CS109 – Data Science

Joe Blitzstein, Hanspeter Pfister, Verena Kaynig-Fittkau

vkaynig@seas.harvard.edu staff@cs109.org

Announcements

- Grades for HW2 are getting out tonight
- Final Projects:

- 3-4 persons per team

(10/12-10/18)	JB	Similarities, recommendations - VK	telecom churn dataset		
Week 8 (10/19-10/25)	Amazon EC2, AWS Datastore, MapReduce - VK	Spark RD	Ensemble Methods	HW4	HW3
	Act 3: Bayes, Clustering & Text Analysis				
Week 9 (10/26-11/1)	Bayesian thinking and methods. Prior distributions, likelihood. Naive Bayes JB	Advanced Bayesian Thinking JB	EC2 and Spark		
Week 10 (11/2-11/8)	Text Analysis. LDA. Topic Modeling JB	Interactive Visualizations. Vega HP	Bayesian Thinking	HW5	HW4
Week 11 (11/9-11/15)	Clustering. k-means. Mean Shift. Hierarchical Clustering VK	Effective Presentations HP / JB	Text Analysis: From Naive Bayes to LDA		PROJECT PROPOSALS DUE
Week 12 (11/16-11/22)	Experimental Design. A/B testing.Tirthankar Dasgupta	Deep Learning VK	Wrapup: Completely worked example: Chicago Inspections Dataset		HW5, PROJECT REVIEW WEEK
Week 13	No class		No class		

Next Topics

- ML best practices
 - imbalanced data
 - missing values
- Recommender systems

 collaborative filtering
 - content-based filtering
- Map Reduce

Cross Validation

- Training data: train classifier
- Validation data: estimate hyper parameters
- Test data: estimate performance
- Be mindful of validation and test set, validation set might refer to test set in some papers.

5 – Fold Cross Validation

5 – Fold Cross Validation

Last Step of Each Fold

1. Take best parameters

- 2. Train on training data and validation data together
- 3. Test performance on test data

This is the **final** result of your method.

Things to Keep in Mind

• How do you aggregate the parameters?

• What if the hyperparameters are all over the place?

• What if the hyperparameters are at the border of your grid search window?

Scenario - 1

- 1. Screen the predictors: find a subset of "good" predictors that show fairly strong (univariate) correlation with the class labels
- 2. Using just this subset of predictors, build a multivariate classifier.
- 3. Use cross-validation to estimate the unknown tuning parameters and to estimate the prediction error of the final model.

Scenario - 2

- 1. Divide the samples into K cross-validation folds (groups) at random.
- 2. For each fold k = 1, 2, . . . ,K
 - Find a subset of "good" predictors that show fairly strong (uni-variate) correlation with the class labels, using all of the samples except those in fold k.
 - Using just this subset of predictors, build a multivariate classifier, using all of the samples except those in fold k.
 - Use the classifier to predict the class labels for the samples in fold k.

Hastie-Tibsherani_Friedman, "The Elements of Statistical Learning"

Effect of Sample Size

Hastie et al.,"The Elements of Statistical Learning: Data Mining, Inference, and Prediction"

Cross Validation Over Estimates Error

Hastie et al.,"The Elements of Statistical Learning: Data Mining, Inference, and Prediction"

Normalization

- Be very careful.
- Do not leak into the test data.
- Think about what is useful.

Example PCA on MNIST

standard PCA

Example PCA on MNIST

PCA with normalized std dev

Normalization - 1

Know Your Data

Imbalanced Data

- subsample
- oversample
- re-weight sample points
- use clustering to reduce majority class
- re-calibrate classifier output
- Beware the easy true negatives

Imbalanced Classes

• The Problem:

- Oversample:

• Subsample:

• Subsample for each tree in a random forest

Example: Random Forest Subsampling

http://scikit-

learn.org/stable/_images/plot_separating_hyperplane_unbalanced_0011.png

Cross Validation with Imbalanced Classes

- Think about using stratified sampling to generate the folds
- The goal is to have the same class ratio in training, validation and test set.

Missing data

• Delete data points

- Can cause sample size to be way too small

- Use the mean of the feature
 - Does not change the sample mean, but is independent of the other features.
- Use regression to estimate the value
 Values will be deterministic

Recommender Systems

• We are already surrounded by them

Good Resources (also for this lecture)

Survey on recommender systems by Michael D. Ekstrand et al.

<u>http://files.grouplens.org/papers/FnT%20CF%</u>
 <u>20Recsys%20Survey.pdf</u>

Good slides from Stanford lecture by Lester Mackey

 <u>http://web.stanford.edu/~Imackey/papers/cf</u> <u>slides-pml09.pdf</u>

Rating Matrix Completion Problem

https://en.wikipedia.org/wiki/Collaborative_filtering

Collaborative Filtering

Insight: Personal preferences are correlated

• If Jack loves A and B, and Jill loves A, B, and C, then Jack is more likely to love C

• Does not rely on item or user attributes (e.g. demographic info, author, genre)

Content-based Filtering

- Each item is described by a set of features
- Measure similarity between items
- Recommend items that are similar to the items the User liked

Comparison

- Collaborative filtering:
 - Items entirely described by user ratings
 - Good for new discoveries
 - People who like SciFi maybe also like Fantasy
- Content-based filtering:
 - Predictions are in users comfort zone
 - Can start with a single item
- Can do a hybrid approach

User Based Collaborative Filtering

Intuition:

- I like what people similar to me like
- Users give ratings
- People with similar ratings in the past assumed to have similar ratings in the future

Item-based Collaborative Filtering

- Similar to user-based, but looks at the items instead of the users
- Useful if the user base is way larger than the number of items.
- More useful: Items are relatively stable in their rating, users vary more.

We Could Use Missing Data Strategies

All that we talked about earlier:

- Omitting samples
- Using the mean rating of an item
- Doing regression

CF as Regression

- Choose favorite regression algorithm
- Train a predictor for each item
- Each user who rated that item provides one sample
- To predict rating of an item A, apply predictor for A to the user's incomplete ratings vector.

Recommendation by Regression

• Pros:

- Reduces recommendations to a well-studied problem
- Many good prediction algorithms available

• Cons:

- Have to handle tons of missing data
- Training M predictors is expensive

KNN

https://en.wikipedia.org/wiki/Collaborative_filtering
KNN for Collaborative Filtering

- Widely used
- Item-based and User-based focus
- Represent each user as incomplete vector of item ratings
- Compute similarity between query user and all other users
- Find K most similar users who rated the query item
- Predict weighted average of ratings

Similarity Measures

- Pearson Correlation Coefficient
 - bound between 1 and -1
 - suffers from computing high similarity between users with few ratings in common
 - set threshold for minimum number of co-rated itemssuffers from computing high similarity between users with few ratings in common

$$s(u,v) = \frac{\sum_{i \in I_u \cap I_v} (r_{u,i} - \bar{r}_u) (r_{v,i} - \bar{r}_v)}{\sqrt{\sum_{i \in I_u \cap I_v} (r_{u,i} - \bar{r}_u)^2}} \sqrt{\sum_{i \in I_u \cap I_v} (r_{v,i} - \bar{r}_v)^2}$$

Similarity Measures

- Cosine similarity
 - vector-space approach based on linear algebra
 - Unknown ratings are considered to be 0
 - this causes them to effectively drop out of the numerator

Netflix Prize

- Remember when we saw the Netflix prize video they mentioned SVD
- SimonFunk did this publicly on his blog with the title "Try this at home"
- http://sifter.org/~simon/journal/20061027.2.
 html

Singular Value Decomposition

- If we know the SVD, we could compute the missing values in R.
- Try to infer SVD from matrix with missing data, and reconstruct full matrix R

Best SVD Explanation I have seen!

• Leskovec, Rajaraman, Ullman

<u>https://www.youtube.com/watch?v=YKmkAol</u>
 <u>UxkU</u>

https://www.youtube.com/watch?v=YKmkAoIUxkU

https://www.youtube.com/watch?v=YKmkAoIUxkU

SVD for Recommender Systems

- Not only good for estimating missing data
- We might actually care about the topics more

What is Map Reduce

- programming model
- addressing large data sets
- parallel and distributed algorithms
- cluster framework

• It also is a way of thinking!

Map Reduce Background

- Originally developed by Google
- Apache Hadoop is open source implementation in Java
- MrJob is a Python interface to Hadoop

The Map and the Reduce

• Map:

performs filtering and sorting

- Reduce:
 - summary operation

The Famous Word Count Example

from mrjob.job import MRJob

class mrWordCount(MRJob):

```
def mapper(self,key,line):
    for word in line.split(' '):
        yield word.lower(),1
```

```
def reducer(self, word, occurrences):
    yield word, sum(occurrences)
```

```
if __name__ == '__main__':
    mrWordCount.run()
```

Green Eggs and Ham

- Result of a bet:
- Can Dr. Seuss write a book using only 50 words?
- Bennett Cerf (Dr. Seuss's publisher) lost.
- It is the fourth best selling English-language children's hardcover book of all time.

Example Input File

I am Sam

I am Sam Sam I am

That Sam I am That Sam I am I do not like that Sam I am

Do you like green eggs and ham

I do not like them Sam I am I do not like green eggs and ham from mrjob.job import MRJob

class mrWordCount(MRJob):

```
def mapper(self,key,line):
    for word in line.split(' '):
        yield word.lower(),1
```

def reducer(self, word, occurrences):
 yield word, sum(occurrences)

```
if __name__ == '__main__':
    mrWordCount.run()
```

Launching the Job

Output File

8

Culturomics

Google books Ngram Viewer

Run your own experiment! Raw data is available for download here.

Anagram Finder

- Anagram: Words or phrases consisting of the same letters
- Examples:
 - Dormitory Dirty room
 - Astronomer Moon starer
 - Election results Lies let's recount
- Verifying anagrams with map reduce
- Input: file with one word per line

from mrjob.job import MRJob

class MRAnagram(MRJob):

```
def mapper(self, _, line):
   # Convert word into a list of characters, sort them, and convert
   # back to a string.
    letters = list(line)
    letters.sort()
   # Key is the sorted word, value is the regular word.
    yield letters, line
def reducer(self, , words):
   # Get the list of words containing these letters.
    anagrams = [w for w in words]
   # Only yield results if there are at least two words which are
   # anagrams of each other.
    if len(anagrams) > 1:
```

```
yield len(anagrams), anagrams
```

```
if __name__ == "__main__":
    MRAnagram.run()
```


Importance of Local Aggregation

- Ideal scaling characteristics:
 - Twice the data, twice the running time
 - Twice the resources, half the running time
- Why can't we achieve this?
 - Synchronization requires communication
 - Communication kills performance
- Thus... avoid communication!
 - Reduce intermediate data via local aggregation
 - Two possibilities:
 - Combiners
 - In-mapper combining

Combiner

- "mini-reducers"
- Takes mapper output before shuffle and sort
- Can significantly reduce network traffic
- No access to other mappers
- Not guaranteed to get all values for a key
- Not guaranteed to run at all!
- Key and value output must match mapper

Why does the key and value output have to match the mapper output?

Word Count with Combiner

```
from mrjob.job import MRJob
```

```
class mrWordCount(MRJob):
```

```
def mapper(self,key,line):
    for word in line.split(' '):
        yield word.lower(),1
```

```
def combiner(self,word,occurrences):
    yield word, sum(occurrences)
```

```
def reducer(self, word, occurrences):
    yield word, sum(occurrences)
```

```
if __name__ == '__main__':
    mrWordCount.run()
```

Combiner Design

- Combiners and reducers share same method signature
 - Sometimes, reducers can serve as combiners
 - Often, not...
- Remember: combiners are optional optimizations
 - Should not affect algorithm correctness
 - May be run 0, 1, or multiple times
- Example: find average of all integers associated with the same key

Computing the Mean: Version 1

1: class MAPPER method MAP(string t, integer r) 2: EMIT(string t, integer r) 3: 1: class Reducer. method REDUCE(string t, integers $[r_1, r_2, \ldots]$) 2: $sum \leftarrow 0$ 3: $cnt \leftarrow 0$ 4: for all integer $r \in$ integers $[r_1, r_2, \ldots]$ do 5: $sum \leftarrow sum + r$ 6: $cnt \leftarrow cnt + 1$ 7: $r_{avg} \leftarrow sum/cnt$ 8: EMIT(string t, integer r_{ava}) 9:

Why can't we use reducer as combiner?

Computing the Mean: Version 2

1: class Mapper

- 2: method MAP(string t, integer r)
- 3: EMIT(string t, integer r)

```
1: class Combiner
```

```
2: method COMBINE(string t, integers [r_1, r_2, \ldots])
```

```
3: sum \leftarrow 0
```

```
4: cnt \leftarrow 0
```

```
5: for all integer r \in integers [r_1, r_2, \ldots] do
```

```
6: \qquad \qquad sum \leftarrow sum + r
```

```
cnt \leftarrow cnt + 1
```

```
8: EMIT(string t, pair (sum, cnt))
```

 \triangleright Separate sum and count

1: class Reducer

7:

```
method REDUCE(string t, pairs [(s_1, c_1), (s_2, c_2) \dots])
2:
             sum \leftarrow 0
3:
            cnt \leftarrow 0
4:
            for all pair (s, c) \in \text{pairs } [(s_1, c_1), (s_2, c_2) \dots] do
5:
                  sum \leftarrow sum + s
6:
                 cnt \leftarrow cnt + c
7:
             r_{avg} \leftarrow sum/cnt
8:
             EMIT(string t, integer r_{avg})
9:
```

Why doesn't this work?

Computing the Mean: Version 3

1: class Mapper

- 2: method MAP(string t, integer r)
- 3: EMIT(string t, pair (r, 1))

```
1: class Combiner
```

```
2: method COMBINE(string t, pairs [(s_1, c_1), (s_2, c_2) \dots])
```

```
3: sum \leftarrow 0
```

```
4: cnt \leftarrow 0
```

```
5: for all pair (s, c) \in \text{pairs } [(s_1, c_1), (s_2, c_2) \dots] do
```

```
6: \qquad sum \leftarrow sum + s
```

```
7: cnt \leftarrow cnt + c
```

```
8: \operatorname{EMIT}(\operatorname{string} t, \operatorname{pair} (sum, cnt))
```

1: class Reducer

```
method REDUCE(string t, pairs [(s_1, c_1), (s_2, c_2) \dots])
2:
             sum \leftarrow 0
3:
            cnt \leftarrow 0
4:
            for all pair (s, c) \in \text{pairs } [(s_1, c_1), (s_2, c_2) \dots] do
5:
                  sum \leftarrow sum + s
6:
                 cnt \leftarrow cnt + c
7:
             r_{avg} \leftarrow sum/cnt
8:
             EMIT(string t, pair (r_{avg}, cnt))
9:
```

Fixed? What if combiner does not run?

In-Mapper Combining

- "Fold the functionality of the combiner into the mapper by preserving state across multiple map calls
 - 1: class Mapper
 - 2: method Initialize
 - 3: $S \leftarrow \text{new AssociativeArray}$
 - 4: $C \leftarrow \text{new AssociativeArray}$
 - 5: method MAP(string t, integer r)

$$6: \qquad S\{t\} \leftarrow S\{t\} + r$$

- 7: $C\{t\} \leftarrow C\{t\} + 1$
- 8: method Close
- 9: for all term $t \in S$ do
- 10: EMIT(term t, pair $(S\{t\}, C\{t\})$)

In-Mapper Combining

- Advantages
 - Speed
 - Why is this faster than actual combiners?
- Disadvantages
 - Explicit memory management required
 - Potential for order-dependent bugs

Word Count with In-Mapper-Comb.

from collections import defaultdict
from mrjob.job import MRJob

```
class mrWordCount(MRJob):
   def __init__(self, *args, **kwargs):
        super(mrWordCount, self).__init__(*args, **kwargs)
        self.localWordCount = defaultdict(int)
   def mapper(self,key,line):
        if False:
            vield
        for word in line.split(' '):
            self.localWordCount[word.lower()]+=1
   def mapper_final(self):
        for (word, count) in self.localWordCount.iteritems():
            yield word, count
   def reducer(self, word, occurrences):
       yield word, sum(occurrences)
if name == ' main ':
   mrWordCount.run()
```

Which is better?

• For large dictionaries?

Combiner has no memory problems

For skewed word distributions ("the")?
 In-mapper reduces load on reducer

Word of Caution

from mrjob.job import MRJob
import sys

```
class SimpleTest(MRJob):
```

```
def __init__(self, *args, **kwargs):
    super(SimpleTest, self).__init__(*args, **kwargs)
    self.test = 1
```

```
def mapper(self,key,value):
    self.test = 2
    yield 1, self.test
```

```
def mapper_final(self):
    yield 1, self.test
```



```
def reducer(self, key, value):
    sys.stderr.write(str(self.test))
    yield 1, value
```

```
if __name__ == '__main__':
    SimpleTest.run()
```
Pairs and Stripes:

• Term co-occurrence matrix for a text collection

 $-M = N \times N$ matrix (N = vocabulary size)

- M_{ij}: number of times *i* and *j* co-occur in some context
- Context can be a sentence, sequence of m words, etc.
- In this case co-occurrence matrix is symmetric

MapReduce: Large Counting Problems

- Term co-occurrence matrix for a text collection
 = specific instance of a large counting problem
 - A large event space (number of terms)
 - A large number of observations (the collection itself)
 - Goal: keep track of interesting statistics about the events
- Basic approach
 - Mappers generate partial counts
 - Reducers aggregate partial counts

First Try: "Pairs"

- Each mapper takes a sentence:
 - Generate all co-occurring term pairs
 - For all pairs, emit (a, b) \rightarrow count
- Reducers sum up counts associated with these pairs
- Use combiners!

Pairs: Pseudo-Code

1:	class Mapper
2:	method MAP(docid a , doc d)
3:	for all term $w \in \operatorname{doc} d$ do
4:	for all term $u \in \text{NEIGHBORS}(w)$ do
5:	EMIT(pair (w, u) , count 1) \triangleright Emit count for each co-occurrence
1:	class Reducer
2:	method REDUCE(pair p , counts $[c_1, c_2, \ldots]$)
3:	$s \leftarrow 0$
4:	for all count $c \in \text{counts} [c_1, c_2, \ldots]$ do
5:	$s \leftarrow s + c$ \triangleright Sum co-occurrence counts
6:	EMIT(pair p , count s)

"Pairs" Analysis

Advantages

- Easy to implement, easy to understand

- Disadvantages
 - Lots of pairs to sort and shuffle around
 - Not many opportunities for combiners to work

Another Try: "Stripes"

- Idea: group together pairs into an associative array
 - $\begin{array}{ll} (a, b) \to 1 \\ (a, c) \to 2 \\ (a, d) \to 5 \\ (a, e) \to 3 \\ (a, f) \to 2 \end{array} \qquad \qquad a \to \{ \, b: \, 1, \, c: \, 2, \, d: \, 5, \, e: \, 3, \, f: \, 2 \, \} \end{array}$

• Each mapper takes a sentence:

- Generate all co-occurring term pairs
- For each term, emit $a \rightarrow \{ b: count_b, c: count_c, d: count_d \dots \}$

• Reducers perform element-wise sum of associative arrays

$$\begin{array}{rl} a \rightarrow \{ b; 1, & d; 5, e; 3 \} \\ \hline \textbf{a} \rightarrow \{ b; 1, c; 2, d; 2, & f; 2 \} \\ a \rightarrow \{ b; 2, c; 2, d; 7, e; 3, f; 2 \} \\ \hline \textbf{Key:} \begin{array}{c} cleverly-constructed \ data \ structure} \\ \hline \textbf{Key:} \begin{array}{c} cleverly-constructed \ brings \ together \ partial \ results} \end{array}$$

. . re

Stripes: Pseudo-Code

1: C	lass Mapper	
2:	method MAP(docid $a, doc d$)	
3:	for all term $w \in \operatorname{doc} d$ do	
4:	$H \leftarrow \text{new AssociativeArray}$	
5:	for all term $u \in \text{NEIGHBORS}(w)$ do	
6:	$H\{u\} \leftarrow H\{u\} + 1$	\triangleright Tally words co-occurring with w
7:	EMIT(Term w , Stripe H)	
1: C	lass Reducer	
2:	method REDUCE(term w , stripes $[H_1, H_2,$	$H_3,\ldots])$
3:	$H_f \leftarrow \text{new AssociativeArray}$	
4:	for all stripe $H \in \text{stripes } [H_1, H_2, H_3,$.] do
5:	$\operatorname{SUM}(H_f, H)$	\triangleright Element-wise sum
6:	EMIT(term w , stripe H_f)	

"Stripes" Analysis

- Advantages
 - Far less sorting and shuffling of key-value pairs
 - Keys are less unique than in pairs approach
 - Can make better use of combiners
- Disadvantages
 - More difficult to implement
 - Underlying object more heavyweight
 - Fundamental limitation in terms of size of event space

Comparison of "pairs" vs. "stripes" for computing word co-occurrence matrices

Cluster size: 38 cores

Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3), which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

Map Reduce for Machine Learning

- Random Forest?
- SVM?