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This Week
• Make sure HW3 Google presentation is public 

ASAP if you haven’t already. See Rahul’s Piazza 
post on this (@1159).

• Form project team if you haven’t already. Try 
your best to have your team formed by next 
Tuesday, but in any case it is required to fill in 
the Google form by Tuesday Nov 3, 11:59 pm: 
http://goo.gl/forms/CzVRluCZk6 

• HW4 is due Thursday Nov 5, 11:59 pm.



Which proportion is bigger? 
A: 1 out of 2 

B: 40 out of 100

Which baseball player would you 
prefer to have on your team? 
Player A: 1 hit out of 2 at-bats 

Player B: 40 hits out of 100 at-bats

Which cab driver would you prefer to have 
drive you somewhere? 

Driver A: 1 of 2 reaching destination 
Driver B: 40 out of 100 reaching destination



Bayes and Shrinkage Estimation

http://sas-and-r.blogspot.com/2012/04/example-927-baseball-and-shrinkage.html

http://sas-and-r.blogspot.com/2012/04/example-927-baseball-and-shrinkage.html


Empirical Bayes
Consider overall distribution across baseball players, estimate the prior from the data.

http://varianceexplained.org/r/empirical_bayes_baseball/



Empirical Bayes

http://varianceexplained.org/r/empirical_bayes_baseball/

Beta(79,225)



Empirical Bayes

http://varianceexplained.org/r/credible_intervals_baseball/



Empirical Bayes

http://varianceexplained.org/r/empirical_bayes_baseball/

Best batters according to MLE

name H AB average

Jeff Banister 1 1 1

Doc Bass 1 1 1

Steve Biras 2 2 1

C. B. Burns 1 1 1

Jackie Gallagher 1 1 1



Empirical Bayes

http://varianceexplained.org/r/empirical_bayes_baseball/

// We hired a Data Scientist to analyze our Big Data 
// and all we got was this lousy line of code. 

float estimate = (successes + 78.7) / (total + 303.5);

name H AB average eb_estimate

Rogers Hornsby 2930 8173 0.358 0.355

Shoeless Joe Jackson 1772 4981 0.356 0.350

Ed Delahanty 2596 7505 0.346 0.343

Billy Hamilton 2158 6268 0.344 0.340

Harry Heilmann 2660 7787 0.342 0.339

Best batters according to EB estimates.



Empirical Bayes

http://varianceexplained.org/r/credible_intervals_baseball/

Posterior density for Derek Jeter, with 95% credible interval



Confidence Intervals vs. Credible Intervals

95% confidence interval: P (a(Y )  ✓  b(Y )) = 0.95
parameter is fixed, data is random 

95% credible interval: P (a(Y )  ✓  b(Y )|Y ) = 0.95
parameter is random, data is fixed 

P (3  ✓  7) is 0 or 1 (we just don’t know which), from non-Bayesian perspective

But we can often get the best of both worlds: 
we can study the coverage probabilities of 

credible intervals; we can study the frequentist 
performance of Bayesian methods.



http://varianceexplained.org/r/credible_intervals_baseball/



Bayesian Bandits
Example from Probabilistic Programming and Bayesian Methods for Hackers

http://research.microsoft.com/en-us/projects/bandits/

N slot machines, each with its own unknown probability 
distribution for rewards. Exploration-exploitation tradeoff.

http://research.microsoft.com/en-us/projects/bandits/


Bayesian Bandits
Example from Probabilistic Programming and Bayesian Methods for Hackers

A fast, simple Bayesian algorithm:

1. sample from the prior of each bandit
2. select the bandit with the largest sampled value
3. update the prior for that bandit (the posterior 

becomes the new prior)
4. repeat.



Bayesian Bandits

http://nbviewer.ipython.org/urls/raw.github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/master/
Chapter6_Priorities/Priors.ipynb

http://nbviewer.ipython.org/urls/raw.github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/master/Chapter6_Priorities/Priors.ipynb


Kidney Cancer Example from Bayesian Data Analysis (Gelman et al)

Single-parameter models 57

2.8 Example: informative prior distribu tion and multilevel structure for  
estimating cancer rates 

Section 2.5 considered the effect of the prior distribution on inference given a fixed
quantity   of   data.   Here,  in  contrast,  we  consider  a   large   set   of   inferences,  

each based on different data but with a common prior distribution. In addition to 
illustrating the role of the prior distribution, this example introduces hierarchical 
modeling, to which we return in Chapter 5.  

A puzzling pattern in a map 

Figure 2.7 shows the counties in  the United States with th e highest kidney cancer death  
rates during the 1980s. * The most noticeable pattern in  the map is that many of the  
counties in the Great Plains in the middle of the country, but relatively few counties nea r 
the coasts, are shaded.  

When shown the map, people come up  with many theories to explain the 
disproportionate shading in the Great Plains: perhaps the air or the water is polluted, o r 
the people tend not to seek medical care so  the cancers get detected too late to treat, o r 
perhaps their diet is unhea lthy… These conjectures may al l be true but they are not  
actually needed to ex plain the patterns in Figure 2.7.  To see this, look at Figure 2.8,  

Figure 2.7  The counties of the United Stat es with the highest 10% age- 
standardized death rates for cancer  of kidney/ureter  for U.S. white  
males, 1980–1989. Why are most of th e shaded counties in the middle  
of the country? See Sect ion 2.8 for discussion. 

which plots the 10% of counties with the  lowest kidney cancer death rates. These are also 
mostly in the middle of the country. So now  we need to explain w hy these areas have the 
lowest, as well as the highest, rates. 

* The rates are age-adjusted and restricted to white males, issues which need not concern us here.

U.S. counties with the highest 10% of 
kidney cancer death rates (age-adjusted)



Kidney Cancer Example from Bayesian Data Analysis (Gelman et al)

58 Bayesian Data Analysis

The issue is sample size. Consider a county  of population 1000. Kidney cancer is a rare  
disease, and, in any ten-year  period, a county of 1000 will probably have zero kidney  
cancer deaths, so that it will be tied for the lowest rate in the country and will be shaded 
in   Figure   2.8.   However,  there  is  a  chance  the  county  will have one kidney cancer  

death during  the  decade.  If  so,  it  will   have   a  rate  of  1  per   10,000   per year,
which  is  high  enough  to put it in the top 10% so that it will be shaded in Figure 2.7.
The Great Plains has many low-population  counties,  and so it is  disproportionately  
represented in both maps . There is no evidence from these maps that cancer  rates are 
particularly high there. 

Bayesian inference for th e cancer death rates 

The misleading patterns in the maps  of raw rates suggest that a model- b ased approach to  
estimating the true underlying rates might be helpful. In particular, it is natural to 
estimate the underlying cancer  death rate  in each county  j  using the model  

Figure 2.8 The counties of the United States with the lowest 10% age-
standardized death rates for cancer of kidney/ureter for U.S. white 
males, 1980–1989. Surprisingly, the pattern is somewhat similar to 
the map of the highest rates, shown in Figure 2.7.

y i ~Poisson(10 n j ș j ) (2.16)
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Figure 2. A cursory glance at the distribution of the U.S. counties with the lowest rates of kidney cancer (teal) might lead one to conclude that
something about the rural lifestyle reduces the risk of that cancer. After all, the counties with the lowest 10 percent of risk are mainly Midwest-
ern, Southern and Westem counties. When one examines the distribution of counties with the highest rates of kidney cancer (red), however,
it becomes clear that some other factor is at play Knowledge of de Moivre's equation leads to the conclusion that what the counties with the
lowest and highest kidney-cancer rates have in common is low population—and therefore high variation in kidney-cancer rates.

overweight coins, melt them down and recast
them at the correct lou-er weight. This would
leave the balance of gold as an excess payment
to the mint. The fact that this error continued for
almost 600 years pro\ndes strong support for de
Moivre's equation to be considered a candidate
for the title of most dangerous equation.

Life in the Country: Haven or Threat?
Figure 2 is a map of the locations of of counties
with unusual kidney-cancer rates. Tlie coun-
ties colored teal are those that are in the lowest
tenth of the cancer distribution. We note that
these healthful counties tend to be very rural,
Midwestern, Southern or Western. It is both
easy and tempting to infer that this outcome is
directly due to the clean living of the rural life-
style—no air pollution, no water pollution, ac-
cess to fresh food without additives and so on.

Tlie counties colored in red, however, belie
that inference. Although they have much the
same distribution as the teal counties—in fact,
they're often adjacent—they are those that
are in the highest decile of the cancer distribu-
tion. We note that these unhealthful counties
tend to be very rural, Midwestern, Southem
or Westem. Tt would be easy to infer that this
outcome might be directly due to the poverty

of the rural lifestyle—no access to good medi-
cal care, a high-fat diet, and too much alcohol
and tobacco.

What is going on? We are seeing de Moivre's
equation in action. The variation of the mean
is inversely proportional to the sample size, so
small counties display much greater variation
than large counties. A county with, say, 100
inhabitants that has no cancer deaths would
be in the lowest category. But if it has 1 cancer
death it would be among the highest. Counties
like Los Angeles, Cook or Miami-Dade with
millions of inliabitants do not bounce around
like that.

Wlien we plot the age-adjusted cancer rates
against county population, this result becomes
clearer still (see Figure 3). We see the typical
triangle-shaped bivariate distribution: When
the population is small (left side of the graph)
there is wide variation in cancer rates, from 20
per 100,000 to 0; when county populations are
large (right side of graph) there is very Uttle
variation, with all counties at about 5 cases per
100,000 of population.

The Small-Schools Movement
Tlie urbanization that characterized the 20th
century led to the abandonment of the rural

www.americansdentist.org 2007 May-June 251

lowest rates: blue 
highest rates: orange

H. Wainer, The Most Dangerous Equation
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yj ⇠ Pois(10nj✓j)simple model:

E(✓j |yj) = w
yj

10nj
+ (1� w)E(✓j)

weighted combination of the data and the prior mean 

✓j ⇠ Gamma(↵,�)



Kidney Cancer Example from Bayesian Data Analysis (Gelman et al)

60 Bayesian Data Analysis

W ith such a small population size, the data  are dominated by the prior distribution.  
B ut how likely,  a priori,  is it that  y j will equal 0, 1, 2, and so forth, for this county with

nj =1000? This is determined by the predictive distribution, the marginal distribution of  y j , 
averaging over the prior distribution of ș j . As discussed in Section 2.7, the Poisson mode l
with gamma prior distribution has a negative binomial predictive distribution: 

I t is perhaps even simpler to simulate directly the predictive distribution of  y j as follows: 
(1) draw 500 (say) values of ș j from the Gamma(20,430000) di stribution; (2) for each of
t hese, draw one value  y j  from the Poisson distribution with parameter 10000 ș J. Of 500
simulations of y j  produced in this way, 319 were 0’ s, 141 were 1’s, 33 were 2’s, and  5
w ere 3’s.   

Figure 2.9  (a) Kidney cancer death rates y j /(10 n j )  vs. population size n j .  (b)  
Replotted on the scale of  log 10 population to see the data more  
clearly .  The patterns come from th e discreteness of the data  ( n j =0, 1,  
2, …).  

Figure 2.10  (a) Bayes-estimated posterior  mean kidney cancer  death rates, 

 vs. logarithm of  population size n j , the 3071  
counties in the U.S. (b) Poster ior medians and 50% intervals for  ș 
for a sample of 100 counties j. The scales on the y-axes differ from 

Figure 2.9b. the plots in 

raw data: small counties account for almost 
all of the high and low death rates



Kidney Cancer Example from Bayesian Data Analysis (Gelman et al)

Bayes estimates: automatically accounts for
regression toward the mean
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Bayesian posterior medians and 50% probability intervals

60 Bayesian Data Analysis
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Decision Theory: Nature vs. Data Scientist

Nature picks the parameter, data scientist 
gets data and then chooses an action 

(estimate the parameter, predict a future 
observation, give an interval estimate, 

accept or reject a hypothesis, ….)

Then some loss is incurred, based on a loss function.



Decision Theory: Nature vs. Data Scientist

Most common loss functions for estimation:

L2 (mean square error) : L(✓, ˆ✓) = (

ˆ✓ � ✓)2

L1 (mean absolute error) : L(✓, ˆ✓) = |ˆ✓ � ✓|

Bayesian can try to minimize the expected risk, given the data. 
Mean square error: use posterior mean 

Mean absolute error: use posterior median



Decision Theory: Geometry of Admissibility
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Complete Class Theorem

Any Bayesian procedure is admissible. 
Any admissible procedure is Bayesian (or a limit of such). 

Under mild technical conditions:

Freq Bayes
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THE MARKOV CHAIN MONTE CARLO REVOLUTION

PERSI DIACONIS

Abstract. The use of simulation for high-dimensional intractable computa-
tions has revolutionized applied mathematics. Designing, improving and un-
derstanding the new tools leads to (and leans on) fascinating mathematics,
from representation theory through micro-local analysis.

1. Introduction

Many basic scientific problems are now routinely solved by simulation: a fancy
random walk is performed on the system of interest. Averages computed from the
walk give useful answers to formerly intractable problems. Here is an example
drawn from course work of Stanford students Marc Coram and Phil Beineke.

Example 1 (Cryptography). Stanford’s Statistics Department has a drop-in con-
sulting service. One day, a psychologist from the state prison system showed up
with a collection of coded messages. Figure 1 shows part of a typical example.

Figure 1:

The problem was to decode these messages. Marc guessed that the code was a
simple substitution cipher, each symbol standing for a letter, number, punctuation
mark or space. Thus, there is an unknown function f

f : {code space} −→ {usual alphabet}.
One standard approach to decrypting is to use the statistics of written English to
guess at probable choices for f , try these out, and see if the decrypted messages
make sense.
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Markov Chain Monte Carlo (MCMC):
Diaconis-Coram Example 
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To get the statistics, Marc downloaded a standard text (e.g., War and Peace)
and recorded the first-order transitions: the proportion of consecutive text symbols
from x to y. This gives a matrix M(x, y) of transitions. One may then associate a
plausibility to f via

Pl(f) =
∏

i

M (f(si), f(si+1)) ,

where si runs over consecutive symbols in the coded message. Functions f which
have high values of Pl(f) are good candidates for decryption. Maximizing f ’s were
searched for by running the following Markov chain Monte Carlo algorithm:

• Start with a preliminary guess, say f .
• Compute Pl(f).
• Change to f∗ by making a random transposition of the values f assigns to

two symbols.
• Compute Pl(f∗); if this is larger than Pl(f), accept f∗.
• If not, flip a Pl(f∗)/Pl(f) coin; if it comes up heads, accept f∗.
• If the coin toss comes up tails, stay at f .

The algorithm continues, trying to improve the current f by making random trans-
positions. The coin tosses allow it to go to less plausible f ’s, and keep it from
getting stuck in local maxima.

Of course, the space of f ’s is huge (40! or so). Why should this Metropolis
random walk succeed? To investigate this, Marc tried the algorithm out on a
problem to which he knew the answer. Figure 2 shows a well-known section of
Shakespeare’s Hamlet.

Figure 2:

The text was scrambled at random and the Monte Carlo algorithm was run.
Figure 3 shows sample output.

Figure 3:

Get a transition matrix M(x,y) for English (the probability 
of going from letter x to letter y)

Define “plausibility”

“Try” to swap two random letters in the decoding, based 
on the ratio of plausibilities.
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