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1 Revision History
• 3.2.0

– Add optional groups.

– Fix position of “Type Alias” (it used to be in the middle of “Reference Types”).

• 3.1.0

– Add Integer property literals.

– Add property assignment.

– Add Integer property type.

– Add initial description of property types.

– Change/clarify mux selector width inference to align with other operations (must
infer to some width by itself, pad if infers to less than 1-bit).

– Fix printf grammar, expect commas between arguments.

– Fix spec bug where string-encoded literals were still used in examples of “Constant
Integer Expression”.

– Fix bug in grammar where int was incorrectly specified as being binary instead of
decimal.

• 3.0.0

– Add intrinsic modules to syntax highlighting

– Add connect, invalidate to syntax highlighting

– Add alternative regreset syntax

– Add literal identifiers to allow for legal numeric fields

– Simplify last-connect semantics explanation, remove “statement groups” (which
are not part of the spec) which are only used in the original explanation

– Add enumeration types, match statements, and enumeration expressions

– Fixup probe endpoint and non-passive force examples.

– Add type alias

– Restrict string-encoded integers to only being usable in the construction of hardware
literals.

– Change string-encoded integers to radix-encoded integers.

– Remove legacy connect (<=) and invalidate (is invalid) syntax

– Make connect disallow implicit truncation (again).
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• 2.4.0

– Add radix-encoded integer literals as alternative syntax for string-encoded integer
literals.

– Add missing deprecation notice for “reg with” syntax.

• 2.3.0

– Add intrinsic modules to syntax highlighting

– Add connect, invalidate to syntax highlighting

– Add alternative regreset syntax

• 2.2.0

– Add ‘asAsyncReset’ to primop_1expr_keyword in “FIRRTL Language Definition”

– Fix grammar for force_release statements

– Add a description of conventions for modules

• 2.1.1

– Fix typos in force/release examples, force takes expr not int literal.

– Delineate string and single-quoted/double-quoted string in grammar.

– Deprecate reference-first statements.

– Tweak grammar of ‘read’ to support ‘read(probe(x))’ as in examples.

• 2.0.1

– Clarify int/string types and their allowed usage.

• 2.0.0

– Remove Fixed Point Types.

– Remove conditionally valid expression (validif)

– Remove partial connect (“<-”)

– Remove FIRRTL forms and lowering, indicate that high-level constructs may be
preserved by a FIRRTL compiler

– Add Compiler Implementation Details documenting Lower Types pass

– Define constant type modifier.

– Remove stray language leftover from removing conditionally valid.

– Render inline annotations as JSON, fix typo in example.

– Fix rendering of type modifiers (const) in document.

– Fix grammar for registers.

6



Specification for the FIRRTL Language Version 3.2.0

– Add reference types and related statements.

• 1.2.0

– Specify behavior of zero bit width integers, add zero-width literals

– Specify behavior of indeterminate values

– Add an explicit section about “Aggregate Types” and move “Vector Type” and
“Bundle Type” under it.

– Move “head” and “tail” from primop_1expr_keyword to primop_1expr1int_keyword
in the “FIRRTL Language Definition”.

– Add in-line annotation format

– Specify behavior of combinational loops

– Change connect to truncate widths to align with all existing FIRRTL Compiler
implementations

– Fix spelling/grammar issues

– Allow out-of-bounds errors to be caught at compile time.

– Clarify the string argument for cover is a comment, not a message as it is for
assert and assume.

– Add intrinsics.

– Fix parameter grammar to include name of parameter.

• 1.1.0

– Add version information to FIRRTL files

– Specify “As-If” limited to boolean

• 1.0.0

– Document the versioning scheme of this specification.

• 0.4.0

– Add documentation for undocumented features of the Scala-based FIRRTL Com-
piler (SFC) that are de facto a part of the FIRRTL specification due to their
widespread use in Chisel and the SFC: Annotations, Targets, Asynchronous Reset,
Abstract Reset

– Minor typo corrections and prose clarifications.

• 0.3.1

– Clarify analog usage in registers

– Rework authorship as “The FIRRTL Specification Contributors”
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– Add version information as subtitle

– Formatting fixes

• 0.3.0

– Document moved to Markdown

2 Introduction

2.1 Background
The ideas for FIRRTL (Flexible Intermediate Representation for RTL) originated from work
on Chisel, a hardware description language (HDL) embedded in Scala used for writing highly-
parameterized circuit design generators. Chisel designers manipulate circuit components
using Scala functions, encode their interfaces in Scala types, and use Scala’s object-orientation
features to write their own circuit libraries. This form of meta-programming enables expressive,
reliable and type-safe generators that improve RTL design productivity and robustness.

The computer architecture research group at U.C. Berkeley relies critically on Chisel to allow
small teams of graduate students to design sophisticated RTL circuits. Over a three year
period with under twelve graduate students, the architecture group has taped-out over ten
different designs.

Internally, the investment in developing and learning Chisel was rewarded with huge gains in
productivity. However, Chisel’s external rate of adoption was slow for the following reasons.

1. Writing custom circuit transformers requires intimate knowledge about the internals of
the Chisel compiler.

2. Chisel semantics are under-specified and thus impossible to target from other languages.

3. Error checking is unprincipled due to under-specified semantics resulting in incompre-
hensible error messages.

4. Learning a functional programming language (Scala) is difficult for RTL designers with
limited programming language experience.

5. Confounding the previous point, conceptually separating the embedded Chisel HDL
from the host language is difficult for new users.

6. The output of Chisel (Verilog) is unreadable and slow to simulate.

As a consequence, Chisel needed to be redesigned from the ground up to standardize its
semantics, modularize its compilation process, and cleanly separate its front-end, intermediate
representation, and backends. A well defined intermediate representation (IR) allows the
system to be targeted by other HDLs embedded in other host programming languages, making
it possible for RTL designers to work within a language they are already comfortable with.
A clearly defined IR with a concrete syntax also allows for inspection of the output of circuit
generators and transformers thus making clear the distinction between the host language
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and the constructed circuit. Clearly defined semantics allows users without knowledge of
the compiler implementation to write circuit transformers; examples include optimization
of circuits for simulation speed, and automatic insertion of signal activity counters. An
additional benefit of a well defined IR is the structural invariants that can be enforced
before and after each compilation stage, resulting in a more robust compiler and structured
mechanism for error checking.

2.2 Design Philosophy
FIRRTL represents the standardized elaborated circuit that the Chisel HDL produces.
FIRRTL represents the circuit immediately after Chisel’s elaboration. It is designed to
resemble the Chisel HDL after all meta-programming has executed. Thus, a user program
that makes little use of meta-programming facilities should look almost identical to the
generated FIRRTL.

For this reason, FIRRTL has first-class support for high-level constructs such as vector types,
bundle types, conditional statements, and modules. A FIRRTL compiler may choose to
convert high-level constructs into low-level constructs before generating Verilog.

Because the host language is now used solely for its meta-programming facilities, the frontend
can be very light-weight, and additional HDLs written in other languages can target FIRRTL
and reuse the majority of the compiler toolchain.

3 Acknowledgments
The FIRRTL specification was originally published as a UC Berkeley Tech Report
(UCB/EECS-2016-9) authored by Adam Izraelevitz (@azidar), Patrick Li (@CuppoJava),
and Jonathan Bachrach (@jackbackrack). The vision for FIRRTL was then expanded in an
ICCAD paper and in Adam’s thesis.
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• @ekiwi
• @ekiwi-sifive
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• @jackkoenig
• @jared-barocsi
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• @richardxia
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• @shunshou
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4 File Preamble
A FIRRTL file begins with a magic string and version identifier indicating the version of this
standard the file conforms to (see Section 20). This will not be present on files generated
according to versions of this standard prior to the first versioned release of this standard to
include this preamble.

FIRRTL version 1.1.0
circuit MyTop...

5 Circuits and Modules

5.1 Circuits
All FIRRTL circuits consist of a list of modules, each representing a hardware block that can
be instantiated. The circuit must specify the name of the top-level module.

circuit MyTop :
module MyTop :

; ...
module MyModule :

; ...
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5.2 Modules
Each module has a given name, a list of ports, and a list of statements representing the
circuit connections within the module. A module port is specified by its direction, which
may be input or output, a name, and the data type of the port.

The following example declares a module with one input port, one output port, and one
statement connecting the input port to the output port. See Section 8.1 for details on the
connect statement.

module MyModule :
input foo: UInt
output bar: UInt
connect bar, foo

Note that a module definition does not indicate that the module will be physically present
in the final circuit. Refer to the description of the instance statement for details on how to
instantiate a module (Section 8.10).

5.3 Optional Groups
Optional groups are named collections of statements inside a module. Optional groups contain
functionality which will not be present in all executions of a circuit. Optional groups are
intended to be used to keep verification, debugging, or other collateral, not relevant to the
operation of the circuit, in a separate area. Each group can then be optionally included in
the resulting design.

The declgroup keyword declares an optional group with a specific identifier. An optional
group may be declared in a circuit or in another optional group declaration. An optional
group’s identifier must be unique within the current namespace. I.e., the identifier of a
top-level group declared in a circuit must not conflict with the identifier of a module, external
module, or implementation defined module.

Each optional group declaration must include a string that sets the lowering convention for
that group. The FIRRTL ABI specification defines supported lowering convention. One such
strategy is "bind" which lowers to modules and instances which are instantiated using the
SystemVerilog bind feature.

The group keyword defines optional functionality inside a module. An optional group may
only be defined inside a module. An optional group must reference a group declared in the
current circuit. Declarations of identifiers and references to existing identifiers following the
same lexical scoping rules as FIRRTL conditional statements (see: Section 8.8.5)—identifiers
declared in the group definition may not be used outside the group while groups may refer
to identifiers declared outside the group. The statements in a group are restricted in
what identifiers they are allowed to drive. A statement in a group may drive no sinks
declared outside the group with one exception: a statement in a group may drive reference
types declared outside the group if the reference types are associated with the group in which
the statement is declared (see: Section 7.3).
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The circuit below contains one optional group declaration, Bar. Module Foo contains a group
definition that creates a node computed from a port defined in the scope of Foo.

circuit Foo:
declgroup Bar, bind: ; Declaration of group Bar with convention "bind"

module Foo:
input a: UInt<1>

group Bar: ; Definition of group Bar inside module Foo
node notA = not(a)

Optional group declarations may be nested. Optional group declarations are declared with
the declgroup keyword indented under an existing declgroup keyword. The circuit below
contains four optional group declarations, three of which are nested. Bar is the top-level
group. Baz and Qux are nested under Bar. Quz is nested under Qux.

circuit Foo:
declgroup Bar, bind:

declgroup Baz, bind:
declgroup Qux, bind:

declgroup Quz, bind:

Optional group definitions must match the nesting of declared groups. Optional groups are
defined under existing groups with the group keyword indented under an existing group
keyword. For the four declared groups in the circuit above, the following is a legal nesting of
group definitions:

module Foo:
input a: UInt<1>

group Bar:
node notA = not(a)
group Baz:
group Qux:

group Quz:
node notNotA = not(notA)

Statements in a nested optional group may only read from ports or declarations of the
current module, the current group, or a parent group—statements in a group may not drive
components declared outside the group except reference types associated with the same
group. In the above example, notA is accessible in the group definition of Quz because notA
is declared in a parent group.

In the example below, module Baz defines a group Bar. Module Baz has an output port, _a,
that is associated with the group, Bar. This port can then be driven from inside the group.
In module Foo, the port may be read from inside the group. Stated differently, module Baz
has an additional port _a that is only accessible inside a defined group Bar.
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circuit Foo:
declgroup Bar, bind:

module Baz:
output _a: Probe<UInt<1>, Bar>

wire a: UInt<1>

group Bar:
node notA = not(a)
define _a = probe(notA)

module Foo:

inst baz of Baz

group Bar:
node _b = baz._a

If a port is associated with a nested group then a period is used to indicate the nesting. E.g.,
the following circuit has a port associated with the nested group Bar.Baz:

circuit Foo:
declgroup Bar, bind:

declgroup Baz, bind:

module Foo:
output a: Probe<UInt<1>, Bar.Baz>

Optional groups will be compiled to modules whose ports are derived from what they capture
from their visible scope. For full details of the way optional groups are compiled, see the
FIRRTL ABI specification.

5.4 Externally Defined Modules
Externally defined modules are modules whose implementation is not provided in the current
circuit. Only the ports and name of the externally defined module are specified in the circuit.
An externally defined module may include, in order, an optional defname which sets the
name of the external module in the resulting Verilog, zero or more name–value parameter
statements, and zero or more ref statements indicating the resolved paths of the module’s
exported references. Each name–value parameter statement will result in a value being passed
to the named parameter in the resulting Verilog. Every port or port sub-element of reference
type must have exactly one ref statement.

The widths of all externally defined module ports must be specified. Width inference,
described in Section 12, is not supported for externally defined module ports.
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A common use of an externally defined module is to represent a Verilog module that will be
written separately and provided together with FIRRTL-generated Verilog to downstream
tools.

An example of an externally defined module with parameters is:

extmodule MyExternalModule :
input foo: UInt<2>
output bar: UInt<4>
output baz: SInt<8>
defname = VerilogName
parameter x = "hello"
parameter y = 42

An example of an externally defined module with references is:

extmodule MyExternalModuleWithRefs :
input foo : UInt<2>
output mysignal : Probe<UInt<1>>
output myreg : RWProbe<UInt<8>>
ref mysignal is "a.b"
ref myreg is "x.y"

These resolved reference paths capture important information for use in the current FIRRTL
design. While they are part of the FIRRTL-level interface to the external module, they are
not expected to correspond to a particular Verilog construct. They exist to carry information
about the implementation of the extmodule necessary for code generation of the current
circuit.

The types of parameters may be any of the following literal types. See Section 6 for more
information:

1. Integer literal, e.g. 42
2. String literal, e.g., "hello"
3. Raw String Literal, e.g., 'world'

An integer literal is lowered to a Verilog literal. A string literal is lowered to a Verilog string.
A raw string literal is lowered verbatim to Verilog.

As an example, consider the following external module:

extmodule Foo:
parameter foo = 'hello'
parameter bar = "world"
parameter baz = 42

This is lowered to a Verilog instantiation site as:

Foo #(
.foo(hello),
.bar("world")
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.baz(42)
) bar();

5.5 Implementation Defined Modules (Intrinsics)
Intrinsic modules are modules which represent implementation-defined, compiler-provided
functionality. Intrinsics generally are used for functionality which requires knowledge of the
implementation or circuit not available to a library writer. What intrinsics are supported by
an implementation is defined by the implementation. The particular intrinsic represented
by an intrinsic module is encoded in intrinsic. The name of the intmodule is only used to
identify a specific instance. An implementation shall type-check all ports and parameters.
Ports may be uninferred (either width or reset) if specified by the implementation (which is
useful for inspecting and interacting with those inference features).

intmodule MyIntrinsicModule_xhello_y64 :
input foo: UInt
output bar: UInt<4>
output baz: SInt<8>
intrinsic = IntrinsicName
parameter x = "hello"
parameter y = 42

The types of intrinsic module parameters may only be literal integers or string literals.

6 Literals
FIRRTL has both integer, string, and raw string literals.

An integer literal is a signed or unsigned decimal integer. The following are examples of
integer literals:

42
-9000

A string literal is a sequence of characters with a leading " and a trailing ". The following is
an example of a string literal:

"hello"

A raw string literal is a sequence of characters with a leading ' and a trailing '. The following
is an example of a raw string literal:

'world'

6.1 Radix-specified Integer Literal
A radix-specified integer literal is a special integer literal with one of the following leading
characters to indicate the numerical encoding:
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• 0b – for representing binary numbers
• 0o – for representing octal numbers
• 0d – for representing decimal numbers
• 0h – for representing hexadecimal numbers

Signed radix-specified integer literals have their sign before the leading encoding character.

The following string-encoded integer literals all have the value 42:

0b101010
0o52
0d42
0h2a

The following string-encoded integer literals all have the value -42:

-0b101010
-0o52
-0d42
-0h2a

Radix-specified integer literals are only usable when constructing hardware integer literals.
Any use in place of an integer is disallowed.

7 Types
FIRRTL has four classes of types: ground types, aggregate types, reference types, and property
types. Ground types are fundamental and are not composed of other types. Aggregate types
and reference types are composed of one or more aggregate or ground types. Reference types
may not contain other reference types. Property types represent information about the circuit
that is not hardware.

7.1 Ground Types
There are five classes of ground types in FIRRTL: unsigned integer types, signed integer
types, a clock type, reset types, and analog types.

7.1.1 Integer Types

Both unsigned and signed integer types may optionally be given a known non-negative integer
bit width.

UInt ; unsigned int type with inferred width
SInt ; signed int type with inferred width
UInt<10> ; unsigned int type with 10 bits
SInt<32> ; signed int type with 32 bits

Alternatively, if the bit width is omitted, it will be automatically inferred by FIRRTL’s width
inferencer, as detailed in Section 12.
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7.1.1.1 Zero Bit Width Integers Integers of width zero are permissible. They are
always zero extended. Thus, when used in an operation that extends to a positive bit width,
they behave like a zero. While zero bit width integers carry no information, we allow 0-bit
integer constant zeros for convenience: UInt<0>(0) and SInt<0>(0).

wire zero_u : UInt<0>
invalidate zero_u
wire zero_s : SInt<0>
invalidate zero_s

wire one_u : UInt<1>
connect one_u, zero_u
wire one_s : SInt<1>
connect one_s, zero_s

Is equivalent to:

wire one_u : UInt<1>
connect one_u, UInt<1>(0)
wire one_s : SInt<1>
connect one_s, SInt<1>(0)

7.1.2 Clock Type

The clock type is used to describe wires and ports meant for carrying clock signals. The
usage of components with clock types are restricted. Clock signals cannot be used in most
primitive operations, and clock signals can only be connected to components that have been
declared with the clock type.

The clock type is specified as follows:

Clock

7.1.3 Reset Type

The uninferred Reset type is either inferred to UInt<1> (synchronous reset) or AsyncReset
(asynchronous reset) during compilation.

Reset ; inferred type
AsyncReset

Synchronous resets used in registers will be mapped to a hardware description language
representation for synchronous resets.

The following example shows an uninferred reset that will get inferred to a synchronous reset.

input a : UInt<1>
wire reset : Reset
connect reset, a
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After reset inference, reset is inferred to the synchronous UInt<1> type:

input a : UInt<1>
wire reset : UInt<1>
connect reset, a

Asynchronous resets used in registers will be mapped to a hardware description language
representation for asynchronous resets.

The following example demonstrates usage of an asynchronous reset.

input clock : Clock
input reset : AsyncReset
input x : UInt<8>
regreset y : UInt<8>, clock, reset, UInt(123)
; ...

Inference rules are as follows:

1. An uninferred reset driven by and/or driving only asynchronous resets will be inferred
as asynchronous reset.

2. An uninferred reset driven by and/or driving both asynchronous and synchronous resets
is an error.

3. Otherwise, the reset is inferred as synchronous (i.e. the uninferred reset is only invali-
dated or is driven by or drives only synchronous resets).

Resets, whether synchronous or asynchronous, can be cast to other types. Casting between
reset types is also legal:

input a : UInt<1>
output y : AsyncReset
output z : Reset
wire r : Reset
connect r, a
connect y, asAsyncReset(r)
connect z, asUInt(y)

See Section 10 for more details on casting.

7.1.4 Analog Type

The analog type specifies that a wire or port can be attached to multiple drivers. Analog
cannot be used as part of the type of a node or register, nor can it be used as part of the
datatype of a memory. In this respect, it is similar to how inout ports are used in Verilog,
and FIRRTL analog signals are often used to interface with external Verilog or VHDL IP.

In contrast with all other ground types, analog signals cannot appear on either side of a
connection statement. Instead, analog signals are attached to each other with the commutative
attach statement. An analog signal may appear in any number of attach statements, and
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a legal circuit may also contain analog signals that are never attached. The only primitive
operations that may be applied to analog signals are casts to other signal types.

When an analog signal appears as a field of an aggregate type, the aggregate cannot appear
in a standard connection statement.

As with integer types, an analog type can represent a multi-bit signal. When analog signals
are not given a concrete width, their widths are inferred according to a highly restrictive width
inference rule, which requires that the widths of all arguments to a given attach operation be
identical.

Analog<1> ; 1-bit analog type
Analog<32> ; 32-bit analog type
Analog ; analog type with inferred width

7.2 Aggregate Types
FIRRTL supports three aggregate types: vectors, bundles, and enumeration. Aggregate types
are composed of ground types or other aggregate types.

7.2.1 Vector Types

A vector type is used to express an ordered sequence of elements of a given type. The length
of the sequence must be non-negative and known.

The following example specifies a ten element vector of 16-bit unsigned integers.

UInt<16>[10]

The next example specifies a ten element vector of unsigned integers of omitted but identical
bit widths.

UInt[10]

Note that any type, including other aggregate types, may be used as the element type of
the vector. The following example specifies a twenty element vector, each of which is a ten
element vector of 16-bit unsigned integers.

UInt<16>[10][20]

7.2.2 Bundle Types

A bundle type is used to express a collection of nested and named types. All fields in a
bundle type must have a given name, and type. All names must be legal identifiers.

The following is an example of a possible type for representing a complex number. It has two
fields, real, and imag, both 10-bit signed integers.

{real: SInt<10>, imag: SInt<10>}

Additionally, a field may optionally be declared with a flipped orientation.
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{word: UInt<32>, valid: UInt<1>, flip ready: UInt<1>}

In a connection between circuit components with bundle types, the data carried by the flipped
fields flow in the opposite direction as the data carried by the non-flipped fields.

As an example, consider a module output port declared with the following type:

output a: {word: UInt<32>, valid: UInt<1>, flip ready: UInt<1>}

In a connection to the a port, the data carried by the word and valid sub-fields will flow
out of the module, while data carried by the ready sub-field will flow into the module. More
details about how the bundle field orientation affects connections are explained in Section 8.1.

As in the case of vector types, a bundle field may be declared with any type, including other
aggregate types.

{real: {word: UInt<32>, valid: UInt<1>, flip ready: UInt<1>},
imag: {word: UInt<32>, valid: UInt<1>, flip ready: UInt<1>}}

When calculating the final direction of data flow, the orientation of a field is applied recursively
to all nested types in the field. As an example, consider the following module port declared
with a bundle type containing a nested bundle type.

output myport: {a: UInt, flip b: {c: UInt, flip d: UInt}}

In a connection to myport, the a sub-field flows out of the module. The c sub-field contained
in the b sub-field flows into the module, and the d sub-field contained in the b sub-field flows
out of the module.

7.2.3 Enumeration Types

Enumerations are structural disjoint union types. An enumeration has a number of variants,
each with a type. The different variants are specified with tags. The variant types of an
enumeration must all be passive and cannot contain analog or probe types.

In the following example, the first variant has the tag a with type UInt<8>, and the second
variant has the tag b with type UInt<16>.

{|a: UInt<8>, b: UInt<16>|}

A variant may optionally omit the type, in which case it is implicitly defined to be UInt<0>.
In the following example, all variants have the type UInt<0>.

{|a, b, c|}

7.3 Reference Types
References can be exported from a module for indirect access elsewhere, and are captured
using values of reference type.

For use in cross-module references (hierarchical references in Verilog), a reference to a probe
of the circuit component is used. See Section 8.14 for details.
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Using probe-type ports, modules may expose internals for reading and forcing without routing
wires out of the design.

This is often useful for testing and verification, where probe types allow reads of the entities to
be explicitly exported without hard-coding their place in the design. Instead, by using probe-
type references, a testbench module may express accesses to the internals which will resolve
to the appropriate target language construct by the compiler (e.g., hierarchical reference).

Reference ports are not expected to be synthesizable or representable in the target language
and are omitted in the compiled design; they only exist at the FIRRTL level.

Reference-type ports are statically routed through the design using the define statement.

There are two reference types, Probe and RWProbe, described below. These are used for
indirect access to probes of the data underlying circuit constructs they originate from,
captured using probe expressions (see Section 8.14).

Probe types are read-only, and RWProbe may be used with force and related statements.
Prefer the former as much as possible, as read-only probes impose fewer limitations and are
more amenable to optimization.

Probe references must always be able to be statically traced to their target, or to an
external module’s output reference. This means no conditional connections via sub-accesses,
multiplexers, or other means.

Reference types compose with optional groups (see Section 5.3. A reference type may be
associated with an optional group. When associated with an optional group, the reference
type may only be driven from that optional group.

7.3.1 Probe Types

Probe types are reference types used to access circuit elements’ data remotely.

There are two probe types: Probe and RWProbe. RWProbe is a Probe type, but not the other
way around.

Probe types are parametric over the type of data that they refer to, which is always passive
(as defined in Section 7.7) even when the probed target is not (see Section 8.14.1.1). Probe
types cannot contain reference types.

Conceptually probe types are single-direction views of the probed data-flow point. They are
references to the data accessed with the probe expression generating the reference.

Examples:

Probe<UInt> ; readable reference to unsigned integer with inferred width
RWProbe<{x: {y: UInt}}> ; readable and forceable reference to bundle
Probe<UInt, A.B> ; readable reference associated with group A.B

For details of how to read and write through probe types, see Sections 9.10, 8.14.2.

All ports of probe type must be initialized with exactly one define statement.
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Probe types are only allowed as part of module ports and may not appear anywhere else.

Sub-accesses are not allowed with types where the result is or has probe types within. This
is because sub-accesses are essentially conditional connections (see Section 9.7 for details),
which are not allowed with probe types. The following example demonstrates some legal and
illegal expressions:

module NoSubAccessesWithProbes :
input x : {a : Probe<UInt[2]>, b : UInt}[3]
input i : UInt
input c : const UInt
output p : Probe<UInt>

; Illegal: x[i], x[c]
; Illegal: x[0].a[i], x[0].a[c]

; Legal:
define p = x[0].a[1]

Probe types may be specified as part of an external module (see Section 5.4), with the
resolved referent for each specified using ref statements.

Probe types may target const signals, but cannot use rwprobe with a constant signal to
produce a RWProbe<const T>, as constant values should never be mutated at runtime.

7.3.1.1 Width and Reset Inference Probe types do participate in global width and
reset inference, but only in the direction of the reference itself (no inference in the other
direction, even with force statements). Both inner types of the references used in a define
statement must be identical or the same type with the destination uninferred (this is checked
recursively). Additionally, any contained reset type is similarly only inferred in the direction
of the reference, even if it eventually reaches a known reset type.

In the following example, the FIRRTL compiler will produce an error constrasted with
inferring the input port as AsyncReset if a direct connection was used:

circuit ResetInferBad :
module ResetInferBad :

input in : Reset
output out : AsyncReset
connect out, read(probe(in))

The following circuit has all resets inferred to AsyncReset, however:

circuit ResetInferGood :
module ResetInferGood :

input in : Reset
output out : Reset
output out2 : AsyncReset

22



Specification for the FIRRTL Language Version 3.2.0

connect out, read(probe(in))
connect out2, in

7.3.2 Input Probe References

Probe references are generally forwarded up the design hierarchy, being used to reach down
into design internals from a higher point. As a result probe-type references are most often
output ports, but may also be used on input ports internally, as described in this section.

Input probe references are allowed on internal modules, but they should be used with care
because they make it possible to express invalid or multiple reference paths. When probe
references are used to access the underlying data (e.g., with a read or force), they must
target a statically known element at or below the point of that use, in all contexts. Support
for other scenarios are allowed as determined by the implementation.

Input probe references are not allowed on public-facing modules: e.g., the top module and
external modules.

Examples of input probe references follow.

7.3.2.1 U-Turn Example

module UTurn:
input in : Probe<UInt>
output out : Probe<UInt>
define out = in

module RefBouncing:
input x: UInt
output y: UInt

inst u1 of UTurn
inst u2 of UTurn

node n = x
define u1.in = probe(n)
define u2.in = u1.out

connect y, read(u2.out) ; = x

In the above example, the probe of node n is routed through two modules before its resolution.

7.3.2.2 Invalid Input Reference When using a probe reference, the target must reside
at or below the point of use in the design hierarchy. Input references make it possible to
create designs where this is not the case, and such upwards references are not supported:

module Foo:
input in : Probe<UInt>
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output out : UInt

connect out, read(in)

Even when the target resolves at or below, the path must be the same in all contexts so a
single description of the module may be generated.

The following example demonstrates such an invalid use of probe references:

circuit Top:
module Top:

input in : UInt<4>
output out : UInt

inst ud1 of UpDown
connect ud1.in, in
define ud1.in_ref = ud1.r1

inst ud2 of UpDown
connect ud2.in, in
define ud2.in_ref = ud2.r2

connect out, add(ud1.out, ud2.out)

module UpDown:
input in : UInt<4>
input in_ref : Probe<UInt<4>>
output r1 : Probe<UInt<4>>
output r2 : Probe<UInt<4>>
output out : UInt

; In ud1, this is UpDown.n1, in ud2 this is UpDown.n2 .
; However, this is not supported as it cannot be both at once.
connect out, read(in_ref)
node n1 = and(in, UInt<4>(1))
node n2 = and(in, UInt<4>(3))
define r1 = probe(n1)
define r2 = probe(n2)

7.3.2.3 IO with references to endpoint data A primary motivation for input probe
references is that in some situations they make it easier to generate the FIRRTL code. While
output references necessarily capture this design equivalently, this can be harder to generate
and so is useful to support.

The following demonstrates an example of this, where it’s convenient to use the same bundle
type as both output to one module and input to another, with references populated by both
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modules targeting signals of interest at each end. For this to be the same bundle type – input
on one and output on another – the Probe references for each end should be output-oriented
and accordingly are input-oriented at the other end. It would be inconvenient to generate
this design so that each has output probe references only.

The Connect module instantiates a Producer and Consumer module, connects them using a
bundle with references in both orientations, and forwards those references for inspection up
the hierarchy. The probe targets are not significant, here they are the same data being sent
between the two, as stored in each module.

module Consumer:
input in : {a: UInt, pref: Probe<UInt>, flip cref: Probe<UInt>}
; ...
node n = in.a
define in.cref = probe(n)

module Producer:
output out : {a: UInt, pref: Probe<UInt>, flip cref: Probe<UInt>}
wire x : UInt
define out.pref = probe(x)
; ...
connect out.a, x

module Connect:
output out : {pref: Probe<UInt>, cref: Probe<UInt>}

inst a of Consumer
inst b of Producer

; Producer => Consumer
connect a.in.a, b.out.a
define a.in.pref = b.out.pref
define b.out.cref = a.in.cref

; Send references out
define out.pref = b.out.pref
define out.cref = a.in.cref

module Top:
inst c of Connect

node producer_debug = read(c.out.pref); ; Producer-side signal
node consumer_debug = read(c.out.cref); ; Consumer-side signal
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7.4 Type Alias
A type alias is a mechanism to assign names to existing FIRRTL types. Type aliases enables
their reuse across multiple declarations.

type WordType = UInt<32>
type ValidType = UInt<1>
type Data = {w: WordType, valid: ValidType, flip ready: UInt<1>}
type AnotherWordType = UInt<32>

module TypeAliasMod:
input in: Data
output out: Data
wire w: AnotherWordType
connect w, in.w
...

The type declaration is globally defined and all named types exist in the same namespace
and thus must all have a unique name. Type aliases do not share the same namespace as
modules; hence it is allowed for type aliases to conflict with module names. Note that when
we compare two types, the equivalence is determined solely by their structures. For instance
types of w and in.w are equivalent in the example above even though they are different type
alias.

7.5 Property Types
FIRRTL property types represent information about the circuit that is not hardware. This
is useful to capture domain-specific knowledge and design intent alongside the hardware
description within the same FIRRTL.

Property types cannot affect hardware functionality or the hardware ABI. They cannot be
used in any hardware types, including aggregates and references. They only exist to augment
the hardware description with extra information.

Handling of property types is completely implementation-defined. A valid FIRRTL compiler
implementation may do anything with property types as long as the existence of property
types does not affect hardware functionality or the hardware ABI. For example, it is valid to
drop property types from the IR completely.

Property types are legal in the following constructs:

• Port declarations on modules and external modules

7.5.1 Integer Property Types

Integer property types represent arbitrary precision signed integer values.

module Example:
input intProp : Integer ; an input port of Integer property type
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7.6 Type Modifiers
7.6.1 Constant Type

A constant type is a type whose value is guaranteed to be unchanging at circuit execution
time. Constant is a constraint on the mutability of the value, it does not imply a literal
value at a point in the emitted design. Constant types may be used in ports, wire, nodes,
and generally anywhere a non-constant type is usable. Operations on constant type are well
defined. As a general rule (with any exception listed in the definition for such operations
as have exceptions), an operation whose arguments are constant produces a constant. An
operation with some non-constant arguments produce a non-constant. Constants can be used
in any context with a source flow which allows a non-constant. Constants may be used as
the target of a connect so long as the source of the connect is itself constant. These rules
ensure all constants are derived from constant integer expressions or from constant-typed
input ports of the top-level module.

const UInt<3>
const SInt
const {real: UInt<32>, imag : UInt<32>, other : const SInt}

Last-connect semantics of constant typed values are well defined, so long as any control flow
is conditioned on an expression which has a constant type. This means if a constant is being
assigned to in a when block, the when’s condition must be a constant.

Output ports of external modules and input ports to the top-level module may be constant.
In such case, the value of the port is not known, but that it is non-mutating at runtime is
known.

The indexing of a constant aggregate produces a constant of the appropriate type for the
element.

7.6.1.1 A note on implementation Constant types are a restriction on FIRRTL types.
Therefore, FIRRTL structures which would be expected to produce certain Verilog structures
will produce the same structure if instantiated with a constant type. For example, an input
port of type const UInt will result in a port in the Verilog, if under the same conditions an
input port of type UInt would have.

It is not intended that constants are a replacement for parameterization. Constant typed
values have no particular meta-programming capability. It is, for example, expected that a
module with a constant input port be fully compilable to non-parameterized Verilog.

7.7 Passive Types
It is inappropriate for some circuit components to be declared with a type that allows for
data to flow in both directions. For example, all sub-elements in a memory should flow in
the same direction. These components are restricted to only have a passive type.

Intuitively, a passive type is a type where all data flows in the same direction, and is defined
to be a type that recursively contains no fields with flipped orientations. Thus all ground
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types are passive types. Vector types are passive if their element type is passive. And bundle
types are passive if no fields are flipped and if all field types are passive.

All property types are passive.

7.8 Type Equivalence
The type equivalence relation is used to determine whether a connection between two
components is legal. See Section 8.1 for further details about connect statements.

An unsigned integer type is always equivalent to another unsigned integer type regardless of
bit width, and is not equivalent to any other type. Similarly, a signed integer type is always
equivalent to another signed integer type regardless of bit width, and is not equivalent to any
other type.

Clock types are equivalent to clock types, and are not equivalent to any other type.

An uninferred Reset can be connected to another Reset, UInt of unknown width, UInt<1>,
or AsyncReset. It cannot be connected to both a UInt and an AsyncReset.

The AsyncReset type can be connected to another AsyncReset or to a Reset.

Two enumeration types are equivalent if both have the same number of variants, and both
the enumerations’ i’th variants have matching names and equivalent types.

Two vector types are equivalent if they have the same length, and if their element types are
equivalent.

Two bundle types are equivalent if they have the same number of fields, and both the bundles’
i’th fields have matching names and orientations, as well as equivalent types. Consequently,
{a:UInt, b:UInt} is not equivalent to {b:UInt, a:UInt}, and {a: {flip b:UInt}} is
not equivalent to {flip a: {b: UInt}}.

Two property types are equivalent if they are the same concrete property type.

8 Statements
Statements are used to describe the components within a module and how they interact.

8.1 Connects
The connect statement is used to specify a physically wired connection between two circuit
components.

The following example demonstrates connecting a module’s input port to its output port,
where port myinput is connected to port myoutput.

module MyModule :
input myinput: UInt
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output myoutput: UInt
connect myoutput, myinput

In order for a connection to be legal the following conditions must hold:

1. The types of the left-hand and right-hand side expressions must be equivalent (see
Section 7.8 for details).

2. The flow of the left-hand side expression must be sink or duplex (see Section 11 for an
explanation of flow).

3. Either the flow of the right-hand side expression is source or duplex, or the right-hand
side expression has a passive type.

4. The left-hand side and right-hand side types are not property types.

Connect statements from a narrower ground type component to a wider ground type compo-
nent will have its value automatically sign-extended or zero-extended to the larger bit width.
The behavior of connect statements between two circuit components with aggregate types is
defined by the connection algorithm in Section 8.1.1.

8.1.1 The Connection Algorithm

Connect statements between ground types cannot be expanded further.

Connect statements between two vector typed components recursively connects each sub-
element in the right-hand side expression to the corresponding sub-element in the left-hand
side expression.

Connect statements between two bundle typed components connects the i’th field of the
right-hand side expression and the i’th field of the left-hand side expression. If the i’th field is
not flipped, then the right-hand side field is connected to the left-hand side field. Conversely,
if the i’th field is flipped, then the left-hand side field is connected to the right-hand side field.

8.1.2 Last Connect Semantics

Ordering of connects is significant. Later connects take precedence over earlier ones. In the
following example port b will be connected to myport1, and port a will be connected to
myport2:

module MyModule :
input a: UInt
input b: UInt
output myport1: UInt
output myport2: UInt

connect myport1, a
connect myport1, b
connect myport2, a
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Conditional statements are affected by last connect semantics. For details see Section 8.8.6.

When a connection to a component with an aggregate type is followed by a connection to a
sub-element of that same component, only the connection to the sub-element is overwritten.
Connections to the other sub-elements remain unaffected. In the following example the c
sub-element of port portx will be connected to the c sub-element of myport, and port porty
will be connected to the b sub-element of myport.

module MyModule :
input portx: {b: UInt, c: UInt}
input porty: UInt
output myport: {b: UInt, c: UInt}
connect myport, portx
connect myport.b, porty

The above circuit can be rewritten as:

module MyModule :
input portx: {b: UInt, c: UInt}
input porty: UInt
output myport: {b: UInt, c: UInt}
connect myport.b, porty
connect myport.c, portx.c

When a connection to a sub-element of an aggregate component is followed by a connection
to the entire circuit component, the later connection overwrites the earlier sub-element
connection.

module MyModule :
input portx: {b: UInt, c: UInt}
input porty: UInt
output myport: {b: UInt, c: UInt}
connect myport.b, porty
connect myport, portx

The above circuit can be rewritten as:

module MyModule :
input portx: {b: UInt, c: UInt}
input porty: UInt
output myport: {b: UInt, c: UInt}
connect myport, portx

See Section 9.5 for more details about sub-field expressions.

8.2 Empty
The empty statement does nothing and is used simply as a placeholder where a statement is
expected. It is specified using the skip keyword.
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The following example:

connect a, b
skip
connect c, d

can be equivalently expressed as:

connect a, b
connect c, d

The empty statement is most often used as the else branch in a conditional statement, or
as a convenient placeholder for removed components during transformational passes. See
Section 8.8 for details on the conditional statement.

8.3 Wires
A wire is a named combinational circuit component that can be connected to and from using
connect statements.

The following example demonstrates instantiating a wire with the given name mywire and
type UInt.

wire mywire: UInt

8.4 Registers
A register is a named stateful circuit component. Reads from a register return the current
value of the element, writes are not visible until after a positive edges of the register’s clock
port.

The clock signal for a register must be of type Clock. The type of a register must be a
passive type (see Section 7.7) and may not be const.

Registers may be declared without a reset using the reg syntax and with a reset using the
regreset syntax.

8.4.1 Registers without Reset

The following example demonstrates instantiating a register with the given name myreg, type
SInt, and is driven by the clock signal myclock.

wire myclock: Clock
reg myreg: SInt, myclock
; ...

8.4.2 Registers with Reset

A register with a reset is declared using regreset. A regreset adds two expressions after
the type and clock arguments: a reset signal and a reset value. The register’s value is updated
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with the reset value when the reset is asserted. The reset signal must be a Reset, UInt<1>,
or AsyncReset, and the type of initialization value must be equivalent to the declared type
of the register (see Section 7.8 for details). If the reset signal is an AsyncReset, then the
reset value must be a constant type. The behavior of the register depends on the type of
the reset signal. AsyncReset will immediately change the value of the register. UInt<1>
will not change the value of the register until the next positive edge of the clock signal (see
Section 7.1.3). Reset is an abstract reset whose behavior depends on reset inference. In the
following example, myreg is assigned the value myinit when the signal myreset is high.

wire myclock: Clock
wire myreset: UInt<1>
wire myinit: SInt
regreset myreg: SInt, myclock, myreset, myinit
; ...

A register is initialized with an indeterminate value (see Section 16.1).

8.5 Invalidates
An invalidate statement is used to indicate that a circuit component contains indeterminate
values (see Section 16.1). It is specified as follows:

wire w: UInt
invalidate w

Invalidate statements can be applied to any circuit component of any type. However, if the
circuit component cannot be connected to, then the statement has no effect on the component.
This allows the invalidate statement to be applied to any component, to explicitly ignore
initialization coverage errors.

The following example demonstrates the effect of invalidating a variety of circuit components
with aggregate types. See Section 8.5.1 for details on the algorithm for determining what is
invalidated.

module MyModule :
input in: {flip a: UInt, b: UInt}
output out: {flip a: UInt, b: UInt}
wire w: {flip a: UInt, b: UInt}
invalidate in
invalidate out
invalidate w

is equivalent to the following:

module MyModule :
input in: {flip a: UInt, b: UInt}
output out: {flip a: UInt, b: UInt}
wire w: {flip a: UInt, b: UInt}
invalidate in.a
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invalidate out.b
invalidate w.a
invalidate w.b

The handing of invalidated components is covered in Section 16.1.

8.5.1 The Invalidate Algorithm

Invalidating a component with a ground type indicates that the component’s value is
undetermined if the component has sink or duplex flow (see Section 11). Otherwise, the
component is unaffected.

Invalidating a component with a vector type recursively invalidates each sub-element in the
vector.

Invalidating a component with a bundle type recursively invalidates each sub-element in the
bundle.

Components of reference and analog type are ignored, as are any reference or analog types
within the component (as they cannot be connected to).

8.6 Attaches
The attach statement is used to attach two or more analog signals, defining that their values
be the same in a commutative fashion that lacks the directionality of a regular connection. It
can only be applied to signals with analog type, and each analog signal may be attached zero
or more times.

wire x: Analog<2>
wire y: Analog<2>
wire z: Analog<2>
attach(x, y) ; binary attach
attach(z, y, x) ; attach all three signals

8.7 Nodes
A node is simply a named intermediate value in a circuit. The node must be initialized to
a value with a passive type and cannot be connected to. Nodes are often used to split a
complicated compound expression into named sub-expressions.

The following example demonstrates instantiating a node with the given name mynode
initialized with the output of a multiplexer (see Section 9.8).

wire pred: UInt<1>
wire a: SInt
wire b: SInt
node mynode = mux(pred, a, b)
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8.8 Conditionals
Several statements provide branching in the data-flow and conditional control of verification
constructs.

8.8.1 When Statements

Connections within a when statement that connect to previously declared components hold
only when the given condition is high. The condition must have a 1-bit unsigned integer type.

In the following example, the wire x is connected to the input a only when the en signal is
high. Otherwise, the wire x is connected to the input b.

module MyModule :
input a: UInt
input b: UInt
input en: UInt<1>
wire x: UInt
when en :

connect x, a
else :

connect x, b

8.8.1.1 Syntactic Shorthands The else branch of a conditional statement may be
omitted, in which case a default else branch is supplied consisting of the empty statement.

Thus the following example:

module MyModule :
input a: UInt
input b: UInt
input en: UInt<1>
wire x: UInt
when en :

connect x, a

can be equivalently expressed as:

module MyModule :
input a: UInt
input b: UInt
input en: UInt<1>
wire x: UInt
when en :

connect x, a
else :

skip
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To aid readability of long chains of conditional statements, the colon following the else
keyword may be omitted if the else branch consists of a single conditional statement.

Thus the following example:

module MyModule :
input a: UInt
input b: UInt
input c: UInt
input d: UInt
input c1: UInt<1>
input c2: UInt<1>
input c3: UInt<1>
wire x: UInt
when c1 :

connect x, a
else :

when c2 :
connect x, b

else :
when c3 :

connect x, c
else :

connect x, d

can be equivalently written as:

module MyModule :
input a: UInt
input b: UInt
input c: UInt
input d: UInt
input c1: UInt<1>
input c2: UInt<1>
input c3: UInt<1>
wire x: UInt
when c1 :

connect x, a
else when c2 :

connect x, b
else when c3 :

connect x, c
else :

connect x, d

To additionally aid readability, a conditional statement where the contents of the when branch
consist of a single line may be combined into a single line. If an else branch exists, then the
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else keyword must be included on the same line.

The following statement:

when c :
connect a, b

else :
connect e, f

can have the when keyword, the when branch, and the else keyword expressed as a single
line:

when c : connect a, b else :
connect e, f

The else branch may also be added to the single line:

when c : connect a, b else : connect e, f

8.8.2 Match Statements

Match statements are used to discriminate the active variant of an enumeration typed
expression. A match statement must exhaustively test every variant of an enumeration. An
optional binder may be specified to extract the data of the variant.

match x:
some(v):

connect a, v
none:

connect e, f

8.8.3 Nested Declarations

If a component is declared within a conditional statement, connections to the component are
unaffected by the condition. In the following example, register myreg1 is always connected
to a, and register myreg2 is always connected to b.

module MyModule :
input a: UInt
input b: UInt
input en: UInt<1>
input clk : Clock
when en :

reg myreg1 : UInt, clk
connect myreg1, a

else :
reg myreg2 : UInt, clk
connect myreg2, b
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Intuitively, a line can be drawn between a connection to a component and that component’s
declaration. All conditional statements that are crossed by the line apply to that connection.

8.8.4 Initialization Coverage

Because of the conditional statement, it is possible to syntactically express circuits containing
wires that have not been connected to under all conditions.

In the following example, the wire a is connected to the wire w when en is high, but it is not
specified what is connected to w when en is low.

module MyModule :
input en: UInt<1>
input a: UInt
wire w: UInt
when en :

connect w, a

This is an illegal FIRRTL circuit and an error will be thrown during compilation. All wires,
memory ports, instance ports, and module ports that can be connected to must be connected
to under all conditions. Registers do not need to be connected to under all conditions, as it
will keep its previous value if unconnected.

8.8.5 Scoping

The conditional statement creates a new scope within each of its when and else branches. It
is an error to refer to any component declared within a branch after the branch has ended.
As mention in Section 14, circuit component declarations in a module must be unique within
the module’s flat namespace; this means that shadowing a component in an enclosing scope
with a component of the same name inside a conditional statement is not allowed.

8.8.6 Conditional Last Connect Semantics

In the case where a connection to a circuit component is followed by a conditional statement
containing a connection to the same component, the connection is overwritten only when the
condition holds. Intuitively, a multiplexer is generated such that when the condition is low,
the multiplexer returns the old value, and otherwise returns the new value. For details about
the multiplexer, see Section 9.8.

The following example:

wire a: UInt
wire b: UInt
wire c: UInt<1>
wire w: UInt
connect w, a
when c :

connect w, b
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can be rewritten equivalently using a multiplexer as follows:

wire a: UInt
wire b: UInt
wire c: UInt<1>
wire w: UInt
connect w, mux(c, b, a)

Because invalid statements assign indeterminate values to components, a FIRRTL Compiler
is free to choose any specific value for an indeterminate value when resolving last connect
semantics. E.g., in the following circuit w has an indeterminate value when c is false.

wire a: UInt
wire c: UInt<1>
wire w: UInt
invalidate w
when c :

connect w, a

A FIRRTL compiler is free to optimize this to the following circuit by assuming that w takes
on the value of a when c is false.

wire a: UInt
wire c: UInt<1>
wire w: UInt
connect w, a

See Section 16.1 for more information on indeterminate values.

The behavior of conditional connections to circuit components with aggregate types can be
modeled by first expanding each connect into individual connect statements on its ground
elements (see Section 8.1.1 for the connection algorithm) and then applying the conditional
last connect semantics.

For example, the following snippet:

wire x: {a: UInt, b: UInt}
wire y: {a: UInt, b: UInt}
wire c: UInt<1>
wire w: {a: UInt, b: UInt}
connect w, x
when c :

connect w, y

can be rewritten equivalently as follows:

wire x: {a:UInt, b:UInt}
wire y: {a:UInt, b:UInt}
wire c: UInt<1>
wire w: {a:UInt, b:UInt}
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connect w.a, mux(c, y.a, x.a)
connect w.b, mux(c, y.b, x.b)

Similar to the behavior of aggregate types under last connect semantics (see Section 8.1.2), the
conditional connects to a sub-element of an aggregate component only generates a multiplexer
for the sub-element that is overwritten.

For example, the following snippet:

wire x: {a: UInt, b: UInt}
wire y: UInt
wire c: UInt<1>
wire w: {a: UInt, b: UInt}
connect w, x
when c :

connect w.a, y

can be rewritten equivalently as follows:

wire x: {a: UInt, b: UInt}
wire y: UInt
wire c: UInt<1>
wire w: {a: UInt, b: UInt}
connect w.a, mux(c, y, x.a)
connect w.b, x.b

8.9 Memories
A memory is an abstract representation of a hardware memory. It is characterized by the
following parameters.

1. A passive type representing the type of each element in the memory.

2. A positive integer literal representing the number of elements in the memory.

3. A variable number of named ports, each being a read port, a write port, or readwrite
port.

4. A non-negative integer literal indicating the read latency, which is the number of cycles
after setting the port’s read address before the corresponding element’s value can be
read from the port’s data field.

5. A positive integer literal indicating the write latency, which is the number of cycles
after setting the port’s write address and data before the corresponding element within
the memory holds the new value.

6. A read-under-write flag indicating the behavior when a memory location is written to
while a read to that location is in progress.

Integer literals for the number of elements and the read/write latencies may not be radix-
encoded integer literals.
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The following example demonstrates instantiating a memory containing 256 complex numbers,
each with 16-bit signed integer fields for its real and imaginary components. It has two
read ports, r1 and r2, and one write port, w. It is combinationally read (read latency is
zero cycles) and has a write latency of one cycle. Finally, its read-under-write behavior is
undefined.

mem mymem :
data-type => {real:SInt<16>, imag:SInt<16>}
depth => 256
reader => r1
reader => r2
writer => w
read-latency => 0
write-latency => 1
read-under-write => undefined

In the example above, the type of mymem is:

{flip r1: {addr: UInt<8>,
en: UInt<1>,
clk: Clock,
flip data: {real: SInt<16>, imag: SInt<16>}},

flip r2: {addr: UInt<8>,
en: UInt<1>,
clk: Clock,
flip data: {real: SInt<16>, imag: SInt<16>}},

flip w: {addr: UInt<8>,
en: UInt<1>,
clk: Clock,
data: {real: SInt<16>, imag: SInt<16>},
mask: {real: UInt<1>, imag: UInt<1>}}}

The following sections describe how a memory’s field types are calculated and the behavior
of each type of memory port.

8.9.1 Read Ports

If a memory is declared with element type T, has a size less than or equal to 2N , then its
read ports have type:

{addr: UInt<N>, en: UInt<1>, clk: Clock, flip data: T}

If the en field is high, then the element value associated with the address in the addr field
can be retrieved by reading from the data field after the appropriate read latency. If the en
field is low, then the value in the data field, after the appropriate read latency, is undefined.
The port is driven by the clock signal in the clk field.
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8.9.2 Write Ports

If a memory is declared with element type T, has a size less than or equal to 2N , then its
write ports have type:

{addr: UInt<N>, en: UInt<1>, clk: Clock, data: T, mask: M}

where M is the mask type calculated from the element type T. Intuitively, the mask type
mirrors the aggregate structure of the element type except with all ground types replaced
with a single bit unsigned integer type. The non-masked portion of the data value is defined
as the set of data value leaf sub-elements where the corresponding mask leaf sub-element is
high.

If the en field is high, then the non-masked portion of the data field value is written, after
the appropriate write latency, to the location indicated by the addr field. If the en field is
low, then no value is written after the appropriate write latency. The port is driven by the
clock signal in the clk field.

8.9.3 Readwrite Ports

Finally, the readwrite ports have type:

{addr: UInt<N>, en: UInt<1>, clk: Clock, flip rdata: T, wmode: UInt<1>,
wdata: T, wmask: M}

A readwrite port is a single port that, on a given cycle, can be used either as a read or a
write port. If the readwrite port is not in write mode (the wmode field is low), then the rdata,
addr, en, and clk fields constitute its read port fields, and should be used accordingly. If the
readwrite port is in write mode (the wmode field is high), then the wdata, wmask, addr, en,
and clk fields constitute its write port fields, and should be used accordingly.

8.9.4 Read Under Write Behavior

The read-under-write flag indicates the value held on a read port’s data field if its memory
location is written to while it is reading. The flag may take on three settings: old, new, and
undefined.

If the read-under-write flag is set to old, then a read port always returns the value existing
in the memory on the same cycle that the read was requested.

Assuming that a combinational read always returns the value stored in the memory (no write
forwarding), then intuitively, this is modeled as a combinational read from the memory that
is then delayed by the appropriate read latency.

If the read-under-write flag is set to new, then a read port always returns the value existing in
the memory on the same cycle that the read was made available. Intuitively, this is modeled
as a combinational read from the memory after delaying the read address by the appropriate
read latency.
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If the read-under-write flag is set to undefined, then the value held by the read port after
the appropriate read latency is undefined.

For the purpose of defining such collisions, an “active write port” is a write port or a readwrite
port that is used to initiate a write operation on a given clock edge, where en is set and,
for a readwriter, wmode is set. An “active read port” is a read port or a readwrite port
that is used to initiate a read operation on a given clock edge, where en is set and, for a
readwriter, wmode is not set. Each operation is defined to be “active” for the number of cycles
set by its corresponding latency, starting from the cycle where its inputs were provided to its
associated port. Note that this excludes combinational reads, which are simply modeled as
combinationally selecting from stored values

For memories with independently clocked ports, a collision between a read operation and a
write operation with independent clocks is defined to occur when the address of an active
write port and the address of an active read port are the same for overlapping clock periods,
or when any portion of a read operation overlaps part of a write operation with a matching
addresses. In such cases, the data that is read out of the read port is undefined.

8.9.5 Write Under Write Behavior

In all cases, if a memory location is written to by more than one port on the same cycle, the
stored value is undefined.

8.9.6 Constant memory type

A memory with a constant data-type represents a ROM and may not have write-ports. It is
beyond the scope of this specification how ROMs are initialized.

8.10 Instances
FIRRTL modules are instantiated with the instance statement. The following example
demonstrates creating an instance named myinstance of the MyModule module within the
top level module Top.

circuit Top :
module MyModule :

input a: UInt
output b: UInt
connect b, a

module Top :
inst myinstance of MyModule

The resulting instance has a bundle type. Each port of the instantiated module is represented
by a field in the bundle with the same name and type as the port. The fields corresponding
to input ports are flipped to indicate their data flows in the opposite direction as the output
ports. The myinstance instance in the example above has type {flip a:UInt, b:UInt}.
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Modules have the property that instances can always be inlined into the parent module
without affecting the semantics of the circuit.

To disallow infinitely recursive hardware, modules cannot contain instances of itself, either
directly, or indirectly through instances of other modules it instantiates.

8.11 Stops
The stop statement is used to halt simulations of the circuit. Backends are free to generate
hardware to stop a running circuit for the purpose of debugging, but this is not required by
the FIRRTL specification.

A stop statement requires a clock signal, a halt condition signal that has a single bit unsigned
integer type, and an integer exit code.

For clocked statements that have side effects in the environment (stop, print, and verification
statements), the order of execution of any such statements that are triggered on the same
clock edge is determined by their syntactic order in the enclosing module. The order of
execution of clocked, side-effect-having statements in different modules or with different
clocks that trigger concurrently is undefined.

The stop statement has an optional name attribute which can be used to attach metadata to
the statement. The name is part of the module level namespace. However it can never be
used in a reference since it is not of any valid type.

wire clk: Clock
wire halt: UInt<1>
stop(clk, halt, 42) : optional_name

8.12 Formatted Prints
The formatted print statement is used to print a formatted string during simulations of the
circuit. Backends are free to generate hardware that relays this information to a hardware
test harness, but this is not required by the FIRRTL specification.

A printf statement requires a clock signal, a print condition signal, a format string, and a
variable list of argument signals. The condition signal must be a single bit unsigned integer
type, and the argument signals must each have a ground type.

For information about execution ordering of clocked statements with observable environmental
side effects, see Section 8.11.

The printf statement has an optional name attribute which can be used to attach metadata
to the statement. The name is part of the module level namespace. However it can never be
used in a reference since it is not of any valid type.

wire clk: Clock
wire cond: UInt<1>
wire a: UInt
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wire b: UInt
printf(clk, cond, "a in hex: %x, b in decimal:%d.\n", a, b) : optional_name

On each positive clock edge, when the condition signal is high, the printf statement prints
out the format string where its argument placeholders are substituted with the value of the
corresponding argument.

8.12.1 Format Strings

Format strings support the following argument placeholders:

• %b : Prints the argument in binary

• %d : Prints the argument in decimal

• %x : Prints the argument in hexadecimal

• %% : Prints a single % character

Format strings support the following escape characters:

• \n : New line

• \t : Tab

• \\ : Back slash

• \" : Double quote

• \' : Single quote

8.13 Verification
To facilitate simulation, model checking and formal methods, there are three non-synthesizable
verification statements available: assert, assume and cover. Each type of verification statement
requires a clock signal, a predicate signal, an enable signal and a string literal. The predicate
and enable signals must have single bit unsigned integer type. Assert and assume use the
string as an explanatory message. For cover statements the string indicates a suggested
comment. When an assert or assume is violated the explanatory message may be issued as
guidance. The explanatory message may be phrased as if prefixed by the words “Verifies
that...”.

Backends are free to generate the corresponding model checking constructs in the target
language, but this is not required by the FIRRTL specification. Backends that do not generate
such constructs should issue a warning. For example, the SystemVerilog emitter produces
SystemVerilog assert, assume and cover statements, but the Verilog emitter does not and
instead warns the user if any verification statements are encountered.

For information about execution ordering of clocked statements with observable environmental
side effects, see Section 8.11.
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Any verification statement has an optional name attribute which can be used to attach
metadata to the statement. The name is part of the module level namespace. However it can
never be used in a reference since it is not of any valid type.

8.13.1 Assert

The assert statement verifies that the predicate is true on the rising edge of any clock cycle
when the enable is true. In other words, it verifies that enable implies predicate.

wire clk: Clock
wire pred: UInt<1>
wire en: UInt<1>
connect pred, eq(X, Y)
connect en, Z_valid
assert(clk, pred, en, "X equals Y when Z is valid") : optional_name

8.13.2 Assume

The assume statement directs the model checker to disregard any states where the enable
is true and the predicate is not true at the rising edge of the clock cycle. In other words,
it reduces the states to be checked to only those where enable implies predicate is true by
definition. In simulation, assume is treated as an assert.

wire clk: Clock
wire pred: UInt<1>
wire en: UInt<1>
connect pred, eq(X, Y)
connect en, Z_valid
assume(clk, pred, en, "X equals Y when Z is valid") : optional_name

8.13.3 Cover

The cover statement verifies that the predicate is true on the rising edge of some clock cycle
when the enable is true. In other words, it directs the model checker to find some way to
make both enable and predicate true at some time step. The string argument may be emitted
as a comment with the cover.

wire clk: Clock
wire pred: UInt<1>
wire en: UInt<1>
connect pred, eq(X, Y)
connect en, Z_valid
cover(clk, pred, en, "X equals Y when Z is valid") : optional_name
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8.14 Probes
Probe references are created with probe expressions, routed through the design using the
define statement, read using the read expression (see Section 9.10), and forced and released
with force and release statements.

These statements are detailed below.

8.14.1 Define

Define statements are used to route references through the design, and may be used wherever
is most convenient in terms of available identifiers – their location is not significant other
than scoping, and do not have last-connect semantics. Every sink-flow probe must be the
target of exactly one of these statements.

The define statement takes a sink-flow static reference target and sets it to the specified
reference, which must either be a compatible probe expression or static reference source.

Example:

module Refs:
input clock: Clock
output a : Probe<{x: UInt, y: UInt}> ; read-only ref. to wire 'p'
output b : RWProbe<UInt> ; force-able ref. to node 'q', inferred width.
output c : Probe<UInt<1>> ; read-only ref. to register 'r'
output d : Probe<Clock> ; ref. to input clock port

wire p : {x: UInt, flip y : UInt}
define a = probe(p) ; probe is passive
node q = UInt<1>(0)
define b = rwprobe(q)
reg r: UInt, clock
define c = probe(r)
define d = probe(clock)

The target is not required to be only an identifier, it may be a field within a bundle or other
statically known sub-element of an aggregate, for example:

module Foo:
input x : UInt
output y : {x: UInt, p: Probe<UInt>}
output z : Probe<UInt>[2]

wire w : UInt
connect w, x
connect y.x, w

define y.p = probe(w)
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define z[0] = probe(w)
define z[1] = probe(w)

RWProbe references to ports are not allowed on public-facing modules.

Define statements can set a Probe to either a Probe or RWProbe, but a RWProbe cannot
be set to a Probe. The inner types of the two references must (recursively) be identical or
identical with the destination containing uninferred versions of the corresponding element in
the source type. See Section 7.3.1.1 for details.

8.14.1.1 Probes and Passive Types While Probe inner types are passive, the type of
the probed static reference is not required to be:

module Foo :
input x : {a: UInt, flip b: UInt}
output y : {a: UInt, flip b: UInt}
output xp : Probe<{a: UInt, b: UInt}> ; passive

wire p : {a: UInt, flip b: UInt} ; p is not passive
define xp = probe(p)
connect p, x
connect y, p

8.14.1.2 Exporting References to Nested Declarations Nested declarations (see
Section 8.8.3) may be exported:

module RefProducer :
input a : UInt<4>
input en : UInt<1>
input clk : Clock
output thereg : Probe<UInt>

when en :
reg myreg : UInt, clk
connect myreg, a
define thereg = probe(myreg)

8.14.1.3 Forwarding References Upwards Define statements can be used to forward
a child module’s reference further up the hierarchy:

module Foo :
output p : Probe<UInt>
; ...

module Forward :
output p : Probe<UInt>
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inst f of Foo
define p = f.p

Define statements may narrow a probe of an aggregate to a sub-element using static expression:

module Foo :
output p : Probe<UInt[2]>[2]
; ...

module Forward :
output p : Probe<UInt>

inst f of Foo
define p = f.p[0][1]

8.14.1.4 Forwarding References Downwards Define statements can also be used to
forward references down the hierarchy using input reference-type ports, which are allowed
but should be used carefully as they make it possible to express invalid reference paths.

See Section 7.3.2 for more details, a small example is given below:

module UnusedInputRef :
input r : Probe<UInt<1>>

module ForwardDownwards :
input in : UInt<1>

inst u of UnusedInputRef
define u.r = probe(in)

8.14.2 Force and Release

To override existing drivers for a RWProbe, the force statement is used, and released with
release. Force statements are simulation-only constructs and may not be supported by all
implementations. They are similar to the verification statements (e.g., assert) in this regard.

These are two variants of each, enumerated below:

Name Arguments Argument Types
force_initial (ref, val) (RWProbe<T>, T)
release_initial (ref) (RWProbe<T>)
force (clock, condition, ref, val) (Clock, UInt<1>, RWProbe<T>, T)
release (clock, condition, ref) (Clock, UInt<1>, RWProbe<T>)

Backends optionally generate corresponding constructs in the target language, or issue an
warning.
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The following AddRefs module is used in the examples that follow for each construct.

module AddRefs:
output a : RWProbe<UInt<2>>
output b : RWProbe<UInt<2>>
output c : RWProbe<UInt<2>>
output sum : UInt<3>

node x = UInt<2>(0)
node y = UInt<2>(0)
node z = UInt<2>(0)
connect sum, add(x, add(y, z))

define a = rwprobe(x)
define b = rwprobe(y)
define c = rwprobe(z)

8.14.2.1 Initial Force and Initial Release These variants force and release continu-
ously:

Example:

module ForceAndRelease:
output o : UInt<3>

inst r of AddRefs
connect o, r.sum

force_initial(r.a, UInt<2>(0))
force_initial(r.a, UInt<2>(1))
force_initial(r.b, UInt<2>(2))
force_initial(r.c, UInt<2>(3))
release_initial(r.c)

In this example, the output o will be 3. Note that globally the last force statement overrides
the others until another force or release including the target.

Sample SystemVerilog output for the force and release statements would be:

initial begin
force ForceAndRelease.AddRefs.x = 0;
force ForceAndRelease.AddRefs.x = 1;
force ForceAndRelease.AddRefs.y = 2;
force ForceAndRelease.AddRefs.z = 3;
release ForceAndRelease.AddRefs.z;

end

The force_initial and release_initial statements may occur under when blocks which

49



Specification for the FIRRTL Language Version 3.2.0

becomes a check of the condition first. Note that this condition is only checked once and
changes to it afterwards are irrelevant, and if executed the force will continue to be active.
For more control over their behavior, the other variants should be used. Example:

when c : force_initial(ref, x)

would become:

initial if (c) force a.b = x;

8.14.2.2 Force and Release These more detailed variants allow specifying a clock and
condition for when activating the force or release behavior continuously:

module ForceAndRelease:
input a: UInt<2>
input clock : Clock
input cond : UInt<1>
output o : UInt<3>

inst r of AddRefs
connect o, r.sum

force(clock, cond, r.a, a)
release(clock, not(cond), r.a)

Which at the positive edge of clock will either force or release AddRefs.x. Note that once
active, these remain active regardless of the condition, until another force or release.

Sample SystemVerilog output:

always @(posedge clock) begin
if (cond)

force ForceAndRelease.AddRefs.x = a;
else

release ForceAndRelease.AddRefs.x;
end

Condition is checked in procedural block before the force, as shown above. When placed
under when blocks, condition is mixed in as with other statements (e.g., assert).

8.14.2.3 Non-Passive Force Target Force on a non-passive bundle drives in the
direction of each field’s orientation.

Example:

module Top:
input x : {a: UInt<2>, flip b: UInt<2>}
output y : {a: UInt<2>, flip b: UInt<2>}
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inst d of DUT
connect d.x, x
connect y, d.y

wire val : {a: UInt<2>, b: UInt<2>}
connect val.a, UInt<2>(1)
connect val.b, UInt<2>(2)

; Force takes a RWProbe and overrides the target with 'val'.
force_initial(d.xp, val)

module DUT :
input x : {a: UInt<2>, flip b: UInt<2>}
output y : {a: UInt<2>, flip b: UInt<2>}
output xp : RWProbe<{a: UInt<2>, b: UInt<2>}>

; Force drives p.a, p.b, y.a, and x.b, but not y.b and x.a
wire p : {a: UInt<2>, flip b: UInt<2>}
define xp = rwprobe(p)
connect p, x
connect y, p

8.15 Property Assignments
Connections between property typed expressions (see Section 7.5) are not supported in the
connect statement (see Section 8.1).

Instead, property typed expressions are assigned with the propassign statement.

Property typed expressions have the normal rules for flow (see Section 11), but otherwise use
a stricter, simpler algorithm than connect. In order for a property assignment to be legal,
the following conditions must hold:

1. The left-hand and right-hand side expressions must be of property types.

2. The types of the left-hand and right-hand side expressions must be the same.

3. The flow of the left-hand side expression must be sink.

4. The flow of the right-hand side expression must be source.

5. The left-hand side expression may be used as the left-hand side in at most one property
assignment.

6. The property assignment must not occur within a conditional scope.

Note that property types are not legal for any expressions with duplex flow.

The following example demonstrates a property assignment from a module’s input property
type port to its output property type port.
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module Example:
input propIn : Integer
output propOut : Integer
propassign propOut, propIn

The following example demonstrates a property assignment from a property literal expression
to a module’s output property type port.

module Example:
output propOut : Integer
propassign propOut, Integer(42)

9 Expressions
FIRRTL expressions are used for creating constant integers, for creating literal property type
expressions, for referring to a declared circuit component, for statically and dynamically
accessing a nested element within a component, for creating multiplexers, for performing
primitive operations, and for reading a remote reference to a probe.

9.1 Constant Integer Expressions
A constant unsigned or signed integer expression can be created from an integer literal or
radix-specified integer literal. An optional positive bit width may be specified. Constant
integer expressions are of constant type. All of the following examples create a 10-bit unsigned
constant integer expressions representing the number 42:

UInt<10>(42)
UInt<10>(0b101010)
UInt<10>(0o52)
UInt<10>(0h2A)
UInt<10>(0h2a)

Note that it is an error to supply a bit width that is not large enough to fit the given value.
If the bit width is omitted, then the minimum number of bits necessary to fit the given value
will be inferred. All of the following will infer a bit width of five:

UInt(42)
UInt(0b101010)
UInt(0o52)
UInt(0h2A)
UInt(0h2a)

Signed constant integer expressions may be created from a signed integer literal or signed
radix-encoded integer literal. All of the following examples create a 10-bit signed hardware
integer representing the number -42:

SInt<10>(-42)
SInt<10>(-0b101010)
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SInt<10>(-0o52)
SInt<10>(-0h2A)
SInt<10>(-0h2a)

Signed constant integer expressions may also have an inferred width. All of the following
examples create and infer a 6-bit signed integer with value -42:

SInt(-42)
SInt(-0b101010)
SInt(-0o52)
SInt(-0h2A)
SInt(-0h2a)

9.2 Property Literal Expressions
A literal property type expression can be created for a given property type. The property
type name is followed by an appropriate literal value for the property type, enclosed in
parentheses.

9.2.1 Integer Property Literal Expresssions

A literal Integer property type expression can be created from an integer literal. The
following examples show literal Integer property type expressions.

Integer(42)
Integer(-42)

9.3 Enum Expressions
An enumeration can be constructed by applying an enumeration type to a variant tag and
a data value expression. The data value expression may be omitted when the data type is
UInt<0>(0), where it is implicitly defined to be UInt<0>(0).

{|a, b, c|}(a)
{|some: UInt<8>, None|}(Some, x)

9.4 References
A reference is simply a name that refers to a previously declared circuit component. It may
refer to a module port, node, wire, register, instance, or memory.

The following example connects a reference expression in, referring to the previously declared
port in, to the reference expression out, referring to the previously declared port out.

module MyModule :
input in: UInt
output out: UInt
connect out, in
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In the rest of the document, for brevity, the names of components will be used to refer to a
reference expression to that component. Thus, the above example will be rewritten as “the
port in is connected to the port out”.

9.4.1 Static Reference Expressions

Static references start with an identifier, optionally followed by sub-fields or sub-indices
selecting a particular sub-element. Sub-accesses are not allowed.

Define statements must have static references as their target, and their source must be either
a static reference or a probe expression whose argument is a static reference.

9.5 Sub-fields
The sub-field expression refers to a sub-element of an expression with a bundle type. If the
expression is of a constant bundle type, the sub-element shall be of a constant type (const
propagates from the bundle to the element on indexing).

The following example connects the in port to the a sub-element of the out port.

module MyModule :
input in: UInt
output out: {a: UInt, b: UInt}
connect out.a, in

The following example is the same as above, but with a constant output bundle.

module MyModule :
input in: const UInt
output out: const {a: UInt, b: UInt}
connect out.a, in ; out.a is of type const UInt

The following example is the same as above, but with a bundle with a constant field.

module MyModule :
input in: const UInt
output out: {a: const UInt, b: UInt}
connect out.a, in ; out.a is of type const UInt

A sub-field referring to a field whose name is a literal identifier is shown below:

module MyModule :
input a: { `0` : { `0` : { b : UInt<1> } } }
output b: UInt<1>
connect b, a.`0`.`0`.b

9.6 Sub-indices
The sub-index expression statically refers, by index, to a sub-element of an expression with a
vector type. The index must be a non-negative integer and cannot be equal to or exceed the
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length of the vector it indexes. If the expression is of a constant vector type, the sub-element
shall be of a constant type.

The following example connects the in port to the fifth sub-element of the out port.

module MyModule :
input in: UInt
output out: UInt[10]
connect out[4], in

The following example is the same as above, but with a constant vector.

module MyModule :
input in: const UInt
output out: const UInt[10]
connect out[4], in ; out[4] has a type of const UInt

9.7 Sub-accesses
The sub-access expression dynamically refers to a sub-element of a vector-typed expression
using a calculated index. The index must be an expression with an unsigned integer type. If
the expression is of a constant vector type, the sub-element shall be of a constant type. An
access to an out-of-bounds element results in an indeterminate value (see Section 16.1). Each
out-of-bounds element is a different indeterminate value. Sub-access operations with constant
index may be converted to sub-index operations even though it converts indeterminate-value-
on-out-of-bounds behavior to a compile-time error.

The following example connects the n’th sub-element of the in port to the out port.

module MyModule :
input in: UInt[3]
input n: UInt<2>
output out: UInt
connect out, in[n]

A connection from a sub-access expression can be modeled by conditionally connecting from
every sub-element in the vector, where the condition holds when the dynamic index is equal
to the sub-element’s static index.

module MyModule :
input in: UInt[3]
input n: UInt<2>
output out: UInt
when eq(n, UInt(0)) :

connect out, in[0]
else when eq(n, UInt(1)) :

connect out, in[1]
else when eq(n, UInt(2)) :

connect out, in[2]
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else :
invalidate out

The following example connects the in port to the n’th sub-element of the out port. All
other sub-elements of the out port are connected from the corresponding sub-elements of the
default port.

module MyModule :
input in: UInt
input default: UInt[3]
input n: UInt<2>
output out: UInt[3]
connect out, default
connect out[n], in

A connection to a sub-access expression can be modeled by conditionally connecting to every
sub-element in the vector, where the condition holds when the dynamic index is equal to the
sub-element’s static index.

module MyModule :
input in: UInt
input default: UInt[3]
input n: UInt<2>
output out: UInt[3]
connect out, default
when eq(n, UInt(0)) :

connect out[0], in
else when eq(n, UInt(1)) :

connect out[1], in
else when eq(n, UInt(2)) :

connect out[2], in

The following example connects the in port to the m’th UInt sub-element of the n’th vector-
typed sub-element of the out port. All other sub-elements of the out port are connected
from the corresponding sub-elements of the default port.

module MyModule :
input in: UInt
input default: UInt[2][2]
input n: UInt<1>
input m: UInt<1>
output out: UInt[2][2]
connect out, default
connect out[n][m], in

A connection to an expression containing multiple nested sub-access expressions can also be
modeled by conditionally connecting to every sub-element in the expression. However the
condition holds only when all dynamic indices are equal to all of the sub-element’s static
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indices.

module MyModule :
input in: UInt
input default: UInt[2][2]
input n: UInt<1>
input m: UInt<1>
output out: UInt[2][2]
connect out, default
when and(eq(n, UInt(0)), eq(m, UInt(0))) :

connect out[0][0], in
else when and(eq(n, UInt(0)), eq(m, UInt(1))) :

connect out[0][1], in
else when and(eq(n, UInt(1)), eq(m, UInt(0))) :

connect out[1][0], in
else when and(eq(n, UInt(1)), eq(m, UInt(1))) :

connect out[1][1], in

9.8 Multiplexers
A multiplexer outputs one of two input expressions depending on the value of an unsigned
selection signal.

The following example connects to the c port the result of selecting between the a and b
ports. The a port is selected when the sel signal is high, otherwise the b port is selected.

module MyModule :
input a: UInt
input b: UInt
input sel: UInt<1>
output c: UInt
connect c, mux(sel, a, b)

A multiplexer expression is legal only if the following holds.

1. The type of the selection signal is an unsigned integer.

2. The width of the selection signal is any of:

1. Zero-bit

2. One-bit

3. Unspecified, but is illegal if infers to wider than one-bit

3. The types of the two input expressions are equivalent.

4. The types of the two input expressions are passive (see Section 7.7).
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9.9 Primitive Operations
All fundamental operations on ground types are expressed as a FIRRTL primitive operation.
In general, each operation takes some number of argument expressions, along with some
number of integer literal parameters.

The general form of a primitive operation is expressed as follows:

op(arg0, arg1, ..., argn, int0, int1, ..., intm)

The following examples of primitive operations demonstrate adding two expressions, a and b,
shifting expression a left by 3 bits, selecting the fourth bit through and including the seventh
bit in the a expression, and interpreting the expression x as a Clock typed signal.

add(a, b)
shl(a, 3)
bits(a, 7, 4)
asClock(x)

Section 10 will describe the format and semantics of each primitive operation.

9.10 Reading Probe References
Probes are read using the read operation.

Read expressions have source flow and can be connected to other components:

module Foo :
output p : Probe<UInt>
; ...

module Bar :
output x : UInt

inst f of Foo
connect x, read(f.p) ; indirectly access the probed data

Indexing statically (sub-field, sub-index) into a probed value is allowed as part of the read:

module Foo :
output p : Probe<{a: UInt, b: UInt}>
; ...

module Bar :
output x : UInt

inst f of Foo
connect x, read(f.p.b) ; indirectly access the probed data
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Read operations can be used anywhere a signal of the same underlying type can be used,
such as the following:

connect x, add(read(f.p).a, read(f.p).b)

The source of the probe must reside at or below the point of the read expression in the design
hierarchy. See Section 7.3.2.2 for an example of an invalid read of an input reference.

9.11 Probe
Probe references are generated with probe expressions.

The probe expression creates a reference to a read-only or force-able view of the data
underlying the specified reference expression.

The type of the produced probe reference is always passive, but the probed expression may
not be. Memories and their ports are not supported as probe targets.

There are two probe varieties: probe and rwprobe for producing probes of type Probe and
RWProbe, respectively.

The following example exports a probe reference to a port:

module MyModule :
input in: UInt
output r : Probe<UInt>

define r = probe(in)

The probed expression must be a static reference.

See Sections 7.3.1, 9.11 for more details on probe references and their use.

10 Primitive Operations
The arguments of all primitive operations must be expressions with ground types, while their
parameters are integer literals. Each specific operation can place additional restrictions on
the number and types of their arguments and parameters. Primitive operations may have all
their arguments of constant type, in which case their return type is of constant type. If the
operation has a mixed constant and non-constant arguments, the result is non-constant.

Notationally, the width of an argument e is represented as we.

10.1 Add Operation

Name Arguments Parameters Arg Types Result Type Result Width
add (e1,e2) () (UInt,UInt) UInt max(we1,we2)+1

(SInt,SInt) SInt max(we1,we2)+1
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The add operation result is the sum of e1 and e2 without loss of precision.

10.2 Subtract Operation

Name Arguments Parameters Arg Types Result Type Result Width
sub (e1,e2) () (UInt,UInt) UInt max(we1,we2)+1

(SInt,SInt) SInt max(we1,we2)+1

The subtract operation result is e2 subtracted from e1, without loss of precision.

10.3 Multiply Operation

Name Arguments Parameters Arg Types Result Type Result Width
mul (e1,e2) () (UInt,UInt) UInt we1+we2

(SInt,SInt) SInt we1+we2

The multiply operation result is the product of e1 and e2, without loss of precision.

10.4 Divide Operation

Name Arguments Parameters Arg Types Result Type Result Width
div (num,den) () (UInt,UInt) UInt wnum

(SInt,SInt) SInt wnum+1

The divide operation divides num by den, truncating the fractional portion of the result.
This is equivalent to rounding the result towards zero. The result of a division where den is
zero is undefined.

10.5 Modulus Operation

Name Arguments Parameters Arg Types Result Type Result Width
rem (num,den) () (UInt,UInt) UInt min(wnum,wden)

(SInt,SInt) SInt min(wnum,wden)

The modulus operation yields the remainder from dividing num by den, keeping the sign
of the numerator. Together with the divide operator, the modulus operator satisfies the
relationship below:

num = add(mul(den,div(num,den)),rem(num,den))}
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10.6 Comparison Operations

Name Arguments Parameters Arg Types Result Type Result Width
lt,leq (UInt,UInt) UInt 1
gt,geq (e1,e2) () (SInt,SInt) UInt 1

The comparison operations return an unsigned 1 bit signal with value one if e1 is less than
(lt), less than or equal to (leq), greater than (gt), greater than or equal to (geq), equal to
(eq), or not equal to (neq) e2. The operation returns a value of zero otherwise.

10.7 Padding Operations

Name Arguments Parameters Arg Types Result Type Result Width
pad (e) (n) (UInt) UInt max(we,n)

(SInt) SInt max(we,n)

If e’s bit width is smaller than n, then the pad operation zero-extends or sign-extends e up to
the given width n. Otherwise, the result is simply e. n must be non-negative.

10.8 Interpret As UInt

Name Arguments Parameters Arg Types Result Type Result Width
asUInt (e) () (UInt) UInt we

(SInt) UInt we
(Clock) UInt 1
(Reset) UInt 1
(AsyncReset) UInt 1

The interpret as UInt operation reinterprets e’s bits as an unsigned integer.

10.9 Interpret As SInt

Name Arguments Parameters Arg Types Result Type Result Width
asSInt (e) () (UInt) SInt we

(SInt) SInt we
(Clock) SInt 1
(Reset) SInt 1
(AsyncReset) SInt 1

The interpret as SInt operation reinterprets e’s bits as a signed integer according to two’s
complement representation.
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10.10 Interpret as Clock

Name Arguments Parameters Arg Types Result Type Result Width
asClock (e) () (UInt) Clock n/a

(SInt) Clock n/a
(Clock) Clock n/a
(Reset) Clock n/a
(AsyncReset) Clock n/a

The result of the interpret as clock operation is the Clock typed signal obtained from
interpreting a single bit integer as a clock signal.

10.11 Interpret as AsyncReset

Name Arguments Parameters Arg Types Result Type Result Width
asAsyncReset (e) () (AsyncReset) AsyncReset n/a

(UInt) AsyncReset n/a
(SInt) AsyncReset n/a
(Interval) AsyncReset n/a
(Clock) AsyncReset n/a
(Reset) AsyncReset n/a

The result of the interpret as asynchronous reset operation is an AsyncReset typed signal.

10.12 Shift Left Operation

Name Arguments Parameters Arg Types Result Type Result Width
shl (e) (n) (UInt) UInt we+n

(SInt) SInt we+n

The shift left operation concatenates n zero bits to the least significant end of e. n must be
non-negative.

10.13 Shift Right Operation

Name Arguments Parameters Arg Types Result Type Result Width
shr (e) (n) (UInt) UInt max(we-n, 1)

(SInt) SInt max(we-n, 1)
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The shift right operation truncates the least significant n bits from e. If n is greater than or
equal to the bit-width of e, the resulting value will be zero for unsigned types and the sign
bit for signed types. n must be non-negative.

10.14 Dynamic Shift Left Operation

Name Arguments Parameters Arg Types Result Type Result Width
dshl (e1, e2) () (UInt, UInt) UInt we1 + 2ˆwe2 - 1

(SInt, UInt) SInt we1 + 2ˆwe2 - 1

The dynamic shift left operation shifts the bits in e1 e2 places towards the most significant
bit. e2 zeroes are shifted in to the least significant bits.

10.15 Dynamic Shift Right Operation

Name Arguments Parameters Arg Types Result Type Result Width
dshr (e1, e2) () (UInt, UInt) UInt we1

(SInt, UInt) SInt we1

The dynamic shift right operation shifts the bits in e1 e2 places towards the least significant
bit. e2 signed or zeroed bits are shifted in to the most significant bits, and the e2 least
significant bits are truncated.

10.16 Arithmetic Convert to Signed Operation

Name Arguments Parameters Arg Types Result Type Result Width
cvt (e) () (UInt) SInt we+1

(SInt) SInt we

The result of the arithmetic convert to signed operation is a signed integer representing the
same numerical value as e.

10.17 Negate Operation

Name Arguments Parameters Arg Types Result Type Result Width
neg (e) () (UInt) SInt we+1

(SInt) SInt we+1

The result of the negate operation is a signed integer representing the negated numerical
value of e.
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10.18 Bitwise Complement Operation

Name Arguments Parameters Arg Types Result Type Result Width
not (e) () (UInt) UInt we

(SInt) UInt we

The bitwise complement operation performs a logical not on each bit in e.

10.19 Binary Bitwise Operations

Name Arguments Parameters Arg Types Result Type Result Width
and,or,xor (e1, e2) () (UInt,UInt) UInt max(we1,we2)

(SInt,SInt) UInt max(we1,we2)

The above bitwise operations perform a bitwise and, or, or exclusive or on e1 and e2. The result
has the same width as its widest argument, and any narrower arguments are automatically
zero-extended or sign-extended to match the width of the result before performing the
operation.

10.20 Bitwise Reduction Operations

Name Arguments Parameters Arg Types Result Type Result Width
andr,orr,xorr (e) () (UInt) UInt 1

(SInt) UInt 1

The bitwise reduction operations correspond to a bitwise and, or, and exclusive or operation,
reduced over every bit in e.

In all cases, the reduction incorporates as an inductive base case the “identity value” associated
with each operator. This is defined as the value that preserves the value of the other argument:
one for and (as x ∧ 1 = x), zero for or (as x ∨ 0 = x), and zero for xor (as x ⊕ 0 = x). Note
that the logical consequence is that the and-reduction of a zero-width expression returns a
one, while the or- and xor-reductions of a zero-width expression both return zero.

10.21 Concatenate Operation

Name Arguments Parameters Arg Types Result Type Result Width
cat (e1,e2) () (UInt, UInt) UInt we1+we2

(SInt, SInt) UInt we1+we2
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The result of the concatenate operation is the bits of e1 concatenated to the most significant
end of the bits of e2.

10.22 Bit Extraction Operation

Name Arguments Parameters Arg Types Result Type Result Width
bits (e) (hi,lo) (UInt) UInt hi-lo+1

(SInt) UInt hi-lo+1

The result of the bit extraction operation are the bits of e between lo (inclusive) and hi
(inclusive). hi must be greater than or equal to lo. Both hi and lo must be non-negative and
strictly less than the bit width of e.

10.23 Head

Name Arguments Parameters Arg Types Result Type Result Width
head (e) (n) (UInt) UInt n

(SInt) UInt n

The result of the head operation are the n most significant bits of e. n must be non-negative
and less than or equal to the bit width of e.

10.24 Tail

Name Arguments Parameters Arg Types Result Type Result Width
tail (e) (n) (UInt) UInt we-n

(SInt) UInt we-n

The tail operation truncates the n most significant bits from e. n must be non-negative and
less than or equal to the bit width of e.

11 Flows
An expression’s flow partially determines the legality of connecting to and from the expression.
Every expression is classified as either source, sink, or duplex. For details on connection rules
refer back to Section 8.1.

The flow of a reference to a declared circuit component depends on the kind of circuit
component. A reference to an input port, an instance, a memory, and a node, is a source. A
reference to an output port is a sink. A reference to a wire or register is duplex.
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The flow of a sub-index or sub-access expression is the flow of the vector-typed expression it
indexes or accesses.

The flow of a sub-field expression depends upon the orientation of the field. If the field is
not flipped, its flow is the same flow as the bundle-typed expression it selects its field from.
If the field is flipped, then its flow is the reverse of the flow of the bundle-typed expression
it selects its field from. The reverse of source is sink, and vice-versa. The reverse of duplex
remains duplex.

The flow of all other expressions are source.

12 Width Inference
For all circuit components declared with unspecified widths, the FIRRTL compiler will infer
the minimum possible width that maintains the legality of all its incoming connections. If
a component has no incoming connections, and the width is unspecified, then an error is
thrown to indicate that the width could not be inferred.

For module input ports with unspecified widths, the inferred width is the minimum possible
width that maintains the legality of all incoming connections to all instantiations of the
module.

The width of a ground-typed multiplexer expression is the maximum of its two corresponding
input widths. For multiplexing aggregate-typed expressions, the resulting widths of each leaf
sub-element is the maximum of its corresponding two input leaf sub-element widths.

The width of each primitive operation is detailed in Section 10.

The width of constant integer expressions is detailed in their respective sections.

13 Combinational Loops
Combinational logic is a section of logic with no registers between gates. A combinational
loop exists when the output of some combinational logic is fed back into the input of that
combinational logic with no intervening register. FIRRTL does not support combinational
loops even if it is possible to show that the loop does not exist under actual mux select
values. Combinational loops are not allowed and designs should not depend on any FIRRTL
transformation to remove or break such combinational loops.

The module Foo has a combinational loop and is not legal, even though the loop will be
removed by last connect semantics.

module Foo:
input a: UInt<1>
output b: UInt<1>
connect b, b
connect b, a
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The following module Foo2 has a combinational loop, even if it can be proved that n1 and
n2 never overlap.

module Foo2 :
input n1: UInt<2>
input n2: UInt<2>
wire tmp: UInt<1>
wire vec: UInt<1>[3]
connect tmp, vec[n1]
connect vec[n2], tmp

Module Foo3 is another example of an illegal combinational loop, even if it only exists at the
word level and not at the bit-level.

module Foo3
wire a : UInt<2>
wire b : UInt<1>

connect a, cat(b, c)
connect b, bits(a, 0, 0)

14 Namespaces
All modules in a circuit exist in the same module namespace, and thus must all have a unique
name.

Each module has an identifier namespace containing the names of all port and circuit
component declarations. Thus, all declarations within a module must have unique names.

Within a bundle type declaration, all field names must be unique.

Within a memory declaration, all port names must be unique.

Any modifications to names must preserve the uniqueness of names within a namespace.

15 Annotations
Annotations encode arbitrary metadata and associate it with zero or more targets (Sec-
tion 15.1) in a FIRRTL circuit.

Annotations are represented as a dictionary, with a “class” field which describes which
annotation it is, and a “target” field which represents the IR object it is attached to.
Annotations may have arbitrary additional fields attached. Some annotation classes extend
other annotations, which effectively means that the subclass annotation implies to effect of
the parent annotation.

Annotations are serializable to JSON.
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Below is an example annotation used to mark some module foo:

{
"class":"myannotationpackage.FooAnnotation",
"target":"~MyCircuit|MyModule>foo"

}

15.1 Targets
A circuit is described, stored, and optimized in a folded representation. For example, there
may be multiple instances of a module which will eventually become multiple physical copies
of that module on the die.

Targets are a mechanism to identify specific hardware in specific instances of modules in a
FIRRTL circuit. A target consists of a circuit, a root module, an optional instance hierarchy,
and an optional reference. A target can only identify hardware with a name, e.g., a circuit,
module, instance, register, wire, or node. References may further refer to specific fields or
subindices in aggregates. A target with no instance hierarchy is local. A target with an
instance hierarchy is non-local.

Targets use a shorthand syntax of the form:

target = “~” , circuit ,
[ “|” , module , { “/” (instance) “:” (module) } , [ “>” , ref ] ]

A reference is a name inside a module and one or more qualifying tokens that encode subfields
(of a bundle) or subindices (of a vector):

ref = name , { ( "[" , index , "]" ) | ( "." , field ) }

Targets are specific enough to refer to any specific module in a folded, unfolded, or partially
folded representation.

To show some examples of what these look like, consider the following example circuit. This
consists of four instances of module Baz, two instances of module Bar, and one instance of
module Foo:

circuit Foo:
module Foo:

inst a of Bar
inst b of Bar

module Bar:
inst c of Baz
inst d of Baz

module Baz:
skip

This circuit can be represented in a folded, completely unfolded, or in some partially folded
state. Figure Figure 1 shows the folded representation. Figure Figure 2 shows the completely
unfolded representation where each instance is broken out into its own module.
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Figure 1: A folded representation of circuit Foo
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Foo/b:Bar/c:Baz
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Figure 2: A completely unfolded representation of circuit Foo
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Using targets (or multiple targets), any specific module, instance, or combination of instances
can be expressed. Some examples include:

Target Description
~Foo refers to the whole circuit
~Foo|Foo refers to the top module
~Foo|Bar refers to module Bar (or both instances of module Bar)
~Foo|Foo/a:Bar refers just to one instance of module Bar
~Foo|Foo/b:Bar/c:Baz refers to one instance of module Baz
~Foo|Bar/d:Baz refers to two instances of module Baz

If a target does not contain an instance path, it is a local target. A local target points to
all instances of a module. If a target contains an instance path, it is a non-local target. A
non-local target may not point to all instances of a module. Additionally, a non-local target
may have an equivalent local target representation.

15.2 Annotation Storage
Annotations may be stored in one or more JSON files using an array-of-dictionaries format.
The following shows a valid annotation file containing two annotations:

[
{

"class":"hello",
"target":"~Foo|Bar"

},
{

"class":"world",
"target":"~Foo|Baz"

}
]

Annotations may also be stored in-line along with the FIRRTL circuit by wrapping Annotation
JSON in %[ ... ]. The following shows the above annotation file stored in-line:

circuit Foo: %[[
{

"class":"hello",
"target":"~Foo|Bar"

},
{

"class":"world",
"target":"~Foo|Baz"

}
]]
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module Foo :
; ...

Any legal JSON is allowed, meaning that the above JSON may be stored “minimized” all on
one line.

16 Semantics of Values
FIRRTL is defined for 2-state boolean logic. The behavior of a generated circuit in a language,
such as Verilog or VHDL, which have multi-state logic, is undefined in the presence of values
which are not 2-state. A FIRRTL compiler need only respect the 2-state behavior of a circuit.
This is a limitation on the scope of what behavior is observable (i.e., a relaxation of the “as-if”
rule).

16.1 Indeterminate Values
An indeterminate value represents a value which is unknown or unspecified. Indeterminate val-
ues are generally implementation defined, with constraints specified below. An indeterminate
value may be assumed to be any specific value (not necessarily literal), at an implementation’s
discretion, if, in doing so, all observable behavior is as if the indeterminate value always took
the specific value.

This allows transformations such as the following, where when a has an indeterminate value,
the implementation chooses to consistently give it a value of v. An alternate, legal mapping,
lets the implementation give it the value 42. In both cases, there is no visibility of a when it
has an indeterminate value which is not mapped to the value the implementation chooses.

module IValue :
output o : UInt<8>
input c : UInt<1>
input v : UInt<8>

wire a : UInt<8>
invalidate a
when c :

connect a, v
connect o, a

is transformed to:

module IValue :
output o : UInt<8>
input c : UInt<1>
input v : UInt<8>

connect o, v
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Note that it is equally correct to produce:

module IValue :
output o : UInt<8>
input c : UInt<1>
input v : UInt<8>

wire a : UInt<8>
when c :

connect a, v
else :

connect a, UInt<3>("h42")
connect o, a

The behavior of constructs which cause indeterminate values is implementation defined with
the following constraints.

• Register initialization is done in a consistent way for all registers. If code is generated
to randomly initialize some registers (or 0 fill them, etc), it should be generated for all
registers.

• All observations of a unique instance of an expression with indeterminate value must
see the same value at runtime. Multiple readers of a value will see the same runtime
value.

• Indeterminate values captured in stateful elements are not time-varying. Time-aware
constructs, such as registers, which hold an indeterminate value will return the same
runtime value unless something changes the value in a normal way. For example, an
uninitialized register will return the same value over multiple clock cycles until it is
written (or reset).

• The value produced at runtime for an expression which produced an intermediate value
shall only be a function of the inputs of the expression. For example, an out-of-bounds
vector access shall produce the same value for a given out-of-bounds index and vector
contents.

• Two constructs with indeterminate values place no constraint on the identity of their
values. For example, two uninitialized registers, which therefore contain indeterminate
values, do not need to be equal under comparison.

17 Details about Syntax
FIRRTL’s syntax is designed to be human-readable but easily algorithmically parsed.

FIRRTL allows for two types of identifiers:

1. Identifiers
2. Literal Identifiers

Identifiers may only have the following characters: upper and lower case letters, digits, and _.
Identifiers cannot begin with a digit.
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Literal identifiers allow for using an expanded set of characters in an identifier. Such an
identifier is encoded using leading and trailing backticks, `. A literal identifier has the same
restrictions as an identifier, but it is allowed to start with a digit. E.g., it is legal to use `0`
as a literal identifier in a Bundle field (or anywhere else an identifier may be used).

A FIRRTL compiler is allowed to change a literal identifier to a legal identifier in the target
language (e.g., Verilog) if the literal identifier is not directly representable in the target
language.

Comments begin with a semicolon and extend until the end of the line. Commas are treated
as whitespace, and may be used by the user for clarity if desired.

In FIRRTL, indentation is significant. Indentation must consist of spaces only—tabs are
illegal characters. The number of spaces appearing before a FIRRTL IR statement is used to
establish its indent level. Statements with the same indent level have the same context. The
indent level of the circuit declaration must be zero.

Certain constructs (circuit, module, when, and else) create a new sub-context. The indent
used on the first line of the sub-context establishes the indent level. The indent level of a
sub-context is one higher than the parent. All statements in the sub-context must be indented
by the same number of spaces. To end the sub-context, a line must return to the indent level
of the parent.

Since conditional statements (when and else) may be nested, it is possible to create a
hierarchy of indent levels, each with its own number of preceding spaces that must be larger
than its parent’s and consistent among all direct child statements (those that are not children
of an even deeper conditional statement).

As a concrete guide, a few consequences of these rules are summarized below:

• The circuit keyword must not be indented.

• All module keywords must be indented by the same number of spaces.

• In a module, all port declarations and all statements (that are not children of other
statements) must be indented by the same number of spaces.

• The number of spaces comprising the indent level of a module is specific to each module.

• The statements comprising a conditional statement’s branch must be indented by the
same number of spaces.

• The statements of nested conditional statements establish their own, deeper indent
level.

• Each when and each else context may have a different number of non-zero spaces in
its indent level.

As an example illustrating some of these points, the following is a legal FIRRTL circuit:

circuit Foo :
module Foo :
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skip
module Bar :
input a: UInt<1>
output b: UInt<1>
when a:

connect b, a
else:

connect b, not(a)

All circuits, modules, ports and statements can optionally be followed with the info token
@[fileinfo] where fileinfo is a string containing the source file information from where it
was generated. The following characters need to be escaped with a leading ‘\’: ‘\n’ (new
line), ‘\t’ (tab), ‘]’ and ‘\’ itself.

The following example shows the info tokens included:

circuit Top : @[myfile.txt 14:8]
module Top : @[myfile.txt 15:2]

output out: UInt @[myfile.txt 16:3]
input b: UInt<32> @[myfile.txt 17:3]
input c: UInt<1> @[myfile.txt 18:3]
input d: UInt<16> @[myfile.txt 19:3]
wire a: UInt @[myfile.txt 21:8]
when c : @[myfile.txt 24:8]

connect a, b @[myfile.txt 27:16]
else :

connect a, d @[myfile.txt 29:17]
connect out, add(a,a) @[myfile.txt 34:4]

18 FIRRTL Compiler Implementation Details
This section provides auxiliary information necessary for developers of a FIRRTL Compiler
implementation. A FIRRTL Compiler is a program that converts FIRRTL text to another
representation, e.g., Verilog, VHDL, a programming language, or a binary program.

18.1 Module Conventions
A module’s convention describes how its ports are lowered to the output format, and serves
as a kind of ABI for modules.

18.1.1 The “Scalarized” Convention

The scalarized convention lowers aggregate ports to ground values. The scalarized convention
should be the default convention for “public” modules, such as the top module of a circuit,
“device under test”, or an extmodule.

The lowering algorithm for the scalarized convention operates as follows:
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1. Ports are scalarized in the order they are declared.

2. Ground-typed ports’ names are unmodified.

3. Vector-typed ports are scalarized to ground-typed ports by appending a suffix, _<i>,
to the ith element of the vector. Elements are scalarized recursively, depth-first, and
left-to-right.

4. Bundle-typed ports are scalarized to ground-typed ports by appending a suffix, _<name>,
to the field called name. Fields are scalarized recursively, depth-first, and left-to-right.

E.g., consider the following port:

module Top :
input a : { b: UInt<1>, c: UInt<2> }[2]

Scalarization breaks a into the following ports:

module Top :
input a_0_b : UInt<1> ; a[0].b
input a_0_c : UInt<2> ; a[0].c
input a_1_b : UInt<1> ; a[1].b
input a_1_c : UInt<2> ; a[1].c

The body of a module definition introduces a new, empty namespace. As new port names are
added, these names must be unique with respect to this namespace. In the case of a collision
during renaming, priority will be given to values that are converted first.

If a name is already taken, that name will be made unique by appending a suffix _<i> to the
name, where i is the lowest nonnegative integer that gives a unique name.

E.g., consider the following ports:

module Top :
input a : { b: UInt<1>[2], b_0: UInt<2>, b_1: UInt<3> }
input a_b : UInt<4>[2]
input a_b_0 : UInt<5>

Scalarization breaks these ports into the following ports:

module Top :
input a_b_0: UInt<1> ; a.b[0]
input a_b_1: UInt<1> ; a.b[1]
input a_b_0_0: UInt<2> ; a.b_0
input a_b_1_0: UInt<3> ; a.b_1
input a_b_0_1: UInt<4> ; a_b[0]
input a_b_1_1: UInt<4> ; a_b[1]
input a_b_0_2: UInt<5> ; a_b_0

Named components in the body of a module will be renamed as needed to ensure port names
follow this convention.
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18.2 The “Internal” Convention
Private modules (i.e. modules that are not the top of a circuit, device under test, or an
extmodule) have no specified ABI. The compiler is free to transform the ports of a private
module in any way, or not at all. Private modules are said to have “internal” convention.
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19 FIRRTL Language Definition
(* Whitespace definitions *)
indent = " " , { " " } ;
dedent = ? remove one level of indentation ? ;
newline = ? a newline character ? ;

(* Integer Literals *)
digit_bin = "0" | "1" ;
digit_oct = digit_bin | "2" | "3" | "4" | "5" | "6" | "7" ;
digit_dec = digit_oct | "8" | "9" ;
digit_hex = digit_dec

| "A" | "B" | "C" | "D" | "E" | "F"
| "a" | "b" | "c" | "d" | "e" | "f" ;

int = [ "-" ] , digit_dec , { digit_dec } ;

(* Radix-specified Integer Literals *)
rint =

[ "-" ] , "0b" , digit_bin , { digit_bin }
| [ "-" ] , "0o" , digit_oct , { digit_oct }
| [ "-" ] , "0d" , digit_oct , { digit_dec }
| [ "-" ] , "0h" , digit_hex , { digit_hex } ;

(* String Literals *)
string = ? a string ? ;
string_dq = '"' , string , '"' ;
string_sq = "'" , string , "'" ;

(* Identifiers define legal FIRRTL or Verilog names *)
letter = "A" | "B" | "C" | "D" | "E" | "F" | "G"

| "H" | "I" | "J" | "K" | "L" | "M" | "N"
| "O" | "P" | "Q" | "R" | "S" | "T" | "U"
| "V" | "W" | "X" | "Y" | "Z"
| "a" | "b" | "c" | "d" | "e" | "f" | "g"
| "h" | "i" | "j" | "k" | "l" | "m" | "n"
| "o" | "p" | "q" | "r" | "s" | "t" | "u"
| "v" | "w" | "x" | "y" | "z" ;

literal_id =
"`" , ( "_" | letter | digit_dec ), { "_" | letter | digit_dec } , "`" ;

id = ( "_" | letter ) , { "_" | letter | digit_dec } | literal_id ;

(* Fileinfo communicates Chisel source file and line/column info *)
linecol = digit_dec , { digit_dec } , ":" , digit_dec , { digit_dec } ;
lineinfo = string, " ", linecol
info = "@" , "[" , lineinfo, { ",", lineinfo }, "]" ;
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(* Type definitions *)
width = "<" , int , ">" ;
type_ground = "Clock" | "Reset" | "AsyncReset"

| ( "UInt" | "SInt" | "Analog" ) , [ width ] ;
type_enum = "{|" , { field_enum } , "|}" ;
field_enum = id, [ ":" , type_simple_child ] ;
type_aggregate = "{" , field , { field } , "}"

| type , "[" , int , "]" ;
type_ref = ( "Probe" | "RWProbe" ) , "<", type , [ "," , id , "," ] ">" ;
field = [ "flip" ] , id , ":" , type ;
type_property = "Integer" ;
type_simple_child = type_ground | type_enum | type_aggregate | id ;
type = ( [ "const" ] , type_simple_child ) | type_ref ;

(* Type alias declaration *)
type_alias_decl = "type", id, "=", type ;

(* Primitive operations *)
primop_2expr_keyword =

"add" | "sub" | "mul" | "div" | "mod"
| "lt" | "leq" | "gt" | "geq" | "eq" | "neq"
| "dshl" | "dshr"
| "and" | "or" | "xor" | "cat" ;

primop_2expr =
primop_2expr_keyword , "(" , expr , "," , expr ")" ;

primop_1expr_keyword =
"asUInt" | "asSInt" | "asClock" | "asAsyncReset" | "cvt"

| "neg" | "not"
| "andr" | "orr" | "xorr" ;

primop_1expr =
primop_1expr_keyword , "(" , expr , ")" ;

primop_1expr1int_keyword =
"pad" | "shl" | "shr" | "head" | "tail" ;

primop_1expr1int =
primop_1exrp1int_keyword , "(", expr , "," , int , ")" ;

primop_1expr2int_keyword =
"bits" ;

primop_1expr2int =
primop_1expr2int_keyword , "(" , expr , "," , int , "," , int , ")" ;

primop = primop_2expr | primop_1expr | primop_1expr1int | primop_1expr2int ;

(* Expression definitions *)
expr =

( "UInt" | "SInt" ) , [ width ] , "(" , ( int | rint ) , ")"
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| type_enum , "(" , id , [ "," , expr ] , ")"
| reference
| "mux" , "(" , expr , "," , expr , "," , expr , ")"
| "read" , "(" , ref_expr , ")"
| primop ;

static_reference = id
| static_reference , "." , id
| static_reference , "[" , int , "]" ;

reference = static_reference
| reference , "[" , expr , "]" ;

ref_expr = ( "probe" | "rwprobe" ) , "(" , static_reference , ")"
| static_reference ;

property_literal_expr = "Integer", "(", int, ")" ;
property_expr = static_reference | property_literal_expr ;

(* Memory *)
ruw = "old" | "new" | "undefined" ;
memory = "mem" , id , ":" , [ info ] , newline , indent ,

"data-type" , "=>" , type , newline ,
"depth" , "=>" , int , newline ,
"read-latency" , "=>" , int , newline ,
"write-latency" , "=>" , int , newline ,
"read-under-write" , "=>" , ruw , newline ,
{ "reader" , "=>" , id , newline } ,
{ "writer" , "=>" , id , newline } ,
{ "readwriter" , "=>" , id , newline } ,

dedent ;

(* Force and Release *)
force_release =

"force_initial" , "(" , ref_expr , "," , expr , ")"
| "release_initial" , "(" , ref_expr , ")"
| "force" , "(" , expr , "," , expr , "," , ref_expr , "," , expr , ")"
| "release" , "(" , expr , "," , expr , "," , ref_expr , ")" ;

(* Statements *)
statement =

"wire" , id , ":" , type , [ info ]
| "reg" , id , ":" , type , expr , [ info ]
| "regreset" , id , ":" , type , "," , expr , "," , expr , "," , expr ,

[info]
| memory
| "inst" , id , "of" , id , [ info ]
| "group" , id , "of" , id , ":" , [ info ] , newline ,

indent ,
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{ port , newline } ,
{ statement , newline } ,

dedent
| "node" , id , "=" , expr , [ info ]
| "attach(" , reference , { "," , reference } , ")" , [ info ]
| "when" , expr , ":" [ info ] , newline ,

indent , statement, { statement } , dedent ,
[ "else" , ":" , indent , statement, { statement } , dedent ]

| "match" , expr , ":" , [ info ] , newline ,
[ indent ,

{ id , [ "(" , id , ")" ] , ":" , newline ,
[ indent , { statement } , dedent ]

} ,
dedent ]

| "stop(" , expr , "," , expr , "," , int , ")" , [ info ]
| "printf(" , expr , "," , expr , "," , string_dq ,

{ "," , expr } , ")" , [ ":" , id ] , [ info ]
| "skip" , [ info ]
| "define" , static_reference , "=" , ref_expr , [ info ]
| force_release , [ info ]
| "connect" , reference , "," , expr , [ info ]
| "invalidate" , reference , [ info ]
| "propassign" , static_reference , "," , property_expr , [ info ] ;

(* Module definitions *)
port = ( "input" | "output" ) , id , ":" , (type | type_property) , [ info ] ;
module = "module" , id , ":" , [ info ] , newline , indent ,

{ port , newline } ,
{ statement , newline } ,

dedent ;
type_param = int | string_dq | string_sq ;
extmodule = "extmodule" , id , ":" , [ info ] , newline , indent ,

{ port , newline } ,
[ "defname" , "=" , id , newline ] ,
{ "parameter" , id , "=" , type_param , newline } ,
{ "ref" , static_reference , "is" ,

'"' , static_reference , '"' , newline } ,
dedent ;

intmodule = "intmodule" , id , ":" , [ info ] , newline , indent ,
{ port , newline } ,
"intrinsic" , "=" , id , newline ,
{ "parameter" , "=" , ( int | string_dq ) , newline } ,

dedent ;

(* Group definitions *)
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declgroup =
"declgroup" , id , string , ":" , [ info ] , newline , indent ,

{ declgroup , newline } ,
dedent ;

(* In-line Annotations *)
annotations = "%" , "[" , json_array , "]" ;

(* Version definition *)
sem_ver = int , "." , int , "." , int
version = "FIRRTL" , "version" , sem_ver ;

(* Circuit definition *)
circuit =

version , newline ,
"circuit" , id , ":" , [ annotations ] , [ info ] , newline , indent ,

{ module | extmodule | intmodule | declgroup | type_alias_decl } ,
dedent ;

20 Versioning Scheme of this Document
This is the versioning scheme that applies to version 1.0.0 and later.

The versioning scheme complies with Semantic Versioning 2.0.0.

Specifically,

The PATCH digit is bumped upon release which only includes non-functional changes, such
as grammar edits, further examples, and clarifications.

The MINOR digit is bumped for feature additions to the spec.

The MAJOR digit is bumped for backwards-incompatible changes such as features being
removed from the spec, changing their interpretation, or new required features being added
to the specification.

In other words, any .fir file that was compliant with x.y.z will be compliant with x.Y.Z,
where Y >= y, z and Z can be any number.
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