Why And How To Add Scripting

Jason Turner

http://github.com/lefticus/presentations
http://cppcast.com
http://chaiscript.com
http://cppbestpractices.com

C++ Weekly - YouTube

@lefticus

Independent Contractor

| prefer an interactive session - please ask questions

2 of 49

Who Is Currently Using Scripting?

My C++ Scripting Background

First embedded script engine in C++ for a distributed Command and Control network,
using Lua via SWIG ~2006

Created SWIG Starter Kit November 2008 (current unmaintained)

Started work on ChaiScript May 2009

Consulted on C++/Scripting projects since 2010

Contributed to SWIG Node/V8 binding generator

4 of 49

My C++ Scripting Background

I've worked on large C++ projects that are fully exposed to scripting

e 2209 classes/template instantiations, 66903 methods/functions exposed
e Supporting Ruby, Python, JavaScript, C#, Java all via SWIG
e Work equally well across Windows, Linux, MacOS

5 0f' 49

Why Do You Want Scripting?

| meet two kinds of C++ developers:

e Those who are already using scripting
e Those who have no idea why one would want scripting

Today we are going to focus on calling script from your C++, not calling C++ from your
script

6 of 49

Why Do You Want Scripting?
Config Files

e Any application of any real complexity is going to need runtime configuration
e Often this ends up being a very simple, easy to parse file

7 of 49

Why Do You Want Scripting?
Config Files

Homebrew INI file

=

widget_1_x 5
widget_1_vy 5
widget_1_width
widget_1_height =
widget_1_name = "widgetl"

widget_2_x = 15
widget_2_y = 5
widget_2_width
widget_2_height = 10
widget_2_ _name = "widget2"

8 of 49

Why Do You Want Scripting?
Config Files

When what you really mean is

widget_count = 2

widget_1_x
widget_1_y
widget_1_width = 10
widget_1_height = 10
widget_1_name = "widgetl"

=

)
=
o)

widget_2_x = widget_1_x + widget_1_width
widget_2_y = widget_1_y

widget_2_ _width = 10

widget_2_height = 10

widget_2_name = "widget2"

e This holds true even if we are using something like JSON, XML, YAML

9 of 49

Why Do You Want Scripting?
Config Files

Scripted Config File

widgetl

"widgetl") ;

widget2 Widget (widgetl.x + widgetl.width, widgetl.y,
10, 10, "widget2");

add_widget (widgetl) ;
add_widget (widget?2) ;

10 of 49

Why Do You Want Scripting?
Config Files

By using a scripting engine we:

e gain flexibility
e save the effort of writing a parser
® can express our C++ types in our config files

11 of 49

Why Do You Want Scripting?
Application Logic

e By scripting application logic you can get much faster cycles for tweaking logic without
recompiling

® You can use scripted application logic as a prototype, then convert to C++ when
performance becomes an issue

12 of 49

Why Do You Want Scripting?
User Extensibility

e Common in javascript based applications
e github's atom editor
e etc

Our C++ applications can have the same level of flexibility and extensibility

13 of 49

Why Do You Want Scripting?

Runtime Configuration

Scripting can provide an easy way to read / change runtime parameters of a system.

14 of 49

Why Do You Want Scripting?
Other Ideas?

Languages Designed For Embedding

e Lua

e ChaiScript
e \/8

e Qt Script

e Angelscript
e etc

16 of 49

Scripting Languages That Can Be
Embedded

e Ruby
e Python
e etc

Tools We'll Cover

SWIG: Simplified Wrapper and Interferface Generator
Boost.Python: Python bindings interface layer provided by Boost
sol2: Modern C++ bindings for Lua

ChaiScript: Embedded scripting engine designed for C++

18 of 49

SWIG

e Parses C++ and generates bindings for various languages
e |astrelease: 2015-12-31 - in active development
e Wide range of compiler support

19 of 49

SWIG

Extensive Language Support

Allegro CL C#

CFFI CLISP
Chicken D

Go Guile

Java Javascript
Lua Modula-3

Mzscheme OCAML
Octave Perl
PHP Python
R Ruby
Scilab Tcl
UFFI

20 of 49

SWIG

Advantages

Mostly automated, you don't have to specify your own interface (but can choose to)
The generator can automatically create 'directors' to allow you to inherit from C++
classes in your script

Can be configured to marshall exceptions between target language and C++

Disadvantages

Multiple build steps with a code generator

SWIG adds its own layer of indirection to handle overloads, which adds overhead
Marshalling of exceptions can add a lot of generated code

Sometimes SWIG can be very sensitive to type definition ordering

21 of 49

SWIG - Usage

1. Specify C++ interface you want exposed to your scripting language

2. Execute SWIG which generates a wrapper file

3. Compile generated SWIG output file

4. Initialize embedded scripting engine and load SWIG generated module
5. Execute script

22 of 49

SWIG/Ruby - C++ Interface

ifndef
define

include <string>

(const

include "exposed_code.hpp"

3 g (const
return "hello " + input;

23 of 49

SWIG/Ruby - SWIG .i Interface

<std_string.i>
"exposed_code.hpp"

5 {
#include "exposed_code.hpp"

24 of 49

SWIG/Ruby - C++ Embedding

(void) ;

(int argc, char *argv[]) {

ruby_sysinit (&argc, &argv);
{
RUBY_INIT_STACK;
ruby_init () ;
}

Init_EmbeddedScripting () ;

evalString (R"ruby (1000000.times { puts (EmbeddedScripting::hello('world')) })ruby");

25 of 49

SWIG/Ruby - Compiling With CMake

add_custom__

ouTPUT " /EmbeddedScriptingRUBY_wrap.cxx"

COMMAND "
"—ruby"
H_C++H
-o " /EmbeddedScriptingRUBY_wrap
L /EmbeddedScripting.i"

DEPENDS " /EmbeddedScripting.i"
"exposed_code.hpp"

. CXX

)

add_executable (EmbeddedScripting
main.cpp

exposed_code. hpp
exposed_code.cpp

/EmbeddedScriptingRUBY_wrap.cxx"
)

target_link_ libraries (EmbeddedScripting "dl" "crypt")

26 of 49

SWIG/Ruby - Generated File

SWIGINTERN VALUE
_wrap_hello(argc,
3 8 *argl = 0 ;
resl = SWIG_OLDOBJ ;
2 g result;
VALUE vresult = Qnil;

VALUE *argv, VALUE self) {

((argc < 1) || (argc > 1)) |
rb_raise(rb_eArgError, "wrong # of arguments (%d for 1)",argc); SWIG_fail;

- *ptr = (std::string *)O0;
resl = SWIG_AsPtr_std_string(argv[0], &ptr);
(!SWIG_IsOK (resl)) {

SWIG_exception_fail (SWIG_ArgError (resl), "v, "std::string

Ruby_Format_TypeError (

(!'ptr) |
SWIG_exception_fail (SWIG_ValueError, Ruby_Format_ TypeError ("invalid null referen

}
argl = ptr;
}
result =

vresult =
(SWIG_IsNewObj(resl)) argl;

return vresult;

fail:
(SWIG_IsNewObj(resl)) argl;

return Qnil;

hello((std::string const &) *argl);
SWIG_From_std_string(static_cast< std::string > (result));

27 of 49

SWIG/Ruby - Generated File

SWIGEXPORT void
ig

SWIG_InitRuntime () ;
mEmbeddedScripting = rb_define_module ("EmbeddedScripting") ;

SWIG_InitializeModule (0) ;
(i = 0; 1 < swig_module.size; i++) {
SWIG_define_class (swig_module.types[i]);
}

SWIG_RubyInitializeTrackings () ;
rb_define_module_function (mEmbeddedScripting, "hello", VALUEFUNC (_wrap_hello), -1);

e Plus an additional 2000 lines of boilerplate code.

e |f something goes wrong in here it can be difficult to debug why

e However this does amazing things, like handling dependencies and type info across
multiple dynamically loaded modules

28 of 49

Boost.Python

Boost.Python

Provides a wrapper layer for Boost <-> python
Last significant update: 2009-11-17 (AKA boost 1.41.0) according to boost release notes

Supports the compilers that Boost supports
Why didn't we use pybind11? Learned about it late into preparing this talk and couldn't
find examples on how to embed (instead of create module).

30 of 49

Boost.Python

Advantages

Simple build process
Easy to use interface

Disadvantages

Must specify each thing you want bound to Python, no generator
Not actively maintained

31 of 49

Boost.Python - Usage

1. Bind C++ functions to Python functions
2. Initialize embedded scripting engine

3. Load internally created module

4. Execute script

32 of 49

Boost.Python - Module Interface

#include <boost/python.hpp>

3 g (const
return "hello " + input;

}

BOOST_PYTHON_MODULE (CppMod) {

boost: :python::def ("hello", &hello);
}

33 of 49

Boost.Python - C++ Embedding

() A
{
PyImport_AppendInittab ("CppMod", &initCppMod) ;
Py_TInitialize();

boost: :python: :0bject ((
boost::python::handle<> (boost::python: :borrowed (PyImport_AddModule ("__main___

boost::python::object main_namespace = main_module.attr ("__dict__");
boost: :python: :0bject ((boost::python::handle<> (PyImport_ImportModule ("

main_namespace["CppMod"] = cpp_module;

boost::python::handle<> ignored((PyRun_String(
R"python (
for number in range (1000000) :
print (CppMod.hello (\"world\"))
)python",
Py_file_input,
main_namespace.ptr (),
main_namespace.ptr ())));
(boost::python::error_already_set &) {
PyErr_Print () ;

34 of 49

Boost.Python - Compiling

g++ boost_python.cpp -I /usr/include/python2.7/ -lboost_python —-lpython2.7

35 of 49

sol2

36 of 49

sol2

e Provides a wrapper layer between lua<->c++
e |astrelease 2016-05-03 - actively developed
e Supports Visual Studio 2015, Clang 3.5, G++ 4.9

37 of 49

sol2

Advantages
Simple build process
Easy to use interface
Natural interaction with C++
Disadvantages

Must specify each thing you want bound to Lua, no generator

38 of 49

sol2 - Usage

1. Create lua state object
2. Register C++ objects
3. Execute script

39 of 49

sol2 - C++ Embedding

include <sol.hpp>
include <cassert>
include <iostream>

3 g (const
return "hello " + input;

}

int () |
sol::state lua;
lua.open_libraries (sol::1ib: :base) ;

lua.set_function("hello", hello);
lua.script (R"1lua (
for 1 = 0,1000000,1 do print (hello ("world")) end
) Luam) ;

}

40 of 49

sol2 - Compiling

g++ ./sol2.cpp -I sol2/ -std=c++11 -I /usr/include/luab5.3/ -1lua5.3

41 of 49

ChaiScript

ChaiScript

e Embedded scripting language co-designed by me specifically for C++
e Supports Visual Studio 2013, clang 3.4, g++ 4.5 (but this is changing as we move to

C++14)
e Lastrelease 2016-04-31 - actively developed

43 of 49

ChaiScript

Advantages

Header only - no external deps

Designed for integration with C++

All types are the same and directly shared between script and C++ (double, std::string,
std::function, etc)

Disadvantages

Header only - compile times seem slow (but realisically probably not impact a real
project much)

44 of 49

ChaiScript - Usage

1. Create ChaiScript engine object
2. Register C++ objects
3. Execute script

45 of 49

ChaiScript - C++ Embedding

include <chaiscript/chaiscript.hpp>
include <chaiscript/chaiscript_stdlib.hpp>

2 2 (const 2 ¢ & 1input)
return "hello " + input;

}

int ()
{

chaiscript::ChaiScript (chaiscript::Std_Lib::1library());

chai.add(chaiscript::fun(&hello), "hello");
i

chai.eval (R"chaiscript (for (var 0, 1 < 1000000; ++i) { print (hello ("world"));

46 of 49

ChaiScript - Compiling

g++ ChaiScript.cpp -1dl1 -pthread -I ../../../ChaiScript/include/ -std=c++11

47 of 49

Conclusions

| don't recommend embedding either Ruby or Python

.PYErr_Print();:

__

Global state means multithreading is somewhere between very difficult and impossible
But there might be institutional reasons why either makes sense

m Existing code bases

m Existing knowledge bases

Just because Ruby isn't recommended doesn't mean SWIG is not

m SWIG / Lua, SWIG / V8 are good options

48 of 49

Questions?

Jason Turner

http://github.com/lefticus/presentations
http://cppcast.com
http://chaiscript.com
http://cppbestpractices.com

C++ Weekly

@lefticus

Independent Contractor

Stickers!

49 of 49

