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how.To→ ASSESS ALGORITHM FIT

UNSUPERVISED Pitfalls, techniques for clustering, dimension reduction, outlier by algorithm.

SUPERVISED Pitfalls, evaluation methods, classify, consensus, assessment approaches.

ASSESSMODEL FIT ⇒ UNSUPERVISED
Evaluation methods encompass various aspects specific to each algorithm category.

● Clustering methods focus is on quantifying the formed clusters' quality, consistency, and
discriminative ability.

● Dimensionality reduction techniques aim to assess information retention, preservation of data
relationships, and visualization capabilities.

● Outlier detection gauges the accuracy and efficacy of identifying anomalies in the dataset.

UNSUPERVISED - Evaluation pitfalls
Mitigate pitfalls by employing a comprehensive evaluation, including cross-validation techniques,
comparison to baselines or benchmarks, and consulting with domain expertise.

● Overfitting: Use evaluation methods with caution to avoid overfitting algorithms to specific
evaluation datasets. Algorithms that perform exceptionally well on the evaluation data may need to
generalize to new, unseen data.

● Metric Limitations: Each evaluation metric has its limitations and underlying assumptions.
Understand each measured characteristic and select those responding to the features of the
dataset and project analysis objectives. Data scientists often set up functions to run multiple tests
and visually assess the outcomes to gain a comprehensive understanding.

● Dataset Bias: Dataset bias refers to situations where the dataset information does not represent an
underlying population's actual characteristics. To help address dataset bias, ask informed questions
based on thorough scientific research and knowledge of the measuring instrument, such as the
choice of Likert scales, logarithmic transformations, and advanced data substitution methods like
bootstrapping. Most datasets have a "data dictionary" detailing how each variable is measured.

● Subjectivity in Interpretation: Evaluation metrics involve subjective interpretation or require domain
knowledge to comprehend their implications. Learn any contextual factors and subjectivity involved.

UNSUPERVISED - Techniques to discern prediction quality
A. Clustering techniques
● Evaluate Cluster Quality: Calculate metrics such as Silhouette Score, Davies-Bouldin Index, or

Calinski-Harabasz Index to assess the quality of the clusters.
● Visualize Clusters: Plot the clusters in a 2D or 3D space using dimensionality reduction techniques

like PCA or t-SNE for visual inspection.
● Parameter Tuning: Iterate over different values for the algorithm-specific parameters (e.g., number

of clusters, distance metric) and evaluate the impact on cluster quality.
● Compare with Ground Truth (if available): If you can access ground truth labels, use metrics like

Rand Index or Adjusted Rand Index to compare the predicted clusters with the true ones.

B. Dimensionality reduction techniques
● Evaluate Data Representation: Calculate metrics such as Explained Variance Ratio or

Kullback-Leibler Divergence to assess how well the technique represents the original data.
● Visualize Reduced Dimensions: Plot the reduced dimensions (e.g., principal components, t-SNE

embeddings) to examine the separation or clustering patterns visually.
● Assess Information Retention: Analyze the cumulative explained variance or other metrics to

understand restrained information in the reduced dimensions.
● Consider Downstream Performance: If the dimensionality reduction is a precursor to another task,

evaluate the performance of the downstream task using the reduced dimensions.

C. Outlier detection techniques
● Evaluate Data Representation: Calculate metrics such as Explained Variance Ratio or

Kullback-Leibler Divergence to assess how well the technique represents the original data.
● Visualize Reduced Dimensions: Plot the reduced dimensions (e.g., principal components, t-SNE

embeddings) to examine the separation or clustering patterns visually.
● Assess Information Retention: Analyze the cumulative explained variance or other metrics to

understand restrained information in the reduced dimensions.
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● Consider Downstream Performance: If the dimensionality reduction is a precursor to another task,
evaluate the performance of the downstream task using the reduced dimensions.

Clustering techniques
Clustering and dimensionality reduction rely on ground truth labels and specific metrics to assess
performance. The following is a small portfolio of available techniques, and you will use those with
numbers in front of them to determine outcomes in your Iris flower dataset assignment. 

D. Clustering algorithms �K-means, hierarchical clustering, DBSCAN�
● Silhouette Score:Measures the compactness and separation of clusters.

○ Use to evaluate the quality of clustering results by measuring the compactness and separation
of the clusters in the Iris dataset.

● Calinski-Harabasz Index:Measures the ratio between intra-cluster and inter-cluster variance.
○ In the Iris dataset, it measures the ratio between the intra-cluster and inter-cluster variance,

providing insights into the clustering quality.
● Davies-Bouldin Index: Evaluates the clustering quality based on intra-cluster and inter-cluster

distance.
● Rand Index: Compares the similarity between predicted and true clusters.
● Gap Statistic:Measures the optimal number of clusters by comparing the within-cluster dispersion

with that expected under a null reference distribution.
● ElbowMethod: Plots the explained variance or distortion as a function of the number of clusters

and identifies the "elbow" point where the rate of improvement diminishes significantly.
● Hopkins Statistic:Measures the clustering tendency or the presence of clusters in the data by

assessing the spatial randomness

E. Dimensionality reduction techniques �PCA, t-SNE�
● Explained Variance Ratio:Measures the variance explained by each principal component in PCA.

○ This metric assesses the variance explained by each principal component, indicating how well
the dimensionality reduction captures the variability in the Iris dataset.

● Kullback-Leibler Divergence: Evaluates the similarity between the high and low-dimensional data
representation in t-SNE.
○ It evaluates the similarity between the high-dimensional data and the low-dimensional

representation produced by t-SNE, providing insights into the quality of the dimensionality
reduction.

● Reconstruction Error: Calculates the difference between the original and reconstructed data to
evaluate the quality of dimensionality reduction.

● Neighborhood Preservation:Measures preserving pairwise distances or neighborhood
relationships between data points in the high-dimensional and reduced-dimensional spaces.

● Information Retention: Besides explained variance, measures like Mutual Information or Normalized
Mutual Information of retained information.

F. Outlier detection algorithms �Isolation Forest, LOF�
● Precision and Recall:Measure the accuracy of identifying outliers.

○ Precision measures the fraction of correctly identified outliers among the total predicted
outliers, while recall calculates the fraction of correctly identified outliers among all actual
outliers.

● Receiver Operating Characteristic �ROC� Curve: Plots the true positive rate against the false
positive rate to evaluate the trade-off between sensitivity and specificity.
○ Illustrates the trade-off between the true positive rate and the false positive rate at various

threshold settings, allowing for the evaluation of outlier detection performance.
● Outlier Ranking: Ranks the outliers based on their scores or anomaly scores assigned by the

algorithm, allowing for prioritization or threshold selection.
● Stability Analysis: Assess the stability of outlier detection results by applying the algorithm on

subsamples or different partitions of the data and comparing the consistency of the identified
outliers.

● Domain Expert Validation: Collaborate with domain experts or use external sources of information
to validate the detected outliers and ensure they align with domain knowledge.
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ASSESSMODEL FIT ⇒ SUPERVISED
Evaluation methods encompass various aspects specific to each algorithm category. For clustering
algorithms, the focus is on quantifying the formed clusters' quality, consistency, and discriminative ability.
In dimensionality reduction techniques, the evaluation aims to assess information retention, preservation
of data relationships, and visualization capabilities. For outlier detection, the evaluation methods gauge
the accuracy and efficacy of identifying anomalies in the dataset.

SUPERVISED - Evaluation pitfalls
Mitigate pitfalls by employing a comprehensive evaluation, including cross-validation techniques,
comparison to baselines or benchmarks, and consulting with domain expertise.

● Overfitting - supervised algorithms are prone to overfitting due to their ability to learn from the
provided labeled data. Work to ensure algorithms measure unseen patterns beyond the evaluation
dataset is essential.

● Metric limitations - Each evaluation metric has its limitations and underlying assumptions.
Understand each measured characteristic and select those responding to the features of the
dataset and project analysis objectives. Supervised algorithms require specific metrics tailored to
the nature of the problem, such as accuracy, precision, recall, F1 score, ROC�AUC, or mean squared
error �MSE�. Consult each algorithm's research to understand its evaluation goals and
characteristics.

● Bias - refers to situations where a dataset doesn't represent an underlying population's
characteristics. To help address dataset bias in supervised algorithms, it is essential to consider
issues related to biased sampling, class imbalance, or feature selection. Domain knowledge and
thorough scientific research should guide identifying and mitigating dataset bias, including
techniques like stratified sampling, resampling methods, or feature engineering.

● Interpretation subjectivity - understanding the contextual factors, domain specifics, and
subjectivity involved in interpreting evaluation results is crucial. Collaboration with domain experts
and considering the evaluation outcomes' practical implications can help make informed decisions.

SUPERVISED - Common Evaluation Metrics
I. Accuracy:Measures the overall correctness of the classification model's predictions.
II. Precision: Calculates the proportion of true positive predictions among the total positive

predictions, indicating the model's ability to avoid false positives.
III. Recall: Computes the proportion of true positive predictions among the actual positive instances,

measuring the model's ability to identify all relevant samples.
IV. F1 Score: Harmonic mean of precision and recall, providing a balanced measure of the model's

performance.
V. Area Under the ROC Curve �AUC�ROC�� Evaluate the model's ability to distinguish between

different classes by plotting the true positive rate against the false positive rate.
VI. Confusion Matrix: Provides a tabular representation of the model's performance, showing the

counts of true positive, true negative, false positive, and false negative predictions.

SUPERVISED - Classification Algorithms
Linear Regression

● Visualize Predictions: Plot the actual values against the predicted values to visually inspect the
performance of the linear regression model.

Logistic Regression
● Receiver Operating Characteristic �ROC� Curve: Plot the ROC curve to evaluate the trade-off

between true positive rate and false positive rate for different threshold settings.

Naïve Bayes
● No specific evaluation techniques listed.

k-Nearest Neighbors (k-NN�
● Receiver Operating Characteristic �ROC� Curve: Plot the ROC curve to evaluate the trade-off

between true positive rate and false positive rate for different threshold settings.
● Hyperparameter Tuning: Iterate over different values for the 'k' parameter and evaluate the

impact on the model's classification performance.
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SUPERVISED - Consensus Algorithms:
Decision Trees
● Visualize the Tree: Plot the decision tree structure to gain insights into feature importance, decision

paths, and interpretability.
● Feature Importance: Assess the importance of different features in the decision tree model using

metrics such as Gini importance or information gain.

Random Forest
● Feature Importance: Determine feature importance based on the average impurity reduction or

information gain across all decision trees in the random forest.
● Out-of-Bag Error: Utilize the out-of-bag error estimate as an additional evaluation metric to assess

the model's performance without the need for separate validation data.

SUPERVISED - Linear Boundary Algorithms:
Support Vector Machines �SVM�
● Decision Boundary Visualization: Plot the decision boundary of the SVM model to visualize the

separation between different classes.
● Hyperparameter Tuning: Iterate over different values for the hyperparameters (e.g., C, kernel type)

and evaluate the impact on the model's classification performance.

Perceptrons
● No specific evaluation techniques listed.

SUPERVISED - Assessment Approaches
Residual Analysis:
● Perform a visual analysis of the residuals (the differences between the predicted and actual values)

to assess the model's ability to capture the underlying patterns in the data. This can include plots
such as residual vs. predicted values, residual vs. feature values, or a histogram of the residuals.

Cross-Validation
● Utilize cross-validation techniques, such as k-fold cross-validation, to estimate the model's

performance on unseen data. This helps assess the generalization ability of the model and can
provide more reliable performance estimates.

Learning Curves
● Plot learning curves to examine the model's performance as a function of the training data size. This

can help identify issues such as underfitting or overfitting, as well as determine the sufficiency of
the available training data.

Regularization Analysis
● If applicable to the supervised algorithm, analyze the effect of different regularization techniques

(e.g., L1 regularization, L2 regularization) on the model's performance. This can involve tuning
regularization parameters and evaluating the impact on the model's generalization ability.

Model Comparison
● Compare the performance of multiple supervised algorithms on the same dataset using appropriate

evaluation metrics. This allows for a comparative analysis to identify the algorithm that best suits
the specific problem and dataset.

b.hogan@snhu.edu,<git> Page 4 | 4

mailto:b.hogan@snhu.edu
https://github.com/bbe2/professor

