Skip to content

Latest commit

 

History

History
355 lines (245 loc) · 10.3 KB

transforming-data.rst

File metadata and controls

355 lines (245 loc) · 10.3 KB

Transforming Data

Transformations let you process and modify your dataset. You can compose transformations to express a chain of computations.

Note

Transformations are lazy by default. They aren't executed until you trigger consumption of the data by :ref:`iterating over the Dataset <iterating-over-data>`, :ref:`saving the Dataset <saving-data>`, or :ref:`inspecting properties of the Dataset <inspecting-data>`.

This guide shows you how to:

Transforming rows

To transform rows, call :meth:`~ray.data.Dataset.map` or :meth:`~ray.data.Dataset.flat_map`.

Transforming rows with map

If your transformation returns exactly one row for each input row, call :meth:`~ray.data.Dataset.map`.

.. testcode::

    import os
    from typing import Any, Dict
    import ray

    def parse_filename(row: Dict[str, Any]) -> Dict[str, Any]:
        row["filename"] = os.path.basename(row["path"])
        return row

    ds = (
        ray.data.read_images("s3:https://anonymous@ray-example-data/image-datasets/simple", include_paths=True)
        .map(parse_filename)
    )

Tip

If your transformation is vectorized, call :meth:`~ray.data.Dataset.map_batches` for better performance. To learn more, see Transforming batches.

Transforming rows with flat map

If your transformation returns multiple rows for each input row, call :meth:`~ray.data.Dataset.flat_map`.

.. testcode::

    from typing import Any, Dict, List
    import ray

    def duplicate_row(row: Dict[str, Any]) -> List[Dict[str, Any]]:
        return [row] * 2

    print(
        ray.data.range(3)
        .flat_map(duplicate_row)
        .take_all()
    )

.. testoutput::

    [{'id': 0}, {'id': 0}, {'id': 1}, {'id': 1}, {'id': 2}, {'id': 2}]

Transforming batches

If your transformation is vectorized like most NumPy or pandas operations, transforming batches is more performant than transforming rows.

Choosing between tasks and actors

Ray Data transforms batches with either tasks or actors. Actors perform setup exactly once. In contrast, tasks require setup every batch. So, if your transformation involves expensive setup like downloading model weights, use actors. Otherwise, use tasks.

To learn more about tasks and actors, read the :ref:`Ray Core Key Concepts <core-key-concepts>`.

Transforming batches with tasks

To transform batches with tasks, call :meth:`~ray.data.Dataset.map_batches`. Ray Data uses tasks by default.

.. testcode::

    from typing import Dict
    import numpy as np
    import ray

    def increase_brightness(batch: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
        batch["image"] = np.clip(batch["image"] + 4, 0, 255)
        return batch

    ds = (
        ray.data.read_images("s3:https://anonymous@ray-example-data/image-datasets/simple")
        .map_batches(increase_brightness)
    )

Transforming batches with actors

To transform batches with actors, complete these steps:

  1. Implement a class. Perform setup in __init__ and transform data in __call__.
  2. Create an :class:`~ray.data.ActorPoolStrategy` and configure the number of concurrent workers. Each worker transforms a partition of data.
  3. Call :meth:`~ray.data.Dataset.map_batches` and pass your ActorPoolStrategy to compute.
.. tab-set::

    .. tab-item:: CPU

        .. testcode::

            from typing import Dict
            import numpy as np
            import torch
            import ray

            class TorchPredictor:

                def __init__(self):
                    self.model = torch.nn.Identity()
                    self.model.eval()

                def __call__(self, batch: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
                    inputs = torch.as_tensor(batch["data"], dtype=torch.float32)
                    with torch.inference_mode():
                        batch["output"] = self.model(inputs).detach().numpy()
                    return batch

            ds = (
                ray.data.from_numpy(np.ones((32, 100)))
                .map_batches(TorchPredictor, compute=ray.data.ActorPoolStrategy(size=2))
            )

        .. testcode::
            :hide:

            ds.materialize()

    .. tab-item:: GPU

        .. testcode::

            from typing import Dict
            import numpy as np
            import torch
            import ray

            class TorchPredictor:

                def __init__(self):
                    self.model = torch.nn.Identity().cuda()
                    self.model.eval()

                def __call__(self, batch: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
                    inputs = torch.as_tensor(batch["data"], dtype=torch.float32).cuda()
                    with torch.inference_mode():
                        batch["output"] = self.model(inputs).detach().cpu().numpy()
                    return batch

            ds = (
                ray.data.from_numpy(np.ones((32, 100)))
                .map_batches(
                    TorchPredictor,
                    # Two workers with one GPU each
                    compute=ray.data.ActorPoolStrategy(size=2),
                    # Batch size is required if you're using GPUs.
                    batch_size=4,
                    num_gpus=1
                )
            )

        .. testcode::
            :hide:

            ds.materialize()

Configuring batch format

Ray Data represents batches as dicts of NumPy ndarrays or pandas DataFrames. By default, Ray Data represents batches as dicts of NumPy ndarrays.

To configure the batch type, specify batch_format in :meth:`~ray.data.Dataset.map_batches`. You can return either format from your function.

.. tab-set::

    .. tab-item:: NumPy

        .. testcode::

            from typing import Dict
            import numpy as np
            import ray

            def increase_brightness(batch: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
                batch["image"] = np.clip(batch["image"] + 4, 0, 255)
                return batch

            ds = (
                ray.data.read_images("s3:https://anonymous@ray-example-data/image-datasets/simple")
                .map_batches(increase_brightness, batch_format="numpy")
            )

    .. tab-item:: pandas

        .. testcode::

            import pandas as pd
            import ray

            def drop_nas(batch: pd.DataFrame) -> pd.DataFrame:
                return batch.dropna()

            ds = (
                ray.data.read_csv("s3:https://anonymous@air-example-data/iris.csv")
                .map_batches(drop_nas, batch_format="pandas")
            )

Configuring batch size

Increasing batch_size improves the performance of vectorized transformations like NumPy functions and model inference. However, if your batch size is too large, your program might run out of memory. If you encounter an out-of-memory error, decrease your batch_size.

Note

The default batch size depends on your resource type. If you're using CPUs, the default batch size is 4096. If you're using GPUs, you must specify an explicit batch size.

Groupby and transforming groups

To transform groups, call :meth:`~ray.data.Dataset.groupby` to group rows. Then, call :meth:`~ray.data.grouped_data.GroupedData.map_groups` to transform the groups.

.. tab-set::

    .. tab-item:: NumPy

        .. testcode::

            from typing import Dict
            import numpy as np
            import ray

            items = [
                {"image": np.zeros((32, 32, 3)), "label": label}
                for _ in range(10) for label in range(100)
            ]

            def normalize_images(group: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
                group["image"] = (group["image"] - group["image"].mean()) / group["image"].std()
                return group

            ds = (
                ray.data.from_items(items)
                .groupby("label")
                .map_groups(normalize_images)
            )

    .. tab-item:: pandas

        .. testcode::

            import pandas as pd
            import ray

            def normalize_features(group: pd.DataFrame) -> pd.DataFrame:
                target = group.drop("target")
                group = (group - group.min()) / group.std()
                group["target"] = target
                return group

            ds = (
                ray.data.read_csv("s3:https://anonymous@air-example-data/iris.csv")
                .groupby("target")
                .map_groups(normalize_features)
            )

Shuffling rows

To randomly shuffle all rows, call :meth:`~ray.data.Dataset.random_shuffle`.

.. testcode::

    import ray

    ds = (
        ray.data.read_images("s3:https://anonymous@ray-example-data/image-datasets/simple")
        .random_shuffle()
    )

Repartitioning data

A :class:`~ray.data.dataset.Dataset` operates on a sequence of distributed data :term:`blocks <block>`. If you want to achieve more fine-grained parallelization, increase the number of blocks by setting a higher parallelism at read time.

To change the number of blocks for an existing Dataset, call :meth:`Dataset.repartition() <ray.data.Dataset.repartition>`.

.. testcode::

    import ray

    ds = ray.data.range(10000, parallelism=1000)

    # Repartition the data into 100 blocks. Since shuffle=False, Ray Data will minimize
    # data movement during this operation by merging adjacent blocks.
    ds = ds.repartition(100, shuffle=False).materialize()

    # Repartition the data into 200 blocks, and force a full data shuffle.
    # This operation will be more expensive
    ds = ds.repartition(200, shuffle=True).materialize()