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Problem

» Computing on large datasets is costly in terms
of both compute time and storage space

» Goal: reduce these costs for datasets that
consist of (or can be converted to) dense
vectors

» E.g., image descriptors, not-too-sparse
feature vectors, embeddings

» Approach: compress the vectors and operate
directly on compressed representations
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Scenario / Assumptions

»We have a collection of “data” vectors X

»Vectors may be inserted/deleted at any
time

»We receive “query” vectors q

»Want dot products / distances between
q and each vector in X

»We have a training set and a training phase
before any queries are received

»Vectors are all the same length
» Computing on CPU (GPU future work)
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Problem Statement Setup

let q € R’ be a query vector and let X =
{x1,...,xn5},%; € R’ be a collection of database vectors.
Further let d : R/ x R/ — R be a distance or similarity
function that can be written as:

d(a,x) = f(D_ (g, z;)) (1)

where f: R —- R, 0: R xR — R.
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Problem Statement

Construct three functions g : R = G, h: R = H, and
d: G x H — R such that for a given approximation loss L,

L = Eqx[(d(q,%) — d(g(q), h(x)))’] (2)
the computation time 7',
T:Tg—I—Th—|—Td (3)

1s minimized, where T, is the time to encode received
queries q using g, 13 the time to encode X using h, and
T, the time to compute the approximate distances between
the encoded queries and encoded database vectors.
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Background: K-Means Quantization

» Simple way to quantize a vector: k-means
» Encoding is index of nearest centroid

Data Vector Centroids Encoding
00
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Background: K-Means Quantization

» Can approximate distance to vector with
distance to its nearest centroid

Query g ~, e Data vector x;

d(AN, )
~
d(AN,70)

Nearest cluster
centroid to X;
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Background: K-Means Quantization

» K centroids = only K possible distances
» Precompute them all, then use a look-up table (LUT)
» E.g., distance to encoding 01 = LUT[01] = 4.2
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Background: Product Quantization

» Only K centroids is a problem
» Small K = can’t capture distribution or
distinguish distances

» Large K = huge encoding cost
» Solution: treat the vector as M separate

subvectors and encode each separately
» KM possible encodings
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Product Quantization Complexity

» Encoding Xx;
» K-means quantize each and concatenate encodings
» O(KD) time, K = # of centroids, D = dimensionality
» Encoding ¢

» Compute M look-up tables (LUTs) for the M
subspaces

» O(KD) time

» Approximating d(q, xi)
» Perform 1 lookup in each of the M LUTs
» O(M) time (and M << D)
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Bolt

» Similar to PQ, but 10+ times faster

» While retaining compatibility with
published extensions/complementary
techniques

» Idea 1: Use more subvectors, fewer centroids

» Idea 2: Approximate look-up tables

» Secret sauce is using both together...
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Bolt: M bigger, K smaller

» Encoding times are O(KD) — no M!

» Everyone uses K=256 so each subspace is
1 byte

» Use K = 16 instead; each subspace is 4 bits
» No loss in capacity (in theory):
» 8B PQ code =+ K =256, M =8
» 2568 = 2%4 possible encodings
» 8B Bolt code = K=16,M=16

» 16'% = 264 possible encodings
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Bolt: M bigger, K smaller

» On its own, setting K = 16 is strictly worse for
distance computations

» Less ability to exploit structure

» Slower

» But when combined with Idea 2...
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Bolt: Approximate LUTs

» Do lookup tables really need 32bit precision?
» Quantize to 8 bits, [0,255]
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Bolt: Approximate LUTs

» But directly quantizing fails miserably...

Distribution of Distances in Glove1M Lookup Tables
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Bolt: Approximate LUTs

» Solution: Learn a quantization function for each
LUT at training time

» Find quantile a that minimizes quantization error

when distances in [a, 1-a] are linearly scaled to
[0, 255]

.1255
» Cheap to evaluate,
SO just try a In i
{0,.005, .., .05 f (1-a)
and take the best
F=He) Y.
~~~~~ 0
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Bolt: Secret Sauce

» Using ideas 1 and 2, we have 16 centroids per
LUT, and 1B per LUT entry

» 16B LUTs, 4 bit indices into it

» Magic: Hardware vectorization!

» 16B LUT fits in a SIMD register, not L1
cache

» Can do 32 lookups in parallel by byte
shuffling
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Bolt: Vectorization

dists = zeros(32)
codes = 32xM block of X encodings

LUTS = Mx16 lookup tables for query

for 1 =1 to 32: // PO
code = codes[1i]
for m = 1 to M:
dists[1] += LUTS[m][code[m]]
for m = 1 to M: // Bolt
dists += LUTS[m, codes[:, m]] // O(1)
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Theoretical Guarantees

» Error in distance and dot product
computations bounded by PQ quantization
error + LUT quantization error

» If distribution of LUT entries is any Gaussian,
Subgaussian, Laplace, or Exponential,
quantization error has O(exp(-€))
concentration bound

» Overall probability of error € in distances
using PQ-style approach is O(exp(-€2))
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Experiments

» Metrics:
» # of vectors compressed / sec
» # of distances computed / sec
» Recall@R for nearest neighbors

» Correlation of approx. distances with true
distances

» Comparisons:
» PQ, OPQ, BLAS/raw floats, binary embedding
» Bolt without quantization
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Nearest
Neighbor

Recall

» Have to retrieve
more points than
other algorithms
for a given level of
compression

» Our LUT
quantization
causes no loss in
accuracy
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Quality of Approximate Dot Products
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Matrix
Multiplies

» Multiplying
matrices via dot
products in a
for loop is
faster than
BLAS, even
when we must
encode the
matrices first
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Conclusion

» Bolt compresses vectors of data at multiple
GB/s in a single thread

» Bolt’s compressed representation can be used
to compute approximate distances and dot
products with:

» High accuracy

» Greater speed than any other algorithm, by
a large margin

» The key is vectorized table lookups enabled
by learned quantization functions
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Questions!?
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