Progress toward Contract Support
in C++17

Nathan Myers

Bloomberg LP

May 12, 2016
ncm@cantrip.org

CppNow 2016

Background

Contradéts are not new:

vold copy(char const*x from, size_t n, char* to)

Precondition: from != 0 && to != 0
Postcondition: memcmp(from, to, n) ==

Background

Contradéts are not new:

vold copy(char const*x from, size_t n, char* to)

Precondition: from!= 0 & to!= 0 || n ==
Postcondition: memcmp(from, to, n) ==

Background

Contradéts are not new:

vold copy(char const*x from, size_t n, char* to)

Precondition: from!= 0 & to!=0 || n ==
Postcondition: memcmp(from, to, n) ==

— Users get angry without this addition

— Formal contracts need more care and testing than we might be used
to doing

Background

Contradéts are not new:

void copy(char const* from, size_t n, char* to)

Precondition: from!= 0 & to!= 0 || n ==
Postcondition: memcmp(from, to, n) ==

— Documentation & comments only
— Limited rigor, sloppy design, inconsistencies

e memcmp allows null from, to when n ==

e memcpy has undefined behavior if any argument is zero

Background

Contradéts are not new:

vold copy(char const* from, size_t n, charx to)

Precondition: from!= 0 & to!= 0 || n ==
Postcondition: memecmp(from, to, n) ==

Another example:

bool
binary_search(int constx b, int const* e, int v)

Precondition: b == e ||
less(b, e) && 1s_partitioned(b, e, v)
Returns: find(b, e, v) != e

Background

Wide contract:

No preconditions

Background

Wide contract:

No preconditions

std: :vector<T>::size()
std: :vector<T>: :push_back(T&&)

Background

Wide contract:

No preconditions

std: :vector<T>::size()
std: :vector<T>: :push_back(T&&)

Widen a contract:

copy(charx from, size_t n, charx* to)

Requires: from != 0 && to != 0

Background

Wide contract:

No preconditions

std: :vector<T>::size()
std: :vector<T>: :push_back(T&&)

Widen a contract:

copy(charx from, size_t n, charx* to)

Requires: from != 0 && to != 0 || n ==

Background

Wide contract:
No preconditions

std: :vector<T>::size()
std: :vector<T>: :push_back(T&&)

Widen a contract:

copy(charx from, size_t n, charx* to)
Requires: from != 0 && to != 0 || n ==

Narrow a contraét: ...

Background

Wide contract:
No preconditions

std: :vector<T>::size()
std: :vector<T>: :push_back(T&&)

Widen a contract:

copy(charx from, size_t n, charx* to)
Requires: from != 0 && to != 0

Narrow a contraét: ...

Background

Undefined Behavior

Background

Undefined Behavior

char from[10], to[10];
memcpy(to, from, 10); // boom -- uninitialized

Background

Undefined Behavior

char from[10], to[10];
memcpy(to, from, 10); // boom

“Soft” Undefined Behavior
copy (@, 0, 0); // boom?

Background

Undefined Behavior

char from[10], to[10];
memcpy(to, from, 10); // boom

“Soft” Undefined Behavior
copy (@, 0, 0); // boom?

— User must assume the implementation does something undefined

It might! Or, maybe we got here because of previous UB

Background

Undefined Behavior

char from[10], to[10];
memcpy(to, from, 10); // boom!

“Soft” Undefined Behavior
copy (@, 0, 0); // boom?

— User must assume the implementation does something undefined

It might! Or, maybe we got here because of previous UB

— Compiler cannot assume the call results in UB

Implementation might check

Background

C-Style assert

#include <cassert>

assert(p != 0);

Background

C-Style assert

#include <cassert>

assert(p != 0);

— Optimizer can't see it

e #fdefine assert(x)

Background

C-Style assert

#include <cassert>

assert(p != 0);

— Optimizer can't see it
e #fdefine assert(x)

— Optimizer not allowed to act on it

Background

C-Style assert

#include <cassert>

assert(p != 0);

— Optimizer can't see it
e #fdefine assert(x)
— Optimizer not allowed to act on it

e #define assert(x) __builtin_assume(x)

... unless specifically permitted

Goals

e Static Correc¢tness

Build can fail on misuse detected by compiler

constexpr arguments might be traced through inlines/templates,
maybe several levels deep

Return-value and postcondition properties can be used to check
subsequent preconditions: “stitching”

3t party tools might do deeper analysis than the compiler can

afford to do

Goals

e Static Correétness
e Runtime Correétness

— Programmed runtime response to detected misuse
- E.g., call a handler: log details, maybe save $tate, maybe clean up

— Beta release might phone home, send log on restart

Goals

e Static Correétness
e Runtime Correcétness
e Better Security?

— Error handler set at link time

— Runtime postconditions — buffer zeroed

Goals

Static Correctness
Runtime Correcétness
Better Security?
Better Performance

Compiler needs permission to use assertions in optimization

Code analysis is NP, assertions may be used as oracles

Assertions can reveal what even whole-program analysis (“link-
time optimization”) cannot

Performance gains reduce pressure to (unwisely) put misuse
handling in the interface

Goals

Better Static Correctness
Better Runtime Correctness
Better Security?

Better Performance

Better Testing

— Test cases exercise assertions in addition to checking output
— Assertions cross-check library dependencies, up and down layers

— For some, a poor man’s substitute for unit tests (!)

Goals

Better Static Correctness

Better Runtime Correctness

Better Security?

Better Performance

Better Testing

Better Bug Reports / Better Library Experience

— Debug version logs both internal failures and misuse
— Checks prevent bug reports for usage mistakes

— Maintainers less distracted by spurious bug reports

Complications

e Fundamental problems

Complications: Fundamental Problems

Incomplete Capture

Complications: Fundamental Problems

Incomplete Capture

 Inexpressible:
void operator delete(voidx p)

Pre: p obtained from op new, not since deleted (or 0)
Post: p available to return from op new again, p undefined

Complications: Fundamental Problems

Incomplete Capture

 Inexpressible:
void operator delete(voidx p)

Pre: p obtained from op new, not since deleted (or 0)
Post: p available to return from op new again, p undefined

e Impractical:
void sort(b, e) // 0(n log n)
Pre: b, e are from same container, b < e
Post: is_sorted(b, e) // 0(n)
Post: is_permutation(b, e, . . . // 0(n?

Complications: Fundamental Problems

Incomplete Capture

 Inexpressible:
void operator delete(voidx p)

Pre: p obtained from op new, not since deleted (or 0)

Post: p available to return from op new again, p undefined

e Impractical:
void sort(b, e) // 0(n log n)
Pre: b, e are from same container, b < e
Post: is_sorted(b, e) // 0(n)
Post: is_permutation(b, e, . . . // 0(n?
(Permutation of what? Saving copies of b, e not enough)

Complications: Fundamental Problems

e Incomplete Capture
e (Cluttered Interface

— Contract junk can be much longer than the declaration
— Too long, yet incomplete

— Expressions only — i.e. “functional”, not very expressive :-)

Complications: Fundamental Problems

e Incomplete Capture
e Cluttered Interface
e Aliasing
— Many ways to get “directly” to a function

e Virtual inheritance
* Function pointers
e (Partial) specialization

e Function template overload

Complications: Fundamental Problems

e Incomplete Capture
e Cluttered Interface
o Aliasing
— Many ways to get “directly” to a function

 Virtual inheritance
* Function pointers
o (Partial) specialization
e Function template overload
— Potentially different contract terms
e Narrowing, trivially

» Widening, in certain circumstances (!)

Complications

e Fundamental problems

e Runtime Checking

Complications: Runtime Checking

Catches mistakes static checking cannot, but...
Adds run-time cost
— No upper limit to potential cost
— But very cheap checks can catch common mistakes
Needs a better response to violations than abort (), i.e. user-specified
Thorough checking often violates specified complexity

... motivating “audit-mode” builds, & not => implies build modes

Linking mixed-mode builds suggests ODR-"ish” questions — which
instantiation of a template / inline do you get, the version with
checking, or without?

Complications

e Fundamental problems

e Runtime Checking Levels

e Optimization

Complications: Optimization

e Check expressions can be useful to the optimizer

if violation handler can’t return, forward-propagate implications
it all runtime checking is turned off, backward-propagate too
check expression itself has implications useful to the optimizer

[[assert: *p == ‘#’]1] // implicitly, assume(p)

but too many overwhelms the optimizer, and it gives up!

* Check-expression implication can elide later check expressions
e Checks may be marked never to execute: “axiom”

e Axioms can call unimplemented / unimplementable functions, just for
their declared pre / postconditions or built-in implications

Complications

Fundamental problems

Runtime Checking Levels
Optimization

Build modes

Complications: Build Modes

No one-size-fits-all

Runtime checking levels, “audit”/ (default) / “never”

Runtime violations: can / cannot resume, if handler returns

Runtime violation handler: default “abort”/ link-time specified
Optimizer allowed / not allowed to treat non-runtime checks as oracles

Maybe, check in caller / in callee, enabling retrofitting old libraries

Process

e Players

e Timeline

Process: Players

Bloomberg: runtime checking, improved testing
Academia, Coverity: $tatic checking, program correctness
Microsoft: security, correctness

Google, Nvidia, Facebook: optimization

Process: Timeline

2010: Proposal based on Bloomberg runtime-checking macros
. .. (things happen)
2013: Library proposal approved in subcommittees LEWG, LWG
2014: Library proposal ejected by full committee: “Macros! ODR!”
2015: Bloomberg/Microsoft/other competing/conflicting core proposals
— Run-time/compile-time vs. compile-time only
— Checks in declarations vs. in function bodies

=> Committee requests joint proposal

2016: Joint design proposed, welcomed; more detailed proposal in Oulu
Future: TS, then in $tandard 2019/2020, integrate to std lib spec after

C++17 implementations will implement the TS, use in std lib; you can too

Details

Syntax

Transition

Runtime Postconditions
Runtime Checking Control
Static Declarations

Optimization

Details: syntax

o attributes (with certain core-grammar changes), by example:

template <typename It, typename Cmp>
void sort(It b, It e, Cmp cmp)

[[pre axiom: reaches(b, e)]]l] // notional! Not expressible
- [[pre audit: [=](0) { // check predicate behavior
for (It p =b; p !'=e; ++p)
for (It g = p; g !=e; ++q)
if cmp(*p, *q) == cmp(*qg, *p) return false;
return true; }() 1]
[[post: is_sorted(b, e)l]

It tb = b, te = e;
[[assert: xtb < *tell;

[[assert: is_permutation(b, e, [what?])1];
}
* Not nailed down yet: commas? attribute-token order? names? return value?

Details: Transition

e Newly instrumenting any significant library breaks all programs that
use it, until fixed

Details: Transition

e Newly instrumenting any significant library breaks all programs that
use it, until fixed

— Need transition support

Details: Transition

* Newly inStrumenting any significant library breaks all programs that
use it, until fixed

— Need transition support

— Need C++14 compilers to permit new contract-attribute syntax,
ignore new attributes, but still warn about misspellings of known

attributes, e.g.:

-Wno-unknown-attribute=pre,post,assert,audit,axiom

Details: Transition

e Newly instrumenting any significant library breaks all programs that
use it, until fixed

— Need transition support

— Need C++14 compilers to permit new contract-attribute syntax,
ignore new attributes, but still warn about misspellings in known
attributes, e.g.:

-Wno-unknown-attribute=pre,post,assert,audit,axiom

— Maintaining separate library versions (instrumented and not-
instrumented) for use with different compilers is unpleasant (and
involves many, many macros)

Details: Standard Library

The C++ Standard Library counts as a significant library

- Expect C++17 implementations to have annotated their respective

std libs

— Expect all your programs to break: you will need to rely on
transition aids until your programs and libraries are fixed

Details: Runtime Postconditions

Runtime postconditions have a wee problem:

Pass-by-value arguments may appear in the postcondition

e Static checks want the values the arguments had on entry

- Entry, exit, and return values all “exist”, statically

(Might need a way to mention both)

e Runtime checks want . . . what, exactly?

template <typename It, typename Cmp>
void sort(It b, It e, Cmp cmp)

[[post: is_sorted(b, e)]] // did sort change b, e?
[[pre axiom: reaches(b, e)]]; // notional

Details: Runtime Postconditions

Runtime postconditions have a wee problem

— Value arguments may appear in the postcondition

e Static checks want the value on entry

— Values before and values after both “exist”, statically
— Might need a way to mention both

e Runtime checks want . . . what, exactly?

— Mutating a pass-by-value argument in the function body, if it was
mentioned in a postcondition, is “ill-formed”

 ...but they are not const (const values are mutable too); anyway,
* ...lookup must be the same with or without the postcondition

o If the compiler sees a violation, it must report an error — but if it
cannot see a violation, ‘no diagnostic required”

Details: Runtime Checking Control

Controlling whether to check contract annotations is complicated
Remember: “In a correct program, all requirements are satisfied”

Compiler command line flags

--contract-runtime-level=[audit|none]
--contract-violation-handler=app::log_and_quit
--contract-violation-resume

Sanitizer violations could also call the contra¢t violation handler

--contract-sanitize # maybe?

Details: Static Declarations

[[pre: ...]], [[post:]] on function declarations
All declarations of a given interface must have identical contract specifiers

— Very reétrictive (cf. aliasing), might be relaxed later
— Must be “ODR-identical” (cf. inline-function definition rules)

Tools can check individual calls, but also match postconditions on one call
with preconditions on subsequent calls: “stitching”

Declared, not-defined functions would be usable in axioms just for their
pre- and postconditions

Standard library can declare axioms with distinguished names known to
the compiler, with meaning not necessarily expressible:

reaches(b, e), null_terminated(s)

Details: Optimization

Optimization implications are very complicated
Compiler needs permission to use contract annotations to optimize

--contract-assume=[axiom|audit]|all|none]”?

Implications forward and backward? (Yes.)

Can annotations pessimize code? (Yes.)

Details: Optimization

Optimization implications are very, very complicated
Interacts with --contract-runtime-level:

Implications of checks evaluated at runtime propagate forward only
If you use (dereference) a pointer in any contract annotation:
— Does the pointer’s implied non-null-ness propagate? (Yes.)
— Forward and backward? (Yes.)
— Potentially eliding subsequent runtime checks? (Yes.)

More general annotations should follow more specific ones; otherwise,
a smart enough optimizer might elide them

Optimizers tend to get smarter

Immediate

* Better hacking with macros

e Hack into Clang, Gec

Immediate: macros

* Can mo$tly implement runtime version with macros

#ifdef CHECK_CONTRACTS
#define contract_assert(x) ((x) ? \
(void)@ : handler(__FILE__, __LINE_.))
#else
#define contract_assert(x) __builtin_assume(x)

#endif

e Hijack standard assert()? UB, but implementation can define
anything not otherwise defined.

* ODR violations — implementations get a free pass, users don’t

Immediate: Hack Clang, Gee

Most infrastructure already in place

Needs minor extensions to attribute-syntax processing
-l =]
— attribute-token attribute-token => attribute-token-pair

Patch C++14 compilers:

-Wno-unknown-attribute=pre,post,assert,audit,axiom

Tap into attribute handling, expression parsing, __ builtin_assume

Add --contract-this, --contract-that

Resources

e Walter Brown, “Proposing Contract Attributes” (w/comprehensive older references)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4435.pdf

e Bloomberg proposal motivating runtime support and providing standardese for
function body assertions and run-time and compile-time semantics:

“Language Support for Runtime Contra¢t Validation”

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4378.pdf
“FAQ about N4378, Language Support for Contract Assertions”

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n14379.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4378.pdf

Resources

J. Daniel Garcia, “Three interesting questions about contracts”

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0166r0.pdf

Lakos, Meredith & Myers, “Contract Assert Support Merged Proposal” (an attempt)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0246r0.pdf

Myers, “Criteria for Contraét Support”

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0247r0.pdf

Dos Reis et al, “Simple Contracts for C++”

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0287r0.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0166r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0246r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0247r0.pdf

