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This Week

• Form project team if you haven’t already. Try 
your best to have your team formed by next 
Tuesday, but in any case it is required to fill in 
the Google form by Tuesday Nov 3, 11:59 pm: 
http://goo.gl/forms/CzVRluCZk6 

• HW4 is due Thursday Nov 5, 11:59 pm.



The Theory That Would Not Die



Think Bayes

http://greenteapress.com/thinkbayes/



Probabilistic Programming and Bayesian Methods for Hackers

http://nbviewer.ipython.org/urls/raw.github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-
for-Hackers/master/Prologue/Prologue.ipynb

http://nbviewer.ipython.org/urls/raw.github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/master/Prologue/Prologue.ipynb


Doing Bayesian Data Analysis

https://sites.google.com/site/doingbayesiandataanalysis/



Bayesian Data Analysis



Bayes’ rule



Bayes’ rule

P (A|B) =
P (B|A)P (A)

P (B)

prior probability for A

posterior probability for A



Bayes’ rule, likelihood version

p(✓|y) = p(y|✓)p(✓)
p(y)

Treating the data y as fixed, 

p(✓|y) / L(✓)p(✓)

Bayes’ rule says the posterior density is proportional to the
likelihood function times the prior density.



Discriminative vs. Generative Classifiers

What to model and what not to model?

discriminative: just model p(y|x)

generative: give a full probability model
p(x,y)=p(x)p(y|x)=p(y)p(x|y)



Generative Models

P (Y = 1|X = x) =
f(x|Y = 1)P (Y = 1)

f(x|Y = 1)P (Y = 1) + f(x|Y = 0)P (Y = 0)

(by Bayes’ Rule)

Then can model the densities f(x|Y=1), f(x|Y=0).



Naive Bayes Spam Filter
Consider 10 words that occur frequently in spam, and let Wj be the event

that the jth word appears in the email.
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A certain email uses the 1st and 10th words but not the rest. What’s the

probability that it is spam?

P (W ) = P (W |spam)P (spam) + P (W |not spam)P (not spam)

Expand denominator with law of total probability



Naive Bayes Spam Filter
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Naive Bayes assumption: conditional independence given spam,
and also conditional independence given not spam.
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Huge assumption but huge 
simplification in statistical and 
computational complexity.



Naive Bayes

Naive conditional independence assumption:

fj(x1, . . . , xd) = fj1(x1)fj2(x2) . . . fjd(xd)

Often unrealistic, but still may be useful esp. since it leads to a 
drastic reduction in the number of parameters to estimate.

Cross-validation can help to combat overfitting, for example
by using it to choose the best size of decision tree to learn.
But it’s no panacea, since if we use it to make too many
parameter choices it can itself start to overfit [17].

Besides cross-validation, there are many methods to combat
overfitting. The most popular one is adding a regulariza-
tion term to the evaluation function. This can, for exam-
ple, penalize classifiers with more structure, thereby favoring
smaller ones with less room to overfit. Another option is to
perform a statistical significance test like chi-square before
adding new structure, to decide whether the distribution of
the class really is different with and without this structure.
These techniques are particularly useful when data is very
scarce. Nevertheless, you should be skeptical of claims that
a particular technique “solves” the overfitting problem. It’s
easy to avoid overfitting (variance) by falling into the op-
posite error of underfitting (bias). Simultaneously avoiding
both requires learning a perfect classifier, and short of know-
ing it in advance there is no single technique that will always
do best (no free lunch).

A common misconception about overfitting is that it is caused
by noise, like training examples labeled with the wrong class.
This can indeed aggravate overfitting, by making the learner
draw a capricious frontier to keep those examples on what
it thinks is the right side. But severe overfitting can occur
even in the absence of noise. For instance, suppose we learn a
Boolean classifier that is just the disjunction of the examples
labeled“true” in the training set. (In other words, the classi-
fier is a Boolean formula in disjunctive normal form, where
each term is the conjunction of the feature values of one
specific training example). This classifier gets all the train-
ing examples right and every positive test example wrong,
regardless of whether the training data is noisy or not.

The problem of multiple testing [13] is closely related to over-
fitting. Standard statistical tests assume that only one hy-
pothesis is being tested, but modern learners can easily test
millions before they are done. As a result what looks signif-
icant may in fact not be. For example, a mutual fund that
beats the market ten years in a row looks very impressive,
until you realize that, if there are 1000 funds and each has
a 50% chance of beating the market on any given year, it’s
quite likely that one will succeed all ten times just by luck.
This problem can be combatted by correcting the signifi-
cance tests to take the number of hypotheses into account,
but this can lead to underfitting. A better approach is to
control the fraction of falsely accepted non-null hypotheses,
known as the false discovery rate [3].

6. INTUITION FAILS IN HIGH
DIMENSIONS

After overfitting, the biggest problem in machine learning
is the curse of dimensionality. This expression was coined
by Bellman in 1961 to refer to the fact that many algo-
rithms that work fine in low dimensions become intractable
when the input is high-dimensional. But in machine learn-
ing it refers to much more. Generalizing correctly becomes
exponentially harder as the dimensionality (number of fea-
tures) of the examples grows, because a fixed-size training
set covers a dwindling fraction of the input space. Even with
a moderate dimension of 100 and a huge training set of a
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Figure 2: Naive Bayes can outperform a state-of-
the-art rule learner (C4.5rules) even when the true
classifier is a set of rules.

trillion examples, the latter covers only a fraction of about
10−18 of the input space. This is what makes machine learn-
ing both necessary and hard.

More seriously, the similarity-based reasoning that machine
learning algorithms depend on (explicitly or implicitly) breaks
down in high dimensions. Consider a nearest neighbor clas-
sifier with Hamming distance as the similarity measure, and
suppose the class is just x1 ∧ x2. If there are no other fea-
tures, this is an easy problem. But if there are 98 irrele-
vant features x3, . . . , x100, the noise from them completely
swamps the signal in x1 and x2, and nearest neighbor effec-
tively makes random predictions.

Even more disturbing is that nearest neighbor still has a
problem even if all 100 features are relevant! This is because
in high dimensions all examples look alike. Suppose, for
instance, that examples are laid out on a regular grid, and
consider a test example xt. If the grid is d-dimensional, xt’s
2d nearest examples are all at the same distance from it.
So as the dimensionality increases, more and more examples
become nearest neighbors of xt, until the choice of nearest
neighbor (and therefore of class) is effectively random.

This is only one instance of a more general problem with
high dimensions: our intuitions, which come from a three-
dimensional world, often do not apply in high-dimensional
ones. In high dimensions, most of the mass of a multivari-
ate Gaussian distribution is not near the mean, but in an
increasingly distant “shell” around it; and most of the vol-
ume of a high-dimensional orange is in the skin, not the pulp.
If a constant number of examples is distributed uniformly in
a high-dimensional hypercube, beyond some dimensionality
most examples are closer to a face of the hypercube than
to their nearest neighbor. And if we approximate a hyper-
sphere by inscribing it in a hypercube, in high dimensions
almost all the volume of the hypercube is outside the hyper-
sphere. This is bad news for machine learning, where shapes
of one type are often approximated by shapes of another.

Building a classifier in two or three dimensions is easy; we

Domingos, http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf


“The process of Bayesian data analysis can be idealized by 
dividing it into the following three steps:

1.Setting up a full probability model – a joint probability 
distribution for all observable and unobservable quantities 
in a problem... 

2.Conditioning on observed data: calculating and 
interpreting the appropriate posterior distribution – the 
conditional probability distribution of the unobserved 
quantities of ultimate interest, given the observed data.

3.Evaluating the fit of the model and the implications of the 
resulting posterior distribution...”

-- Gelman et al, Bayesian Data Analysis

Full Probability Modeling



Bayes-Frequency Reconciliation
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Think like a Bayesian, check like a frequentist. 



Conjugate Priors: Beta-Binomial

X|p ⇠ Bin(n, p)

p ⇠ Beta(a, b)

f(p) / pa�1(1� p)b�1

https://en.wikipedia.org/wiki/Beta_distribution



Conjugate Priors: Beta-Binomial

X|p ⇠ Bin(n, p)

p ⇠ Beta(a, b)

Posterior is then p|X = x ⇠ Beta(a+ x, b+ n� x)



Conjugate Priors: Normal-Normal

y|µ ⇠ N (µ,�2)

µ ⇠ N (µ0, ⌧
2)

Then µ|y ⇠ N
✓
(1�B)y +Bµ0,

1
1
�2 + 1

⌧2

◆

where B = �2

�2+⌧2 is the shrinkage factor



Conjugate Priors

http://www.johndcook.com/conjugate_prior_diagram.html

http://www.johndcook.com/conjugate_prior_diagram.html


Ranking Reddit Comments:
Example from Probabilistic Programming and Bayesian Methods for Hackers

http://nbviewer.ipython.org/urls/raw.github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-
Methods-for-Hackers/master/Chapter4_TheGreatestTheoremNeverTold/LawOfLargeNumbers.ipynb

http://nbviewer.ipython.org/urls/raw.github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/master/Chapter4_TheGreatestTheoremNeverTold/LawOfLargeNumbers.ipynb


Ranking Reddit Comments: A Simple Model

number of upvotes ⇠ Bin(n, p)

conjugate prior: p ⇠ Beta(a, b), pdf / pa�1
(1� p)b�1

posterior: p|data ⇠ Beta(a+#upvotes, b+#downvotes)



Ranking Reddit Comments

Why not just add “pseudocounts” and then use 
proportion? Why bother with Bayes?

For example, the Agresti-Coull method adds 2 
successes and 2 failures. 



Posterior Distributions for Reddit Comments

http://nbviewer.ipython.org/urls/raw.github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/master/
Chapter4_TheGreatestTheoremNeverTold/LawOfLargeNumbers.ipynb

http://nbviewer.ipython.org/urls/raw.github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/master/Chapter4_TheGreatestTheoremNeverTold/LawOfLargeNumbers.ipynb


Ranking Reddit Comments by Posterior Quantiles

http://nbviewer.ipython.org/urls/raw.github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/master/
Chapter4_TheGreatestTheoremNeverTold/LawOfLargeNumbers.ipynb

http://nbviewer.ipython.org/urls/raw.github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/master/Chapter4_TheGreatestTheoremNeverTold/LawOfLargeNumbers.ipynb

