

Progress toward Contract Support
 in C++17

Nathan Myers
Bloomberg LP

May 12, 2016
ncm@cantrip.org

 CppNow 2016

Background

Contracts are not new:

 void copy(char const* from, size_t n, char* to)

 Precondition: from != 0 && to != 0
 Postcondition: memcmp(from, to, n) == 0

.

Background

Contracts are not new:

 void copy(char const* from, size_t n, char* to)

 Precondition: from != 0 && to != 0 || n == 0
 Postcondition: memcmp(from, to, n) == 0

.

Background

Contracts are not new:

– Users get angry without this addition

– Formal contracts need more care and testing than we might be used
to doing

 void copy(char const* from, size_t n, char* to)

 Precondition: from != 0 && to != 0 || n == 0
 Postcondition: memcmp(from, to, n) == 0

.

Background

Contracts are not new:

– Documentation & comments only

– Limited rigor, sloppy design, inconsistencies

● memcmp allows null from, to when n == 0
● memcpy has undefined behavior if any argument is zero

 void copy(char const* from, size_t n, char* to)

 Precondition: from != 0 && to != 0 || n == 0
 Postcondition: memcmp(from, to, n) == 0

Background

Contracts are not new:

 void copy(char const* from, size_t n, char* to)

 Precondition: from != 0 && to != 0 || n == 0
 Postcondition: memcmp(from, to, n) == 0

 Another example:

 bool
 binary_search(int const* b, int const* e, int v)

 Precondition: b == e ||
 less(b, e) && is_partitioned(b, e, v)
 Returns: find(b, e, v) != e

Background

Wide contract:

No preconditions

Background

Wide contract:

No preconditions

 std::vector<T>::size()
 std::vector<T>::push_back(T&&)

Background

Wide contract:

No preconditions

Widen a contract:

 std::vector<T>::size()
 std::vector<T>::push_back(T&&)

copy(char* from, size_t n, char* to)

 Requires: from != 0 && to != 0

Background

Wide contract:

No preconditions

Widen a contract:

 std::vector<T>::size()
 std::vector<T>::push_back(T&&)

copy(char* from, size_t n, char* to)

 Requires: from != 0 && to != 0 || n == 0

Background

Wide contract:

No preconditions

Widen a contract:

Narrow a contract: . . .

 std::vector<T>::size()
 std::vector<T>::push_back(T&&)

copy(char* from, size_t n, char* to)

 Requires: from != 0 && to != 0 || n == 0

Background

Wide contract:

No preconditions

Widen a contract:

Narrow a contract: . . .

 std::vector<T>::size()
 std::vector<T>::push_back(T&&)

copy(char* from, size_t n, char* to)

 Requires: from != 0 && to != 0

Background

Undefined Behavior

Background

Undefined Behavior

 char from[10], to[10];
 memcpy(to, from, 10); // boom -- uninitialized

Background

Undefined Behavior

“Soft” Undefined Behavior

 char from[10], to[10];
 memcpy(to, from, 10); // boom

 copy(0, 0, 0); // boom?

Background

Undefined Behavior

“Soft” Undefined Behavior

– User must assume the implementation does something undefined

It might! Or, maybe we got here because of previous UB

 char from[10], to[10];
 memcpy(to, from, 10); // boom

 copy(0, 0, 0); // boom?

Background

Undefined Behavior

“Soft” Undefined Behavior

– User must assume the implementation does something undefined

It might! Or, maybe we got here because of previous UB
– Compiler cannot assume the call results in UB

Implementation might check

 char from[10], to[10];
 memcpy(to, from, 10); // boom!

 copy(0, 0, 0); // boom?

Background

C-style assert

 #include <cassert>
 . . .
 assert(p != 0);

Background

C-style assert

– Optimizer can’t see it
● #define assert(x)

 #include <cassert>
 . . .
 assert(p != 0);

Background

C-style assert

– Optimizer can’t see it
● #define assert(x)

– Optimizer not allowed to act on it

 #include <cassert>
 . . .
 assert(p != 0);

Background

C-style assert

– Optimizer can’t see it
● #define assert(x)

– Optimizer not allowed to act on it
● #define assert(x) __builtin_assume(x)

… unless specifically permitted

 #include <cassert>
 . . .
 assert(p != 0);

Goals

● Static Correctness

– Build can fail on misuse detected by compiler

– constexpr arguments might be traced through inlines/templates,
maybe several levels deep

– Return-value and postcondition properties can be used to check
subsequent preconditions: “stitching”

– 3rd party tools might do deeper analysis than the compiler can
afford to do

Goals

● Static Correctness

● Runtime Correctness

– Programmed runtime response to detected misuse

– E.g., call a handler: log details, maybe save state, maybe clean up

– Beta release might phone home, send log on restart

Goals

● Static Correctness

● Runtime Correctness

● Better Security?

– Error handler set at link time

– Runtime postconditions – buffer zeroed

Goals

● Static Correctness

● Runtime Correctness

● Better Security?

● Better Performance

– Compiler needs permission to use assertions in optimization

– Code analysis is NP, assertions may be used as oracles

– Assertions can reveal what even whole-program analysis (“link-
time optimization”) cannot

– Performance gains reduce pressure to (unwisely) put misuse
handling in the interface

Goals

● Better Static Correctness

● Better Runtime Correctness

● Better Security?

● Better Performance

● Better Testing

– Test cases exercise assertions in addition to checking output

– Assertions cross-check library dependencies, up and down layers

– For some, a poor man’s substitute for unit tests (!)

Goals

● Better Static Correctness

● Better Runtime Correctness

● Better Security?

● Better Performance

● Better Testing

● Better Bug Reports / Better Library Experience

– Debug version logs both internal failures and misuse

– Checks prevent bug reports for usage mistakes

– Maintainers less distracted by spurious bug reports

Complications

● Fundamental problems

Complications: Fundamental Problems

Incomplete Capture

Complications: Fundamental Problems

Incomplete Capture

● Inexpressible:

void operator delete(void* p)

Pre: p obtained from op new, not since deleted (or 0)
Post: p available to return from op new again, p undefined

Complications: Fundamental Problems

Incomplete Capture

● Inexpressible:

void operator delete(void* p)

Pre: p obtained from op new, not since deleted (or 0)
Post: p available to return from op new again, p undefined

● Impractical:

void sort(b, e) // O(n log n)

Pre: b, e are from same container, b < e
Post: is_sorted(b, e) // O(n)
Post: is_permutation(b, e, . . . // O(n2)

Complications: Fundamental Problems

Incomplete Capture

● Inexpressible:

void operator delete(void* p)

Pre: p obtained from op new, not since deleted (or 0)
Post: p available to return from op new again, p undefined

● Impractical:

void sort(b, e) // O(n log n)

Pre: b, e are from same container, b < e
Post: is_sorted(b, e) // O(n)
Post: is_permutation(b, e, . . . // O(n2)

(Permutation of what? Saving copies of b, e not enough)

Complications: Fundamental Problems

● Incomplete Capture

● Cluttered Interface

– Contract junk can be much longer than the declaration

– Too long, yet incomplete

– Expressions only – i.e. “functional”, not very expressive :-)

Complications: Fundamental Problems

● Incomplete Capture

● Cluttered Interface

● Aliasing

– Many ways to get “directly” to a function

● Virtual inheritance
● Function pointers
● (Partial) specialization
● Function template overload

Complications: Fundamental Problems

● Incomplete Capture

● Cluttered Interface

● Aliasing

– Many ways to get “directly” to a function
● Virtual inheritance
● Function pointers
● (Partial) specialization
● Function template overload

– Potentially different contract terms
● Narrowing, trivially
● Widening, in certain circumstances (!)

Complications

● Fundamental problems

● Runtime Checking

Complications: Runtime Checking

● Catches mistakes static checking cannot, but…

● Adds run-time cost

– No upper limit to potential cost

– But very cheap checks can catch common mistakes

● Needs a better response to violations than abort(), i.e. user-specified

● Thorough checking often violates specified complexity

● … motivating “audit-mode” builds, & not => implies build modes

● Linking mixed-mode builds suggests ODR-”ish” questions – which
instantiation of a template / inline do you get, the version with
checking, or without?

Complications

● Fundamental problems

● Runtime Checking Levels

● Optimization

Complications: Optimization

● Check expressions can be useful to the optimizer

– if violation handler can’t return, forward-propagate implications

– if all runtime checking is turned off, backward-propagate too

– check expression itself has implications useful to the optimizer

[[assert: *p == ‘#’]] // implicitly, assume(p)

– but too many overwhelms the optimizer, and it gives up!

● Check-expression implication can elide later check expressions

● Checks may be marked never to execute: “axiom”

● Axioms can call unimplemented / unimplementable functions, just for
their declared pre / postconditions or built-in implications

Complications

● Fundamental problems

● Runtime Checking Levels

● Optimization

● Build modes

Complications: Build Modes

● No one-size-fits-all

● Runtime checking levels, “audit” / (default) / “never”

● Runtime violations: can / cannot resume, if handler returns

● Runtime violation handler: default “abort” / link-time specified

● Optimizer allowed / not allowed to treat non-runtime checks as oracles

● Maybe, check in caller / in callee, enabling retrofitting old libraries

Process

● Players

● Timeline

Process: Players

● Bloomberg: runtime checking, improved testing

● Academia, Coverity: static checking, program correctness

● Microsoft: security, correctness

● Google, Nvidia, Facebook: optimization

Process: Timeline

● 2010: Proposal based on Bloomberg runtime-checking macros

. . . (things happen)

● 2013: Library proposal approved in subcommittees LEWG, LWG

● 2014: Library proposal ejected by full committee: “Macros! ODR!”

● 2015: Bloomberg/Microsoft/other competing/conflicting core proposals

– Run-time/compile-time vs. compile-time only

– Checks in declarations vs. in function bodies

=> Committee requests joint proposal
● 2016: Joint design proposed, welcomed; more detailed proposal in Oulu

● Future: TS, then in standard 2019/2020, integrate to std lib spec after

● C++17 implementations will implement the TS, use in std lib; you can too

Details

● Syntax

● Transition

● Runtime Postconditions

● Runtime Checking Control

● Static Declarations

● Optimization

● attributes (with certain core-grammar changes), by example:

template <typename It, typename Cmp>

void sort(It b, It e, Cmp cmp)

[[pre axiom: reaches(b, e)]] // notional! Not expressible
– [[pre audit: [=]() { // check predicate behavior

for (It p = b; p != e; ++p)
 for (It q = p; q != e; ++q)

 if cmp(*p, *q) == cmp(*q, *p) return false;

 return true; }()]]

[[post: is_sorted(b, e)]]

{

It tb = b, te = e;

. . .

 [[assert: *tb < *te]];

. . .

[[assert: is_permutation(b, e, [what?])]];
}

● Not nailed down yet: commas? attribute-token order? names? return value?

Details: syntax

Details: Transition

● Newly instrumenting any significant library breaks all programs that
use it, until fixed

Details: Transition

● Newly instrumenting any significant library breaks all programs that
use it, until fixed

– Need transition support

Details: Transition

● Newly instrumenting any significant library breaks all programs that
use it, until fixed

– Need transition support

– Need C++14 compilers to permit new contract-attribute syntax,
ignore new attributes, but still warn about misspellings of known
attributes, e.g.:

-Wno-unknown-attribute=pre,post,assert,audit,axiom

Details: Transition

● Newly instrumenting any significant library breaks all programs that
use it, until fixed

– Need transition support

– Need C++14 compilers to permit new contract-attribute syntax,
ignore new attributes, but still warn about misspellings in known
attributes, e.g.:

-Wno-unknown-attribute=pre,post,assert,audit,axiom

– Maintaining separate library versions (instrumented and not-
instrumented) for use with different compilers is unpleasant (and
involves many, many macros)

Details: Standard Library

The C++ Standard Library counts as a significant library

– Expect C++17 implementations to have annotated their respective
std libs

– Expect all your programs to break: you will need to rely on
transition aids until your programs and libraries are fixed

Details: Runtime Postconditions

Runtime postconditions have a wee problem:

Pass-by-value arguments may appear in the postcondition

● Static checks want the values the arguments had on entry
– Entry, exit, and return values all “exist”, statically

(Might need a way to mention both)
● Runtime checks want . . . what, exactly?

template <typename It, typename Cmp>

void sort(It b, It e, Cmp cmp)

[[post: is_sorted(b, e)]] // did sort change b, e?

[[pre axiom: reaches(b, e)]]; // notional

Details: Runtime Postconditions

Runtime postconditions have a wee problem

– Value arguments may appear in the postcondition

● Static checks want the value on entry
– Values before and values after both “exist”, statically
– Might need a way to mention both

● Runtime checks want . . . what, exactly?
– Mutating a pass-by-value argument in the function body, if it was

mentioned in a postcondition, is “ill-formed”

● . . . but they are not const (const values are mutable too); anyway,
● . . . lookup must be the same with or without the postcondition
● If the compiler sees a violation, it must report an error – but if it

cannot see a violation, “no diagnostic required”

Details: Runtime Checking Control

● Controlling whether to check contract annotations is complicated

● Remember: “In a correct program, all requirements are satisfied”

● Compiler command line flags

--contract-runtime-level=[audit|none]

--contract-violation-handler=app::log_and_quit

--contract-violation-resume

● Sanitizer violations could also call the contract violation handler

--contract-sanitize # maybe?

Details: Static Declarations

● [[pre: …]], [[post:]] on function declarations

● All declarations of a given interface must have identical contract specifiers

– Very restrictive (cf. aliasing), might be relaxed later

– Must be “ODR-identical” (cf. inline-function definition rules)

● Tools can check individual calls, but also match postconditions on one call
with preconditions on subsequent calls: “stitching”

● Declared, not-defined functions would be usable in axioms just for their
pre- and postconditions

● Standard library can declare axioms with distinguished names known to
the compiler, with meaning not necessarily expressible:

reaches(b, e), null_terminated(s)

Details: Optimization

● Optimization implications are very complicated

● Compiler needs permission to use contract annotations to optimize

--contract-assume=[axiom|audit|all|none]”?
● Implications forward and backward? (Yes.)

● Can annotations pessimize code? (Yes.)

Details: Optimization

● Optimization implications are very, very complicated

● Interacts with --contract-runtime-level:

Implications of checks evaluated at runtime propagate forward only
● If you use (dereference) a pointer in any contract annotation:

– Does the pointer’s implied non-null-ness propagate? (Yes.)

– Forward and backward? (Yes.)

– Potentially eliding subsequent runtime checks? (Yes.)
● More general annotations should follow more specific ones; otherwise,

a smart enough optimizer might elide them

Optimizers tend to get smarter

Immediate

● Better hacking with macros

● Hack into Clang, Gcc

Immediate: macros

● Can mostly implement runtime version with macros

#ifdef CHECK_CONTRACTS

#define contract_assert(x) ((x) ? \

 (void)0 : handler(__FILE__, __LINE__))

#else

#define contract_assert(x) __builtin_assume(x)

#endif

● Hijack standard assert()? UB, but implementation can define
anything not otherwise defined.

● ODR violations – implementations get a free pass, users don’t

Immediate: Hack Clang, Gcc

● Most infrastructure already in place

● Needs minor extensions to attribute-syntax processing

– : . . .]] => (. . .)]]

– attribute-token attribute-token => attribute-token-pair

● Patch C++14 compilers:

-Wno-unknown-attribute=pre,post,assert,audit,axiom

● Tap into attribute handling, expression parsing, __builtin_assume

● Add --contract-this, --contract-that

Resources

● Walter Brown, “Proposing Contract Attributes” (w/comprehensive older references)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4435.pdf
● Bloomberg proposal motivating runtime support and providing standardese for

function body assertions and run-time and compile-time semantics:

“Language Support for Runtime Contract Validation”

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4378.pdf

“FAQ about N4378, Language Support for Contract Assertions”

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4379.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4378.pdf

Resources

● J. Daniel Garcia, “Three interesting questions about contracts”

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0166r0.pdf

● Lakos, Meredith & Myers, “Contract Assert Support Merged Proposal” (an attempt)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0246r0.pdf

● Myers, “Criteria for Contract Support”

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0247r0.pdf

● Dos Reis et al, “Simple Contracts for C++”

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0287r0.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0166r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0246r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0247r0.pdf

