CSI09/StatI2I/AC209/E-109 Data Science Statistical Models

Hanspeter Pfister, Joe Blitzstein, and Verena Kaynig

This Week

- HWI due next Thursday start last week!
- Section assignments coming soon
- Please avoid posting duplicate questions on Piazza (always search first), and avoid posting code from your homework solutions (see Andrew's post <u>https://piazza.com/class/</u> icf0cypdc3243c?cid=310 for more)

Drowning in data, but starved for information

source: <u>http://extensionengine.com/drowning-in-data-the-biggest-hurdle-for-mooc-proliferation/</u>

What is a statistical model?

- a family of distributions, indexed by parameters
- sharpens distinction between data and parameters, and between estimators and estimands
- parametric (e.g., based on Normal, Binomial) vs.
 nonparametric (e.g., methods like bootstrap, KDE)

What good is a statistical model?

"All models are wrong, but some models are useful." – George Box (1919-2013)

Jorge Luis Borges, "On Exactitude in Science"

In that Empire, the Art of Cartography attained such Perfection that the map of a single Province occupied the entirety of a City, and the map of the Empire, the entirety of a Province. In time, those Unconscionable Maps no longer satisfied, and the Cartographers Guild struck a Map of the Empire whose size was that of the Empire, and which coincided point for point with it.

Borges Google Doodle

"Big Data vs. Pig Data": https://scensci.wordpress.com/2012/12/14/big-data-or-pigdata/

Statistical Models: Two Books

Cambridge Series in Statistical and Probabilistic Mathematics

Statistical Models A. C. Davison

Statistical Models Theory and Practice REVISED EDITION

David A. Freedman

Parametric vs. Nonparametric

- parametric: finite-dimensional parameter space (e.g., mean and variance for a Normal)
- nonparametric: infinite-dimensional parameter space
 - is there anything in between?
- nonparametric is very general, but no free lunch!
- remember to plot and explore the data!

Parametric Model Example: Exponential Distribution $f(x) = \lambda e^{-\lambda x}, x > 0$

Remember the memoryless property!

Exponential Distribution

$$f(x) = \lambda e^{-\lambda x}, x > 0$$

• Exponential is *characterized* by memoryless property

- all models are wrong, but some are useful...
- iterate between exploring, the data model-building, model-fitting, and model-checking
- key building block for more realistic models

Remember the memoryless property!

The Weibull Distribution

- Exponential has constant hazard function
- Weibull generalizes this to a hazard that is t to a power
- much more flexible and realistic than Exponential
- *representation*: a Weibull is an Expo to a power

Family Tree of Parametric Distributions

Blitzstein-Hwang, Introduction to Probability

Binomial Distribution

story: X~Bin(n,p) is the number of successes in n independent Bernoulli(p) trials.

Binomial Distribution

story: X~Bin(n,p) is the number of successes in n
independent Bernoulli(p) trials.

Example: # votes for candidate A in election with n voters, where each independently votes for A with probability p

mean is np (by story and linearity of expectation: E(X+Y)=E(X)+E(Y))

variance is np(I-p) (by story and the fact that Var(X+Y)=Var(X)+Var(Y) if X,Y are uncorrelated)

COMING?

(Doonesbury)

Poisson Distribution

story: count number of events that occur, when there are a large number of independent rare events.

Examples: # mutations in genetics, # of traffic accidents at a certain intersection, # of emails in an inbox mean = variance for the Poisson

$$P(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

Poisson PMF, CDF

Pois(2)

Poisson Approximation

$$|P(X \in B) - P(N \in B)| \le \min\left(1, \frac{1}{\lambda}\right) \sum_{j=1}^{n} p_j^2.$$

if X is the number of events that occur, where the *i*th event has probability p_i , and $N \sim \text{Pois}(\lambda)$, with λ the average number of events that occur.

Example: in matching problem, the probability of no match is approximately 1/e.

Poisson Model Example

Extensions: Zero-Inflated Poisson, Negative Binomial, ...

Normal (Gaussian) Distribution

symmetry central limit theorem characterizations (e.g., via entropy) 68-95-99.7% rule

Normal Approximation to Binomial

Wikipedia

The Magic of Statistics

The relationship between the population distribution and the sampling distribution of the average in random sampling

source: Ramsey/Schafer, The Statistical Sleuth

The Evil Cauchy Distribution

http://www.etsy.com/shop/NausicaaDistribution

Bootstrap (Efron, 1979)

data:	3.142	2.718	1.414	0.693	1.618
	1.414	2.718	0.693	0.693	2.718
	1.618	3.142	1.618	1.414	3.142
reps	1.618	0.693	2.718	2.718	1.414
	0.693	1.414	3.142	1.618	3.142
	2.718	1.618	3.142	2.718	0.693
	1.414	0.693	1.618	3.142	3.142

resample with replacement, use empirical distribution to approximate true distribution

Bootstrap World

source: <u>http://pubs.sciepub.com/ijefm/3/3/2/</u> which is based on diagram in Efron-Tibshirani book