CS109 — Data Science

Joe Blitzstein, Hanspeter Pfister, Verena Kaynig-Fittkau

vkaynig@seas.harvard.edu
staff@cs109.org

mailto:vkaynig@seas.harvard.edu
mailto:vkaynig@seas.harvard.edu

Announcements

* Homework Collaboration Policy:
— See Syllabus on CS109.org
— The work you turn in must be your own

— This is a data science course. It takes us 20
minutes to get a similarity ranking of all
homework submissions.

Shuffle and Sort: aggregate values by keys

@ @EC] BEEEE

A

reduce reduce reduce

l l l

Example Input File

I am Sam o

from mrjob.job import MRJob
I am 5Sam
>am I am class mriWordCount(MRJob):

That Sam I am

That Sam T am def mapper(self,key,line):

T do not 1ike for word in line.split(’ '):
that Sam I am vield word. lower(),1

Do you like def reducer(self, word, occurrences):
green eggs and ham yield word, sum(occurrences)

I do not like them ¢ : : ‘.

Sam T am if name_ == "' main__ ':

I do not like mriordCount. run()

green eggs and ham

Importance of Local Aggregation

* |deal scaling characteristics:
— Twice the data, twice the running time
— Twice the resources, half the running time

 Why can’t we achieve this?
— Synchronization requires communication
— Communication kills performance

* Thus... avoid communication!
— Reduce intermediate data via local aggregation
— Two possibilities:
 Combiners
* In-mapper combining

k, NA

i [

< [. I

/|

map

'
H:B:

combine

'
BB

partition

map

!

¢ E

¢ B

combine

B

!

partition

map

!

2 [

¢ B

combine

!

2 B

¢ B

partition

b |

b |

N\

map

!

¢ E

combine

!

¢ E

partition

Shuffle and Sort: aggregate values by keys

1|5

|

reduce

!
A

B < IHEE
reduce reduce

!

-, B

!
A-

Combiner

* “mini-reducers”

* Takes mapper output before shuffle and sort
* Can significantly reduce network traffic

* No access to other mappers

* Not guaranteed to get all values for a key

* Not guaranteed to run at all!
* Key and value output must match mapper

Why does the key and value output have to match the
mapper output?

Word Count with Combiner

from mrjob.job import MRJob
class mrWordCount(MRIob):

def mapper(self,key,line):
for word in line.split(’):
yield word. lower(),1

def combiner(self,word,occurrences):
yvield word, sum{occurrences)

def reducer(self, word, occurrences):
yvield word, sum{occurrences)

if _ name_ == " main_ "
mriordCount.run()

Combiner Design

Combiners and reducers share same method
signature

— Sometimes, reducers can serve as combiners

— Often, not...

Remember: combiners are optional optimizations
— Should not affect algorithm correctness

— May be run 0, 1, or multiple times

Example: find average of all integers associated
with the same key

Computing the Mean: Version 1

1: class MAPPER

2: method MAP(string ¢, integer r)

3: EMIT(string £, integer r)

1: class REDUCER

2 method REDUCE(string ¢, integers [ry, o, .. .])
3 sum «— 0

4: cnt «— 0

5 for all integer r € integers [ry,72,...] do
6 SuUm «— sum —+r

7 cnt — cent + 1

8: Tavg < sum/cnt

0: EMIT(string 7, integer r,,,)

Why can’t we use reducer as combiner?

Computing the Mean: Version 2

1: class MAPPER

2: method MAP(string ¢, integer r)

3: EMIT(string 7, integer r)

1: class COMBINER

2 method COMBINE(string ¢, integers [ry, ro, .. .])

3 sum — 0

4: cnt «— 0

5 for all integer r € integers [ry,72,...] do

6 SUM «— sum +r

7 cnt — ent + 1

8: EmiT(string #, pair (swm, cnt)) > Separate sum and count
1: class REDUCER

2 method REDUCE(string ¢, pairs [(s1.¢1). (s2.¢2) .. .])
3 sum +— 0

4: cnt +— 0

5 for all pair (s,c) € pairs [(s1,¢1),(S2.¢2)...] do
6 SUuIm <« sum —+ s

7 cnt — ent + ¢

8: Favg < sum/cnt

9: EMIT(string ¢, integer rgu,)

Why doesn’t this work?

Computing the Mean: Version 3

1: class MAPPER

2: method MAp(string ¢, integer r)

3: EMIT(string ¢, pair (r. 1))

1: class COMBINER

2 method COMBINE(string ¢, pairs [(sy,¢1). (S2.¢3) . ..])
3 sum «— 0

4: cnt «— 0

5 for all pair (s,c) € pairs [(s1,¢1),(s2.¢2)...] do
6 sSum «— sum + s

7 cnt — ent + ¢

8: EMIT(string ¢, pair (sum, cnt))

1: class REDUCER

2 method REDUCE(string ¢, pairs [(s1.¢1). (s2.¢2) ...])
3 sum «— 0

4: cnt «— 0

5 for all pair (s,c) € pairs [(s1,¢1),(82.¢2)...] do
6 SUMm < sum —+ s

7 cnt — cent + ¢

8: Tavg < _»;u-j;r;-_;,-"{;n_f_

o: EMIT(string ¢, pair (raug. cnt))

Fixed? What if combiner does not run?

In-Mapper Combining

* “Fold the functionality of the combiner into
the mapper by preserving state across
multiple map calls

1: class N APPER

2: method INITIALIZE

3: S «— new ASSOCIATIVEARRAY
4: (' — new ASSOCIATIVEARRAY
5: method MAP(string ¢, integer r)

6: S{t}t — S{t} +r

T: C{th — C{tt +1

8: method CLOSE

9: for all term ¢t € S do

10- EmiT(term ¢, pair (S{t}.C{t}))

In-Mapper Combining

* Advantages

— Speed

— Why is this faster than actual combiners?
* Disadvantages

— Explicit memory management required
— Potential for order-dependent bugs

Word Count with In-Mapper-Comb.

from collections import defaultdict
from mrjob.job import MRJob

class mrlWordCount(MRJob):
def __init_ (self, *args, **kwargs):
super(mriWordCount, self). init (*args, **kwargs)
self.localWordCount = defaultdict(int)

def mapper(self,key,line):
if False:
yield
for word in line.split(’ "):
self.localWordCount[word. lower()]+=1

def mapper_final(self):
for (word, count) in self.localWordCount.iteritems():
yield word, count

def reducer(self, word, occurrences):
yield word, sum{occurrences)

if name == " main_':
mriordCount.run()

Which is better?

* For large dictionaries?

— Combiner has no memory problems

* For skewed word distributions (“the”)?

— In-mapper reduces load on reducer

Pairs and Stripes:

e Term co-occurrence matrix for a text collection
— M =N x N matrix (N = vocabulary size)

— M,;: number of times j and j co-occur in some
context

— Context can be a sentence, sequence of m words,
etc.

— In this case co-occurrence matrix is symmetric

MapReduce: Large Counting Problems

Term co-occurrence matrix for a text collection
= specific instance of a large counting problem

— A large event space (number of terms)

— A large number of observations (the collection itself)

— Goal: keep track of interesting statistics about the
events

Basic approach
— Mappers generate partial counts
— Reducers aggregate partial counts

First Try: “Pairs”

* Each mapper takes a sentence:
— Generate all co-occurring term pairs
— For all pairs, emit (a, b) > count

* Reducers sum up counts associated with these
pairs

e Use combiners!

Pairs: Pseudo-Code

class MAPPER
method MAap(docid a. doc d)
for all term w € doc d do
for all term u € NEICHBORS(w) do
EMiT(pair (w, u), count 1) > Emit count for each co-occurrence

class REDUCER
method REDUCE(pair p, counts [cy. 2, .. .])
&5 0
for all count ¢ € counts [¢y,c2....] do
s—s+c > Sum co-occurrence counts
EMIT(pair p, count s)

“Pairs” Analysis

* Advantages

— Easy to implement, easy to understand

* Disadvantages
— Lots of pairs to sort and shuffle around
— Not many opportunities for combiners to work

Another Try: “Stripes”

o ldea: group together pairs into an associative array
C)

a,d)—95 a—{b:1,c:2,d:5,e:3,f:2}
e)

o Each mapper takes a sentence:

e Generate all co-occurring term pairs
e For each term, emit a — { b: count,, c: count,, d: count ... }

o Reducers perform element-wise sum of associative arrays

(e
a—{b:1, d:5,e:3} \a s“-uc\“
+ a—{b1,c2d2 £2) red 02
NPT R ; ruc |t
a—{b:2,c:2d:7,e:3,f 2} t\\J’co“s @) cesY
. c\eVe L er P
weY: ~ yoget
TP g L)
prind

Stripes: Pseudo-Code

class MAPPER
method MAap(docid a, doc d)
for all term w € doc d do
H «— new ASSOCIATIVEA RRAY
for all term u € NEIGHBORS(w) do
H{u} — H{u}+1 > Tally words co-occurring with w
EmiT(Term w, Stripe H)
class REDUCER
method REDUCE(term w, stripes [Hy, Hy, Hj,...])
H¢ «— new ASSOCIATIVEARRAY
for all stripe H < stripes [H,,H», Hs,...] do
SUM(H ;. H) > Element-wise sum
EmIT(term w, stripe Hy)

“Stripes” Analysis

* Advantages
— Far less sorting and shuffling of key-value pairs
— Keys are less unique than in pairs approach
— Can make better use of combiners

* Disadvantages
— More difficult to implement
— Underlying object more heavyweight

— Fundamental limitation in terms of size of event
space

running time {seconds)

Comparison of "pairs" vs. "stripes" for computing word co-occurrence matrices
4000

[
"stnpes" approach]
"pairs" approach ®
3500

3000
2500
2000
1500
1000

500

0 | | | |
0 20 40 60 80 100

percentage of the APW corpus

Map Reduce for Machine Learning

e Random Forest?
e SVM?

