 10+ times faster

» While retaining compatibility with
published extensions/complementary
techniques

» Idea 1: Use more subvectors, fewer centroids

» Idea 2: Approximate look-up tables

» Secret sauce is using both together...

|I||' 14 Davis Blalock

Bolt: M bigger, K smaller

» Encoding times are O(KD) — no M!

» Everyone uses K=256 so each subspace is
1 byte

» Use K = 16 instead; each subspace is 4 bits
» No loss in capacity (in theory):
» 8B PQ code =+ K =256, M =8
» 2568 = 2%4 possible encodings
» 8B Bolt code = K=16,M=16

» 16'% = 264 possible encodings

Illil- 15 Davis Blalock

Bolt: M bigger, K smaller

» On its own, setting K = 16 is strictly worse for
distance computations

» Less ability to exploit structure

» Slower

» But when combined with Idea 2...

Illil- 16 Davis Blalock

Bolt: Approximate LUTs

» Do lookup tables really need 32bit precision?
» Quantize to 8 bits, [0,255]

Illil- 17 Davis Blalock

Bolt: Approximate LUTs

» But directly quantizing fails miserably...

Distribution of Distances in Glove1M Lookup Tables
40

35
30

25

%étilll

0
0 7

Lookup Table Index (0 to 7

Distance to Query

Illll- 18 Davis Blalock

Bolt: Approximate LUTs

» Solution: Learn a quantization function for each
LUT at training time

» Find quantile a that minimizes quantization error

when distances in [a, 1-a] are linearly scaled to
[0, 255]

.1255
» Cheap to evaluate,
SO just try a In i
{0,.005, .., .05 f (1-a)
and take the best
F=He) Y.
~~~~~ 0

Illil- 19 Davis Blalock



Bolt: Secret Sauce

» Using ideas 1 and 2, we have 16 centroids per
LUT, and 1B per LUT entry

» 16B LUTs, 4 bit indices into it

» Magic: Hardware vectorization!

» 16B LUT fits in a SIMD register, not L1
cache

» Can do 32 lookups in parallel by byte
shuffling

Illil- 20 Davis Blalock



Bolt: Vectorization

dists = zeros(32)
codes = 32xM block of X encodings

LUTS = Mx16 lookup tables for query

for 1 =1 to 32: // PO
code = codes[1i]
for m = 1 to M:
dists[1] += LUTS[m][code[m]]
for m = 1 to M: // Bolt
dists += LUTS[m, codes[:, m]] // O(1)

Illil- 21 Davis Blalock



Theoretical Guarantees

» Error in distance and dot product
computations bounded by PQ quantization
error + LUT quantization error

» If distribution of LUT entries is any Gaussian,
Subgaussian, Laplace, or Exponential,
quantization error has O(exp(-€))
concentration bound

» Overall probability of error € in distances
using PQ-style approach is O(exp(-€2))

IIIEI- 22 Davis Blalock



Experiments

» Metrics:
» # of vectors compressed / sec
» # of distances computed / sec
» Recall@R for nearest neighbors

» Correlation of approx. distances with true
distances

» Comparisons:
» PQ, OPQ, BLAS/raw floats, binary embedding
» Bolt without quantization

|I|’|' 23 Davis Blalock



Encoding

4

Speed

Over 3GB/s
for 8B codes

» Throughput

inversely
proportional
to code length

n

~

Vectors Encoded /s Vectors Encoded /s Vectors Encoded

07

—_—

10°
10°

10*

107
10°
10°

10*

Data Encoding Speed

~—__

—

\

~—__ |
\ ——

200 400 600 800 1000

Vector Length
— Bolt

24

107
10°
10°

10*

107
10°
10°

10*

PQ

Query Encoding Speed

")
(@)]
£
\ ©
\ S
o
c
\ L
o m
(o0]
")
o
\ £
©
— O
o
c
\ L
—_—
©
")
(@)]
©
— O
o
c
\ -
—
AN
(40)
200 400 600 800 1000
Vector Length
— OPQ

Davis Blalock



Distance

N
o

es/s

C
N
o

Computation -
Speed o

» Faster than even 22
hardware popcnt 15

used by binary

embedding y
» Matmul{#} refers to i
batching queries s
» 10x faster than PQ/ ;2

Billions of Distances/s Billions of Distances/s Billions of Distan

OPQ, 100x more
than raw floats

(Matmul1)
i

o
o

25

Distance Computations per Second

n

T

8B Encodings

16B Encodings

)
o)
£
S
o)
3]
c
L
(a8
N
- ”
. . M
] o o S 35 S5
o (©))
g s 9 2 £ So &
T O O & TH TS
S S SV S+
°F
W

Davis Blalock



Nearest
Neighbor

Recall

» Have to retrieve
more points than
other algorithms
for a given level of
compression

» Our LUT
quantization
causes no loss in
accuracy

26

Nearest Neighbor Recall
Sift1M, 8B Sift1M, 16B Sift1M, 32B

[108
®os6
004

Dﬁoz

Convnet1M 8B Convnet1M, 16B Convnet1M, 32B

108
®os6
004
roz

LabelMe, 8B LabelMe, 16B LabelMe, 32B

108
@06
004
roz

MNIST, 8B MNIST, 16B MNIST, 32B
o 0.8
®os6
o 0.4
fI 0.2

Log10(R)
— Bolt —— Bolt No Quantize — PQ — OPQ

Davis Blalock



Quality of Approximate Dot Products
Sift1M

8B 16B 32B

Dot Product
Accuracy

oONDMNOO®®O

Correlation With
OO0 00O

True Dot Product True Dot Product True Dot Product True Dot Product

£B 49 Convnet1M
§ 0..8
» Bolt dot products §a o
are slightly less 2'g 02
oL 00 3B 6B 398
accurate than 5 e
others =% o
T2 04
» But highly accurate £q02
gnty O 00 8B 16B 32B

in absolute terms

- 10 MNIST

=T o8

S0 06

©0o 04

25 02

o

O 00 8B 16B 32B

B Bolt B PQ
B Bolt No Quantize B OPQ

Davis Blalock

N
~



Matrix
Multiplies

» Multiplying
matrices via dot
products in a
for loop is
faster than
BLAS, even
when we must
encode the
matrices first

Square Matrix Multiply Time

05
4
@ g
Q 102
10!

10°
1

T 10
=
107
26 27 28 29 210 211 212 213
Matrix Side Length

Il Tim

Tall Matrix Multiply Time

Wall Time (s)

Matrix Side Length

— Bolt 8B
— Bolt 32B
— Floats (BLAS)

Bolt 8B + Encode
Bolt 32B + Encode

28 Davis Blalock



Conclusion

» Bolt compresses vectors of data at multiple
GB/s in a single thread

» Bolt’s compressed representation can be used
to compute approximate distances and dot
products with:

» High accuracy

» Greater speed than any other algorithm, by
a large margin

» The key is vectorized table lookups enabled
by learned quantization functions

|I||' 29 Davis Blalock



Questions!?

Illil- 30 Davis Blalock



