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1 Factor analysis

The factor analysis model describes a P dimensional data vector y as a linear function of a () dimensional
vector of latent factors « plus some noise 7:

y=Az+p+n 1)
The latent factors are assumed to be standard-normal distributed:
P(z) = N (|0, Ig) (2)
7 is a normally distributed noise vector with mean zero and diagonal covariance matrix W:

Uy e 0
P@l0)=Nmlo,¥) o= g (3)
0 - Upp

0 = {A, u, U} are the model parameters. A is the P x @ factor loading matrix, whose columns correspond
to the eigenvector of the covariance matrix of y. Given the latent factors x, y is hence normally
distributed itself:

P(ylz, A, p, ¥) = N(y[Az + p, ¥) (4)
Integrating out x gives:

P(y|A, 1, ®) = N (ylp, AAT +0) (5)
AAT + U is therefore a low-rank approximation of the full covariance matrix of y. The factor analysis
model is identical to probabilistic Principle Component Analysis (PCA) if ¥ = 02Ip. Factor analysis is

therefore a generalisation for probabilistic PCA, which allows for non-isotropic noise. However, there is
no longer a closed-form solution for the maximum likelihood estimator of A.

1.1 Joint distribution
_ xTr 0 IQ AT
P(:E,y|9) = N( | )a A AAT 4+ (6)

1.2 Conditional distributions

By conditioning on the joint distribution 6, one obtains:

P(zly,0) = N(x|AT(AAT + 0)(y — ) (7)
P(ylx,0) = N(y|Az + p, ) (8)

1.3 Likelihood
The log-likelihood of the model parameters @ is:

() =log [[ P(y"16) = > _log N (y"|p*, AAT + ) 9)

In contrast to probabilistic PCA, there is no maximum likelihood solution for 6.



2 Mixture of factor analysers

In the mixture of factor analysers model, y belongs to one of .S indeigpendent factor analysers with different
. . 1S s
factor loading matrices A = {A°}"_, and offset vectors pp = {p®}._;:

s=1"
y=Nz+p' +n (10)

The indicator s is unknown and therefore integrated out:

P(ylo) =) P(s|m)P(yls,0) = Y P(s|mN (ylp A°A*T + 0) (11)

The prior P(s|m) is a single draw from a multinomial distribution with mixture-coefficients 7:
P(s|mw) = M(s|1, ) (12)

The model parameters § = {m, A, u, ¥} can estimated by maximum likelihood or Bayesian inference.
Maximum likelihood estimation via Expectation Maximisation (EM) is fast, but subject to overfitting
since it does not take into account model complexity. Bayesian inference prevents overfitting by imposing
a prior on the model parameters, but is often intractable. To make inference tractable, approximate
Bayesian inference methods can be used. The following sections will explain one of these methods,
Variational Inferece, which allows for tractable inference for a Bayesian mixture of factor analysers.



3 Variational Bayesian mixture of factor analysers

3.1 Prior distribution

Bayesian inference requires a prior distribution P(6) over the model parameters 6 = {m, A, u}, which
can be chosen as follows.

The prior over the mixture proportions 7 is a symmetric Dirichlet distribution with counts a*m*:
P(w|a*m*) = D(w|a™m™), (13)

The prior strengths a* corresponds to the total number of prior counts, and m* to the prior distribution,
which is supposed to be uniform: m* = [1/S5,...,1/S]. The expectation and variance is therefore:

ms(1 —my)

a*(a* +1) (14)

< T >= My var|ms] =

Each factor loading matrix A® factorizes by columns ¢, which are normally distributed with mean zero

and diagonal covariance matrix vy ~1p. This is equivalent to saying A® factorizes by rows p, which are

normally distributed with mean zero and diagonal covariance matrix diag[v®]~!.

P(Alv) = HN A0, vs p) (15)
$,q

= [ V(A3 0, diaglv®) ™) (16)
s,p

The factor loading rates v° are independently Gamma distributes with hyperparameter a* and b*:

P(v]a*,b") HGa la™, %) (17)

The mean vector p® is normally distributed with mean p* and diagonal covariance diag[v*]~:

Plulu*,v*) = [[ N (0|, dinglv’] ) (18)

In summary, the model parameters 6 are

0={m v, A u}, (19)
and the hyperparameters © are
O ={U,a*m*,a", 0", u*,v*}. (20)
3.2 Joint distribution
The data D includes the observed variables y™, as well as the latent variables ™ and s™ forn=1,..., N
independent samples:
D= {y",z",s"}) (21)

The joint distribution of model parameters 6 and data D factorises as follows:

P(0,D|©) = P(0]©)P(D|0, ©) (22)
= P(w|a*m”)P(v|a®,b") P(Alv) P(p|p", v7) (23)
[ P(s"|m) Pl@™) P(y" 2", A%, o, ) (24)



The log joint distribution is:
log P(, D|©) = log P(0|©) + log P(D|6,©)
= log P(w|a*m™) + log P(v|a*,b") + log P(A|v) 4 log P(u|p™,v™)
> log P(s"|m) + log P(z") + log P(y"|z", A*, p*, )

Figure 1: Graphical model



4 Variational approximation

The goal is to approximate the following posterior distribution:
P(ﬁ? V’ A7 u,m78|y) ~ Q(Tr7 V? A? III? x? S) (28)

To render tractable inference and closed for solutions for the approximating factors Q(-), the following
factorisation is chosen:

Q. v, A, 1,7, 8) = Q(m, )Q(A, 1)Q(x, 5) (29)
The choice of this factorisation implies two approximations:
1. Parameters 6 and latent variables {x, s} are independent.
2. {A, p} are independent of the remaining parameters.
The optimal Q(+) can be found be computing the expectation of the log joint distribution (eq. 27):
log Q; x<log P(6,D|0©) >q_, (30)

This leads to the following factorization:

Q(m, v)QA, w)Qx, s) = Q(m) [[[]ewy) [T T @A) [ @="Is")@(s™) (31)

Here, A® is the concatenation of A® and p:

A® = [A° p?]. (32)
The factors are distributed as follows:

Q(m) = D(w|am) (33)
Q(vy) = G(vgla, bg) (34)
Q(A,) = N(A,|A;, ) (35)
Q(z"[s") = N(z"[z"*,£7) (36)
Q(s")is N x S (37)

4.1 Q(m)
Q(w) = D(rw|am) (38)
am, = a*m}+ Y Q(s") (39)

4.2 Q(l/;)
Qvy) = G(vgla, by) (40)
a=a"+ g (41)
bfZ:b*+%Z<A;q2> (42)
= b+ %Z (f\;f + fg;f) (43)

Here, we solved < ]\;qz > by eq. 83.



4.3 Q(A,)

Q(A,) = N(A, |As,T7)

The extended loading matrix A% is P x (Q + 1) and factorizes over rows:

Afy - AiQ I
e TR O
Apy - Apg | pp

The row mean is (Q +1) x 1

f&;:f‘iﬁ( ZQ )y < " >>
:f‘i’i( ZQ Y na)

i 03 () S0+ i
The row covariance matrix is P x (@ + 1) and decomposes into 4 blocks:

Fp s—1 __ [Eﬁil Eﬁil]

S
XY is Q x Q:
SRy = diag[< vt >+ 0, ZQ ) < z"z" >

_dlag[bs,...7 |+ 9 12@ ( "s*”ST—FES)

Eq. 52 follows from eq. 89.
27\’;_1 is Q x 1:

M = S < e >
E SR
Zﬁﬁ is1x1:

et =+ 12@



4.4 Q(z"|s")

Qa"|s") = N(x"[x™*, X°) (56)
T =3 < AST\Ilfl(y" — ) > (57)
= [A e (- ) - o (58)
Eq. 58 follows from eq. 88 and v is defined as
0y = [ cov[AS,, 7] (59)
= Z vt Efj’\’l‘jq. (60)
P

Eq. 60 follows from cov[A;,, pi2/] = 0 if p # p" and cov[A7 , us] = X7

pq’ Pq’ A,uq'
2 = ASTOTIAS > 4T (61)

< ASTW=1A% > is solved by eq. 87 and cov[As;, AS, ] =0 for p # p':

<SATUTIA® > =< ASTUTIAL > (62)
=< A ST U <A >+ Y W cov[Ay, A ] (63)
p p

=< A5 >T U <A > 4+ W cov[AS,, AL (64)

p

—sT _ _{—s _ )8
VI A WS T vy (65)

p
4.5 Q(s")
1

nQ(s") = d(am,) + 5 I [2°[+ <In P(y"|z", s", A%, ¥) > (66)

1
=¢(ams) + 3 In |27

S RE)TE )
- %diag[\lfl]Tas’" (67)
Here, the following definitions were used:
& =[z" 17 (68)
o = (A2 + C}.) diag[E*] + O 2™ (69)
diag[['15]7
Ci. = e (70)
diag[[F>5]T
The expectation in eq. 66 is:
<InP(y"|z", s", A% ) > (71)
= —% < (y" — A*&")TwH(y" — A*E™) > 4const (72)

= = 1 ~
= f%(y” — Az To— 1 (yn — Asz™?) — 3 tr[@ ! var[A®2"]] 4 const (73)



var[A;TZ"] e 0
var[ASz"] = var[A,T2"]
0 e var[ApT&"]

varA E var[A pq q

_ As 2 ~n2 _ As 2 ~n 2
—Z<qu S<it? > - < A3, >P< Al >

= Z < A3, >% var[AS ])(< & >2 +var[#)])— < A5, >2< @l >2

= Z < A > var[Ty |+ < Iy >2 Var[AS ] + var[AS ] var[z"

Pq] q]
_ E s 2\s n,s2~ .S P,S\S
A Z Ffl)q + qujq qu

Z As 2+Fp, ES +xn 52Fp,

var[A*z"] = diag[o*"]

tr[0 ! var[A*z"]] = diag[T T o®"

Appendices

A Expectations

<x? >=<z >? fvar[z]
<zl Az >=<z>T A<z > +tr[Avar[z]]

<xTAy>=<az>T A<y>+tr[Acov]y, x]|
=< x> A<y > +vec[A]” vec[cov]z, y]]
<XAY >=<X>A<Y >4V
Vi; = tr[Acov]Y:;, Xi]] = vec[A]” vec[cov[X;, Y]]
<XAy>=<X>A<y>+v
v; = tr[Acov]y, 4;]] = vec[A]” vec[cov[ Xy, y]]

<zaxl >=<x ><x>T 4 cov[x]
If M and x are independent:
< Mzx>=<M >< x>

If  and y are independent:

var[zTy] = E var[z;y;]

:Z<‘Bi S<y? > — < >y, >?

i
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