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Announcements 

• Homework Collaboration Policy: 

– See Syllabus on CS109.org 

– The work you turn in must be your own 

– This is a data science course. It takes us 20 
minutes to get a similarity ranking of all 
homework submissions. 

 

 



map map map map 

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

a 1 5 b 2 7 c 2 9 8 

a 6 b 9 c 19 



Example Input File 

… 



Importance of Local Aggregation 

• Ideal scaling characteristics: 
– Twice the data, twice the running time 
– Twice the resources, half the running time 

• Why can’t we achieve this? 
– Synchronization requires communication 
– Communication kills performance 

• Thus… avoid communication! 
– Reduce intermediate data via local aggregation 
– Two possibilities: 

• Combiners 
• In-mapper combining 



combine combine combine combine 

b a 1 2 c 9 a c 5 2 b c 7 8 

partition partition partition partition 

map map map map 

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

b a 1 2 c c 3 6 a c 5 2 b c 7 8 

Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

a 1 5 b 2 7 c 2 9 8 

r1 s1 r2 s2 r3 s3 



Combiner 

• “mini-reducers” 

• Takes mapper output before shuffle and sort 

• Can significantly reduce network traffic 

• No access to other mappers 

• Not guaranteed to get all values for a key 

• Not guaranteed to run at all! 

• Key and value output must match mapper 

 Why does the key and value output have to match the 
mapper output? 



Word Count with Combiner 



Combiner Design 

• Combiners and reducers share same method 
signature 

– Sometimes, reducers can serve as combiners 

– Often, not… 

• Remember: combiners are optional optimizations 

– Should not affect algorithm correctness 

– May be run 0, 1, or multiple times 

• Example: find average of all integers associated 
with the same key 

 



Computing the Mean: Version 1 

Why can’t we use reducer as combiner? 



Computing the Mean: Version 2 

Why doesn’t this work? 



Computing the Mean: Version 3 

Fixed? What if combiner does not run? 



In-Mapper Combining 

• “Fold the functionality of the combiner into 
the mapper by preserving state across 
multiple map calls 



In-Mapper Combining 

• Advantages 

– Speed 

– Why is this faster than actual combiners? 

• Disadvantages 

– Explicit memory management required 

– Potential for order-dependent bugs 

 



Word Count with In-Mapper-Comb. 



Which is better?  

• For large dictionaries? 

– Combiner has no memory problems 

 

• For skewed word distributions (“the”)? 

– In-mapper reduces load on reducer 

 

 

 



Pairs and Stripes: 

• Term co-occurrence matrix for a text collection 

– M = N x N matrix (N = vocabulary size) 

– Mij: number of times i and j co-occur in some 
context  

– Context can be a sentence, sequence of m words, 
etc. 

– In this case co-occurrence matrix is symmetric 

 

 



MapReduce: Large Counting Problems 

• Term co-occurrence matrix for a text collection 
= specific instance of a large counting problem 

– A large event space (number of terms) 

– A large number of observations (the collection itself) 

– Goal: keep track of interesting statistics about the 
events 

• Basic approach 

– Mappers generate partial counts 

– Reducers aggregate partial counts 

 

 

 



First Try: “Pairs” 

• Each mapper takes a sentence: 

– Generate all co-occurring term pairs 

– For all pairs, emit (a, b) → count 

• Reducers sum up counts associated with these 
pairs 

• Use combiners! 

 



Pairs: Pseudo-Code 



“Pairs” Analysis 

• Advantages 

– Easy to implement, easy to understand 

• Disadvantages 

– Lots of pairs to sort and shuffle around  

– Not many opportunities for combiners to work 



Another Try: “Stripes” 

 Idea: group together pairs into an associative array 

 

 

 

 

 Each mapper takes a sentence: 

 Generate all co-occurring term pairs 

 For each term, emit a → { b: countb, c: countc, d: countd … } 

 Reducers perform element-wise sum of associative arrays 

 

 

(a, b) → 1  

(a, c) → 2  

(a, d) → 5  

(a, e) → 3  

(a, f) → 2  

a → { b: 1, c: 2, d: 5, e: 3, f: 2 } 

a → { b: 1,         d: 5, e: 3 } 

a → { b: 1, c: 2, d: 2,         f: 2 } 

a → { b: 2, c: 2, d: 7, e: 3, f: 2 } 
+ 



Stripes: Pseudo-Code 



“Stripes” Analysis 

• Advantages 
– Far less sorting and shuffling of key-value pairs 

– Keys are less unique than in pairs approach 

– Can make better use of combiners 

• Disadvantages 
– More difficult to implement 

– Underlying object more heavyweight 

– Fundamental limitation in terms of size of event 
space 



Cluster size: 38 cores 
Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3), which 
contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed) 



Map Reduce for Machine Learning  

• Random Forest? 

• SVM? 

 


