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This Week
• HW1 due tonight at11:59 pm (Eastern Time)

• HW2 posted soon







– Census Bureau, http://www.census.gov/prod/2013pubs/p20-570.pdf

“It is important to note that the CPS counts students 
living in dormitories as living in their parents’ home.”

Census Data from the Current Population Survey (CPS)

http://www.census.gov/prod/2013pubs/p20-570.pdf


Some Forms of Bias

• selection bias
• publication bias (file drawer problem)
• non-response bias
• length bias



1936 Presidential Election, Landon vs. FDR



1936 Presidential Election, Landon vs. FDR

Literary Digest predicted Landon 
would win with 370 electoral votes, 
based on sample size of 2.4 million.

source: https://en.wikipedia.org/wiki/United_States_presidential_election,_1936



1936 Presidential Election, Landon vs. FDR

Literary Digest got responses from 2.3 
million out of 10 million people surveyed.

To collect their sample, they used 3 readily available lists:  
• readers of their magazine 
• car registration list 
• phone directory



Wald and the Bullet Holes



What about the unobserved planes? Missing data!

???



What about the unobserved planes? Missing data!



Longevity Study from Lombard (1835)

Profession Average Longevity

chocolate maker 73.6

professors 66.6

clocksmiths 55.3

locksmiths 47.2

students 20.2

Sources: Lombard (1835),  Wainer (1999), Stigler (2002)



Class Size Paradox

Why do so many schools boast small 
average class size but then so many students 

end up in huge classes?

Simple example: each student takes one course; 
suppose there is one course with 100 students, 

fifty courses with 2 students.

Dean calculates: (100+50*2)/51 = 3.92

Students calculate: (100*100+100*2)/200 = 51



“About 10 percent of the 1.6 million inmates in 
America’s prisons are serving life sentences; 

another 11 percent are serving over 20 years.”

source: http://www.nytimes.com/2012/02/26/health/dealing-with-dementia-among-aging-criminals.html?
pagewanted=all

http://www.nytimes.com/2012/02/26/health/dealing-with-dementia-among-aging-criminals.html?pagewanted=all


Length-Biasing Paradox

How would you measure the average prison sentence?



Bias of an Estimator

The bias of an estimator is 
how far off it is on average: bias(✓̂) = E(✓̂)� ✓

So why not just subtract off the bias?



Bias-Variance Tradeoff
MSE(✓̂) = Var(✓̂) + bias2(✓̂)one form:

http://scott.fortmann-roe.com/docs/BiasVariance.html

often a little bit of bias can make it 
possible to have much lower MSE



Unbiased Estimation: Poisson Example

X ⇠ Pois(�)

(�1)

X
is the best (and only) unbiased estimator of e�2�

sensible?

Goal: estimate e�2�



Fisher Weighting

How should we combine independent, unbiased 
estimators for a parameter into one estimator?

✓̂ =
kX

i=1

wi✓̂i

The weights should sum to one, but how should they be chosen?

wi /
1

Var(✓̂i)

(Inversely proportional to variance; why not SD?)



Nate Silver Weighting Method

• Exponential decay based on recency of poll
• Sample size of poll
• Pollster rating

http://fivethirtyeight.com/features/how-
the-fivethirtyeight-senate-forecast-
model-works/

http://fivethirtyeight.com/features/how-the-fivethirtyeight-senate-forecast-model-works/


Multiple Testing, Bonferroni
How should we handle p-values 

when testing multiple hypotheses?

For example, what if we are looking 
at diet (with 10 kinds of food) and 

disease (with 10 diseases)?

A simple, conservative approach is 
Bonferroni: divide significance level by 
number of hypotheses being tested.

https://en.wikipedia.org/wiki/Bonferroni_correction



plot from Freedman, data from Pearson-Lee

The Regression Line 19

Figure 1. Heights of fathers and sons. Pearson and Lee (1903).
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the son. For Yule (section 1.4), a “subject” might be a metropolitan union,
with xi = !Out for union i, and yi = !Paup.

The regression line is computed from five summary statistics: (i) the
average of x, (ii) the SD of x, (iii) the average of y, (iv) the SD of y, and
(v) the correlation between x and y. The calculations can be organized as
follows, with “variance” abbreviated to “var”; the formulas for y and var(y)

are omitted.

(1) x = 1
n

n∑

i=1

xi, var x = 1
n

n∑

i=1

(xi − x)2,



Regression Toward the Mean (RTTM)

Examples are everywhere...

Test scores
Sports

Inherited characteristics, e.g., heights
Traffic accidents at various sites



Daniel Kahneman Quote on RTTM

I had the most satisfying Eureka experience of my career while 
attempting to teach flight instructors that praise is more effective 
than punishment for promoting skill-learning.... 

[A flight instructor objected:] “On many occasions I have praised 
flight cadets for clean execution of some aerobatic maneuver, and 
in general when they try it again, they do worse. On the other 
hand, I have often screamed at cadets for bad execution, and in 
general they do better the next time. So please don’t tell us that 
reinforcement works and punishment does not...” 

This was a joyous moment, in which I understood an important 
truth about the world: because we tend to reward others when 
they do well and punish them when they do badly, and because 
there is regression to the mean, it is part of the human condition 
that we are statistically punished for rewarding others and 
rewarded for punishing them.



y: child’s height (standardized)
x: parent’s height (standardized)

Regression line: predict y = rx;
think of this as a weighted average of

the parent’s height and the mean

Now, what about predicting the parent’s height from 
the child’s height? Use x = y/r?

Regression line is x = ry, the r stays the same!

Regression Paradox



Linear Model
often called “OLS” (ordinary least squares), but that puts 

the focus on the procedure rather than the model.

y|{z}
n⇥1

= X|{z}
n⇥k

�|{z}
k⇥1

+ ✏|{z}
n⇥1



What’s linear about it?

y|{z}
n⇥1

= X|{z}
n⇥k

�|{z}
k⇥1

+ ✏|{z}
n⇥1

Linear refers to the fact that we’re taking 
linear combinations of the predictors. 
Still linear if, e.g., use both x and its 
square and its cube as predictors.



Sample Quantities vs. Population Quantities

�̂0 = ȳ � �̂1x̄

�̂1 =

Pn
i=1(xi � x̄)(yi � ȳ)Pn

i=1(xi � x̄)2

sample version
(think of x and y as 

data vectors)

y = �0 + �1x+ ✏

E(y) = �0 + �1E(x)

cov(y, x) = �1cov(x, x)

population version
(think of x and y 

as r.v.s)



visualize regression as a projection

residual

ŷ

y

column space of X



or as a conditional expectation

Y

E(Y|X)

Y-E(Y|X)

space of all functions of X



Gauss-Markov Theorem

Proof. Using the Gamma function,

n! = � (n+ 1)

=

Z 1

0

xn+1e�xdx

x

=

Z 1

0

eh(x)dx

where h (x) = n log (x)� x. Taking a Taylor expansion of h (x) around n:

n! '
Z 1

0

en log(n)�n�(x�n)2/2ndx

'
Z 1

�1
en log(n)�n�(x�n)2/2ndx

= nne�n
p
2⇡n

where the penultimate line uses that exp
�
� (x� n)2

 
is small if x is far from n. ⇤

19 Gauss-Markov Theorem

Consider a linear model
y = X� + ✏

where y is n by 1, X is an n by k matrix of covariates, � is a k by 1 vector of
parameters, and the errors ✏j are uncorrelated with equal variance, ✏j ⇠ [0, �2]. The
errors do not need to be assumed to be Normally distributed.

Theorem 19.1. Under the above assumptions,

�̂ ⌘ (X 0X)�1X 0y

is BLUE (the Best Linear Unbiased Estimator).

h 19.2. What do we mean by best? Which loss function should we minimize? In
this case, the “best” estimator is the one that minimizes the sum of squares error.
That’s why we call it the ordinary least squares estimator.

Proof. Let �̃ be any linear unbiased estimator, i.e. �̃ = Ay for some matrix A.

E(�̃) = � = AX�

37

Proof. Using the Gamma function,

n! = � (n+ 1)

=

Z 1

0

xn+1e�xdx

x

=

Z 1

0

eh(x)dx

where h (x) = n log (x)� x. Taking a Taylor expansion of h (x) around n:

n! '
Z 1

0

en log(n)�n�(x�n)2/2ndx

'
Z 1

�1
en log(n)�n�(x�n)2/2ndx

= nne�n
p
2⇡n

where the penultimate line uses that exp
�
� (x� n)2

 
is small if x is far from n. ⇤

19 Gauss-Markov Theorem

Consider a linear model
y = X� + ✏

where y is n by 1, X is an n by k matrix of covariates, � is a k by 1 vector of
parameters, and the errors ✏j are uncorrelated with equal variance, ✏j ⇠ [0, �2]. The
errors do not need to be assumed to be Normally distributed.

Theorem 19.1. Under the above assumptions,

�̂ ⌘ (X 0X)�1X 0y

is BLUE (the Best Linear Unbiased Estimator).

h 19.2. What do we mean by best? Which loss function should we minimize? In
this case, the “best” estimator is the one that minimizes the sum of squares error.
That’s why we call it the ordinary least squares estimator.

Proof. Let �̃ be any linear unbiased estimator, i.e. �̃ = Ay for some matrix A.

E(�̃) = � = AX�

37

Then it follows that...

For Normal errors, this is also the MLE.



Residuals

y = X�̂ + e

mirrors

y = X� + ✏

The residual vector e is orthogonal to all the columns of X.



Residual Plots
Always plot the residuals! (Plot residuals vs. fitted 
values, and residuals vs. each predictor variable)

7.5. RESIDUAL PLOTS 81

you can make. If all is well, you should see constant variance in the vertical (ε̂) direction and the scatter
should be symmetric vertically about 0. Things to look for are heteroscedascity (non-constant variance) and
nonlinearity (which indicates some change in the model is necessary). In Figure 7.5, these three cases are
illustrated.
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Figure 7.5: Residuals vs Fitted plots - the first suggests no change to the current model while the second
shows non-constant variance and the third indicates some nonlinearity which should prompt some change
in the structural form of the model

You should also plot ε̂ against xi (for predictors that are both in and out of the model). Look for the same
things except in the case of plots against predictors not in the model, look for any relationship which might
indicate that this predictor should be included.

We illustrate this using the savings dataset as an example again:

> g <- lm(sr ˜ pop15+pop75+dpi+ddpi,savings)

First the residuals vs. fitted plot and the abs(residuals) vs. fitted plot.

> plot(g$fit,g$res,xlab="Fitted",ylab="Residuals")
> abline(h=0)
> plot(g$fit,abs(g$res),xlab="Fitted",ylab="|Residuals|")

The plots may be seen in the first two panels of Figure 7.5. What do you see? The latter plot is
designed to check for non-constant variance only. It folds over the bottom half of the first plot to increase
the resolution for detecting non-constant variance. The first plot is still needed because non-linearity must
be checked.

A quick way to check non-constant variance is this regression:

> summary(lm(abs(g$res) ˜ g$fit))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.840 1.186 4.08 0.00017
g$fit -0.203 0.119 -1.72 0.09250

Faraway, http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf

http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf


“Explained” Variance

var(y) = var(X�̂) + var(e)

R2 measures goodness of fit, but
it does not validate the model.

 Adding more predictors can only increase R2.

R2 =
var(X�̂)

var(y)
=

Pn
i=1(ŷi � ȳ)2Pn
i=1(yi � ȳ)2


