Memory Protection
In Kernel Space

What’s wrong with kernel?

e Most of kernel written in C -> lead to memory buggy
e Faulty: a bug happens in driver may halts whole kernel

e Security: a vulnerability in driver may break hurts whole
kernel.

Mitigate Memory Bug(Or its
influence)

e Code pointer integrity

e Kernel data flow integrity
e KASLR

e DEP(KRA"2)

e None executable to user code in privileged level.

Memory bugs are hard to

eliminate

Memory Safety
Write control data Write Code pointer

Date Execute . : CFIl/Code pointer
: Data flow integrity . ;
protection Integrity

Monolithic kernel
propagates bugs

Application

Memory man men
Network stack emory management

¥
File systems Device drivers‘ Scheduler

Linux kernel

O DT BB 1=

Isolation in monolithic

Hardware based Software based

I
I
I
I
Heiser =~ SUD VirtuOS : BGI XFI LXFI
I
I
I

Rust
Microdriyer/Decaf driver(hotos19)

Develop effort?

Performance?

Ll e e e e e e e e e |

Address space isolation

e Provide kernel driver execute environment
e Driver need to access kernel data.

e Context switch

SUD

Unmodified ’\
Ethernet driver
Kef”e' Unmodified
runtime)
. driver API
library
Sud-UML 10
library registers
: PCI A ~ DMA
User UpcanA Downcall config| [Interrupt
Spac€ ppcs| |RPCs syscalls| |messages |Device
hardware
Kernel V Y
Ethernet Safe PCI device [« Interrupts
proxy driver access module

PCI
H config

SUD

e Develop effort
e User mode Linux(UML), proxy driver

e Performance: context switch
Table 1: Latency of Basic Operations

Instruction or Operation Cycles*
write to CR3 with CR3_NOFLUSH 186+ 9
vmfunc 1094+ 1
wrpkru 26+ 2
no-op system call w/ KPTI 433+ 12
no-op system call w/o KPTI %6+ 2
no-op VM call 1694 + 131
user-space context switch 748+ 8
process context switch using semaphore | 4426+ 41

* 4 half the width of the 95% confidence interval

Use EPT:

e Context switch between user and kernel are too heavy

e Use EPT(VirtuOS)?

Use EPT:

e Context switch between user and kernel are too heavy
e Use EPT(VirtuOS)?
e NO, it’s still too heavy to switch context:

e | XDs: use async queue(cache line sync)

Operation Cycles

selL4 same-core d820 (without PCIDs) 1005
seLL4 same-core ¢220g2 (with PCIDs) 834
L.XDs cross-core r320 (non-NUMA) 448
[L.XDs cross-core d820 (NUMA) 533

Table 2: Intra-core vs cross-core [PC.

I
| = I

| .
| NIC driver :
| I
I I

<— processor cachelines —
oooo oooo
= a Quick path interconnect (QPI) a a
oooo oooo

* Do not switch context(driver threads always resides in)

e Wait others to feed from last level cache

LXDs

e Performance test on 8 core machine:

10

f isolated —e—

o N B~ OO
|

Tx Bandwidth (Gbps)

. native —+—
isolated —e—
I I I I I

1 2 3 4 5 6
Number of threads

Rx Bandwidth (Gbps)

o N B~ OO ©

Figure 4: Ixgbe Tx and Rx bandwidth.

LXDs

e Performance test on 8 core machine:

% 10 : 5

(o}

G 8 —* ? °

T T S A S —

O

A w

T o o R S native ——

@ | isolated —e—

- 0 | | | | |
1 2 3 4 5 6

F L e S —

o) : :

S 8 —— — o — —s o

= 6

O

2 4

c 5)

S 2 | native —+—

< isolated —e—

d O I I I I |

1 2 3 4 5 6
Number of threads

Figure 4: Ixgbe Tx and Rx bandwidth.

Q: why up to 6 thread on 8 core machine?

LXDs: cons

e Burn extra cores
e ASYNC are not suitable to complex driver(like usb driver)

e EPT only count the direct cost: nested virtualization
needed.

Any other good way?

e Single address space isolation:

e Domain page model

Domain page model

e Protection domain = accessible pages + page permission

e Each page is belongs to a domain.

Page1 Page2 Page3 Page4 Pageb5 Pageb

Domain A

Domain B

Domain C

State-of art protection
mechanism

e ARM domain access control register

e |ntel memory protection keys

State-of art protection
mechanism

e ARM domain access control register (DACR)

e Each page entry has a 4 bits fields, indicate the domain it
belongs. Totally 2°4 = 16 domains.

e DACR (32 bits) has two bits for each domain, means
currently the cpu can/cannot access which domain.

b00 = No access. Any access generates a domain fault.
b01 = Client. Accesses are checked against the access permission bits in the TLB entry.
b10 = Reserved. Any access generates a domain fault.

b1l = Manager. Accesses are not checked against the access permission bits in the TLB entry, so a permission
fault cannot be generated. Attempting to execute code in a page that has the TLB eXecute Never (XN) attribute
set does not generate an abort.

DACR usage currently

e User level sandbox: shred and ARMlock
e Save page table for shared libraries on Android:

o Kernel drivers: DIKernel

Limitions

e Only 16 domains support, easy to swap in 64 bits page
table but...

e DACR only on arm 32, while MPK only for user space.

Still thinking...

e Why write to CR3 are slower than vmfunc?
e Address space isolation: more than direct cost.

e Similar problem: speed up IPC in microkernel(Skybridge)

