

@listochkin

fb.com/tektonna

Not a JavaScript talk

No CSS
No frameworks

No Node

A bit deeper than most talks
on similar subject

How
programming languages

work

Just-in-time compilers

Garbage Collection

Memory Management

Server runs our programs

CPU
Caches
RAM
Swap
Disk

Network

Operating System

Pages

4k

Virtual

2 processes
[0 … ∞]

Oh, I got a pointer at 4096
What’s at 4095?

Page fault

Allocate page
But not really

Once you start writing to it

not 4k?

malloc

malloc me some memory

a pointer

free(pointer)

malloc
malloc
malloc
free

malloc
free
free

Forget to free
Free the wrong pointer

Read from unallocated memory

Can we do better?

Reference Counting

const players = […]
players.forEach(p =>

makeMove(p))

a = …
doX(a)
yield a

scope

if (…) {
 let a = …
 …
}

C++: std::shared_ptr

Optimizations

Delayed Counting

Don’t count local references

function (user) {
 let email = user.email;
 …
 …
}

Delayed deallocation

Cycle Collector

Compile time ref-counting

Several types of pointers

Ownership

Forbids cycles
by forbidding several owning

references
at the same time

Perl
1987 - today

Python
1991 - 2001

PHP
1994 - 2009

Multiprocess deploys

fork

Copy on Write

Worker
Accepts requests

As memory use raises:
Stop accepting requests

Complete in-flight requests
Terminate

Master
Keep track on workers

Start new workers
Signal them to terminate when

memory pressure is high

“Pre-fork”

Load the framework
Load app code
Run full GC

Start forking process to
accept requests

“Processes”

Tracing GC

1959
60 years ago

Start at Root references
Follow all references

Build a live objects tree

Delete all objects not part of
the tree

Ruby
Java

JavaScript
Lua
Go

Roots?

Constants
Global variables
Local variables

Closures
Thread-locals

...

Mark & Sweep

vs

Mark-Compact

Can you move objects after
mark?

Team Sweep:
Go

Ruby*
Lua

Embedded JS engines
Erlang

Pros:
Pointers don’t change

Native extensions
Easier to implement

Team Compact:
Java

JavaScript
Ruby*

Haskell

Pros:
Less memory fragmentation over

time

Cons:
Harder

Takes longer to do a GC

Mark all memory

Incremental Marking

3-colored algorithm

by Dijkstra™

What is a barrier?
if statement

else branch is very rare
CPU branch predictor

Parallel marking

Lazy Sweep

Generational

Temporary data

Major vs Minor GC

Pointers from Old objects to
new objects

Remembered Set

Major GC

Scan roots only
Bigger object graph

Minor GC
Scan roots + RS

Small object graph

Modern GCs are hybrid

C-extensions

Can’t move objects if their
references are passed to an

extension

Can’t add WB

RGen GC

2 types of objects

WB-protected
WB-unprotected

WBu are never OldGen

OldGen -> WBu

WBu to Remembered Set

Mark WBus on every minor GC

1 stw to mark all WBu in RS

Adding compaction for WBp

V8

Minor GC
Parallel

Major

Parallel marking

Parallel / Concurrent
Compact || Sweep

When to trigger GC?

Out-of-Bounds GC

request? Minor GCs

response is sent? Major GC

Firefox
Run GC in background tabs

first instead of current tab

Chrome
Animation frame

Walking the memory

Cache locality

GPU

OS Pages
pre-forked processes

malloc zones
GC Pages

Remembered Sets
Barriers

