
An application for private inheritance?
Lightning Talk for MUC++

Matthäus Brandl

2018-05-17

Matthäus Brandl An application for private inheritance? 2018-05-17 1 / 12

Wait, what?
What is private inheritance

 class Derived : private Base

 {};

all public and protected members of Base accessible as private members of Derived

private members of Base never accessible (unless friended)

inheritance relationship not accessible outside of Derived, not static cast-able

models HAS-A instead of IS-A

However HAS-A is usually better modelled by using a member variable because this causes less
coupling (favor composition over inheritance).

Matthäus Brandl An application for private inheritance? 2018-05-17 2 / 12

Wait, what?
What is private inheritance

 class Derived : private Base

 {};

all public and protected members of Base accessible as private members of Derived

private members of Base never accessible (unless friended)

inheritance relationship not accessible outside of Derived, not static cast-able

models HAS-A instead of IS-A

However HAS-A is usually better modelled by using a member variable because this causes less
coupling (favor composition over inheritance).

Matthäus Brandl An application for private inheritance? 2018-05-17 2 / 12

Wait, what?
What is private inheritance

 class Derived : private Base

 {};

all public and protected members of Base accessible as private members of Derived

private members of Base never accessible (unless friended)

inheritance relationship not accessible outside of Derived, not static cast-able

models HAS-A instead of IS-A

However HAS-A is usually better modelled by using a member variable because this causes less
coupling (favor composition over inheritance).

Matthäus Brandl An application for private inheritance? 2018-05-17 2 / 12

Wait, what?
What is private inheritance

 class Derived : private Base

 {};

all public and protected members of Base accessible as private members of Derived

private members of Base never accessible (unless friended)

inheritance relationship not accessible outside of Derived, not static cast-able

models HAS-A instead of IS-A

However HAS-A is usually better modelled by using a member variable because this causes less
coupling (favor composition over inheritance).

Matthäus Brandl An application for private inheritance? 2018-05-17 2 / 12

Typical use cases for private inheritance

Private inheritance should be used if one does not want to model IS-A but

needs to override a virtual function

needs access to a protected member

wants to make use of the Empty Base Optimization (e.g. with policy-based design)

There are also other use cases, see the C++ FAQ or cppreference.com.

Matthäus Brandl An application for private inheritance? 2018-05-17 3 / 12

https://isocpp.org/wiki/faq/private-inheritance
https://en.cppreference.com/w/cpp/language/derived_class#Private_inheritance

Typical use cases for private inheritance

Private inheritance should be used if one does not want to model IS-A but

needs to override a virtual function

needs access to a protected member

wants to make use of the Empty Base Optimization (e.g. with policy-based design)

There are also other use cases, see the C++ FAQ or cppreference.com.

Matthäus Brandl An application for private inheritance? 2018-05-17 3 / 12

https://isocpp.org/wiki/faq/private-inheritance
https://en.cppreference.com/w/cpp/language/derived_class#Private_inheritance

Typical use cases for private inheritance

Private inheritance should be used if one does not want to model IS-A but

needs to override a virtual function

needs access to a protected member

wants to make use of the Empty Base Optimization (e.g. with policy-based design)

There are also other use cases, see the C++ FAQ or cppreference.com.

Matthäus Brandl An application for private inheritance? 2018-05-17 3 / 12

https://isocpp.org/wiki/faq/private-inheritance
https://en.cppreference.com/w/cpp/language/derived_class#Private_inheritance

Typical use cases for private inheritance

Private inheritance should be used if one does not want to model IS-A but

needs to override a virtual function

needs access to a protected member

wants to make use of the Empty Base Optimization (e.g. with policy-based design)

There are also other use cases, see the C++ FAQ or cppreference.com.

Matthäus Brandl An application for private inheritance? 2018-05-17 3 / 12

https://isocpp.org/wiki/faq/private-inheritance
https://en.cppreference.com/w/cpp/language/derived_class#Private_inheritance

The problem

Suppose a dynamic library with the following C API:

 typedef struct

 {

 /* pointer to a resource, e.g., a C string */

 char const * foo;

 /* more variables that need resources ... */

 } Widget;

 int createWidget(Widget const ** widget);

 void freeWidget(Widget const * widget);

We want to implement this API using C++...

Matthäus Brandl An application for private inheritance? 2018-05-17 4 / 12

The C-ish approach
Tedious but effective

 int createWidget(Widget const ** widget)

 {

 Widget * newWidget =

 (Widget *) std::malloc(sizeof(Widget));

 if (!newWidget)

 {

 return OUT_OF_MEMORY;

 }

 *widget = {}; // zero initialize

 std::string foo = frobnicate(/* ... */);

 if (foo.empty())

 {

 freeWidget(newWidget);

 return FROBNICATE_FAILED;

 }

 newWidget->foo = strdup(foo.c_str());

 /* ... */

 *widget = newWidget;

 return SUCCESS;

 }

 void freeWidget(Widget const * widget)

 {

 std::free(widget->foo);

 /* ... */

 std::free(widget);

 }

Matthäus Brandl An application for private inheritance? 2018-05-17 5 / 12

The C-ish approach
malloc() & free() galore

Advantages:

straightforward to implement

easy to understand

low complexity

Disadvantages:

manual ressource management

raw owning pointers

error prone

hard to get right

tedious

Matthäus Brandl An application for private inheritance? 2018-05-17 6 / 12

The C-ish approach
malloc() & free() galore

Advantages:

straightforward to implement

easy to understand

low complexity

Disadvantages:

manual ressource management

raw owning pointers

error prone

hard to get right

tedious

Matthäus Brandl An application for private inheritance? 2018-05-17 6 / 12

The C-ish approach
malloc() & free() galore

Advantages:

straightforward to implement

easy to understand

low complexity

Disadvantages:

manual ressource management

raw owning pointers

error prone

hard to get right

tedious

Matthäus Brandl An application for private inheritance? 2018-05-17 6 / 12

The C-ish approach
malloc() & free() galore

Advantages:

straightforward to implement

easy to understand

low complexity

Disadvantages:

manual ressource management

raw owning pointers

error prone

hard to get right

tedious

Matthäus Brandl An application for private inheritance? 2018-05-17 6 / 12

Automating ressource management
Using the power of C++

Idea:

introduce class ResourcedWidget

derive from C struct Widget

default initialize the base C struct

for every resource in Widget

add managing member
(std::string, std::unique ptr,
std::vector, ...) to
ResourcedWidget

add setter to assign resource to
member and assign correct pointer
to C struct

 class ResourcedWidget : public Widget

 {

 public:

 explicit ResourcedWidget()

 : Widget() // Default initialization!

 {}

 void setFoo(std::string const & value)

 {

 m_foo = value;

 foo = m_foo.c_str();

 }

 // more setters...

 private:

 std::string m_foo;

 };

Matthäus Brandl An application for private inheritance? 2018-05-17 7 / 12

Automating ressource management
Using the power of C++

Idea:

introduce class ResourcedWidget

derive from C struct Widget

default initialize the base C struct

for every resource in Widget

add managing member
(std::string, std::unique ptr,
std::vector, ...) to
ResourcedWidget

add setter to assign resource to
member and assign correct pointer
to C struct

 class ResourcedWidget

: public Widget

 {

 public:

 explicit ResourcedWidget()

 : Widget() // Default initialization!

 {}

 void setFoo(std::string const & value)

 {

 m_foo = value;

 foo = m_foo.c_str();

 }

 // more setters...

 private:

 std::string m_foo;

 };

Matthäus Brandl An application for private inheritance? 2018-05-17 7 / 12

Automating ressource management
Using the power of C++

Idea:

introduce class ResourcedWidget

derive from C struct Widget

default initialize the base C struct

for every resource in Widget

add managing member
(std::string, std::unique ptr,
std::vector, ...) to
ResourcedWidget

add setter to assign resource to
member and assign correct pointer
to C struct

 class ResourcedWidget

: public Widget

 {

 public:

 explicit ResourcedWidget()

 : Widget() // Default initialization!

 {}

 void setFoo(std::string const & value)

 {

 m_foo = value;

 foo = m_foo.c_str();

 }

 // more setters...

 private:

 std::string m_foo;

 };

Matthäus Brandl An application for private inheritance? 2018-05-17 7 / 12

Automating ressource management
Using the power of C++

Idea:

introduce class ResourcedWidget

derive from C struct Widget

default initialize the base C struct

for every resource in Widget

add managing member
(std::string, std::unique ptr,
std::vector, ...) to
ResourcedWidget

add setter to assign resource to
member and assign correct pointer
to C struct

 class ResourcedWidget : public Widget

 {

 public:

 explicit ResourcedWidget()

 : Widget() // Default initialization!

 {}

 void setFoo(std::string const & value)

 {

 m_foo = value;

 foo = m_foo.c_str();

 }

 // more setters...

 private:

 std::string m_foo;

 };

Matthäus Brandl An application for private inheritance? 2018-05-17 7 / 12

Automating ressource management
Using the power of C++

Idea:

introduce class ResourcedWidget

derive from C struct Widget

default initialize the base C struct

for every resource in Widget

add managing member
(std::string, std::unique ptr,
std::vector, ...) to
ResourcedWidget

add setter to assign resource to
member and assign correct pointer
to C struct

 class ResourcedWidget : public Widget

 {

 public:

 explicit ResourcedWidget()

 : Widget() // Default initialization!

 {}

 void setFoo(std::string const & value)

 {

 m_foo = value;

 foo = m_foo.c_str();

 }

 // more setters...

 private:

 std::string m_foo;

 };

Matthäus Brandl An application for private inheritance? 2018-05-17 7 / 12

Automating ressource management
Using the power of C++

Idea:

introduce class ResourcedWidget

derive from C struct Widget

default initialize the base C struct

for every resource in Widget

add managing member
(std::string, std::unique ptr,
std::vector, ...) to
ResourcedWidget

add setter to assign resource to
member and assign correct pointer
to C struct

 class ResourcedWidget : public Widget

 {

 public:

 explicit ResourcedWidget()

 : Widget() // Default initialization!

 {}

 void setFoo(std::string const & value)

 {

 m_foo = value;

 foo = m_foo.c_str();

 }

 // more setters...

 private:

 std::string m_foo;

 };

Matthäus Brandl An application for private inheritance? 2018-05-17 7 / 12

Automating ressource management
Using the power of C++

Idea:

introduce class ResourcedWidget

derive from C struct Widget

default initialize the base C struct

for every resource in Widget

add managing member
(std::string, std::unique ptr,
std::vector, ...) to
ResourcedWidget

add setter to assign resource to
member and assign correct pointer
to C struct

 class ResourcedWidget : public Widget

 {

 public:

 explicit ResourcedWidget()

 : Widget() // Default initialization!

 {}

 void setFoo(std::string const & value)

 {

 m_foo = value;

 foo = m_foo.c_str();

 }

 // more setters...

 private:

 std::string m_foo;

 };

Matthäus Brandl An application for private inheritance? 2018-05-17 7 / 12

Automating ressource management
Using the power of C++

Idea:

introduce class ResourcedWidget

derive from C struct Widget

default initialize the base C struct

for every resource in Widget

add managing member
(std::string, std::unique ptr,
std::vector, ...) to
ResourcedWidget

add setter to assign resource to
member and assign correct pointer
to C struct

 class ResourcedWidget : public Widget

 {

 public:

 explicit ResourcedWidget()

 : Widget() // Default initialization!

 {}

 void setFoo(std::string const & value)

 {

 m_foo = value;

 foo = m_foo.c_str();

 }

 // more setters...

 private:

 std::string m_foo;

 };

Matthäus Brandl An application for private inheritance? 2018-05-17 7 / 12

Automating ressource management
Using the power of C++

Idea:

introduce class ResourcedWidget

derive from C struct Widget

default initialize the base C struct

for every resource in Widget

add managing member
(std::string, std::unique ptr,
std::vector, ...) to
ResourcedWidget

add setter to assign resource to
member and assign correct pointer
to C struct

 class ResourcedWidget : public Widget

 {

 public:

 explicit ResourcedWidget()

 : Widget() // Default initialization!

 {}

 void setFoo(std::string const & value)

 {

 m_foo = value;

 foo = m_foo.c_str();

 }

 // more setters...

 private:

 std::string m_foo;

 };

Matthäus Brandl An application for private inheritance? 2018-05-17 7 / 12

Automating ressource management
Using the power of C++

Idea:

introduce class ResourcedWidget

derive from C struct Widget

default initialize the base C struct

for every resource in Widget

add managing member
(std::string, std::unique ptr,
std::vector, ...) to
ResourcedWidget

add setter to assign resource to
member and assign correct pointer
to C struct

 class ResourcedWidget : public Widget

 {

 public:

 explicit ResourcedWidget()

 : Widget() // Default initialization!

 {}

 void setFoo(std::string const & value)

 {

 m_foo = value;

 foo = m_foo.c_str();

 }

 // more setters...

 private:

 std::string m_foo;

 };

Matthäus Brandl An application for private inheritance? 2018-05-17 7 / 12

Automating ressource management
Using the power of C++

 int createWidget(Widget const ** widget)

 {

 try

 {

 auto newWidget = std::make_unique<ResourcedWidget>();

 std::string foo = frobnicate(/* ... */);

 if (foo.empty())

 {

 return FROBNICATE_FAILED;

 }

 newWidget->setFoo(foo);

 // more setters...

 *widget = newWidget.release();

 return SUCCESS;

 }

 catch (std::bad_alloc const &)

 {

 return OUT_OF_MEMORY;

 }

 }

 void freeWidget(Widget const * widget)

 {

 delete static_cast<ResourcedWidget const *>(widget);

 }

Matthäus Brandl An application for private inheritance? 2018-05-17 8 / 12

Automating ressource management
Using the power of C++

 int createWidget(Widget const ** widget)

 {

 try

 {

 auto newWidget = std::make_unique<ResourcedWidget>();

 std::string foo = frobnicate(/* ... */);

 if (foo.empty())

 {

 return FROBNICATE_FAILED;

 }

 newWidget->setFoo(foo);

 // more setters...

 *widget = newWidget.release();

 return SUCCESS;

 }

 catch (std::bad_alloc const &)

 {

 return OUT_OF_MEMORY;

 }

 }

 void freeWidget(Widget const * widget)

 {

 delete static_cast<ResourcedWidget const *>(widget);

 }

Matthäus Brandl An application for private inheritance? 2018-05-17 8 / 12

Automating ressource management
Using the power of C++

 int createWidget(Widget const ** widget)

 {

 try

 {

 auto newWidget = std::make_unique<ResourcedWidget>();

 std::string foo = frobnicate(/* ... */);

 if (foo.empty())

 {

 return FROBNICATE_FAILED;

 }

 newWidget->setFoo(foo);

 // more setters...

 *widget = newWidget.release();

 return SUCCESS;

 }

 catch (std::bad_alloc const &)

 {

 return OUT_OF_MEMORY;

 }

 }

 void freeWidget(Widget const * widget)

 {

 delete static_cast<ResourcedWidget const *>(widget);

 }

Matthäus Brandl An application for private inheritance? 2018-05-17 8 / 12

Automating ressource management
Using the power of C++

 int createWidget(Widget const ** widget)

 {

 try

 {

 auto newWidget = std::make_unique<ResourcedWidget>();

 std::string foo = frobnicate(/* ... */);

 if (foo.empty())

 {

 return FROBNICATE_FAILED;

 }

 newWidget->setFoo(foo);

 // more setters...

 *widget = newWidget.release();

 return SUCCESS;

 }

 catch (std::bad_alloc const &)

 {

 return OUT_OF_MEMORY;

 }

 }

 void freeWidget(Widget const * widget)

 {

 delete static_cast<ResourcedWidget const *>(widget);

 }

Matthäus Brandl An application for private inheritance? 2018-05-17 8 / 12

Automating ressource management
Using the power of C++

 int createWidget(Widget const ** widget)

 {

 try

 {

 auto newWidget = std::make_unique<ResourcedWidget>();

 std::string foo = frobnicate(/* ... */);

 if (foo.empty())

 {

 return FROBNICATE_FAILED;

 }

 newWidget->setFoo(foo);

 // more setters...

 *widget = newWidget.release();

 return SUCCESS;

 }

 catch (std::bad_alloc const &)

 {

 return OUT_OF_MEMORY;

 }

 }

 void freeWidget(Widget const * widget)

 {

 delete static_cast<ResourcedWidget const *>(widget);

 }

Matthäus Brandl An application for private inheritance? 2018-05-17 8 / 12

Automating ressource management

Advantages:

Easier usage:

automated resource management

Widget members are default
initialized

easier createWidget()
implementation

easier freeWidget() implementation

feels like a C++ class

Disadvantages:

Potential for resource leaks:

static cast can be forgotten during
deletion

implementers can still access Widget

members and use them wrongly
(e.g. assign raw owning pointers)

Matthäus Brandl An application for private inheritance? 2018-05-17 9 / 12

Automating ressource management

Advantages:

Easier usage:

automated resource management

Widget members are default
initialized

easier createWidget()
implementation

easier freeWidget() implementation

feels like a C++ class

Disadvantages:

Potential for resource leaks:

static cast can be forgotten during
deletion

implementers can still access Widget

members and use them wrongly
(e.g. assign raw owning pointers)

Matthäus Brandl An application for private inheritance? 2018-05-17 9 / 12

Automating ressource management

Advantages:

Easier usage:

automated resource management

Widget members are default
initialized

easier createWidget()
implementation

easier freeWidget() implementation

feels like a C++ class

Disadvantages:

Potential for resource leaks:

static cast can be forgotten during
deletion

implementers can still access Widget

members and use them wrongly
(e.g. assign raw owning pointers)

Matthäus Brandl An application for private inheritance? 2018-05-17 9 / 12

Automating ressource management

Advantages:

Easier usage:

automated resource management

Widget members are default
initialized

easier createWidget()
implementation

easier freeWidget() implementation

feels like a C++ class

Disadvantages:

Potential for resource leaks:

static cast can be forgotten during
deletion

implementers can still access Widget

members and use them wrongly
(e.g. assign raw owning pointers)

Matthäus Brandl An application for private inheritance? 2018-05-17 9 / 12

Automating ressource management

Advantages:

Easier usage:

automated resource management

Widget members are default
initialized

easier createWidget()
implementation

easier freeWidget() implementation

feels like a C++ class

Disadvantages:

Potential for resource leaks:

static cast can be forgotten during
deletion

implementers can still access Widget

members and use them wrongly
(e.g. assign raw owning pointers)

Matthäus Brandl An application for private inheritance? 2018-05-17 9 / 12

Automating ressource management

Advantages:

Easier usage:

automated resource management

Widget members are default
initialized

easier createWidget()
implementation

easier freeWidget() implementation

feels like a C++ class

Disadvantages:

Potential for resource leaks:

static cast can be forgotten during
deletion

implementers can still access Widget

members and use them wrongly
(e.g. assign raw owning pointers)

Matthäus Brandl An application for private inheritance? 2018-05-17 9 / 12

Automating ressource management

Advantages:

Easier usage:

automated resource management

Widget members are default
initialized

easier createWidget()
implementation

easier freeWidget() implementation

feels like a C++ class

Disadvantages:

Potential for resource leaks:

static cast can be forgotten during
deletion

implementers can still access Widget

members and use them wrongly
(e.g. assign raw owning pointers)

Matthäus Brandl An application for private inheritance? 2018-05-17 9 / 12

Automating ressource management

Advantages:

Easier usage:

automated resource management

Widget members are default
initialized

easier createWidget()
implementation

easier freeWidget() implementation

feels like a C++ class

Disadvantages:

Potential for resource leaks:

static cast can be forgotten during
deletion

implementers can still access Widget

members and use them wrongly
(e.g. assign raw owning pointers)

Matthäus Brandl An application for private inheritance? 2018-05-17 9 / 12

Automating ressource management

Advantages:

Easier usage:

automated resource management

Widget members are default
initialized

easier createWidget()
implementation

easier freeWidget() implementation

feels like a C++ class

Disadvantages:

Potential for resource leaks:

static cast can be forgotten during
deletion

implementers can still access Widget

members and use them wrongly
(e.g. assign raw owning pointers)

Matthäus Brandl An application for private inheritance? 2018-05-17 9 / 12

Enter private inheritance
Making Widget members inaccessible

 class ResourcedWidget : private Widget // private!

 {

 // as before...

 public:

 Widget const * toWidget() const

 {

 return static_cast<Widget const *>(this);

 }

 static void deleteWidget(Widget const * widget)

 {

 delete static_cast<ResourcedWidget const *>(widget);

 }

 };

 int createWidget(Widget const ** widget)

 try

 {

 auto newWidget = std::make_unique<ResourcedWidget>();

 // as before...

 *widget = newWidget->toWidget();

 newWidget.release();

 return SUCCESS;

 }

 catch /* as before */

 void freeWidget(Widget const * widget)

 {

 ResourcedWidget::deleteWidget(widget);

 }

Matthäus Brandl An application for private inheritance? 2018-05-17 10 / 12

Enter private inheritance
Making Widget members inaccessible

 class ResourcedWidget : private Widget // private!

 {

 // as before...

 public:

 Widget const * toWidget() const

 {

 return static_cast<Widget const *>(this);

 }

 static void deleteWidget(Widget const * widget)

 {

 delete static_cast<ResourcedWidget const *>(widget);

 }

 };

 int createWidget(Widget const ** widget)

 try

 {

 auto newWidget = std::make_unique<ResourcedWidget>();

 // as before...

 *widget = newWidget->toWidget();

 newWidget.release();

 return SUCCESS;

 }

 catch /* as before */

 void freeWidget(Widget const * widget)

 {

 ResourcedWidget::deleteWidget(widget);

 }

Matthäus Brandl An application for private inheritance? 2018-05-17 10 / 12

Enter private inheritance
Making Widget members inaccessible

 class ResourcedWidget : private Widget // private!

 {

 // as before...

 public:

 Widget const * toWidget() const

 {

 return static_cast<Widget const *>(this);

 }

 static void deleteWidget(Widget const * widget)

 {

 delete static_cast<ResourcedWidget const *>(widget);

 }

 };

 int createWidget(Widget const ** widget)

 try

 {

 auto newWidget = std::make_unique<ResourcedWidget>();

 // as before...

 *widget = newWidget->toWidget();

 newWidget.release();

 return SUCCESS;

 }

 catch /* as before */

 void freeWidget(Widget const * widget)

 {

 ResourcedWidget::deleteWidget(widget);

 }

Matthäus Brandl An application for private inheritance? 2018-05-17 10 / 12

Enter private inheritance
Making Widget members inaccessible

 class ResourcedWidget : private Widget // private!

 {

 // as before...

 public:

 Widget const * toWidget() const

 {

 return static_cast<Widget const *>(this);

 }

 static void deleteWidget(Widget const * widget)

 {

 delete static_cast<ResourcedWidget const *>(widget);

 }

 };

 int createWidget(Widget const ** widget)

 try

 {

 auto newWidget = std::make_unique<ResourcedWidget>();

 // as before...

 *widget = newWidget->toWidget();

 newWidget.release();

 return SUCCESS;

 }

 catch /* as before */

 void freeWidget(Widget const * widget)

 {

 ResourcedWidget::deleteWidget(widget);

 }

Matthäus Brandl An application for private inheritance? 2018-05-17 10 / 12

Enter private inheritance
Making Widget members inaccessible

 class ResourcedWidget : private Widget // private!

 {

 // as before...

 public:

 Widget const * toWidget() const

 {

 return static_cast<Widget const *>(this);

 }

 static void deleteWidget(Widget const * widget)

 {

 delete static_cast<ResourcedWidget const *>(widget);

 }

 };

 int createWidget(Widget const ** widget)

 try

 {

 auto newWidget = std::make_unique<ResourcedWidget>();

 // as before...

 *widget = newWidget->toWidget();

 newWidget.release();

 return SUCCESS;

 }

 catch /* as before */

 void freeWidget(Widget const * widget)

 {

 ResourcedWidget::deleteWidget(widget);

 }

Matthäus Brandl An application for private inheritance? 2018-05-17 10 / 12

Enter private inheritance
Making Widget members inaccessible

 class ResourcedWidget : private Widget // private!

 {

 // as before...

 public:

 Widget const * toWidget() const

 {

 return static_cast<Widget const *>(this);

 }

 static void deleteWidget(Widget const * widget)

 {

 delete static_cast<ResourcedWidget const *>(widget);

 }

 };

 int createWidget(Widget const ** widget)

 try

 {

 auto newWidget = std::make_unique<ResourcedWidget>();

 // as before...

 *widget = newWidget->toWidget();

 newWidget.release();

 return SUCCESS;

 }

 catch /* as before */

 void freeWidget(Widget const * widget)

 {

 ResourcedWidget::deleteWidget(widget);

 }

Matthäus Brandl An application for private inheritance? 2018-05-17 10 / 12

Enter private inheritance
Making Widget members inaccessible

 class ResourcedWidget : private Widget // private!

 {

 // as before...

 public:

 Widget const * toWidget() const

 {

 return static_cast<Widget const *>(this);

 }

 static void deleteWidget(Widget const * widget)

 {

 delete static_cast<ResourcedWidget const *>(widget);

 }

 };

 int createWidget(Widget const ** widget)

 try

 {

 auto newWidget = std::make_unique<ResourcedWidget>();

 // as before...

 *widget = newWidget->toWidget();

 newWidget.release();

 return SUCCESS;

 }

 catch /* as before */

 void freeWidget(Widget const * widget)

 {

 ResourcedWidget::deleteWidget(widget);

 }

Matthäus Brandl An application for private inheritance? 2018-05-17 10 / 12

Enter private inheritance

Advantages:

Widget members not public anymore
in ResourcedWidget context

Easy to use right, hard to use wrong

Disadvantages:

still possible to delete a
ResourcedWidget via a pointer to
Widget

(but easier to remember the function
than the static cast)

increased complexity, two additional
functions necessary

uses private inheritance for an IS-A
relationship

Matthäus Brandl An application for private inheritance? 2018-05-17 11 / 12

Enter private inheritance

Advantages:

Widget members not public anymore
in ResourcedWidget context

Easy to use right, hard to use wrong

Disadvantages:

still possible to delete a
ResourcedWidget via a pointer to
Widget

(but easier to remember the function
than the static cast)

increased complexity, two additional
functions necessary

uses private inheritance for an IS-A
relationship

Matthäus Brandl An application for private inheritance? 2018-05-17 11 / 12

Alternatives?

Do not introduce private inheritance and trust in that no one will use the Widget wrongly

Use aggregation and pass the pointer to the member to the client
But now shared state between createWidget() and freeWidget() is necessary to find
the correct ResourcedWidget instance for the given Widget pointer

Leave the type system with reinterpret cast

Use a handle approach, to access a data member you pass the handle to a dedicated
function

Please share your opinion and ideas (brandl.matthaeus@gmail.com)

There is a working example on Coliru

Matthäus Brandl An application for private inheritance? 2018-05-17 12 / 12

mailto:brandl.matthaeus@gmail.com
http://coliru.stacked-crooked.com/a/7d4e3267bb608362

Alternatives?

Do not introduce private inheritance and trust in that no one will use the Widget wrongly

Use aggregation and pass the pointer to the member to the client
But now shared state between createWidget() and freeWidget() is necessary to find
the correct ResourcedWidget instance for the given Widget pointer

Leave the type system with reinterpret cast

Use a handle approach, to access a data member you pass the handle to a dedicated
function

Please share your opinion and ideas (brandl.matthaeus@gmail.com)

There is a working example on Coliru

Matthäus Brandl An application for private inheritance? 2018-05-17 12 / 12

mailto:brandl.matthaeus@gmail.com
http://coliru.stacked-crooked.com/a/7d4e3267bb608362

Alternatives?

Do not introduce private inheritance and trust in that no one will use the Widget wrongly

Use aggregation and pass the pointer to the member to the client
But now shared state between createWidget() and freeWidget() is necessary to find
the correct ResourcedWidget instance for the given Widget pointer

Leave the type system with reinterpret cast

Use a handle approach, to access a data member you pass the handle to a dedicated
function

Please share your opinion and ideas (brandl.matthaeus@gmail.com)

There is a working example on Coliru

Matthäus Brandl An application for private inheritance? 2018-05-17 12 / 12

mailto:brandl.matthaeus@gmail.com
http://coliru.stacked-crooked.com/a/7d4e3267bb608362

Alternatives?

Do not introduce private inheritance and trust in that no one will use the Widget wrongly

Use aggregation and pass the pointer to the member to the client
But now shared state between createWidget() and freeWidget() is necessary to find
the correct ResourcedWidget instance for the given Widget pointer

Leave the type system with reinterpret cast

Use a handle approach, to access a data member you pass the handle to a dedicated
function

Please share your opinion and ideas (brandl.matthaeus@gmail.com)

There is a working example on Coliru

Matthäus Brandl An application for private inheritance? 2018-05-17 12 / 12

mailto:brandl.matthaeus@gmail.com
http://coliru.stacked-crooked.com/a/7d4e3267bb608362

Alternatives?

Do not introduce private inheritance and trust in that no one will use the Widget wrongly

Use aggregation and pass the pointer to the member to the client
But now shared state between createWidget() and freeWidget() is necessary to find
the correct ResourcedWidget instance for the given Widget pointer

Leave the type system with reinterpret cast

Use a handle approach, to access a data member you pass the handle to a dedicated
function

Please share your opinion and ideas (brandl.matthaeus@gmail.com)

There is a working example on Coliru

Matthäus Brandl An application for private inheritance? 2018-05-17 12 / 12

mailto:brandl.matthaeus@gmail.com
http://coliru.stacked-crooked.com/a/7d4e3267bb608362

Alternatives?

Do not introduce private inheritance and trust in that no one will use the Widget wrongly

Use aggregation and pass the pointer to the member to the client
But now shared state between createWidget() and freeWidget() is necessary to find
the correct ResourcedWidget instance for the given Widget pointer

Leave the type system with reinterpret cast

Use a handle approach, to access a data member you pass the handle to a dedicated
function

Please share your opinion and ideas (brandl.matthaeus@gmail.com)

There is a working example on Coliru

Matthäus Brandl An application for private inheritance? 2018-05-17 12 / 12

mailto:brandl.matthaeus@gmail.com
http://coliru.stacked-crooked.com/a/7d4e3267bb608362

