
Programmable Semantic Fragments
The Design and Implementation of typy (Extended Version) ∗

Cyrus Omar Jonathan Aldrich
Carnegie Mellon University, USA
{comar, aldrich}@cs.cmu.edu

Abstract
This paper introduces typy, a statically typed programming
language embedded by reflection into Python. typy features
a fragmentary semantics, i.e. it delegates semantic control
over each term, drawn from Python’s fixed concrete and
abstract syntax, to some contextually relevant user-defined
semantic fragment. The delegated fragment programmatically
1) typechecks the term (following a bidirectional protocol);
and 2) assigns dynamic meaning to the term by computing a
translation to Python.

We argue that this design is expressive with examples of
fragments that express the static and dynamic semantics of
1) functional records; 2) labeled sums (with nested pattern
matching a la ML); 3) a variation on JavaScript’s prototypal
object system; and 4) typed foreign interfaces to Python and
OpenCL. These semantic structures are, or would need to be,
defined primitively in conventionally structured languages.

We further argue that this design is compositionally well-
behaved. It avoids the expression problem and the problems
of grammar composition because the syntax is fixed. More-
over, programs are semantically stable under fragment com-
position (i.e. defining a new fragment will not change the
meaning of existing program components.)
Categories and Subject Descriptors D.3.2 [Programming
Languages]: Extensible Languages
Keywords metaprogramming, bidirectional typechecking,
pattern matching, foreign function interfaces

1. Introduction
As programming languages proliferate, programmers face the
daunting problem of lateral compatibility, i.e. of interfacing
with libraries written in sibling languages. For example, there
are useful libraries written in TypeScript [11], Flow [1] and

∗ The original version of this paper, which omits the appendix, appears in
the proceedings of GPCE’16 [54].

[Copyright notice will appear here once ’preprint’ option is removed.]

PureScript [3], but these libraries are not directly accessible
across language boundaries because these languages are all
syntactically and semantically incompatible with one another.
(The first two define differing object systems, and PureScript
is a functional language similar to Haskell and ML.)

The common workaround is to interface indirectly with
libraries written in sibling languages through the code gener-
ated by a compiler that targets a more established language for
which a foreign interface (FI) is available. For example, all of
the languages above have compilers that target JavaScript and
they are all capable of interfacing with JavaScript. Unfortu-
nately, this approach is unnatural (the syntactic and semantic
conveniences of the sibling language are unavailable) and un-
safe (the type system of the sibling language is not enforced,
and the internal representations of the compiler are exposed.)
This problem can, at best, be mitigated by inserting dynamic
checks at language boundaries [46]. It appears then that the
language-oriented approach [75] is difficult to reconcile with
the best practices of “programming in the large” [22].

In this paper, we propose a more compositional fragment-
oriented approach to the problem of expressing new semantic
structures. In particular, we introduce a single “extensible”
statically typed language, typy, that gives library providers the
ability to define new semantic fragments. Library clients can
import these fragments in any combination.1 For example, we
will define a fragment that expresses the static and dynamic
semantics of functional records (a la ML), and another that
expresses the static and dynamic semantics of a prototypal
object system (a la JavaScript, albeit statically typed.)

This fragment-oriented approach diminishes the need for
new standalone languages – clients of a library that requires
the use of, e.g., functional records at its public interface can
simply import the record fragment themselves, even if they
otherwise prefer using an object system. Moreover, when
interacting with libraries in a foreign language is necessary,
the fragment system helps address the lateral compatibility
problem by allowing library providers to implement a natural,
type-safe foreign interface as a library. For example, we will
define a type-safe foreign interface to OpenCL (a low-level
language for working with GPUs, similar to CUDA [38].)

1 We assume throughout that simple naming conflicts are handled by some
external coordination mechanism, e.g. a package repository.

1 2016/10/24



Although this vision has long been appealing, designing
an extensible statically typed language equipped with useful
composition principles presents well-known challenges.

First, consider that while language designers have the abil-
ity to define concrete forms specific to the semantic structures
that they introduce, if we give fragment providers the same
ability (following, e.g., Sugar* [25]), then different fragments
could define conflicting forms. For example, consider the fol-
lowing family of forms:
{ label1: expr1, ..., labeln: exprn }

One fragment might take these as the introductory forms for
functional records, while another fragment might take these
as the introductory forms for prototypal objects. These forms
might also conflict with those for Python-style dictionaries.
Such syntactic conflicts inhibit composition.

We also encounter the classic expression problem [59, 74]:
if fragment providers can define new term constructors in a
decentralized manner, then it is difficult to define functions
that proceed by exhaustive case analysis, e.g. pretty-printers.

Finally, we must not allow library providers to weaken
essential semantic properties, like type safety (in the sense of
Milner [48].) Moreover, clients should be able to assume that
importing a new fragment for use in one portion of a program
will not change the meaning of other portions of the program,
nor allow the program to take on ambiguous meaning. This
implies that we cannot simply operationalize the semantics
as a “bag of rules” that fragment providers freely extend.

The typy semantic fragment system addresses the prob-
lems of concrete and abstract syntax quite simply: fragment
providers are not given the ability to extend typy’s concrete or
abstract syntax (which is borrowed unchanged from Python.)
Instead, the system allows fragments to “share” syntactic
forms by delegating semantic control over each term to some
contextually relevant fragment definition. For example, typy
delegates control over terms of curly-brace delimited form
(above) to the fragment that defines the type that the term is
being checked against. This fragment is responsible for 1)
typechecking the term; and 2) assigning dynamic meaning to
the term by translation to a target language (which we take to
be Python.) As such, curly-brace delimited forms can serve
as introductory forms for records, objects and dictionaries.

The typy fragment system also addresses the semantic
problems just discussed. By defining the dynamics by trans-
lation, the problem of maintaining type safety reduces to the
problem of type safety for the fixed target language. More-
over, the delegation protocol is deterministic, so ambiguities
cannot arise. It is also stable under fragment composition, so
defining a new fragment cannot change the meaning of an
existing program component.

The remainder of the paper is organized as follows. Sec.
2 introduces typy’s fragment system with simple examples.
Sec. 3 then describes more sophisticated examples. Sec. 4
positions typy relative to related work. Sec. 5 concludes with
a discussion of present limitations and future work.

Listing 1 Types and values in typy.
1 from typy import component
2 from typy.std import record, string_in , py
3
4 @component
5 def Listing1():
6 Account [type] = record[
7 name : string_in[r’.+’],

8 account_num : string_in[r’\d{2}-\d{8}’],

9 memo : py

10 ]

11
12 test_acct [: Account] = {

13 name: "Harry Q. Bovik",

14 account_num: "00-12345678",

15 memo: { }

16 }

2. Semantic Fragments in typy
Listing 1 gives an example of a well-typed typy program
that first imports several fragments, then defines a top-level
component, Listing1, that exports a record type, Account, and
a value of that type, test_acct.
2.1 Dynamic Embedding
typy is dynamically embedded into Python, meaning that
Listing 1 is simply a standard Python script at the top level.
typy supports Python 2.6+, though in later examples, we use
syntactic conveniences not introduced until Python 3.0 [2].
Appendix A discusses the minor changes necessary to port
these examples to Python 2.6+.
Package Management On Line 2, we use Python’s import
mechanism to import three fragments from typy.std, the typy
standard library. This library receives no special treatment
from typy’s semantics – it comes bundled with typy merely
for convenience (see Sec. 5 for a discussion.)
Fragments typy fragments are Python classes that extend
typy.Fragment. These classes are never instantiated – instead,
typy interacts with them exclusively through class methods
(i.e. methods on the class object.) Listing 2 shows the portion
of the record fragment that we will detail in Sec. 2.2.
Top-Level Components On Lines 4-16 of Listing 1, we de-
fine a top-level typy component by decorating a Python func-
tion value with component, a decorator defined by typy. This
decorator discards the decorated function value after extract-
ing its abstract syntax tree (AST) and static environment, i.e.
its closure and globals dictionary, using the reflection mecha-
nisms exposed by the ast and inspect packages in Python’s
standard library.2 (Luckily, Python chose the “generic” def
keyword – had it chosen, e.g. fun, this might be less clean,
because components are, semantically, not functions.)

The decorator then processes the syntactic forms in the
body of the function definition according to its own semantics.
In particular, Sec. 2.2 will describe how component repurposes
Python’s assignment and array slicing forms to allow for
2 The reader may need to refer to documentation for the ast package,
available at https://docs.python.org/3/library/ast.html, to fully
understand some examples in the remainder of this paper.

2 2016/10/24

https://docs.python.org/3/library/ast.html


Listing 2 Record type validation.
1 import ast, typy
2 class record(typy.Fragment):
3 @classmethod
4 def init_idx(cls, ctx, idx_ast):
5 if isinstance(idx_ast, ast.Slice):
6 # Python special cases single slices

7 # we don’t want that

8 idx_ast = ast.ExtSlice(dims=[idx_ast])

9 if isinstance(idx_ast, ast.ExtSlice):
10 idx_value = dict() # returned below
11 for dim in idx_ast.dims:
12 if (isinstance(dim, ast.Slice) and
13 dim.step is None and
14 dim.upper is not None and
15 isinstance(dim.lower, ast.Name)):
16 lbl = dim.lower.id

17 if lbl in idx_value:
18 raise typy.TypeValidationError(
19 "Duplicate label.", dim)

20 ty = ctx.as_type(dim.upper)

21 idx_value[lbl] = ty

22 else: raise typy.TypeValidationError(
23 "Invalid field spec.", dim)

24 return idx_value
25 else: raise typy.TypeValidationError(
26 "Invalid record spec.", idx_ast)

type member definitions, like Account. Similarly, Sec. 2.3 will
describe how the component decorator repurposes the same
forms to allow for value member definitions, like test_acct.

The return value of the decorator is a top-level instance of
typy.Component that tracks 1) the identities of type members;
and 2) the types and evaluated translations of value members.
2.2 Fragmentary Type Validation
The type member definition on Lines 6-10 of Listing 1 is of
the following general form:
id [type] = ty_expr

where id is a Python identifier and ty_expr is a typy type
expression. When typy encounters a definition like this, it
checks that ty_expr is a valid type.
typy adopts the system of dependent singleton kinds first

developed for the ML module system [18, 34], which ele-
gantly handles the details of type synonynms, type members
and type functions (we will define a type function in Listing
7.) Types are type expressions of kind type. The only major
deviation from this established account of type expressions,
which we will not repeat here, is that types in canonical form
are expressed as follows:
fragment[idx]

where fragment is a fragment in the static environment and
idx is some Python slice form. In other words, every typy
type in canonical form is associated with a fragment – there
are no “built-in” types defined by typy itself. For convenience,
programmers can write fragment by itself when the index is
trivial, i.e. when it is of the form ().

For example, the type expression on Lines 6-10 of Listing
1 is a record type in canonical form. The index, which is
of Python’s extended slice form, specifies fields named name,

account_num and memo and corresponding field types as shown.
We discuss the field types in Sec. 2.3 – for now, it suffices to
notice that these are also in canonical form.

To establish that a type in canonical form is valid, i.e.
of kind type, typy delegates to the fragment’s class method
init_idx. This method receives a context and the AST of the
index and must return a Python value called the type’s index
value if the type is valid, or raise typy.TypeValidationError
with an error message and a reference to the relevant portion
of the index AST otherwise.

For example, the record.init_idx class method shown in
Listing 2 validates record types by checking that 1) the index
consists of a sequence of field specifications of the form
name : ty_expr, where name is a Python name; 2) no names
are duplicated; and 3) each ty_expr is a valid type expression,
as determined by calling ctx.as_type (Line 20.) This method
turns the given Python AST into a type expression, i.e. an
instance of (a class that inherits from) typy.TyExpr, and checks
that it is of kind type. The index value that record.init_idx
returns is a Python dictionary mapping the field names to the
corresponding instances of typy.TyExpr.
2.3 Fragmentary Bidirectional Typing and Translation
The value member definition on Lines 12-16 of Listing 1 is
of the following general form:
name [: ty_expr] = expr

where name is a Python name, ty_expr is a type expression and
expr is an expression. When typy encounters a definition like
this, it 1) checks that ty_expr is of kind type, as described in
Sec. 2.2; 2) analyzes expr against ty_expr; and 3) generates a
translation for expr, which is another Python AST.

A type annotation is not always necessary:
name = expr

In this case, typy attempts to synthesize a type for expr before
generating a translation, rather than analyzing expr against a
known type. We say that expr is in synthetic position.

Type systems that distinguish type analysis (where the
type is known) from type synthesis (also known as local
type inference, where the type must be determined from the
expression) are called bidirectional type systems [16, 56].
Scala is another notable language that has a bidirectional type
system, albeit of different design [51]. Our system is based
on the system developed by Dunfield and Krishnaswami
[23]. Again, we will not repeat standard details here – our
focus in the remainder of this section will be on how typy
delegates control during typechecking and translation to some
contextually relevant fragment based on the term form, i.e.
we will describe the typy delegation protocol.
2.3.1 Literal Forms
typy delegates control over the typechecking and translation
of terms of literal form to the fragment defining the type that
the expression is being analyzed against.

For example, the expression on Lines 12-16 of Listing 1
is of dictionary literal form. The type that this expression
is being analyzed against is Account, which is synonymous

3 2016/10/24



Listing 3 Typing and translation of literal forms.
1 # class record(typy.Fragment):
2 # ... continued from Listing 2 ...

3 @classmethod
4 def ana_Dict(cls, ctx, e, idx):
5 for lbl, value in zip(e.keys, e.values):
6 if isinstance(lbl, ast.Name):
7 if lbl.id in idx:
8 ctx.ana(value, idx[lbl.id])

9 else:
10 raise typy.TyError("<bad lbl>", lbl)
11 else:
12 raise typy.TyError("<not a lbl>", lbl)
13 if len(idx) != len(e.keys):
14 raise typy.TyError("<lbl missing>", e)
15
16 @classmethod
17 def trans_Dict(self, ctx, e, idx):
18 ast_dict = dict((k.id, v)
19 for k, v in zip(e.keys, e.values))
20 return ast.Tuple(elts=[
21 ctx.trans(ast_dict[lbl])

22 for lbl in sorted(idx.keys())])

with the record type just defined, so typy first delegates to
the record.ana_Dict class method, shown in Listing 3. This
method receives the context, the AST of the literal and the
index value determined by record.init_idx. It must return
(trivially) if type analysis is successful or raise typy.TyError
with an error message and a reference to the subterm where
the error occurred otherwise. In this case, record.ana_Dict
checks that each key expression is a Python name that appears
in the index value, and then asks typy to analyze the value
against the corresponding type from the index value by calling
ctx.ana. Finally, it makes sure that all of the components
specified in the index value appear in the literal.

The three field values in Listing 1 that record.ana_Dict
asks typy to analyze are also of literal form – the values of
name and account_num are string literals and the value of memo
is another dictionary literal. As such, when ctx.ana is called,
typy follows the same protocol just described, delegating
to string_in.ana_Str to analyze the string literals and to
py.ana_Dict to analyze the dictionary literal. The string_in
fragment implements a regex-based constrained string system,
which we described, along with its implementation in typy,
in a workshop paper [32].3 The py fragment allows dynamic
Python values to appear inside typy programs, consistent with
the view of Python as a statically unityped language [34, 63].
Additional details about Python interoperability are available
in Appendix B.

If typechecking is successful, typy delegates to the same
fragment to generate the translation, i.e. a Python AST. For
example, typy calls the record.trans_Dict method shown in
Listing 3, which translates records to Python tuples (the field
names are needed only statically.) This method asks typy
to recursively determine translations for the field values by
calling ctx.trans (typy stores the types determined during
3 Certain details of typy have changed since that paper was published, but
the essential idea remains the same.

Listing 4 Functions, targeted forms and binary forms.
1 from typy import component
2 from typy.std import fn
3 from listing1 import Listing1
4
5 @component
6 def Listing4():
7 @fn

8 def hello(account : Listing1.Account):
9 """Computes a string greeting."""

10 name = account.name

11 "Hello, " + name

12 print(hello(Listing1.test_acct))

typechecking as attributes of the AST nodes, so following the
delegation protocol again during translation is fast.)
2.3.2 Definition Forms
Listing 4 shows an example of another component, Listing4,
that defines a function, hello, on Lines 7-11 and then applies
it to print a greeting on Line 12. This listing imports the
component Listing1 defined in Listing 1.
typy delegates control over the typechecking and transla-

tion of definition forms that appear inside components, or in
other synthetic positions, to the fragment that appears on the
form as the first (i.e. outermost) decorator.

Here, the fn fragment is the first (and only) decorator, so
typy begins by calling the fn.syn_FunctionDef class method,
outlined in Listing 5. This method is passed the context and
the AST of the function and must initialize the context as
desired and return the type that is to be synthesized for the
function, or raise typy.TyError if this is not possible.

We omit some of the details of this method for concision,
but observe on Lines 6-7 of Listing 5 that fn calls ctx.check on
each statement in the function body (other than the docstring,
following Python’s conventions.) This prompts typy to follow
its delegation protocol for each statement, described below.

We chose to take the value of the final expression in the
function body as its return value, following the usual conven-
tion in functional languages (an alternative function fragment
could instead use Python-style return statements.) The syn-
thesized function type is constructed programmatically on
Lines 15-16. The index value consists of the argument types
(extracted from the type annotations, not shown) paired with
the synthesized return type.

If typechecking is successful, typy calls the class method
fn.trans_FunctionDef to generate the translation of the func-
tion definition. This method, elided due to its simplicity, recur-
sively asks typy to generate the translations of the statements
in the body of the function definition by calling ctx.trans
and inserts the necessary return keyword on the final state-
ment. typy passes it the identifier to which it is expecting the
translation will assign (i.e. typy does not assume that every
def form will translate to a def form.)

For definition forms in analytic position, typy treats the
function definition as a literal form (see Sec. 3.)

4 2016/10/24



Listing 5 A portion of the fn fragment.
1 import ast, typy
2 class fn(typy.Fragment):
3 @classmethod
4 def syn_FunctionDef(cls, ctx, stmt):
5 # (elided) process args + docstring

6 for body_stmt in stmt.proper_body:
7 ctx.check(body_stmt)

8 last_stmt = stmt.proper_body[-1]

9 if isinstance(last_stmt , ast.Expr):
10 if rty is None: # return type not given
11 rty = ctx.syn(last_stmt.value)

12 else: ctx.ana(last_stmt.value, rty)
13 else: raise typy.TyError(
14 "<missing final expr>", last_stmt)

15 return typy.CanonicalTy(
16 fn, (arg_sig, rty))

17
18 @classmethod
19 def check_Assign(cls, ctx, stmt):
20 # (details of _process_assn elided)

21 pat, ann, e = _process_assn(stmt)

22 if ann is None: ty = ctx.syn(e)
23 else:
24 ty = ctx.as_type(ann)

25 ctx.ana(e, ty)

26 bindings = ctx.ana_pat(pat, ty)

27 ctx.add_bindings(bindings)

28
29 @classmethod
30 def check_Expr(cls, ctx, stmt):
31 ctx.syn(stmt.value)

32
33 # trans_FunctionDef , trans_Assign and

34 # trans_Expr are elided

2.3.3 Statement Forms
Statement forms, unlike expression forms, are not classified
by types. Rather, typy simply checks them for validity when
the governing fragment calls ctx.check.

For most statement forms, typy simply delegates control
over validation and translation back to the fragment that was
delegated control over the enclosing definition. For example,
when fn.syn_FunctionDef calls ctx.check on the assignment
statement on Line 10 of Listing 4, typy delegates control
back to the fn fragment by calling fn.check_Assign. Similarly,
fn.check_Expr handles expression statements, like the one on
Line 11 of Listing 4. Let us consider these in turn.
Assignment The definition of fn.check_Assign given in List-
ing 5 begins by extracting a pattern and an optional type
annotation from the left-hand side of the assignment, and an
expression from the right-hand side of the assignment.

No type annotation appears on the assignment in Listing
4, so fn.check_Assign asks typy to synthesize a type from
the expression by calling ctx.syn (Line 22 of Listing 5.) We
will describe how typy synthesizes a type for the expression
account.name in Sec. 2.3.4 below.

In cases where an annotation is provided, fn.check_Assign
instead asks typy to kind check the ascription to produce a
type, then it asks typy to analyze the expression against that
type by calling ctx.ana (Lines 24-25 of Listing 5.)

Listing 6 Typing and translation of targeted forms.
1 # class record(typy.Fragment):
2 # ... continued from Listing 3 ...

3 @classmethod
4 def syn_Attribute(cls, ctx, e, idx):
5 if e.attr in idx: return idx[e.attr]
6 else: raise typy.TyError("<bad lbl>", e)
7
8 @classmethod
9 def trans_Attribute(cls, ctx, e, idx):

10 pos = _pos_of(e.attr, sorted(idx.keys()))
11 return ast.Subscript(
12 value=ctx.trans(e.value),

13 slice=ast.Index(ast.Num(n=pos)))

Finally, fn.check_Assign checks that the pattern matches
values of the type that was synthesized or provided as an
annotation by calling ctx.ana_pat. Patterns of variable form,
like name in Listing 4, match values of any type. We will see
more sophisticated examples of pattern matching in Sec. 2.4
below. The ctx.add_bindings method adds the bindings (here,
a single binding) to the typing context.

During translation, typy delegates to fn.trans_Assign. This
method is again omitted because it is straightforward. The
only subtlety has to do with shadowing – fn follows the func-
tional convention where different bindings of the same name
are distinct, rather than treating them as imperative assign-
ments to a common stack location. This requires generating
a fresh name when a name is reused (ctx.add_bindings does
this by default.) As with the semantics of return values, a
different function fragment could make a different decision.
Expression Statements The fn.check_Expr method, shown
in Listing 5, handles expression statements, e.g. the statement
on Line 11 of Listing 4, by simply asking typy to synthesize
a type for the expression. In Listing 4, this expression is of
binary operator form – we will describe how typy synthesizes
a type for expressions of this form in Sec. 2.3.5 below.
Other Statement Forms typy does not delegate to the frag-
ment governing the enclosing definition for statements of
definition form that have their own fragment or type decora-
tor. Instead, typy delegates to the decorating fragment, just
as at the top-level of a component definition. The fragment
governing the enclosing function determines only how the
translation is integrated into its own translation (through a
integrate_trans_FunctionDef method, omitted for concision.)
typy also does not delegate to the decorating fragment

for statements that 1) assign to an attribute, e.g. e1.x = e2 or
e1.x += e2; 2) assign to a subscript, e.g. e1[e2] = e3; or 3)
statements with guards, e.g. if, for and while. These operate
as targeted forms, described next.
2.3.4 Targeted Forms
Targeted forms include 1) the statement forms just mentioned;
2) expression forms having exactly one subexpression, like
-e1 or e1.attr; and 3) expression forms where there may be
multiple subexpressions but the left-most one is the only one
that is syntactically required, like e1(args) (there may be no

5 2016/10/24



arguments.) When typy encounters terms of targeted form,
it first synthesizes a type for the target subexpression e1. It
then delegates control over typechecking and translation to
the fragment defining the type of e1.

For example, the expression on the right-hand side of the
assignment statement on Line 10 of Listing 4 is account.name,
so typy first synthesizes a type for account. Following the
standard rule for variables, which are tracked by the context,
we have that account synthesizes type Listing1.Account. This
type is synonymous with a record type, so typy first calls
the record.syn_Attribute class method given in Listing 6.
This method looks up the attribute, here name, in the type’s
index value and returns the corresponding field type, here
string_in[r".+"], or raises a type error if it is not found.

To generate the translation for account.name, typy calls
record.trans_Attribute, shown in Listing 6. Because record
values translate to tuples, this method translates record field
projection to tuple projection, using the position of the at-
tribute within the record type’s sorted index value to deter-
mine the appropriate slice index.
2.3.5 Binary Forms
Python’s grammar also defines a number of binary operator
forms, e.g. e1 + e2. One approach for handling these forms
would be to privilege the leftmost argument, e1, and treat
these forms as targeted forms. This approach is unsatisfying
because binary operators are often commutative. Instead, typy
defines a symmetric protocol to determine which fragment
is delegated control over binary forms. First, typy tries to
synthesize a type for both arguments. If neither argument
synthesizes a type, the fragment defining the type provided
for analysis is delegated control.

If only one of the two arguments synthesizes a type, then
the fragment defining that type is delegated control. For
example, the binary operator on Line 11 of Listing 4 consists
of a string literal on the left (which does not synthesize a type,
per Sec. 2.3.1) and a variable, name, of type string_in[r".+"]
on the right, so string_in is delegated control over this form.

If both arguments synthesize a type and both types are
defined by the same fragment, then that fragment is delegated
control. If each type is defined by a different fragment, then
typy refers to the precedence sets of each fragment to deter-
mine which fragment is delegated control. The precedence
sets are Python sets listed in the precedence attribute of the
fragment that contain other fragments that the defining frag-
ment claims precedence over (if omitted, the precedence set
is empty.) typy checks that if one fragment claims precedence
over another, then the reverse is not the case (i.e. precedence
is anti-symmetric, to maintain determinism.) Precedence is
not transitive. If a precedent fragment is found, it is delegated
control. Otherwise, a type error is raised.

For example, if we would like to be able to add ints and
floats and these are defined by separate fragments, then we
can put the necessary logic in either fragment and then place
the other fragment in its precedence set.

Listing 7 Polymorphism, recursion and pattern matching in
typy. The analagous OCaml code is given in Appendix C.

1 from typy import component
2 from typy.std import finsum, tpl, fn
3 @component
4 def Listing7():
5 tree(+a) [type] = finsum[
6 Empty,

7 Node(tree(+a), tree(+a)),

8 Leaf(+a)

9 ]

10
11 @fn

12 def map(f : fn[+a, +b],
13 t : tree(+a)) -> tree(+b):

14 [t].match

15 with Empty: Empty
16 with Node(left, right):
17 Node(map(f, left), map(f, right))

18 with Leaf(x): Leaf(f(x))

2.4 Fragmentary Pattern Matching
As we saw on Line 26 of Listing 5, fragments can request
that typy check that a given pattern matches values of a given
type by calling ctx.ana_pat. In the example in Listing 4, the
pattern was simply a name – name patterns match values of
any type. In this section, we will consider other patterns. For
example, the statement below uses a tuple pattern:
(x, y, z) = e

typy also supports a more general match construct, shown
on Lines 14-18 of Listing 7. This construct, which spans
several syntactic statements, is treated as a single expression
statement by typy. The scrutinee is t and each clause is of
the form with pat: stmts where pat is a pattern and stmts is
the corresponding branch. typy also supports an analagous
expression-level match construct, which is discussed in Ap-
pendix D.

To typecheck a match expression, typy first synthesizes
a type for the scrutinee. Here, the scrutinee, t, is a variable
of type tree(+a). This type is an instance of the recursive
type function tree defined on Lines 5-9 (the mechanisms
involved in defining recursive types and type functions are
built into typy in the usual manner.) Type variables prefixed
by +, like +a and +b, implicitly quantify over types at the
function definition site (like ’a in OCaml [42].)

More specifically, tree(+a) is a recursive finite sum type
defined by the finsum fragment imported from typy.std [34].
This fragment is defined such that values of finite sum type
translate to Python tuples, where the first element is a string
tag giving one of the names in the type index and the re-
maining elements are the corresponding values. For example,
a value Node(e1, e2) translates to ("Node", tr1, tr2) where
tr1 and tr2 are the translations of e1 and e2. Names and call
expressions beginning with a capitalized letter are initially
treated as literal forms in typy (following Haskell [36].) If the
delegated fragment does not define their semantics, they are
then treated as targeted forms.

6 2016/10/24



Listing 8 Typing and translation of patterns.
1 import ast, typy
2 class finsum(typy.Fragment):
3 # ...

4 @classmethod
5 def ana_pat_Call(cls, ctx, pat, idx):
6 if (isinstance(pat.func, ast.Name) and
7 pat.func.id in idx and
8 len(pat.args)==len(idx[pat.func.id])):
9 bindings , lbl = {}, pat.func.id

10 for p, ty in zip(pat.args, idx[lbl]):
11 _combine(bindings , ctx.ana_pat(p, ty))

12 return bindings
13 else:
14 raise typy.TyError("<bad pattern>", pat)
15
16 @classmethod
17 def trans_pat_Call(cls, ctx, pat, idx,
18 scrutinee_tr):

19 conditions = [

20 ast.Compare(left=_prj(scrutinee_tr , 0),

21 ops=[ast.Eq()],

22 comparators=[ast.Str(s=pat.func.id)])

23 ]

24 binding_translations = {}

25 for n, p in enumerate(pat.args):
26 arg_scrutinee = _prj(scrutinee_tr , n+1)

27 c, b = ctx.trans_pat(p, arg_scrutinee)

28 conditions.append(c)

29 binding_translations[pat.func.id] = b

30 condition = ast.BoolOp(op=ast.And(),

31 values=conditions)

32 return (condition , binding_translations)

typy delegates control over patterns to the fragment that
defines the scrutinee type. For example, to check the pattern
Node(left, right) on Line 15, typy calls finsum.ana_pat_Call,
shown in Listing 8. This method must either return a dic-
tionary of bindings, i.e. a mapping from variables to types,
which typy adds to the typing context when typechecking
the corresponding branch expression, or raise a type error
if the pattern does not match values of the scrutinee type.
In this case, finsum.ana_pat_Call first checks to make sure
that 1) the name that appears in the pattern appears in the
type index (for finsum types, this is a mapping from names to
sequences of types); and 2) that the correct number of pattern
arguments have been provided. If so, it asks typy to check
each subpattern against the corresponding type. Here, left
and right are both checked against tree(+a). These happen
to be variable patterns, but typy supports arbitrarily nested
patterns. The returned dictionary of bindings is constructed
by combining the two dictionaries returned by these calls to
ctx.ana_pat. The _combine function, not shown, also checks
to make sure that the bound variables are distinct.

Match expression statements translate to Python if...elif
statements. For each clause, typy needs a boolean condition
expression, which determines whether that branch is taken,
and for each binding introduced by that clause, typy needs
a translation. To determine the condition and the binding
translations, typy again delegates to the fragment defining the
scrutinee type, here by calling finsum.trans_pat_Call, given

in Listing 8. This class method is passed the context, the type
index, the pattern AST and an AST representing the scrutinee
(bound to a variable, to avoid duplicating effects.)

In Listing 8, the generated condition expression first
checks the tag. Then, for each, subpattern, it recursively
generates its conditions and binding translations by call-
ing ctx.trans_pat(p, arg_scrutinee), where arg_scrutinee
makes the new “local scrutinee” for the subpattern be the
corresponding projection out of the original scrutinee. The
returned condition expression is the conjunction of the tag
check and the subpattern conditions.

The delegated fragment also has responsibility for check-
ing exhaustiveness, via the method is_exhaustive (omitted.)
2.5 Determinism and Stability
We argue that the typy delegation protocol is compositionally
well-behaved, i.e. it exhibits determinism and stability under
fragment composition. By determinism, we mean that under
a given context, there is always a single fragment that can
be delegated control over any type expression, statement,
expression or pattern form, i.e. there can be no ambiguity. By
stability, we mean that the delegation protocol will not make
a different choice simply because a new fragment has been
added to the fragment context (the set of fragments in the
static environment.) A virtue of the design we have presented
is that these properties follow essentially immediately. We
contrast this with related work in Sec. 4.

Consider type validation (Sec. 2.2): the fragment delegated
control over fragment[idx] is fragment. The choice is explicit
in the term, so determinism and stability follow trivially.

For literal forms (Sec. 2.3.1), the fragment defining the
type provided for analysis is delegated control. To establish
determinism and stability, we need only establish that type
normalization is deterministic and stable. Our language of
type expressions is a standard deterministic lambda calculus
[18] and normalization interacts with the fragment context
only at canonical form, which was just discussed.

For targeted terms (Sec. 2.3.4), typy synthesizes a type for
the target. For binary terms (Sec. 2.3.5), typy also synthesizes
types for sub-terms. For determinism and stability to hold,
then, we need that type synthesis, implemented by ctx.syn, is
deterministic and stable. This is a straightforward inductive
argument, with the base case being variable forms. Variables
are tracked by the variable context, which assigns each
variable a unique type, so determinism holds. Variables
lookup is independent of the fragment context, so stability
holds. For binary forms, the only remaining requirement is
that the possibilities described in Sec. 2.3.5 are mutually
exclusive and do not depend on the fragment context, which
is apparent by inspection.

3. More Examples
In this section, we will further demonstrate the expressive
power of typy’s fragment system with more sophisticated
examples: a prototypal object system, a typed interface to the
numpy library and a low-level foreign interface to OpenCL.

7 2016/10/24



Listing 9 Prototypal objects in typy.
1 from typy import component
2 from typy.std import proto, decimal, fn, unit
3 from listing1 import Listing1
4
5 @component
6 def Listing9():
7 Transaction [type] = proto[
8 amount : decimal,

9 incr : fn[Transaction , unit]

10 proto : Listing1.Account

11 ]

12
13 test_trans [: Transaction]

14 def _():
15 amount = 36.50

16 def incr(self): self.amount += 1
17 proto = Listing1.test_acct

18
19 test_trans.incr() # self passed automatically

20 print(test_trans.name) # Harry Q. Bovik

3.1 Prototypal Object Types
JavaScript’s object system supports prototypal inheritance
(based on a similar mechanism in the Self language [44, 69].)
We have implemented a statically typed variant of this system
as a fragment, typy.std.proto.

Listing 9 defines a prototypal object type, Transaction, that
specifies fields named amount, incr and proto. We introduce a
value of this type using the def form on Lines 13-17 (i.e. this
form is treated as a literal form, per Sec. 2.3.2, so typy calls
proto.ana_FunctionDef.) The inner def form, on Line 16, is
governed by the fn fragment because proto.ana_FunctionDef
analyzes it against a fn type (i.e. it also behaves as a literal.)
As such, no type annotations or decorators are needed.

The fields of a prototypic object are mutable, e.g. as shown
in the body of incr on Line 16. The delegation protocol treats
an assignment of this form as a targeted form, per Sec. 2.3.3.

On Line 19, we call the incr method. The proto fragment
implicitly passes in the target of the method call as the first
argument, as in Python and similar to JavaScript.

When a field is not found in the object itself, e.g. name on
Line 20, the proto fragment delegates to the proto field. Here,
the prototype is the record value Listing1.test_acct.
3.2 Foreign Interfaces
Python is widely used in scientific computing [52]. One
reason is that Python has support for calling into low-level
languages like C (e.g. via SWIG [9].) Many popular libraries,
e.g. numpy [70], operate essentially as wrappers around low-
level routines written in these languages. It is also possible
to dynamically compile low-level code generated by Python
code as a string. This is particularly useful when working with
GPUs and other compute devices, e.g. using the PyCUDA
and PyOpenCL libraries [38].

We have designed fragments that allow for statically typed
access to these libraries. For example, on Line 9 of Listing 10,
we create a typed numpy array of 64-bit floating point numbers.
The typy.numpy.array fragment supports the use of list literal

Listing 10 numpy and OpenCL in typy.
1 from typy import component
2 from typy.numpy import array, f64
3 from typy.cl import buffer, to_device , kernel
4
5 @component
6 def Listing10():
7 # (device selection code elided)

8 # make numpy array + send to device

9 x [: array[f64]] = [1, 2, 3, 4]

10 d_x = to_device(x) # device buffer

11
12 # define a typed data-parallel OpenCL kernel

13 @kernel

14 def add5(x : buffer[f64]):
15 gid = get_global_id(0) # OpenCL primitive

16 x[gid] = x[gid] + 5

17
18 # spawn one device thread per element and run

19 add5(d_x, global_size=d_x.length)

20
21 y = d_x.from_device() # retrieve from device

22 print(y.to_string()) # prints [6, 7, 8, 9]

syntax to do so. As such, the cost of the type annotation
is “canceled out” because we don’t need to explicitly call
numpy.array as one does in Python. For arrays in analytic
position (e.g. as function arguments), this interface to numpy
is therefore of lower syntactic cost.

On Line 10, we invoke the to_device operator to transfer
the numpy array to the compute device’s memory (we omit the
code needed once per session to select a device.)

On Lines 13-16, we then define a typed OpenCL kernel
[4]. An OpenCL kernel is simply an OpenCL function that
is called in a data parallel manner, i.e. a large number of
threads are spawned, all running the same kernel. Each kernel
has access to a unique ID, called the global ID in OpenCL.
Here, add5 determines its global ID and then adds 5 to the
corresponding element in the input buffer. Notice that we did
not need to specify a return type or a type annotation on gid,
because typy is bidirectionally typed (unlike OpenCL.) The
translation of the definition of add5 uses a Python encoding of
OpenCL ASTs. It is equivalent to the following Python code:
add5 = pyopencl.Program(cl_ctx, ’

__kernel void add5(__global double* x) {

size_t gid = get_global_id(0);

x[gid] = x[gid] + 5;

}’).build()

The typy code is again more concise. Moreover, type errors in
the OpenCL kernel are detected ahead-of-time by typy. This
required us to implement the entirety of the OpenCL type
system using typy’s fragment system, including the logic of
numeric type promotion and various other subtleties inherited
from C. This represents the largest case study to date of
our methodology. Interestingly, we were also able to extend
OpenCL with various higher-level constructs, e.g. pattern
matching and sum types, essentially as described in Sec. 2.
In fact, in most cases we inherit from the original fragment,
overriding only the translation methods.

8 2016/10/24



Line 19 invokes the add5 kernel in a data parallel fashion on
the device buffer d_x. The parameter global_size determines
the number of threads – here, one thread per array element.
Finally, Lines 21-22 retrieve the result from the device and
print out the result.

The details of the various fragments just described, are, of
course, somewhat involved. The takeaway lesson, however,
is that as the designers of typy, we did not need to anticipate
this particular mode of use. In contrast, monolithic languages
like MLj need to build in a type-safe foreign interface [10].

4. Related Work
Our recent work on type-specific languages (TSLs) in the
Wyvern language used a bidirectionally typed protocol to
delegate control over the parsing of literal forms to functions
associated with type definitions [55]. This inspired our treat-
ment of literal forms in typy. Unlike Wyvern, typy’s literal
forms are parsed according to Python’s fixed syntax. Unlike
typy, Wyvern has a monolithic semantics. Both mechanisms
could exist in the same language, but presently do not.

Language-external mechanisms for creating and combin-
ing language dialects, e.g. extensible compilers like Xoc [17],
JastAdd [24], Polyglot [50], JaCo [76], Silver [72] and vari-
ous language workbenches [26], do not guarantee determin-
ism. In particular, these systems presume that new language
constructs define new textual forms. These forms can conflict
with one another when combined, i.e. syntactic determin-
ism is not conserved. Copper, the syntax definition system
in Silver, defines a modular analysis that guarantees syntac-
tic determinism, but this requires verbose marking tokens
and grammar names [62]. In contrast, typy allows different
fragments to share common forms without qualification.

Putting syntactic determinism aside, many such systems
also do not guarantee semantic determinism. This is because
these systems allow extension providers to exert non-local
control, e.g. by allowing extension providers to define new
inference rules that apply throughout the program, or by
allowing extension providers to define new whole-program
passes. This also incurs cognitive cost: programmers have no
definitive way to identify which extension is in control of a
given term. In contrast, typy’s delegation protocol explicitly
delegates control to a single fragment, in a stable manner.

Systems based on extensible attribute grammars, e.g. Sil-
ver [72], and algebraic methods, e.g. object algebras [53],
give extension providers control over only those extensions
to the abstract syntax that they have defined (if used idiomati-
cally.) However, even if we needed only to extend the abstract
syntax (leaving the concrete syntax alone), this is problematic:
it becomes impossible to define functionality that operates by
exhaustive case analysis (e.g. a pretty printer.) This is particu-
larly problematic when a new such function is invented – this
is known as the expression problem [59, 74]. In contrast, typy
operates over a fixed abstract syntax.

TeJaS is a typed variant of JavaScript that is implemented
as a collection of mutually recursive ML modules, each

defining a particular feature [41]. This means that modules
cannot be distributed separately. A new module can redefine
constructs defined elsewhere, so stability is not guaranteed.

Proof assistants, e.g. TinkerType [43], PLT Redex [27],
Agda [49] and Coq [47] can be used to inductively specify
and mechanize the metatheory of languages. These tools
generally require a complete specification (this has been
identified as a key challenge [8].) Techniques for composing
specifications and proofs exist [20, 21, 61], relying on various
algebraic methods to encode “open” term encodings (e.g.
Mendler-style f -algebras [21]), but these techniques require
additional proofs at “combine-time”. Several authors, e.g.
Chlipala [15], have suggested proof automation as a heuristic
solution to the problem of combine-time proof obligations.
The typy fragment system does not work with inductive
semantic specifications – instead, fragment providers directly
implement their intended semantics in Python (see Sec. 5.)

Refinement type systems [31], pluggable type systems
[7, 12, 13, 45] and gradual type system [64, 65] define addi-
tional static checks for programs written against an existing
semantics. Some of these systems support fragmentary defi-
nitions of new analyses [13, 45]. typy is different in that its
semantics (static and dynamic) is itself programmable. In
other words, typy is not a gradual type system for Python like
mypy [40] or Reticulated Python [73], but rather a distinct
language that 1) repurposes Python’s syntax; and 2) is de-
fined by typed translation to Python. Defining a fragmentary
refinement system that sits atop our fragmentary semantics is
an interesting avenue for future work. This might allow us to
use mypy’s annotations as refinements of the py type.

Lightweight modular staging (LMS) is a Scala library
that supports staged translation of well-typed Scala terms
to other targets [60]. In contrast, typy’s type system is itself
programmable. No specific type structure is built in to typy.
As described in Sec. 3.2, fragment providers can target (and
even extend) different languages via a foreign interface.

Macros implement term-to-term rewritings [14, 30, 35] or
text-to-term rewritings [58, 68]. The typy fragment system
is similar in that the methods of a fragment programmati-
cally examine and generate ASTs. Macros do not, however,
directly integrate into type analysis or synthesis, either be-
cause the language is not statically typed, or because the type
system is defined independently of the macro system, e.g.
the Scala macro system [14]. Term rewriting macros can be
implemented for typy using the fragment system, by defining
a singleton type for the macro for which the call operation
constructs the rewriting and asks the context to typecheck
and translate it.

In Racket, it is possible to associate expansion-time data
with identifiers [30], which can be inspected by macros to
perform certain expansion-time checks (e.g. see [29].) typy
differs in that types are integral to the delegation protocol,
i.e. type information is associated with expressions (not just
identifiers) and implicitly determines which fragment method

9 2016/10/24



is delegated control over a term. In contrast, in Racket, the
client explicitly invokes a macro to give it control.

Another important distinction is that in typy, the transla-
tion target is a different language – Python – from the source
language – typy. Ziggurat has also explored the problem of
layering languages (including statically typed languages) atop
other languages using macro-like mechanisms [28]. However,
each language layer has a monolithic semantics. Similarly,
Typed Racket is a statically typed language embedded into
Racket using the macro system [19, 67]. Typed Racket is not
itself modularly extensible – the macro system plays a role
analagous to that played by Python’s decorator and reflection
mechanisms in typy. However, it would be possible to embed
a language with a fragmentary semantics into Racket.

Operator overloading [71] and metaobject dispatch [37]
interpret operator invocations as method calls. The method is
typically selected according to either the type or the dynamic
tag of one or more operands. These protocols are similar to
our delegation protocol for targeted expressions. However,
our strategy is a compile-time protocol and gives direct
control over typing and translation. An object system with
operator overloading could be implemented in typy.

5. Discussion
In summary, typy is a bidirectionally typed programming lan-
guage with no built-in types. Instead, it is organized around a
novel semantic fragment system that allows library providers
to implement the type validation logic for new types, the static
and dynamic semantics of their associated operations and the
pattern matching semantics of their associated patterns pro-
grammatically. Library clients can import these fragments
in any combination because fragments are contextually dele-
gated control over terms in a deterministic and stable manner.
Unlike other language extension systems, the syntax of the
language is fixed, which we take to be a feature of our system
because it eliminates a number of difficult problems related
to composition. We were able to implement typy itself as a
Python library, using Python’s standard reflection and code
generation facilities. Using typy, we have been able to imple-
ment a variety of semantic structures that are, or would need
to be, built primitively into other languages.

Our design does have its limitations. Python is a complex
dynamic language, so we are not able to rigorously prove
determinism and stability. Our argument is simply that these
properties are essentially immediate consequences of our
proposed design. Python’s complexity also makes it difficult
for fragment providers to reason about correctness (relative
to, e.g., an inductive specification, e.g. as in [32]) In the
future, we hope to develop a dialect of typy using a reduced
subset of Python (e.g. RPython [6] or λπ [57]) or a simpler
language still for which a formal definition is available.
Another approach would be to design a fragment system
where the fragment definition language is dependently typed.
This would make it possible to prove interesting correctness
properties about fragments. By imposing stronger abstraction

barriers between fragments, we conjecture that it should be
possible for the language to guarantee that a broad class of
such properties are conserved by fragment composition.

It is not presently possible to define fragments using typy
itself, but this is another interesting future direction. It would
also be interesting to automate the generation of fragment
definitions from inductive specifications, e.g. building on the
techniques developed by the Veritas project [33].

The fragment system that we have developed here could be
adapted to use a different surface syntax and internal language
without major difficulty. If the target language itself has non-
trivial type structure, e.g. JVM bytecode, then fragments
must define a type translation method (to complement the
type validation method.) Moreover, term translations must
be validated against the corresponding type translations. This
correctness condition has been studied in the design of the
TIL compiler for Standard ML [66].

Another aspect of translation validation that we did not
consider here is hygiene, i.e. that the translations do not make
inappropriate assumptions about the surrounding bindings,
or inadvertently shadow bindings in an unexpected manner
[5, 39]. A proper hygiene mechanism would benefit from
the use of a target language with a more disciplined binding
structure. For now, the context simply provides a method for
generating unique identifiers.

By repurposing Python’s syntax, typy benefits from many
established Python tools. However, debuggers and other tools
that rely not just on Python’s syntax but also its semantics do
not work directly on typy programs. We leave the problem of
integrating fragments with tools like these as future work.
typy imposes a bidirectional structure on all fragments.

This structure is known to be highly flexible [23], and even
advanced dependently typed languages like Agda are funda-
mentally bidirectional [49]. That said, we have not explored
the practicality of implementing advanced type systems, e.g.
dependent or linear type systems, using our fragment system.

Finally, we must acknowledge that not all fragments will
be tasteful. This concern must be balanced against the possi-
bilities of a vibrant ecosystem of competing fragments. We
plan to curate a substantial standard library of high-quality
fragments. This will help avoid the problem of different pro-
grammers reimplementing the same structures. With an appro-
priate community process, our position is that a fragmentary
language like typy will hasten the research, development and
adoption of good ideas, particularly those that are found only
in obscure languages today.
Implementation typy is under development as a free open
source project at http://github.com/cyrus-/typy.

Acknowledgments
We are grateful to Kayvon Fatahalian, Christian Kästner,
Joshua Sunshine, Matthew Flatt and the anonymous referees
for their thoughtful feedback. This work was supported in part
by AFRL and DARPA under agreement #FA8750-16-2-0042,
and by NSA lablet contract #H98230-14-C-0140.

10 2016/10/24

http://github.com/cyrus-/typy


References
[1] Flow — A static type checker for JavaScript. http://

flowtype.org/. 1

[2] PEP 3107 – Function Annotations. https://www.python.
org/dev/peps/pep-3107/. 2.1, A

[3] PureScript. http://www.purescript.org/. 1

[4] The OpenCL Specification, Version 1.1, 2010. 3.2

[5] M. D. Adams. Towards the Essence of Hygiene. In POPL,
2015. 5

[6] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis. RPython:
a step towards reconciling dynamically and statically typed
OO languages. In Symposium on Dynamic Languages, 2007. 5

[7] C. Andreae, J. Noble, S. Markstrum, and T. Millstein. A
Framework for Implementing Pluggable Type Systems. In
OOPSLA, 2006. 4

[8] B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C.
Pierce, P. Sewell, D. Vytiniotis, G. Washburn, S. Weirich, and
S. Zdancewic. Mechanized Metatheory for the Masses: The
POPLmark Challenge. In Theorem Proving in Higher Order
Logics: 18th International Conference, 2005. 4

[9] D. M. Beazley. Automated scientific software scripting with
SWIG. Future Generation Computer Systems, 19(5):599–609,
2003. 3.2

[10] N. Benton and A. Kennedy. Interlanguage Working Without
Tears: Blending SML with Java. In ICFP, 1999. 3.2

[11] G. Bierman, M. Abadi, and M. Torgersen. Understanding
TypeScript. In ECOOP. 2014. 1

[12] G. Bracha. Pluggable Type Systems. In OOPSLA Workshop
on Revival of Dynamic Languages, 2004. 4

[13] F. Brown, A. Nötzli, and D. Engler. How to Build Static
Checking Systems Using Orders of Magnitude Less Code. In
ASPLOS, 2016. 4

[14] E. Burmako. Scala Macros: Let Our Powers Combine!: On
How Rich Syntax and Static Types Work with Metaprogram-
ming. In 4th Workshop on Scala, 2013. 4

[15] A. Chlipala. A verified compiler for an impure functional
language. In POPL, 2010. 4

[16] D. R. Christiansen. Bidirectional Typing Rules: A
Tutorial. http://davidchristiansen.dk/tutorials/

bidirectional.pdf, 2013. 2.3

[17] R. Cox, T. Bergan, A. T. Clements, M. F. Kaashoek, and
E. Kohler. Xoc, an extension-oriented compiler for systems
programming. In ASPLOS, 2008. 4

[18] K. Crary. A syntactic account of singleton types via heredi-
tary substitution. In Fourth International Workshop on Logi-
cal Frameworks and Meta-Languages: Theory and Practice
(LFMTP), 2009. 2.2, 2.5

[19] R. Culpepper, S. Tobin-Hochstadt, and M. Flatt. Advanced
macrology and the implementation of Typed Scheme. In
Workshop on Scheme and Functional Programming, 2007. 4

[20] B. Delaware, W. R. Cook, and D. S. Batory. Product lines of
theorems. In OOPSLA, 2011. 4

[21] B. Delaware, B. C. d. S. Oliveira, and T. Schrijvers. Meta-
theory à la carte. In POPL, 2013. 4

[22] F. DeRemer and H. Kron. Programming-in-the-large versus
programming-in-the-small. IEEE Transactions on Software
Engineering, 2:80–86, 1976. 1

[23] J. Dunfield and N. R. Krishnaswami. Complete and easy
bidirectional typechecking for higher-rank polymorphism. In
ICFP, 2013. 2.3, 5

[24] T. Ekman and G. Hedin. The JastAdd extensible Java compiler.
In OOPSLA, 2007. 4

[25] S. Erdweg and F. Rieger. A framework for extensible languages.
In GPCE, 2013. 1

[26] S. Erdweg, T. van der Storm, M. Völter, M. Boersma,
R. Bosman, W. R. Cook, A. Gerritsen, A. Hulshout, S. Kelly,
A. Loh, G. D. P. Konat, P. J. Molina, M. Palatnik, R. Pohjonen,
E. Schindler, K. Schindler, R. Solmi, V. A. Vergu, E. Visser,
K. van der Vlist, G. H. Wachsmuth, and J. van der Woning.
The state of the art in language workbenches. In Software
Language Engineering (SLE). 2013. 4

[27] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineer-
ing with PLT Redex. The MIT Press, 2009. 4

[28] D. Fisher and O. Shivers. Building language towers with
Ziggurat. J. Funct. Program., 18(5-6):707–780, 2008. 4

[29] M. Flatt. Creating languages in Racket. Commun. ACM,
55(1):48–56, Jan. 2012. 4

[30] M. Flatt, R. Culpepper, D. Darais, and R. B. Findler. Macros
that work together - compile-time bindings, partial expansion,
and definition contexts. J. Funct. Program., 22(2):181–216,
2012. 4

[31] T. Freeman and F. Pfenning. Refinement Types for ML. In
PLDI, 1991. 4

[32] N. Fulton, C. Omar, and J. Aldrich. Statically Typed String
Sanitation Inside a Python. In International Workshop on
Privacy and Security in Programming (PSP), 2014. 2.3.1, 5

[33] S. Grewe, S. Erdweg, P. Wittmann, and M. Mezini. Type
systems for the masses: Deriving soundness proofs and efficient
checkers. In ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software
(Onward!), 2015. 5

[34] R. Harper. Practical Foundations for Programming Languages.
Cambridge University Press, 2nd edition, 2016. 2.2, 2.3.1, 2.4,
B

[35] T. P. Hart. MACRO definitions for LISP. Report A. I.
MEMO 57, Massachusetts Institute of Technology, A.I. Lab.,
Cambridge, Massachusetts, Oct. 1963. 4

[36] S. P. Jones. Haskell 98 language and libraries: the revised
report. Cambridge University Press, 2003. 2.4

[37] G. Kiczales, J. des Rivières, and D. G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, Cambridge, MA, 1991. 4

[38] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and
A. Fasih. PyCUDA and PyOpenCL: A Scripting-Based Ap-
proach to GPU Run-Time Code Generation. Parallel Comput-
ing, 2011. 1, 3.2

[39] E. E. Kohlbecker, D. P. Friedman, M. Felleisen, and B. Duba.
Hygienic macro expansion. In Symposium on LISP and
Functional Programming, pages 151–161, Aug. 1986. 5

11 2016/10/24

http://flowtype.org/
http://flowtype.org/
https://www.python.org/dev/peps/pep-3107/
https://www.python.org/dev/peps/pep-3107/
http://www.purescript.org/
http://davidchristiansen.dk/tutorials/bidirectional.pdf
http://davidchristiansen.dk/tutorials/bidirectional.pdf


[40] J. Lehtosalo. mypy - Optional Static Typing for Python.
http://www.mypy-lang.org/. Retrieved June 24, 2016. 4

[41] B. S. Lerner, J. G. Politz, A. Guha, and S. Krishnamurthi.
TeJaS: retrofitting type systems for JavaScript. In Dynamic
Languages Symposium (DLS), 2013. 4

[42] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and
J. Vouillon. The OCaml system release 4.02 Documentation
and user’s manual. Institut National de Recherche en Informa-
tique et en Automatique, September 2014. 2.4

[43] M. Y. Levin and B. C. Pierce. TinkerType: A Language
for Playing with Formal Systems. Journal of Functional
Programming, 13(2), Mar. 2003. 4

[44] H. Lieberman. Using Prototypical Objects to Implement
Shared Behavior in Object Oriented Systems. In OOPSLA,
1986. 3.1

[45] S. Markstrum, D. Marino, M. Esquivel, T. D. Millstein, C. An-
dreae, and J. Noble. JavaCOP: Declarative pluggable types for
Java. ACM Trans. Program. Lang. Syst., 32(2), 2010. 4

[46] J. Matthews and R. B. Findler. Operational semantics for multi-
language programs. ACM Trans. Program. Lang. Syst., 31(3),
2009. 1

[47] The Coq development team. The Coq proof assistant reference
manual. LogiCal Project, 2004. Version 8.0. 4

[48] R. Milner. A theory of type polymorphism in programming. J.
Comput. Syst. Sci., 17(3):348–375, 1978. 1

[49] U. Norell. Towards a practical programming language based
on dependent type theory. PhD thesis, Chalmers University of
Technology, 2007. 4, 5

[50] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot:
An Extensible Compiler Framework for Java. In Compiler
Construction: 12th International Conference, 2003. 4

[51] M. Odersky, M. Zenger, and C. Zenger. Colored Local Type
Inference. In POPL, 2001. 2.3

[52] T. E. Oliphant. Python for scientific computing. Computing in
Science & Engineering, 9(3):10–20, 2007. 3.2

[53] B. C. d. S. Oliveira and W. R. Cook. Extensibility for the
masses. In ECOOP. Springer, 2012. 4

[54] C. Omar and J. Aldrich. Programmable semantic fragments.
In GPCE, 2016. (document)

[55] C. Omar, D. Kurilova, L. Nistor, B. Chung, A. Potanin, and
J. Aldrich. Safely composable type-specific languages. In
ECOOP, 2014. 4

[56] B. C. Pierce and D. N. Turner. Local type inference. ACM
Trans. Program. Lang. Syst., 22(1):1–44, Jan. 2000. 2.3

[57] J. G. Politz, A. Martinez, M. Milano, S. Warren, D. Patterson,
J. Li, A. Chitipothu, and S. Krishnamurthi. Python: the full
monty. In OOPSLA, 2013. 5

[58] J. Rafkind and M. Flatt. Honu: syntactic extension for algebraic
notation through enforestation. In Generative Programming
and Component Engineering, GPCE’12, Dresden, Germany,
September 26-28, 2012, pages 122–131, 2012. 4

[59] J. C. Reynolds. User-defined types and procedural data
structures as complementary approaches to data abstraction.

In Conference on New Directions on Algorithmic Languages,
Aug. 1975. 1, 4

[60] T. Rompf and M. Odersky. Lightweight modular staging: a
pragmatic approach to runtime code generation and compiled
DSLs. Communications of the ACM, 55(6):121–130, June
2012. 4

[61] C. Schwaab and J. G. Siek. Modular type-safety proofs in Agda.
In Workshop on Programming Languages Meets Program
Verification (PLPV), 2013. 4

[62] A. Schwerdfeger and E. V. Wyk. Verifiable composition of
deterministic grammars. In PLDI ’09, pages 199–210, 2009. 4

[63] D. Scott. Lambda calculus: some models, some philosophy.
Studies in Logic and the Foundations of Mathematics, 101:223–
265, 1980. 2.3.1, B

[64] J. Siek and W. Taha. Gradual typing for objects. In ECOOP,
2007. 4

[65] J. G. Siek and W. Taha. Gradual typing for functional lan-
guages. In Scheme and Functional Programming Workshop,
2006. 4

[66] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and
P. Lee. TIL: A Type-Directed Optimizing Compiler for ML.
In PLDI, 1996. 5

[67] S. Tobin-Hochstadt and M. Felleisen. The Design and Imple-
mentation of Typed Scheme. In POPL, 2008. 4

[68] L. Tratt. Domain specific language implementation via
compile-time meta-programming. ACM Trans. Program. Lang.
Syst., 30(6), 2008. 4

[69] D. Unger and R. B. Smith. Self: The Power of Simplicity. In
OOPSLA, pages 227–242, Dec. 1987. 3.1

[70] S. Van Der Walt, S. C. Colbert, and G. Varoquaux. The
numpy array: a structure for efficient numerical computation.
Computing in Science & Engineering, 13(2):22–30, 2011. 3.2

[71] A. van Wijngaarden, B. J. Mailloux, J. E. Peck, C. H. A. Koster,
M. Sintzoff, C. H. Lindsey, L. G. L. T. Meertens, and R. G.
Fisker. Revised Report on the Algorithmic Language Algol 68.
Acta Informatica, 1975. 4

[72] E. Van Wyk, D. Bodin, J. Gao, and L. Krishnan. Silver: an
extensible attribute grammar system. Science of Computer
Programming, 75(1–2):39–54, Jan. 2010. 4

[73] M. M. Vitousek, A. M. Kent, J. G. Siek, and J. Baker. Design
and evaluation of gradual typing for Python. In Dynamic
Languages Symposium, 2014. 4

[74] P. Wadler. The expression problem. java-genericity mailing
list, 1998. 1, 4

[75] M. P. Ward. Language-oriented programming. Software -
Concepts and Tools, 15(4):147–161, 1994. 1

[76] M. Zenger and M. Odersky. Implementing extensible com-
pilers. In Workshop on Multiparadigm Programming with
Object-Oriented Languages, 2001. 4

12 2016/10/24

http://www.mypy-lang.org/


Appendix
A. Syntactic Support for Python 2.x

Listing 11 An alternative syntax for argument and return type
annotations.

1 @fn
2 def map(f, t):
3 {f : fn[+a, +b], t : tree(+a)} > tree(+b)

4 [t].match

5 with Empty: Empty
6 with Node(left, right):
7 Node(map(f, left), map(f, right))

8 with Leaf(x):
9 Leaf(f(x))

Python 3.0 introduced syntax for argument and return type
annotations on function definitions [2]. However, Python 2.6+
remains widely adopted because Python 3.0+ did not maintain
backwards compatibility. As such, our implementations of
typy.std.fn and typy.opencl.kernel support an alternative
syntax for argument and return type annotations that supports
Python 2.6+ as well as Python 3.0+. For example, Listing
11 shows the function map from Listing 7 written using this
alternative syntax.

B. Python Interoperability

Listing 12 Lifting and pattern matching over py.

1 from typy import component
2 from typy.std import str
3 x = 3
4 @component
5 def TestLift():
6 y = x # y has type std.py

7
8 with let[z : str]: # block let
9 [x].match

10 with int(n): "n : std.num"
11 with float(f): "f : std.ieee"
12 with str(s): "s : std.string"
13 with list(xs): "xs : std.list[py]"
14 with tpl[2](xs): "xs : std.tpl[py, py]"
15 with {’a’: a}: "a : py"
16 with instance[C](x): "x : py"
17 with _: "otherwise"

The py fragment defines a single type, py[()] (which can
be abbreviated py, per Sec. 2.2.) This type classifies Python
values. Variables that refer to values in the static environment
are assigned type py by default. (Technically, the default is
the canonical type that typy.lift_type is set to. Importing
typy.std sets typy.lift_type to typy.CanonicalTy(py, ()).)
For example, the component member y in Listing 12 refers to
x, so it has type py.

In addition to standard operations, py supports pattern
matching on the Python dynamic type tag or class, as shown
in Listing 12. This is consistent with a view of Python as a
uni-typed language with a rich dynamic tag structure [34, 63].

Most fragments in typy.std also support a coercion back
to type py by accessing the “attribute” .to_py. For example, if

x : std.tpl[py, py] (a pair of py values), then x.to_py is of
type py. All arguments to Python functions of type py must
be of type py (we are exploring coercions between std.fn and
std.py, but have not implemented this as of this writing.)

The recommended way to interact with typy code from
a Python script is simply to define a typy component. This
is straightforward because typy is itself a library – it does
not require that an entire project be compiled using a differ-
ent toolchain. However, for convenience, Python code can
directly access values of type py that appear in a typy com-
ponent. Internally, the fragment system asks fragments that
wish to expose themselves to untyped code to indicate this
by inheriting from typy.PythonInterop. They must also im-
plement a coercion method coerce_python that is called to
transform the value upon first access. For py, this is simply
the identity function. We have also experimented with allow-
ing calls to std.fn values that take and return py values – here,
coerce_python wraps the function with a check to ensure that
the correct number of arguments have been provided.

C. OCaml Example

Listing 13 An OCaml module analagous to the component
defined in Listing 7.

1 module Listing7 =
2 struct
3 type ’a tree =
4 | Empty

5 | Node of ’a tree * ’a tree
6 | Leaf of ’a
7
8 let map (f : ’a -> b,
9 tree : ’a tree) : ’b tree =

10 match tree with
11 | Empty -> Empty

12 | Node(left, right) ->

13 Node(map(f, left), map(f, right))

14 | Leaf(x) ->

15 Leaf(f(x))

16 end

typy’s fragment system, together with its primitive support
for recursive and polymorphic types, is powerful enough to
capture standard idioms in languages like OCaml at very
similar syntactic cost – compare Listing 13 to Listing 7.

D. Match Expressions

Listing 14 Expression-level pattern matching.
1 [scrutinee].match[
2 pat1: branchn,

3 # ...

4 patn: branchn]

Python’s syntax distinguishes statements from expressions. In
Sec. 2.4, we described a statement-level match expression. It
is also sometimes useful to pattern match inside an expression,
so typy supports an expression-level match expression, shown
in Listing 14, that operates analagously to the statement-level
match expression.

13 2016/10/24


	1 Introduction
	2 Semantic Fragments in typy
	2.1 Dynamic Embedding
	2.2 Fragmentary Type Validation
	2.3 Fragmentary Bidirectional Typing and Translation
	2.3.1 Literal Forms
	2.3.2 Definition Forms
	2.3.3 Statement Forms
	2.3.4 Targeted Forms
	2.3.5 Binary Forms

	2.4 Fragmentary Pattern Matching
	2.5 Determinism and Stability

	3 More Examples
	3.1 Prototypal Object Types
	3.2 Foreign Interfaces

	4 Related Work
	5 Discussion
	A Syntactic Support for Python 2.x
	B Python Interoperability
	C OCaml Example
	D Match Expressions

