
CS109 – Data Science

Joe Blitzstein, Hanspeter Pfister, Verena Kaynig-Fittkau

vkaynig@seas.harvard.edu
staff@cs109.org

mailto:vkaynig@seas.harvard.edu
mailto:vkaynig@seas.harvard.edu

Announcements

• Homework Collaboration Policy:

– See Syllabus on CS109.org

– The work you turn in must be your own

– This is a data science course. It takes us 20
minutes to get a similarity ranking of all
homework submissions.

map map map map

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

a 6 b 9 c 19

Example Input File

…

Importance of Local Aggregation

• Ideal scaling characteristics:
– Twice the data, twice the running time
– Twice the resources, half the running time

• Why can’t we achieve this?
– Synchronization requires communication
– Communication kills performance

• Thus… avoid communication!
– Reduce intermediate data via local aggregation
– Two possibilities:

• Combiners
• In-mapper combining

combine combine combine combine

b a 1 2 c 9 a c 5 2 b c 7 8

partition partition partition partition

map map map map

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

Combiner

• “mini-reducers”

• Takes mapper output before shuffle and sort

• Can significantly reduce network traffic

• No access to other mappers

• Not guaranteed to get all values for a key

• Not guaranteed to run at all!

• Key and value output must match mapper

 Why does the key and value output have to match the
mapper output?

Word Count with Combiner

Combiner Design

• Combiners and reducers share same method
signature

– Sometimes, reducers can serve as combiners

– Often, not…

• Remember: combiners are optional optimizations

– Should not affect algorithm correctness

– May be run 0, 1, or multiple times

• Example: find average of all integers associated
with the same key

Computing the Mean: Version 1

Why can’t we use reducer as combiner?

Computing the Mean: Version 2

Why doesn’t this work?

Computing the Mean: Version 3

Fixed? What if combiner does not run?

In-Mapper Combining

• “Fold the functionality of the combiner into
the mapper by preserving state across
multiple map calls

In-Mapper Combining

• Advantages

– Speed

– Why is this faster than actual combiners?

• Disadvantages

– Explicit memory management required

– Potential for order-dependent bugs

Word Count with In-Mapper-Comb.

Which is better?

• For large dictionaries?

– Combiner has no memory problems

• For skewed word distributions (“the”)?

– In-mapper reduces load on reducer

Pairs and Stripes:

• Term co-occurrence matrix for a text collection

– M = N x N matrix (N = vocabulary size)

– Mij: number of times i and j co-occur in some
context

– Context can be a sentence, sequence of m words,
etc.

– In this case co-occurrence matrix is symmetric

MapReduce: Large Counting Problems

• Term co-occurrence matrix for a text collection
= specific instance of a large counting problem

– A large event space (number of terms)

– A large number of observations (the collection itself)

– Goal: keep track of interesting statistics about the
events

• Basic approach

– Mappers generate partial counts

– Reducers aggregate partial counts

First Try: “Pairs”

• Each mapper takes a sentence:

– Generate all co-occurring term pairs

– For all pairs, emit (a, b) → count

• Reducers sum up counts associated with these
pairs

• Use combiners!

Pairs: Pseudo-Code

“Pairs” Analysis

• Advantages

– Easy to implement, easy to understand

• Disadvantages

– Lots of pairs to sort and shuffle around

– Not many opportunities for combiners to work

Another Try: “Stripes”

 Idea: group together pairs into an associative array

 Each mapper takes a sentence:

 Generate all co-occurring term pairs

 For each term, emit a → { b: countb, c: countc, d: countd … }

 Reducers perform element-wise sum of associative arrays

(a, b) → 1

(a, c) → 2

(a, d) → 5

(a, e) → 3

(a, f) → 2

a → { b: 1, c: 2, d: 5, e: 3, f: 2 }

a → { b: 1, d: 5, e: 3 }

a → { b: 1, c: 2, d: 2, f: 2 }

a → { b: 2, c: 2, d: 7, e: 3, f: 2 }
+

Stripes: Pseudo-Code

“Stripes” Analysis

• Advantages
– Far less sorting and shuffling of key-value pairs

– Keys are less unique than in pairs approach

– Can make better use of combiners

• Disadvantages
– More difficult to implement

– Underlying object more heavyweight

– Fundamental limitation in terms of size of event
space

Cluster size: 38 cores
Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3), which
contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

Map Reduce for Machine Learning

• Random Forest?

• SVM?

