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This Week
• HW1 due next Thursday - start last week!

• Section assignments coming soon

• Please avoid posting duplicate questions on 
Piazza (always search first), and avoid posting 
code from your homework solutions (see 
Andrew’s post https://piazza.com/class/
icf0cypdc3243c?cid=310 for more)

https://piazza.com/class/icf0cypdc3243c?cid=310


Drowning in data, but starved for information

source: http://extensionengine.com/drowning-in-data-the-biggest-hurdle-for-mooc-proliferation/

http://extensionengine.com/drowning-in-data-the-biggest-hurdle-for-mooc-proliferation/


What is a statistical model?
•  a family of distributions, indexed by parameters
• sharpens distinction between data and parameters, 

and between estimators and estimands
• parametric (e.g., based on Normal, Binomial) vs. 

nonparametric (e.g., methods like bootstrap, KDE)

data y
(observed)

model parameter θ
(unobserved)

statistical inference

probability



What good is a statistical model?

“All models are wrong, but some models are useful.” – George Box

“All models are wrong, but some models are useful.”
– George Box (1919-2013)



“All models are wrong, but some models are useful.” – George Box

In that Empire, the Art of Cartography attained such Perfection 
that the map of a single Province occupied the entirety of a City, 
and the map of the Empire, the entirety of a Province. In time, 

those Unconscionable Maps no longer satisfied, and the 
Cartographers Guild struck a Map of the Empire whose size was 
that of the Empire, and which coincided point for point with it.

Jorge Luis Borges, 
“On Exactitude in Science”

Borges Google Doodle



“Big Data vs. Pig Data”: 
https://scensci.wordpress.com/2012/12/14/big-data-or-pig-

data/

https://scensci.wordpress.com/2012/12/14/big-data-or-pig-data/


Statistical Models: Two Books



Parametric vs. Nonparametric

• parametric: finite-dimensional parameter space (e.g., 
mean and variance for a Normal)

• nonparametric: infinite-dimensional parameter space
• is there anything in between?
• nonparametric is very general, but no free lunch!
• remember to plot and explore the data!



Parametric Model Example: 
Exponential Distribution

Remember the memoryless property!

f(x) = �e

��x

, x > 0
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Exponential Distribution

Remember the memoryless property!

f(x) = �e

��x

, x > 0

•  Exponential is characterized by memoryless property
• all models are wrong, but some are useful...
• iterate between exploring, the data model-building, 

model-fitting, and model-checking
• key building block for more realistic models



The Weibull Distribution
• Exponential has constant hazard function
• Weibull generalizes this to a hazard that is t to a power
• much more flexible and realistic than Exponential
• representation: a Weibull is an Expo to a power
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Binomial Distribution
3.3. BERNOULLI AND BINOMIAL 81

Figure 3.6 shows plots of the Binomial PMF for various values of n and p. Note that
the PMF of the Bin(10, 1/2) distribution is symmetric about 5, but when the success
probability is not 1/2, the PMF is skewed. For a fixed number of trials n, X tends to be
larger when the success probability is high and lower when the success probability is low,
as we would expect from the story of the Binomial distribution. Also recall that in any
PMF plot, the sum of the heights of the vertical bars must be 1.
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Figure 3.6: Some Binomial PMFs. In the lower left, we plot the Bin(100, 0.03) PMF
between 0 and 10 only, as the probability of more than 10 successes is close to 0.

We’ve used Story 3.3.3 to find the Bin(n, p) PMF. The story also gives us a straight-
forward proof for the fact that if X is Binomial, then n � X is also Binomial.

Theorem 3.3.5. Let X ⇠ Bin(n, p), and q = 1 � p (we often use q to denote the failure
probability of a Bernoulli trial). Then n � X ⇠ Bin(n, q).

story: X~Bin(n,p) is the number of successes in n 
independent Bernoulli(p) trials.



Binomial Distribution

story: X~Bin(n,p) is the number of successes in n 
independent Bernoulli(p) trials.

Example: # votes for candidate A in election with n voters, 
where each independently votes for A with probability p

mean is np (by story and linearity of expectation:
E(X+Y)=E(X)+E(Y))

variance is np(1-p) (by story and the fact that
Var(X+Y)=Var(X)+Var(Y) if X,Y are uncorrelated) 



(Doonesbury)



Poisson Distribution

story: count number of events that occur, when there are a 
large number of independent rare events.

Examples: # mutations in genetics, # of traffic accidents at a 
certain intersection, # of emails in an inbox

mean = variance for the Poisson

Expectation 161

Thus,
n(n � 1)p2 = E(X(X � 1)) = E(X2) � E(X) = E(X2) � np,

which again gives

Var(X) = E(X2) � (EX)2 = (n(n � 1)p2 + np) � (np)2 = np(1 � p).

Exercise 44 uses this strategy to find the variance of the Hypergeometric. ⇤

4.7 Poisson

The last discrete distribution that we’ll introduce in this chapter is the Poisson,
which is an extremely popular distribution for modeling discrete data. We’ll intro-
duce its PMF, mean, and variance, and then discuss its story in more detail.

Definition 4.7.1 (Poisson distribution). An r.v. X has the Poisson distribution
with parameter �, where � > 0, if the PMF of X is

P (X = k) =
e���k

k!
, k = 0, 1, 2, . . . .

We write this as X ⇠ Pois(�).

This is a valid PMF because of the Taylor series
P1

k=0

�k

k! = e�.

Example 4.7.2 (Poisson expectation and variance). Let X ⇠ Pois(�). We will
show that the mean and variance are both equal to �. For the mean, we have

E(X) = e��
1X

k=0

k
�k

k!

= e��
1X

k=1

k
�k

k!

= �e��
1X

k=1

�k�1

(k � 1)!

= �e��e� = �.

First we dropped the k = 0 term because it was 0. Then we took a � out of the sum
so that what was left inside was just the Taylor series for e�.

To get the variance, we first find E(X2). By LOTUS,

E(X2) =
1X

k=0

k2P (X = k) = e��
1X

k=0

k2

�k

k!
.



Expectation 163
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FIGURE 4.7

Top: Pois(2) PMF and CDF. Bottom: Pois(5) PMF and CDF.

Poisson PMF, CDF

Pois(2)

Pois(5)



Poisson Approximation

164

• The number of chips in a chocolate chip cookie. Imagine subdividing the cookie
into small cubes; the probability of getting a chocolate chip in a single cube is
small, but the number of cubes is large.

• The number of earthquakes in a year in some region of the world. At any given
time and location, the probability of an earthquake is small, but there are a large
number of possible times and locations for earthquakes to occur over the course
of the year.

The parameter � is interpreted as the rate of occurrence of these rare events; in
the examples above, � could be 20 (emails per hour), 10 (chips per cookie), and 2
(earthquakes per year). The Poisson paradigm says that in applications similar to
the ones above, we can approximate the distribution of the number of events that
occur by a Poisson distribution.

Approximation 4.7.3 (Poisson paradigm). Let A
1

, A
2

, . . . , An be events with pj =
P (Aj), where n is large, the pj are small, and the Aj are independent or weakly
dependent. Let

X =
nX

j=1

I(Aj)

count how many of the Aj occur. Then X is approximately Pois(�), with � =Pn
j=1

pj .

Proving that the above approximation is good is di�cult, and would require first
giving precise definitions of weak dependence (there are various ways to measure
dependence of r.v.s) and of good approximations (there are various ways to measure
how good an approximation is). A remarkable theorem is that, in the above notation,
if the Aj are independent, N ⇠ Pois(�), and B is any set of nonnegative integers,
then

|P (X 2 B) � P (N 2 B)|  min

✓
1,

1

�

◆ nX

j=1

p2j .

This provides an upper bound on how much error is incurred from using a Poisson
approximation, not only for approximating the PMF of X, but also for approximat-
ing the probability that X is any set. Also, it makes more precise how small the pj
should be: we want

Pn
j=1

p2j to be very small, or at least very small compared to
�. The result can be shown using an advanced technique known as the Stein-Chein
method.

The Poisson paradigm is also called the law of rare events. The interpretation of
“rare” is that the pj are small, not that � is small. For example, in the email example,
the low probability of getting an email from a specific person in a particular hour is
o↵set by the large number of people who could send you an email in that hour.

In the examples we gave above, the number of events that occur isn’t exactly Pois-
son because a Poisson random variable has no upper bound, whereas how many of
A

1

, . . . , An occur is at most n, and there is a limit to how many chocolate chips

if X is the number of events that occur, where the ith event has probability

pi, and N ⇠ Pois(�), with � the average number of events that occur.

Example: in matching problem, the probability of 
no match is approximately 1/e. 



Poisson Model Example

44 3 One-parameter models
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Fig. 3.6. Highest posterior density regions of varying probability content. The
dashed line is the 95% quantile-based interval.

• E[Y |✓] = ✓;
• Var[Y |✓] = ✓.

People sometimes say that the Poisson family of distributions has a “mean-
variance relationship” because if one Poisson distribution has a larger mean
than another, it will have a larger variance as well.
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Fig. 3.7. Poisson distributions. The first panel shows a Poisson distribution with
mean of 1.83, along with the empirical distribution of the number of children of
women of age 40 from the GSS during the 1990s. The second panel shows the
distribution of the sum of 10 i.i.d. Poisson random variables with mean 1.83. This
is the same as a Poisson distribution with mean 18.3

source: Hoff, A First Course in Bayesian Statistical Methods

Extensions: Zero-Inflated Poisson, Negative Binomial, …



Normal (Gaussian) Distribution

Wikipedia

• symmetry
• central limit theorem
• characterizations (e.g., via entropy)
• 68-95-99.7% rule



Normal Approximation to Binomial

Wikipedia



The Magic of Statistics

source: Ramsey/Schafer, The Statistical Sleuth 



The Evil Cauchy Distribution

 http://www.etsy.com/shop/NausicaaDistribution

http://www.etsy.com/shop/NausicaaDistribution


Bootstrap (Efron, 1979)
3.142 2.718 1.414 0.693 1.618

1.414 2.718 0.693 0.693 2.718

1.618 3.142 1.618 1.414 3.142

1.618 0.693 2.718 2.718 1.414

0.693 1.414 3.142 1.618 3.142

2.718 1.618 3.142 2.718 0.693

1.414 0.693 1.618 3.142 3.142

data:

reps

resample with replacement, use empirical 
distribution to approximate true distribution



Bootstrap World

source: http://pubs.sciepub.com/ijefm/3/3/2/ 
which is based on diagram in Efron-Tibshirani book 

http://pubs.sciepub.com/ijefm/3/3/2/

