# CS109 – Data Science SVM, Performance evaluation

Joe Blitzstein, Hanspeter Pfister, Verena Kaynig-Fittkau



http://i.stack.imgur.com/1gvce.png

#### Announcements

- HW1 grades went out yesterday
- They are looking really good, well done everyone!
- HW2 is due this Thursday!
- You should submit an executed notebook
- But please without pages of test output

## **Recap K-NN**

- Keeps all training data
- Training is fast
- Prediction is slow



- x: data point
- **y: label**  $\in \{-1, +1\}$
- w: weight vector



$$w^T x = 0$$



- x: data point
- **y: label**  $\in \{-1, +1\}$
- w: weight vector
- b: bias



 $w^T x + b = 0$ 

- x: data point
- **y: label**  $\in \{-1, +1\}$
- w: weight vector
- b: bias



#### Perceptron



#### Perceptron



## **Perceptron History**

- invented 1957
- by Frank Rosenblatt

 the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence. (NYT 1958)

(http://en.wikipedia.org/wiki/Perceptron



#### Perceptron.mp4

https://www.youtube.com/watch?v=cNxadbrN\_aI&list=PLdVOMWcqwwllaygvb9ZteZ1r4Br6kR uBO

#### Side Note: Step vs Sigmoid Activation



 $s(x) = \frac{1}{1 + e^{-cx}}$ 

# The Critics

 1969: Minsky and Papert publish their book "Perceptrons"

 Very controversial book, some blame the book for causing the whole research area to stagnate.

https://en.wikipedia.org/wiki/Perceptrons\_(book)

#### The XOR Problem



#### The XOR Problem



## **Support Vector Machine**

 Widely used for all sorts of classification problems

 Some people say it is the best of the shelf classifier out there

## **Maximum Margin Classification**



Solution depends only on the support vectors!

#### **Maximum Margin Classification**



#### **Maximum Margin Classification**

$$\gamma^{(i)} = y^{(i)}(w^T x + b)$$

$$\begin{array}{ll} \max_{\gamma,w,b} & \gamma \\ \text{s.t.} & y^{(i)}(w^T x^{(i)} + b) \geq \gamma, \quad i = 1, \dots, m \\ ||w|| = 1. & & \text{non-convex} \end{array}$$

# This Is Kind of Odd



- Which data points do we care the most about?
- What would those samples look like?

## **Two Very Similar Problems**



## What about outliers?

$$\xi_i$$
: slack variables

 $\min_{w,b,\xi} \frac{1}{2} ||w||^2$ 

subject to:

$$y^{(i)}(w^T x^{(i)} + b) \ge 1$$

$$(i=1,\ldots,n)$$



x1

## **Two Very Similar Problems**



# Hard Margin (C = Infinity)



http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

#### Soft Margin (C = 10)



http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

#### XOR problem revised



Did we add information to make the problem seperable?

## Non-Linear Decision Boundary



#### **Input Space**

#### Feature Space

# SVM with a polynomial Kernel visualization

Created by: Udi Aharoni

#### **Quadratic Kernel**

$$x = (x_1, x_2)$$
  

$$\Phi(x) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$
  

$$\Phi(x) \cdot \Phi(z) = 1 + 2\sum_{i=1}^d x_i z_i$$
  

$$+ \sum_{i=1}^d x_i^2 z_i^2 + 2\sum_{i=1}^d \sum_{j=i+1}^d x_i x_j z_i z_j$$
  

$$= (1 + x \cdot z)^2$$

#### **Kernel Functions**

$$K(x,z) = \Phi(x) \cdot \Phi(z)$$

Polynomial:

$$K(x,z) = (1+x \cdot z)^s$$

• Radial basis function (RBF):

$$K(x,z) = \exp(-\gamma(x-z)^2)$$

#### So what is the excitement?





## Prediction



- Again we can use the kernel trick!
- Prediction speed depends on number of support vectors

## The Miracle Explained

• Andrew Ng does this really well

- <u>http://cs229.stanford.edu/notes/cs229-</u> <u>notes3.pdf</u>
- Course is also on Youtube, ItunesU, etc.

# Kernel Trick for SVMs

- Arbitrary many dimensions
- Little computational cost
- Maximal margin helps with curse of dimensionality

#### **Face Recognition**

pred: Colin Powell true: Colin Powell



pred: George W Bush true: George W Bush



pred: Tony Blair true: Tony Blair



pred: George W Bush true: George W Bush



pred: Colin Powell true: Colin Powell



pred: Colin Powell true: Colin Powell



pred: Colin Powell true: Colin Powell



pred: George W Bush true: George W Bush



true: George W Bush true: Donald Rumsfeld



pred: Tony Blair true: Tony Blair



pred: George W Bush true: George W Bush



pred: George W Bush pred: Donald Rumsfelc



## Face Recognition

- Load image data
- Put your test data aside
- Extract Eigenfaces
- Train SVM
- Evaluate performance

#### • Red are cross validation steps

http://scikit-learn.org/stable/auto\_examples/applications/face\_recognition.html#exampleapplications-face-recognition-py



# SVM\_sign\_language.mp4

Jhon Gonzalez

https://www.youtube.com/watch?v=cxHMgl2\_5zg

gamma=10^-1, C=10^-2 gamma=10^0, C=10^-2 gamma=10^1, C=10^-2















gamma=10^-1, C=10^2 gamma=10^0, C=10^2 gamma=10^1, C=10^2











http://scikit-learn.org/stable/auto\_examples/svm/plot\_rbf\_parameters.html

# **Tips and Tricks**

- SVMs are not scale invariant
- Check if your library normalizes by default
- Normalize your data
  - mean: 0 , std: 1
  - map to [0,1] or [-1,1]
- Normalize test set in same way!

# **Tips and Tricks**

- RBF kernel is a good default
- For parameters try exponential sequences
- Read:

Chih-Wei Hsu et al., "A Practical Guide to Support Vector Classification", Bioinformatics (2010)

## SVM vs KNN

• What are the main key differences?

## Parameter Tuning

• Given a classification task

- Which kernel ?
- Which kernel parameter values?
- Which value for C?



Try different combinations and take the **best**.



#### Where is KNN on this graph for K=1, or for K=Inf?

## **Grid Search**



Zang et al., "Identification of heparin samples that contain impurities or contaminants by chemometric pattern recognition analysis of proton NMR spectral data", Anal Bioanal Chem (2011)

## **Error Measures**

- True positive (tp)
- True negative (tn)
- False positive (fp)
- False negative (fn)



## **TPR** and **FPR**

• True Positive Rate:

$$\frac{tp}{tp+fn}$$

• False Positive Rate:





fp

tn

-1

## **Reciever Operating Characteristic**





https://inclass.kaggle.com/c/ca-2015/details/evaluation

#### **Precision Recall**





• Recall:  $\frac{tp}{tp + fn}$ 

• Precision:  $\frac{tp}{tp+fp}$ 

## **Precision Recall**

• **Recall**: If I pick a random positive example, what is the probability of making the right prediction?

• **Precision**: If I take a positive prediction example, what is the probability that it is indeed a positive example?

#### **Precision Recall Curve**



#### Comparison



J. Davis & M. Goadrich,

"The Relationship Between Precision-Recall and ROC Curves.", *ICML (2006)* 

#### **F**-measure

• Weighted average of precision and recall

$$F_{\beta} = \frac{(\beta^2 + 1) \cdot P \cdot R}{\beta^2 \cdot P + R}$$

- Usual case:  $\beta = 1$
- Increasing  $\beta$  allocates weight to recall



## One vs All

- Train n classifier for n classes
- Take classification with greatest margin
- Slow training

## Multi Class



## One vs One

- Train n(n-1)/2 classifiers
- Take majority vote
- Fast training

## **Confusion Matrix**



http://scikit-learn.org/stable/auto\_examples/model\_selection/plot\_confusion\_matrix.html

## Recap

- Perceptrons are great
- But really just a separating hyperplane
- So is SVM
- Kernels are neat
- Evaluation metrics are important