Databases, SQL, and Pandas cs109, Fall 2015 (#cs109) Rahul Dave

rahuldaveagmail.com, @rahuldave, staffacs109.org

ANNOUNCEMENTS

Class in in Science Center B starting THIS thursday, 17th Sep, 2015!

It took about three years before the BellKor's Pragmatic Chaos team managed to win the prize ... The winning algorithm was ... so complex that it was never implemented by Netflix. ¹

¹ https://hbr.org/2012/10/big-data-hype-and-reality

Machine

Human

Data Management

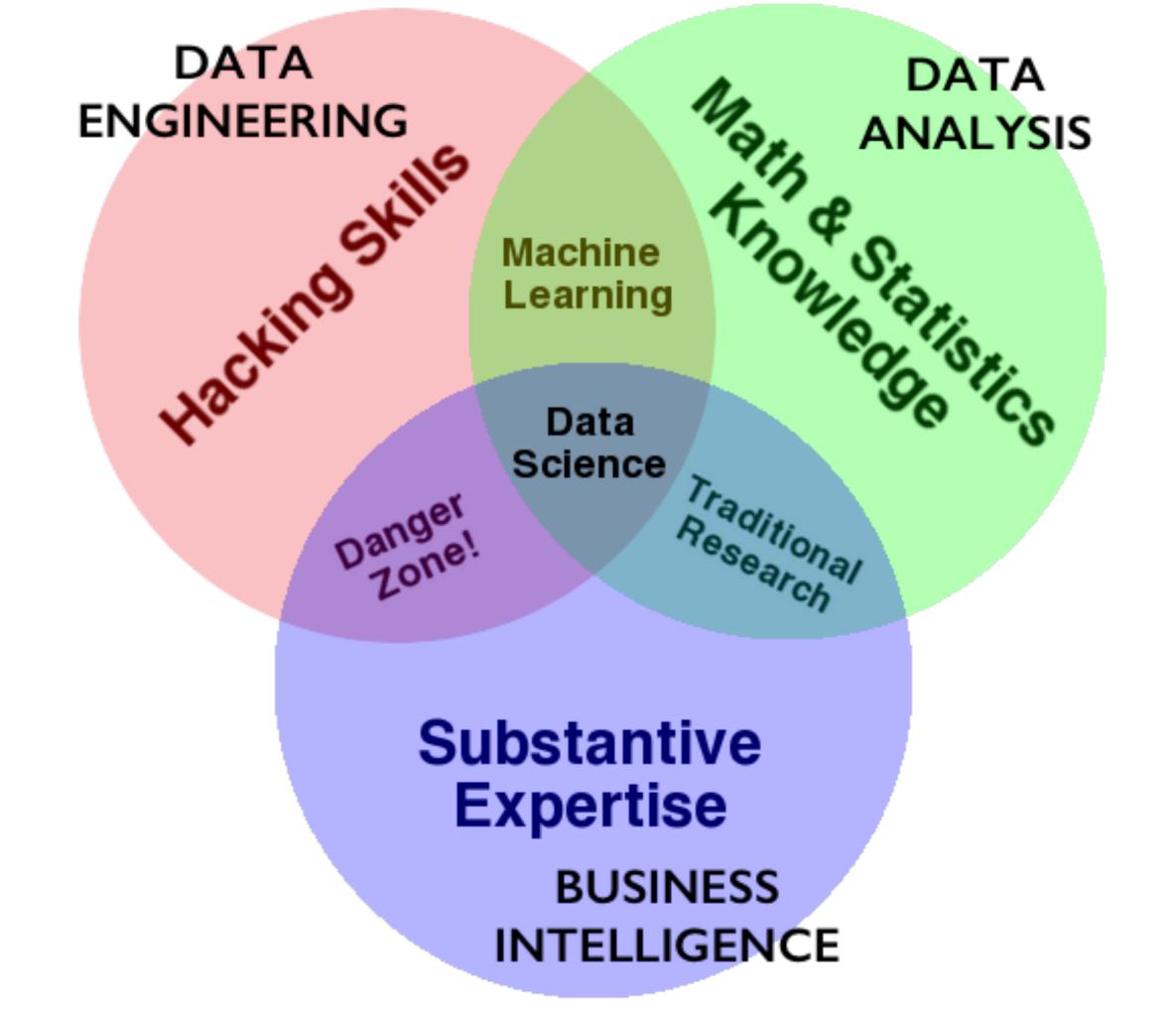
Human Cognition

Data Mining

Perception

Machine Learning

Visualization


Story Telling

Business Intelligence

Decision Making
Theory

Statistics

Data Science

Data Scientist: Sexiest Job of the 21st Century

It's important that our data team wasn't comprised solely of mathematicians and other "data people." It's a fully integrated product group that includes people working in design, web development, engineering, product marketing,

and operations. They all understand and work with data, and I consider them all data scientists... Often, an engineer can have the insight that makes it >clear how the product's design should work, or vice-versa — a designer can have

the insight that helps the engineers understand how to better use the data.

Or

it may take someone from marketing to understand what a customer really wants to accomplish.²

² D. J. Patil, U.S. Chief Data Scientist, Building data science teams. "O'Reilly Media, Inc.", 2011.

DATA ENGINEERING

- compute: code, python, R, julia, spark, hadoop
- storage/database: git, SQL, NoSQL, HBase, disk, memory
- devops: AWS, docker, mesos, repeatability
- product: database, web, API, viz, UI, story

Different at different scales....

What kind of data storage do you need?

- memory
- disk: what if we do not fit?
- cluster: what if we still do not fit?
- cluster: what if we need/can use parts?
- What if we MUST bring compute to disk?

What kind of data access do you need?

- relational: pandas, SQL: Postgres, sqlite, Hbase,
 VoltDB
- document oriented: MongoDB, CouchDB
- key-value: Riak, Redis, Memcached
- graph oriented: Neo4J

Today we'll focus on relational

- What is a relational Database?
- What Grammar of Data does it follow?
- How is this grammar implemented in Pandas?
- How is this grammar implemented in SQL

Relational Database

Dont say: seek 20 bytes onto disk and pick up from there. The next row is 50 bytes hence

Say: select data from a set. I dont care where it is, just get the row to me.

Relational Database(contd)

- A collection of tables related to each other through common data values.
- Rows represent attributes of something
- Everything in a column is values of one attributes
- A cell is expected to be atomic
- Tables are related to each other if they have columns called keys which represent the same values

Contributors

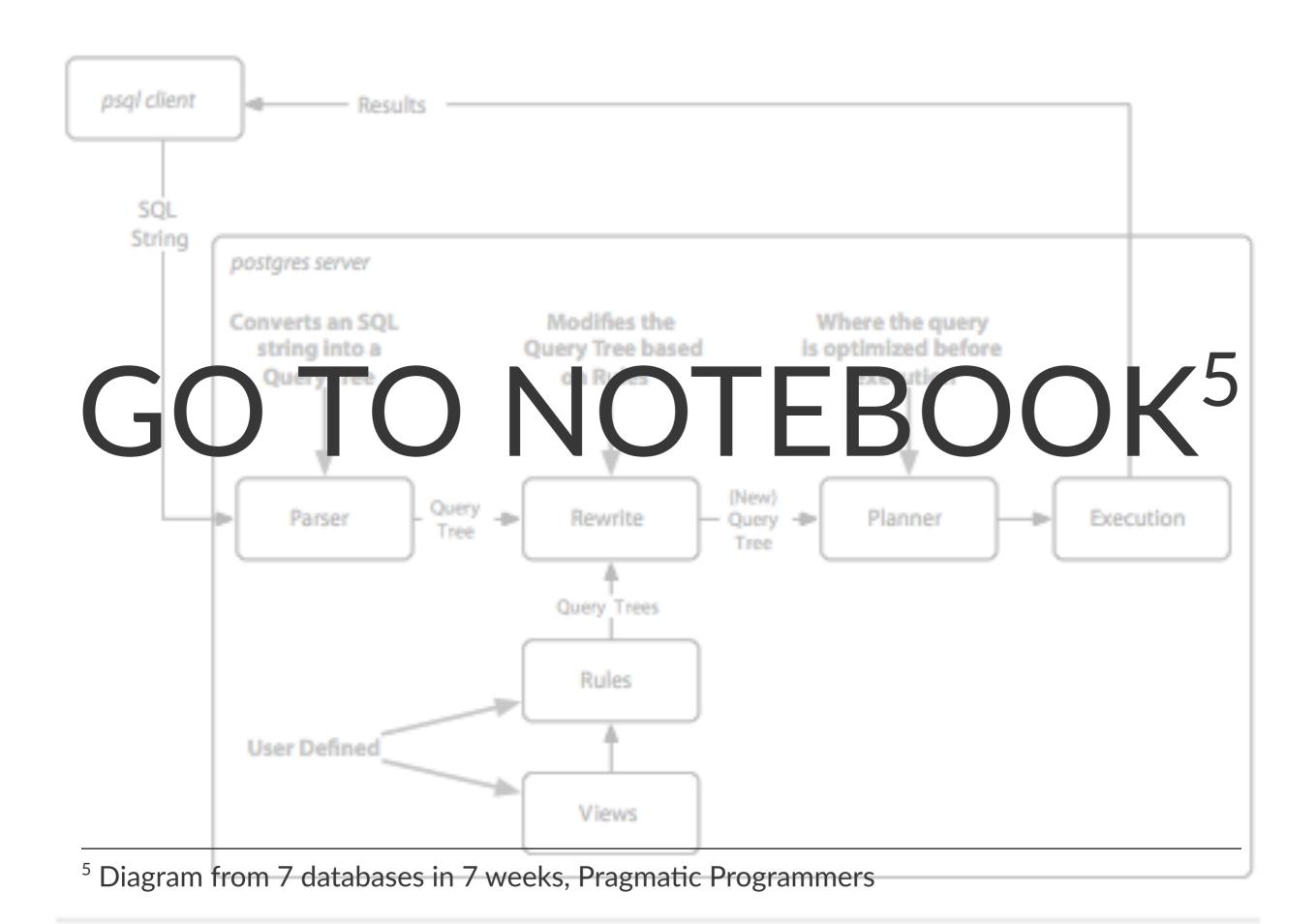
		A	id	first_name	last_name	middle_nam	ne party	/_					
		4	Filter	Filter	Filter	Filter	Filter						
		1	16	Mike	Huckabee		R						
ble	e: 📗	2	20	Barack	Obama		D		†	÷ 💈 🔞	÷ 🔯 🄏	÷ 12 16	New Record
		3	22	Rudolph	Giuliani		R		У	y state	y state zip	y state zip amount	y state zip amount date
	Filter	4	24	Mike	Gravel		D	_		Filter	Filter Filter	Filter Filter Filter	Filter Filter Filter
	1	4								- VA	- VA 24091	- VA 24091 500	- VA 24091 500 2007-06-30
	5	5	26	John	Edwards		D		ille	ille AR	ille AR 72712	ille AR 72712 100	ille AR 72712 100 2007-06-16
	6	6	29	Bill	Richardson		D		llo	llo AR	llo AR 71655	llo AR 71655 1500	llo AR 71655 1500 2007-05-18
	7	7	30	Duncan	Hunter		R		llo	llo AR	llo AR 71655	llo AR 71655 500	llo AR 71655 500 2007-05-18
	8	8	31	Dennis	Kucinich		D		jton				
	9	9	32	Ron	Paul		R		ugu	Cand	Candidates	Candidates 1000	Candidates 1000 2007-06-11
	10		Allen	John D.	NULL	1052 Cann	NULL	N		lorth Augu SC			
	11		Allison	John W.	NULL	P.O. Box 10	NULL	С	onway	onway AR	onway AR 72033	onway AR 72033 1000	onway AR 72033 1000 2007-05-18
9	12		Allison	Rebecca	NULL	3206 Sum	NULL	Li	ttle Rock	ttle Rock AR	ttle Rock AR 72227	ttle Rock AR 72227 1000	ttle Rock AR 72227 1000 2007-04-25

Scales of Measurement

Quantitative (Interval and Ratio) Permissible Statistics Operations Group Structure (invariantive) Ordinal Determination of Permutation group Number of cases equality w' = f(w)Mode f(x) means any one-to-one Contingency correlation • Nominal 3 etermination of Isotonic group Median $\varpi^f = f(\varpi)$ Percentiles f(a) means any monotonic increasing function INTERVAL Determination of General linear group Mean equality of intervals x' = ax + bStandard deviation or differences Rank-order correlation Product-moment correlation RATIO Determination of Similarity group Coefficient of variation equality of ratios $\sigma' = a\sigma$

³ S. S. Stevens, Science, New Series, Vol. 103, No. 2684 (Jun. 7, 1946), pp. 677-680

Grammar of Data


Been there for a while (SQL, Pandas), formalized in dplyr⁴.

- provide simple verbs for simple things. These are functions corresponding to common data manipulation tasks
- second idea is that backend does not matter. Here we constrain ourselves to Pandas and sqlite
- multiple backends implemented in Pandas, Spark, Impala, Pig, dplyr, ibis, blaze

⁴ Hadley Wickham: https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html

Why bother

- learn hot to do core data manipulations, no matter what the system
- relational databases critical for mon-memory fits.
 Big installed base.
- one off questions: google, stack-overflow, http:// chrisalbon.com

RDBMS when:

- data structure regularity is known
- transactions are required
- benefit from years of tuning
- not good for deep hierarchy
- which kind depends on use case: pandas, hbase, columnar, postgres,...