
Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Preprocessor-Aware Refactoring

Je� Trull

12 May 2016

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Outline

1 Refactoring
Refactoring is important
The Preprocessor gets in the way

2 Tools
User tools
APIs

3 Conditional Compilation
Calculating Presence Conditions
Refactoring into Policies

4 Conclusion

5 Resources

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Refactoring is important
Most code is legacy code

constantly changing requirements, tactics

short-term focus restrains investment

clean rewrite trades predictable cost for unknown, optimistically better, but
mgmt hates risk

all "human nature"

this is our reality

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Refactoring is important
Improving existing code is harder

must learn to think like author(s) �rst

often poor or no tests

sometimes must refactor to make testable �rst

Good news: doing this well may be more valuable (to employers, customers)
than green�eld development

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

The Preprocessor gets in the way

Macro substitution is a textual operation that can result in any program text
whatsoever

Conditional compilation hides parts of the code at compile time

Generally what the compiler (and other tools) see and what the programmer
has written are di�erent.

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

The Preprocessor gets in the way
Macro Substitution

Source of legacy idioms
global constants

what type is PI? MAXINT? NULL?

"helpful" global utilities e.g. min, max 1

Reproducible build issues - __DATE__, __TIME__, __TIMESTAMP__ 2

Barrier to refactoring: Scott Meyers blog 3

#define ZERO 0
auto x = ZERO;
int *p = ZERO;

1"Using STL in Windows Program Can Cause Min/Max Con�icts"
https://support.microsoft.com/en-us/kb/143208

2https://wiki.debian.org/ReproducibleBuilds/TimestampsFromCPPMacros
3"The Brick Wall of C++ Source Code Transformation"

http://scottmeyers.blogspot.com/2015/11/the-brick-wall-of-c-source-code.html

https://support.microsoft.com/en-us/kb/143208
https://wiki.debian.org/ReproducibleBuilds/TimestampsFromCPPMacros
http://scottmeyers.blogspot.com/2015/11/the-brick-wall-of-c-source-code.html

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

The Preprocessor gets in the way
Conditional Compilation

Static analysis (usually) only studies one con�guration

OPENSSL_NO_HEARTBEATS 4

Accidental dead or unconditional code

CONFIG_CPU_HOTPLUG 5

Often there are better design idioms (e.g. template specialization for di�erent
cases)

4"Comments on a formal veri�cation of PolarSSL" http://blog.regehr.org/archives/1261
5"How to avoid #ifdef bugs in the Linux kernel" https:

//www.linuxplumbersconf.org/2014/ocw/system/presentations/1863/original/rothberg.pdf

http://blog.regehr.org/archives/1261
https://www.linuxplumbersconf.org/2014/ocw/system/presentations/1863/original/rothberg.pdf
https://www.linuxplumbersconf.org/2014/ocw/system/presentations/1863/original/rothberg.pdf

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

User tools

User tools

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

User tools
cpp2cxx

The fruit of a 2012 paper by Kumar, Sutton, and Stroustrup, "Rejuvenating C++
Programs through Demacro�cation" 6

C++11/14 gives new options for macro replacement

Expression alias becomes constexpr auto; deduces type
Type alias becomes using statement
Parameterized type alias becomes template<> using

#define PTR_TYPE(T) T*

becomes

template <typename T>
using Ptr = T*;

6http://www.stroustrup.com/icsm-2012-demacro.pdf

http://www.stroustrup.com/icsm-2012-demacro.pdf

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

User tools
cpp2cxx

Parameterized expression becomes variadic function template

perfect forwarding permits argument type deduction

// macro
#define F(A1 , ..., An) X
// C++11 declaration
template <typename T1, ..., typename Tn>
auto F(T1&& A1, ..., Tn&& An)
-> decltype(X)
{

return X;
}

Parameterized statement can become a similar function returning void

resulting tool is cpp2cxx 7

Actively maintained. Uses both Clang and Boost.Wave (?!)

7https://github.com/hiraditya/cpp2cxx

https://github.com/hiraditya/cpp2cxx

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

User tools
Clang tools

clang-tidy "modernize nullptr" 8 handles the cases described by Scott Meyers

Replaces 0 and NULL assignment to pointers with nullptr
optionally handles user-selected macros as well
does not rede�ne the macro itself

Clang Modularize 9

Helps prepare for C++ "modules"
Looks for inconsistent macro de�nitions, among other things
Probably the most sophisticated PP/parser interaction tool I've seen

8http://clang.llvm.org/extra/clang-tidy/checks/modernize-use-nullptr.html
9http://clang.llvm.org/extra/modularize.html

http://clang.llvm.org/extra/clang-tidy/checks/modernize-use-nullptr.html
http://clang.llvm.org/extra/modularize.html

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

User tools
Others

cppcheck

hand-rolled parser etc.
does a surprisingly good job of handling con�gurations

unifdef

Used to remove kernel-speci�c code from Linux code, and for understanding
PP-heavy sources
http://dotat.at/prog/unifdef/

http://dotat.at/prog/unifdef/

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

APIs

APIs

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Boost.Wave

Generic programming

Lexer, preprocessor somewhat decoupled

Preprocessor can do callbacks

Spirit Classic

Users

Imageworks (Sony Pictures) Open Shading Language 10

ROSE (LLNL) Compiler Tools 11

10https://github.com/imageworks/OpenShadingLanguage
11http://rosecompiler.org/

https://github.com/imageworks/OpenShadingLanguage
http://rosecompiler.org/

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Boost.Wave
Lexer Usage

using namespace boost::wave;

using cpplexer_token_t = cpplexer ::lex_token <>;
using cpplexer_iterator_t =

cpplexer :: lex_iterator <cpplexer_token_t >;

std:: string cppstr{"struct Foo {};"};
auto cbeg = cppstr.begin();
cpplexer_iterator_t beg(cbeg , cppstr.end(),

cpplexer_token_t :: position_type("fake.cpp"),
language_support(support_cpp|support_cpp0x));

cpplexer_iterator_t end;

for (auto tok = beg; tok != end; ++tok) {
std::cout << tok ->get_value ();

}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Boost.Wave
Lexer Usage

using namespace boost::wave;

using cpplexer_token_t = cpplexer ::lex_token <>;
using cpplexer_iterator_t =

cpplexer :: lex_iterator <cpplexer_token_t >;

std:: string cppstr{"struct Foo {};"};
auto cbeg = cppstr.begin();
cpplexer_iterator_t beg(cbeg , cppstr.end(),

cpplexer_token_t :: position_type("fake.cpp"),
language_support(support_cpp|support_cpp0x));

cpplexer_iterator_t end;

for (auto tok = beg; tok != end; ++tok) {
std::cout << tok ->get_value ();

}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Boost.Wave
Lexer Usage

using namespace boost::wave;

using cpplexer_token_t = cpplexer ::lex_token <>;
using cpplexer_iterator_t =

cpplexer :: lex_iterator <cpplexer_token_t >;

std:: string cppstr{"struct Foo {};"};
auto cbeg = cppstr.begin();
cpplexer_iterator_t beg(cbeg , cppstr.end(),

cpplexer_token_t :: position_type("fake.cpp"),
language_support(support_cpp|support_cpp0x));

cpplexer_iterator_t end;

for (auto tok = beg; tok != end; ++tok) {
std::cout << tok ->get_value ();

}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Boost.Wave
Lexer Usage

using namespace boost::wave;

using cpplexer_token_t = cpplexer ::lex_token <>;
using cpplexer_iterator_t =

cpplexer :: lex_iterator <cpplexer_token_t >;

std:: string cppstr{"struct Foo {};"};
auto cbeg = cppstr.begin();
cpplexer_iterator_t beg(cbeg , cppstr.end(),

cpplexer_token_t :: position_type("fake.cpp"),
language_support(support_cpp|support_cpp0x));

cpplexer_iterator_t end;

for (auto tok = beg; tok != end; ++tok) {
std::cout << tok ->get_value ();

}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Boost.Wave
Preprocessor Usage

The Wave preprocessor wraps the lexer:

using policy_t =
iteration_context_policies :: load_file_to_string;

using context_t =
context <std:: string :: const_iterator ,

cpplexer_iterator_t ,
policy_t ,
PPHooks >;

PPHooks MyPPHooks;
context_t ctx(cppstr.begin(), cppstr.end(),

"fake.cpp", MyPPHooks);
// many configuration methods on ctx here ...
try {

for (cpplexer_token const& tok : ctx) {
std::cout << tok.get_value ();

}
} catch (preprocess_exception const& e) {

std::cerr << "parse failed on line ";
std::cerr << e.line_no () << "\n";

}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Boost.Wave
Preprocessor Usage

The Wave preprocessor wraps the lexer:

using policy_t =
iteration_context_policies :: load_file_to_string;

using context_t =
context <std:: string :: const_iterator ,

cpplexer_iterator_t ,
policy_t ,
PPHooks >;

PPHooks MyPPHooks;
context_t ctx(cppstr.begin(), cppstr.end(),

"fake.cpp", MyPPHooks);
// many configuration methods on ctx here ...
try {

for (cpplexer_token const& tok : ctx) {
std::cout << tok.get_value ();

}
} catch (preprocess_exception const& e) {

std::cerr << "parse failed on line ";
std::cerr << e.line_no () << "\n";

}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Boost.Wave
Preprocessor Usage

The Wave preprocessor wraps the lexer:

using policy_t =
iteration_context_policies :: load_file_to_string;

using context_t =
context <std:: string :: const_iterator ,

cpplexer_iterator_t ,
policy_t ,
PPHooks >;

PPHooks MyPPHooks;
context_t ctx(cppstr.begin(), cppstr.end(),

"fake.cpp", MyPPHooks);
// many configuration methods on ctx here ...
try {

for (cpplexer_token const& tok : ctx) {
std::cout << tok.get_value ();

}
} catch (preprocess_exception const& e) {

std::cerr << "parse failed on line ";
std::cerr << e.line_no () << "\n";

}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Boost.Wave
Preprocessor Usage

The Wave preprocessor wraps the lexer:

using policy_t =
iteration_context_policies :: load_file_to_string;

using context_t =
context <std:: string :: const_iterator ,

cpplexer_iterator_t ,
policy_t ,
PPHooks >;

PPHooks MyPPHooks;
context_t ctx(cppstr.begin(), cppstr.end(),

"fake.cpp", MyPPHooks);
// many configuration methods on ctx here ...
try {

for (cpplexer_token const& tok : ctx) {
std::cout << tok.get_value ();

}
} catch (preprocess_exception const& e) {

std::cerr << "parse failed on line ";
std::cerr << e.line_no () << "\n";

}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Boost.Wave
Preprocessing Hooks

struct PPHooks : context_policies :: default_preprocessing_hooks {

template <typename ContextT , typename TokenT >
bool found_directive(ContextT const &ctx ,

TokenT const &directive);

template <typename ContextT , typename TokenT ,
typename ContainerT >

bool evaluated_conditional_expression(
ContextT const &ctx ,
TokenT const& directive ,
ContainerT const& expression ,
bool expression_value);

};

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Boost.Wave
Preprocessing Hooks

struct PPHooks : context_policies :: default_preprocessing_hooks {

template <typename ContextT , typename TokenT >
bool found_directive(ContextT const &ctx ,

TokenT const &directive);

template <typename ContextT , typename TokenT ,
typename ContainerT >

bool evaluated_conditional_expression(
ContextT const &ctx ,
TokenT const& directive ,
ContainerT const& expression ,
bool expression_value);

};

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Boost.Wave
Preprocessing Hooks

struct PPHooks : context_policies :: default_preprocessing_hooks {

template <typename ContextT , typename TokenT >
bool found_directive(ContextT const &ctx ,

TokenT const &directive);

template <typename ContextT , typename TokenT ,
typename ContainerT >

bool evaluated_conditional_expression(
ContextT const &ctx ,
TokenT const& directive ,
ContainerT const& expression ,
bool expression_value);

};

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Boost.Wave
Preprocessing Hooks

struct PPHooks : context_policies :: default_preprocessing_hooks {

template <typename ContextT , typename TokenT >
bool found_directive(ContextT const &ctx ,

TokenT const &directive);

template <typename ContextT , typename TokenT ,
typename ContainerT >

bool evaluated_conditional_expression(
ContextT const &ctx ,
TokenT const& directive ,
ContainerT const& expression ,
bool expression_value);

};

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
A Powerful Advantage

easy access to Clang's Abstract Syntax Tree

a nice API for performing code edits

reformatting tools supplied

used to write clang-tidy tools

tightly coupled to other parts of Clang (e.g. source management)

very OO

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
A Whirlwind Tour

These tools are worth a presentation on their own. What follows is a quick
summary; I found these talks particularly helpful:

LLVM Developers Conference 2015, "An update on Clang-based C++
Tooling" 12

Richard Thomson C++Now 2014, "Create Your Own Refactoring Tool with
Clang" 13

12https://www.youtube.com/watch?v=1S2A0VWGOws
13https://www.youtube.com/watch?v=8PndHo7jjHk

https://www.youtube.com/watch?v=1S2A0VWGOws
https://www.youtube.com/watch?v=8PndHo7jjHk

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
PPCallbacks

Similar to Boost.Wave Context Policy, but based on SourceLocation instead of
tokens

gives the full range of related text for directives, making it easy to identify
related blocks

tells you very little about skipped ranges - just their boundaries

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
PPCallbacks

struct MyPPHooks : clang:: tooling :: PPCallbacks
{

virtual void
If(SourceLocation Loc ,

SourceRange ConditionRange ,
ConditionValueKind ConditionValue

);

virtual void
Endif(SourceLocation Loc ,

SourceLocation IfLoc);

};

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
PPCallbacks

struct MyPPHooks : clang:: tooling :: PPCallbacks
{

virtual void
If(SourceLocation Loc ,

SourceRange ConditionRange ,
ConditionValueKind ConditionValue

);

virtual void
Endif(SourceLocation Loc ,

SourceLocation IfLoc);

};

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
PPCallbacks

struct MyPPHooks : clang:: tooling :: PPCallbacks
{

virtual void
If(SourceLocation Loc ,

SourceRange ConditionRange ,
ConditionValueKind ConditionValue

);

virtual void
Endif(SourceLocation Loc ,

SourceLocation IfLoc);

};

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
RefactoringTool

A RefactoringTool instance is con�gured with matchers and their callbacks, and
outputs replacements. It o�ers hooks to gain control at the start of parsing and
perform actions, such as installing a PPCallbacks instance.

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
Matchers

Help you �nd things in the AST

Sort of a con�gurable visitor

You can mark nodes of interest for processing by callbacks

Three types:

Node
Narrowing
Traversal

clang-query

sort of a CLI for matchers

custom matchers

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
Matcher Example: Move Constructor

MoveCtorHandler move_ctor_handler; // callback
using namespace clang:: ast_matchers;
MatchFinder finder;
finder.addMatcher(

cxxConstructorDecl(// Node matcher
isMoveConstructor () // Narrowing matcher

).bind("moveCtor"), // node of interest
&move_ctor_handler);

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
Matcher Example: Move Constructor

MoveCtorHandler move_ctor_handler; // callback
using namespace clang:: ast_matchers;
MatchFinder finder;
finder.addMatcher(

cxxConstructorDecl(// Node matcher
isMoveConstructor () // Narrowing matcher

).bind("moveCtor"), // node of interest
&move_ctor_handler);

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
Matcher Example: Move Constructor

MoveCtorHandler move_ctor_handler; // callback
using namespace clang:: ast_matchers;
MatchFinder finder;
finder.addMatcher(

cxxConstructorDecl(// Node matcher
isMoveConstructor () // Narrowing matcher

).bind("moveCtor"), // node of interest
&move_ctor_handler);

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
Matcher Example: Move Constructor

MoveCtorHandler move_ctor_handler; // callback
using namespace clang:: ast_matchers;
MatchFinder finder;
finder.addMatcher(

cxxConstructorDecl(// Node matcher
isMoveConstructor () // Narrowing matcher

).bind("moveCtor"), // node of interest
&move_ctor_handler);

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
Matcher Example: Move Constructor

MoveCtorHandler move_ctor_handler; // callback
using namespace clang:: ast_matchers;
MatchFinder finder;
finder.addMatcher(

cxxConstructorDecl(// Node matcher
isMoveConstructor () // Narrowing matcher

).bind("moveCtor"), // node of interest
&move_ctor_handler);

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
Matcher Example: Move Constructor

MoveCtorHandler move_ctor_handler; // callback
using namespace clang:: ast_matchers;
MatchFinder finder;
finder.addMatcher(

cxxConstructorDecl(// Node matcher
isMoveConstructor () // Narrowing matcher

).bind("moveCtor"), // node of interest
&move_ctor_handler);

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
MatchCallback Example: inside MoveCtorHandler

const CXXConstructorDecl *decl =
result.Nodes.getStmtAs <CXXConstructorDecl >("moveCtor");

auto loc = decl ->getLocation ();
if (ctx ->getSourceManager ().isInMainFile(loc)) {

std::cout << "found a move constructor at "
<< loc.printToString(ctx ->getSourceManager ())
<< std::endl;

}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
MatchCallback Example: inside MoveCtorHandler

const CXXConstructorDecl *decl =
result.Nodes.getStmtAs <CXXConstructorDecl >("moveCtor");

auto loc = decl ->getLocation ();
if (ctx ->getSourceManager ().isInMainFile(loc)) {

std::cout << "found a move constructor at "
<< loc.printToString(ctx ->getSourceManager ())
<< std::endl;

}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
MatchCallback Example: inside MoveCtorHandler

const CXXConstructorDecl *decl =
result.Nodes.getStmtAs <CXXConstructorDecl >("moveCtor");

auto loc = decl ->getLocation ();
if (ctx ->getSourceManager ().isInMainFile(loc)) {

std::cout << "found a move constructor at "
<< loc.printToString(ctx ->getSourceManager ())
<< std::endl;

}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
MatchCallback Example: inside MoveCtorHandler

const CXXConstructorDecl *decl =
result.Nodes.getStmtAs <CXXConstructorDecl >("moveCtor");

auto loc = decl ->getLocation ();
if (ctx ->getSourceManager ().isInMainFile(loc)) {

std::cout << "found a move constructor at "
<< loc.printToString(ctx ->getSourceManager ())
<< std::endl;

}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
Replacements

A very basic edit: the replacement of some original text with new text

If Replacements don't overlap, libTooling can intelligently combine them

Replacement insert_at_start("foo.cpp", 0, 0,
"// New Header Comment");

Replacement delete_something("foo.cpp", bad_code_start ,
bad_code_length , "");

Replacement replace_code(sourceManager , astNode ,
"// new code");

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
Replacements

A very basic edit: the replacement of some original text with new text

If Replacements don't overlap, libTooling can intelligently combine them

Replacement insert_at_start("foo.cpp", 0, 0,
"// New Header Comment");

Replacement delete_something("foo.cpp", bad_code_start ,
bad_code_length , "");

Replacement replace_code(sourceManager , astNode ,
"// new code");

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
Replacements

A very basic edit: the replacement of some original text with new text

If Replacements don't overlap, libTooling can intelligently combine them

Replacement insert_at_start("foo.cpp", 0, 0,
"// New Header Comment");

Replacement delete_something("foo.cpp", bad_code_start ,
bad_code_length , "");

Replacement replace_code(sourceManager , astNode ,
"// new code");

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
Replacements

A very basic edit: the replacement of some original text with new text

If Replacements don't overlap, libTooling can intelligently combine them

Replacement insert_at_start("foo.cpp", 0, 0,
"// New Header Comment");

Replacement delete_something("foo.cpp", bad_code_start ,
bad_code_length , "");

Replacement replace_code(sourceManager , astNode ,
"// new code");

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
Putting it all together

using namespace clang:: tooling;

CommonOptionsParser opt(argc , argv ,
ToolingSampleCategory);

RefactoringTool tool(opt.getCompilations (),
opt.getSourcePathList ());

SourceFileCallbacks myCallbacks; // PPCallbacks

auto feFactory =
newFrontendActionFactory (&finder , &myCallbacks).get();

if (int result = tool.run(feFactory)) {
return result;

}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
Putting it all together

using namespace clang:: tooling;

CommonOptionsParser opt(argc , argv ,
ToolingSampleCategory);

RefactoringTool tool(opt.getCompilations (),
opt.getSourcePathList ());

SourceFileCallbacks myCallbacks; // PPCallbacks

auto feFactory =
newFrontendActionFactory (&finder , &myCallbacks).get();

if (int result = tool.run(feFactory)) {
return result;

}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
Putting it all together

using namespace clang:: tooling;

CommonOptionsParser opt(argc , argv ,
ToolingSampleCategory);

RefactoringTool tool(opt.getCompilations (),
opt.getSourcePathList ());

SourceFileCallbacks myCallbacks; // PPCallbacks

auto feFactory =
newFrontendActionFactory (&finder , &myCallbacks).get();

if (int result = tool.run(feFactory)) {
return result;

}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
Putting it all together

using namespace clang:: tooling;

CommonOptionsParser opt(argc , argv ,
ToolingSampleCategory);

RefactoringTool tool(opt.getCompilations (),
opt.getSourcePathList ());

SourceFileCallbacks myCallbacks; // PPCallbacks

auto feFactory =
newFrontendActionFactory (&finder , &myCallbacks).get();

if (int result = tool.run(feFactory)) {
return result;

}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Clang libTooling
Putting it all together

using namespace clang:: tooling;

CommonOptionsParser opt(argc , argv ,
ToolingSampleCategory);

RefactoringTool tool(opt.getCompilations (),
opt.getSourcePathList ());

SourceFileCallbacks myCallbacks; // PPCallbacks

auto feFactory =
newFrontendActionFactory (&finder , &myCallbacks).get();

if (int result = tool.run(feFactory)) {
return result;

}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Conditional Compilation

Addressing Conditional Compilation

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Conditional Compilation

Let's try applying our APIs to some interesting problems:

Identifying the "presence condition" for each block of text

Refactoring simple #ifdef/ifndef conditions into policy classes

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions

Split code into sections marked with the condition under which they are present

Enables useful features:

Identify dead code
Identify code that appears conditional but is always present
Calculate source text under di�erent assumptions
Enumerate all possible texts

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions
The Problem to be Solved

#ifndef A
// section 1
#if (C > 10) && defined(B)
// section 2
#else
// section 3
#endif
#endif

Condition Text

!de�ned(A) // section 1
!de�ned(A) && (C>10) && de�ned(B) // section 2
!de�ned(A) && ((C<=10) || !de�ned(B)) // section 3

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions
Building Blocks Required

A library that can represent conditional expressions, and combine and simplify
them

A lexical analyzer that handles C++ tokens

A parser to recognize regular program text and preprocessor conditionals

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions
Representing Conditional Expressions

What we need is an SMT solver.

SMT stands for Satis�ability Modulo Theories. Satis�ability, in turn, refers to
�nding assignments of values to variables such that an expression is true. For
example, the expression

A && (X > 20) || !B && (Y <= 10)

is true (satis�ed) for A true and X==21 - as well as many other values.

A && (X > 10) && (!A || (X == 9))

is not true for any choice of A and X - it is unsatis�able.
SMT (in the form of its simpler cousin Boolean Satis�ability, or SAT) is the classic
NP-complete problem. But solving it well regardless is enormously useful and so has
received tons of research e�ort in the last decade. We will leverage that work.

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions
Expressing Conditionals with CVC4

I picked CVC4 14 based on a Google search but it's turned out well. Here's a quick
tour:

ExprManager em;
SmtEngine smt(&em);
smt.setLogic("QF_LIA"); // Linear Integer Arithmetic
Type boolean = em.booleanType ();
Expr a = em.mkVar("A", boolean); // bool defined(A)
Type integer = em.integerType ();
Expr c = em.mkVar("C", integer); // integer C
Expr expr = // defined(A) && (C > 10)

em.mkExpr(kind::AND , a,
em.mkExpr(kind::GT, c,

em.mkConst(Rational (10))));
smt.assertFormula(// assume C == 20

em.mkExpr(kind::EQUAL , c,
em.mkConst(Rational (20))));

std::cout << "reduced expression is: ";
std::cout << smt.simplify(expr) << "\n"; // prints "A"

14http://cvc4.cs.nyu.edu/web/

http://cvc4.cs.nyu.edu/web/

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions
Expressing Conditionals with CVC4

I picked CVC4 14 based on a Google search but it's turned out well. Here's a quick
tour:

ExprManager em;
SmtEngine smt(&em);
smt.setLogic("QF_LIA"); // Linear Integer Arithmetic
Type boolean = em.booleanType ();
Expr a = em.mkVar("A", boolean); // bool defined(A)
Type integer = em.integerType ();
Expr c = em.mkVar("C", integer); // integer C
Expr expr = // defined(A) && (C > 10)

em.mkExpr(kind::AND , a,
em.mkExpr(kind::GT, c,

em.mkConst(Rational (10))));
smt.assertFormula(// assume C == 20

em.mkExpr(kind::EQUAL , c,
em.mkConst(Rational (20))));

std::cout << "reduced expression is: ";
std::cout << smt.simplify(expr) << "\n"; // prints "A"

14http://cvc4.cs.nyu.edu/web/

http://cvc4.cs.nyu.edu/web/

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions
Expressing Conditionals with CVC4

I picked CVC4 14 based on a Google search but it's turned out well. Here's a quick
tour:

ExprManager em;
SmtEngine smt(&em);
smt.setLogic("QF_LIA"); // Linear Integer Arithmetic
Type boolean = em.booleanType ();
Expr a = em.mkVar("A", boolean); // bool defined(A)
Type integer = em.integerType ();
Expr c = em.mkVar("C", integer); // integer C
Expr expr = // defined(A) && (C > 10)

em.mkExpr(kind::AND , a,
em.mkExpr(kind::GT, c,

em.mkConst(Rational (10))));
smt.assertFormula(// assume C == 20

em.mkExpr(kind::EQUAL , c,
em.mkConst(Rational (20))));

std::cout << "reduced expression is: ";
std::cout << smt.simplify(expr) << "\n"; // prints "A"

14http://cvc4.cs.nyu.edu/web/

http://cvc4.cs.nyu.edu/web/

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions
Expressing Conditionals with CVC4

I picked CVC4 14 based on a Google search but it's turned out well. Here's a quick
tour:

ExprManager em;
SmtEngine smt(&em);
smt.setLogic("QF_LIA"); // Linear Integer Arithmetic
Type boolean = em.booleanType ();
Expr a = em.mkVar("A", boolean); // bool defined(A)
Type integer = em.integerType ();
Expr c = em.mkVar("C", integer); // integer C
Expr expr = // defined(A) && (C > 10)

em.mkExpr(kind::AND , a,
em.mkExpr(kind::GT, c,

em.mkConst(Rational (10))));
smt.assertFormula(// assume C == 20

em.mkExpr(kind::EQUAL , c,
em.mkConst(Rational (20))));

std::cout << "reduced expression is: ";
std::cout << smt.simplify(expr) << "\n"; // prints "A"

14http://cvc4.cs.nyu.edu/web/

http://cvc4.cs.nyu.edu/web/

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions
Expressing Conditionals with CVC4

I picked CVC4 14 based on a Google search but it's turned out well. Here's a quick
tour:

ExprManager em;
SmtEngine smt(&em);
smt.setLogic("QF_LIA"); // Linear Integer Arithmetic
Type boolean = em.booleanType ();
Expr a = em.mkVar("A", boolean); // bool defined(A)
Type integer = em.integerType ();
Expr c = em.mkVar("C", integer); // integer C
Expr expr = // defined(A) && (C > 10)

em.mkExpr(kind::AND , a,
em.mkExpr(kind::GT, c,

em.mkConst(Rational (10))));
smt.assertFormula(// assume C == 20

em.mkExpr(kind::EQUAL , c,
em.mkConst(Rational (20))));

std::cout << "reduced expression is: ";
std::cout << smt.simplify(expr) << "\n"; // prints "A"

14http://cvc4.cs.nyu.edu/web/

http://cvc4.cs.nyu.edu/web/

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions
The Lexer

In order to use the Boost.Wave lexer with a Spirit V2 grammar we have to create
wrappers for both the iterator and the token:

both token and iterator need some special typedefs and methods

also insert specializations into Spirit "customization points" to help us
synthesize parsed results as strings

I will spare you the hacky details. . .

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions
The Parser

As we collect text blocks, we must combine parsed conditions with their parent
conditions:

The condition for a text block is the logical AND of its own controlling
condition and those of its parent

#else or #elsif ANDs in negated conditions from "siblings"

Spirit rules are a nice �t for this task

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions
Spirit Rule Anatomy

struct text_section {
CVC4::Expr condition;
std::vector <std::string > body;

};

using namespace boost:: spirit;
qi::rule <Iterator ,

std::vector <text_section >(CVC4::Expr),
skipper <Iterator >, // whitespace handling
locals <CVC4::Expr >> cond_ifdef;

This rule type describes inherited attributes from nesting in the parent, the attribute
synthesized by the rule, and a local attribute used to calculate the condition for the
#else branch.

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions
Spirit Rule Anatomy

struct text_section {
CVC4::Expr condition;
std::vector <std::string > body;

};

using namespace boost:: spirit;
qi::rule <Iterator ,

std::vector <text_section >(CVC4::Expr),
skipper <Iterator >, // whitespace handling
locals <CVC4::Expr >> cond_ifdef;

This rule type describes inherited attributes from nesting in the parent, the attribute
synthesized by the rule, and a local attribute used to calculate the condition for the
#else branch.

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions
Spirit Rule Anatomy

struct text_section {
CVC4::Expr condition;
std::vector <std::string > body;

};

using namespace boost:: spirit;
qi::rule <Iterator ,

std::vector <text_section >(CVC4::Expr),
skipper <Iterator >, // whitespace handling
locals <CVC4::Expr >> cond_ifdef;

This rule type describes inherited attributes from nesting in the parent, the attribute
synthesized by the rule, and a local attribute used to calculate the condition for the
#else branch.

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions
Spirit Rule Anatomy

struct text_section {
CVC4::Expr condition;
std::vector <std::string > body;

};

using namespace boost:: spirit;
qi::rule <Iterator ,

std::vector <text_section >(CVC4::Expr),
skipper <Iterator >, // whitespace handling
locals <CVC4::Expr >> cond_ifdef;

This rule type describes inherited attributes from nesting in the parent, the attribute
synthesized by the rule, and a local attribute used to calculate the condition for the
#else branch.

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions
Spirit Rule Anatomy

struct text_section {
CVC4::Expr condition;
std::vector <std::string > body;

};

using namespace boost:: spirit;
qi::rule <Iterator ,

std::vector <text_section >(CVC4::Expr),
skipper <Iterator >, // whitespace handling
locals <CVC4::Expr >> cond_ifdef;

This rule type describes inherited attributes from nesting in the parent, the attribute
synthesized by the rule, and a local attribute used to calculate the condition for the
#else branch.

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions
Spirit Rule Anatomy

struct text_section {
CVC4::Expr condition;
std::vector <std::string > body;

};

using namespace boost:: spirit;
qi::rule <Iterator ,

std::vector <text_section >(CVC4::Expr),
skipper <Iterator >, // whitespace handling
locals <CVC4::Expr >> cond_ifdef;

This rule type describes inherited attributes from nesting in the parent, the attribute
synthesized by the rule, and a local attribute used to calculate the condition for the
#else branch.

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions
Putting It All Together

// create Spirit V2-compatible iterators from Wave lexer iterators
auto xbeg = make_tok_iterator(beg);
auto xend = make_tok_iterator(end);

vector <text_section > result;
bool pass = boost:: spirit ::qi:: phrase_parse(xbeg , xend , fileparser ,

skipper <decltype(xbeg) >(),
result);

if (pass) {
for (auto const& s : result) {

if (smt.checkSat(s.condition) != CVC4:: Result ::SAT) {
cout << "detected a dead code section with condition ";
cout << smt.simplify(s.condition) << ":\n";
copy(s.body.begin(), s.body.end(),

ostream_iterator <string >(cout , ""));
}

}
}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions
Putting It All Together

// create Spirit V2-compatible iterators from Wave lexer iterators
auto xbeg = make_tok_iterator(beg);
auto xend = make_tok_iterator(end);

vector <text_section > result;
bool pass = boost:: spirit ::qi:: phrase_parse(xbeg , xend , fileparser ,

skipper <decltype(xbeg) >(),
result);

if (pass) {
for (auto const& s : result) {

if (smt.checkSat(s.condition) != CVC4:: Result ::SAT) {
cout << "detected a dead code section with condition ";
cout << smt.simplify(s.condition) << ":\n";
copy(s.body.begin(), s.body.end(),

ostream_iterator <string >(cout , ""));
}

}
}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions
Putting It All Together

// create Spirit V2-compatible iterators from Wave lexer iterators
auto xbeg = make_tok_iterator(beg);
auto xend = make_tok_iterator(end);

vector <text_section > result;
bool pass = boost:: spirit ::qi:: phrase_parse(xbeg , xend , fileparser ,

skipper <decltype(xbeg) >(),
result);

if (pass) {
for (auto const& s : result) {

if (smt.checkSat(s.condition) != CVC4:: Result ::SAT) {
cout << "detected a dead code section with condition ";
cout << smt.simplify(s.condition) << ":\n";
copy(s.body.begin(), s.body.end(),

ostream_iterator <string >(cout , ""));
}

}
}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions
Putting It All Together

// create Spirit V2-compatible iterators from Wave lexer iterators
auto xbeg = make_tok_iterator(beg);
auto xend = make_tok_iterator(end);

vector <text_section > result;
bool pass = boost:: spirit ::qi:: phrase_parse(xbeg , xend , fileparser ,

skipper <decltype(xbeg) >(),
result);

if (pass) {
for (auto const& s : result) {

if (smt.checkSat(s.condition) != CVC4:: Result ::SAT) {
cout << "detected a dead code section with condition ";
cout << smt.simplify(s.condition) << ":\n";
copy(s.body.begin(), s.body.end(),

ostream_iterator <string >(cout , ""));
}

}
}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions
Putting It All Together

// create Spirit V2-compatible iterators from Wave lexer iterators
auto xbeg = make_tok_iterator(beg);
auto xend = make_tok_iterator(end);

vector <text_section > result;
bool pass = boost:: spirit ::qi:: phrase_parse(xbeg , xend , fileparser ,

skipper <decltype(xbeg) >(),
result);

if (pass) {
for (auto const& s : result) {

if (smt.checkSat(s.condition) != CVC4:: Result ::SAT) {
cout << "detected a dead code section with condition ";
cout << smt.simplify(s.condition) << ":\n";
copy(s.body.begin(), s.body.end(),

ostream_iterator <string >(cout , ""));
}

}
}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Calculating Presence Conditions
Putting It All Together

Demo

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Refactoring into Policies

Refactoring into Policies

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Refactoring into Policies
The Problem to be Solved

Behavior and types for di�erent con�gurations is sprinkled throughout the code.

char const* cstr = "foo";
#ifdef USE_QSTRING

using string_t = QString;
string_t s(cstr);
s = s.toUpper ();

#else
using string_t = std:: string;
string_t s(cstr);
std:: transform(s.begin(), s.end(), s.begin(),

[](char c) { return std:: toupper(c); });
#endif

Goal: isolate these variations in a policy class supplied as a template parameter.

Access types with using statements

Access code by calling static methods

Conditional compilation only at point of instantiation, to choose policy

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Refactoring into Policies
The Problem to be Solved

Desired classes:

template <bool UsingQString >
struct StringClass {

// base template handles true case
using string_t = QString;
static void to_upper(string_t& s) {

s = s.toUpper ();
}

};

template <>
struct StringClass <false > {

using string_t = std:: string;
string_t s(cstr);
static void to_upper(string_t& s) {

std:: transform(s.begin(), s.end(), s.begin(),
[](char c) { return std:: toupper(c); });

}
};

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Refactoring into Policies
The Problem to be Solved

Usage:

// select policy class in a single place
#ifdef USE_QSTRING
using StringPolicy = StringClass <true >;
#else
using StringPolicy = StringClass <false >;
#endif

void my_fn () {
using string_t = StringPolicy :: string_t;
string_t s("foo"); // chooses appropriate type
StringPolicy :: to_upper(s); // calls appropriate code
...

}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Refactoring into Policies
The Problem to be Solved

Usage:

// select policy class in a single place
#ifdef USE_QSTRING
using StringPolicy = StringClass <true >;
#else
using StringPolicy = StringClass <false >;
#endif

void my_fn () {
using string_t = StringPolicy :: string_t;
string_t s("foo"); // chooses appropriate type
StringPolicy :: to_upper(s); // calls appropriate code
...

}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Refactoring into Policies
The Problem to be Solved

Usage:

// select policy class in a single place
#ifdef USE_QSTRING
using StringPolicy = StringClass <true >;
#else
using StringPolicy = StringClass <false >;
#endif

void my_fn () {
using string_t = StringPolicy :: string_t;
string_t s("foo"); // chooses appropriate type
StringPolicy :: to_upper(s); // calls appropriate code
...

}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Refactoring into Policies
Building Blocks Required

A way to identify program text associated with a particular macro ifdef/ifndef

A way to locate that text's AST subtree

Matchers can give us the typedefs and statements from there

A way to determine the variables accessed and modi�ed by that text

to determine the reference and const reference parameters of the static methods

Code to integrate the above and produce edits

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Refactoring into Policies
Identifying Conditional Text

template <bool Sense > // defined or undefined?
struct PPActions : clang:: PPCallbacks
{

void Ifdef(clang:: SourceLocation loc ,
clang::Token const& tok ,
clang:: MacroDefinition const& md) override {

// check for our target macro and sense
if (tok.getIdentifierInfo ()->getName ().str() == mname_) {

cond_starts_.emplace(loc , true);
else_loc_ = std:: experimental :: nullopt;

}
}
void Endif(clang:: SourceLocation endifloc ,

clang:: SourceLocation ifloc) override {
// is this endif related to an ifdef/ifndef of interest?
auto start_it = cond_starts_.find(ifloc);
if (start_it != cond_starts_.end()) {

// check sense , record range
...

std::map <clang:: SourceLocation , bool > cond_starts_;

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Refactoring into Policies
Identifying Conditional Text

template <bool Sense > // defined or undefined?
struct PPActions : clang:: PPCallbacks
{

void Ifdef(clang:: SourceLocation loc ,
clang::Token const& tok ,
clang:: MacroDefinition const& md) override {

// check for our target macro and sense
if (tok.getIdentifierInfo ()->getName ().str() == mname_) {

cond_starts_.emplace(loc , true);
else_loc_ = std:: experimental :: nullopt;

}
}
void Endif(clang:: SourceLocation endifloc ,

clang:: SourceLocation ifloc) override {
// is this endif related to an ifdef/ifndef of interest?
auto start_it = cond_starts_.find(ifloc);
if (start_it != cond_starts_.end()) {

// check sense , record range
...

std::map <clang:: SourceLocation , bool > cond_starts_;

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Refactoring into Policies
Identifying Conditional Text

template <bool Sense > // defined or undefined?
struct PPActions : clang:: PPCallbacks
{

void Ifdef(clang:: SourceLocation loc ,
clang::Token const& tok ,
clang:: MacroDefinition const& md) override {

// check for our target macro and sense
if (tok.getIdentifierInfo ()->getName ().str() == mname_) {

cond_starts_.emplace(loc , true);
else_loc_ = std:: experimental :: nullopt;

}
}
void Endif(clang:: SourceLocation endifloc ,

clang:: SourceLocation ifloc) override {
// is this endif related to an ifdef/ifndef of interest?
auto start_it = cond_starts_.find(ifloc);
if (start_it != cond_starts_.end()) {

// check sense , record range
...

std::map <clang:: SourceLocation , bool > cond_starts_;

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Refactoring into Policies
Locating an AST subtree from a SourceRange

Clang's libASTMatchers doesn't provide a source range-based matcher, but we can
make one:

AST_MATCHER_P(clang::Stmt , statementInRange ,
clang:: SourceRange , range) {

// is the statement node entirely within the supplied range?
clang :: SourceManager const& sm =

Finder ->getASTContext ().getSourceManager ();
return !sm.isBeforeInTranslationUnit(Node.getLocStart (),

range.getBegin ()) &&
!sm.isBeforeInTranslationUnit(range.getEnd (),

Node.getLocEnd ());
}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Refactoring into Policies
Locating an AST subtree from a SourceRange

Clang's libASTMatchers doesn't provide a source range-based matcher, but we can
make one:

AST_MATCHER_P(clang::Stmt , statementInRange ,
clang:: SourceRange , range) {

// is the statement node entirely within the supplied range?
clang :: SourceManager const& sm =

Finder ->getASTContext ().getSourceManager ();
return !sm.isBeforeInTranslationUnit(Node.getLocStart (),

range.getBegin ()) &&
!sm.isBeforeInTranslationUnit(range.getEnd (),

Node.getLocEnd ());
}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Refactoring into Policies
Connecting ranges to matchers

This was a little tricky.

Preprocessor Parser AST Matcher

Clang Internals

My Code

Set Up

Range Collectors

Record

Ranges

Set Up

Range Matchers
Collect Results

SourceFileCallbacks::

handleBeginSource()

PPCallbacks

?
SourceFileCallbacks::

handleEndSource()

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Refactoring into Policies
Connecting ranges to matchers

Hey, what's this?

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Refactoring into Policies
Analyze Variables

Type de�nitions are fairly easy - we can have a matcher for those and move them to
their specialization. Statements, which can reference or modify other variables, are
more challenging. In this case we can apply a trick.
We can always:

Create edits to the original source

run those edits on an in-memory copy of the source

run the compiler (and a tool) on that string with runToolOnCode()

How can we manipulate a source range to make it easier to identify variables used?

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Refactoring into Policies
Analyze Variables: The Solution

Annotate source with lambdas and analyze "captures"

auto expression_capture_0 = [&]() -> void { // inserted
s = s.toUpper ();

} // inserted

All variables referenced will be in the capture list in the AST. Must traverse lambda
body to determine whether each is modi�ed.

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Refactoring into Policies
Analyze Variables: Process Flow

#ifdef FOO
// true case
v.push_back("bar");

#else
// false case
i = 42;

#endif

#ifdef FOO
auto _cond_statement_0 =

[&]() {
// true case
v.push_back("bar");

};
_cond_statement_0 ();
#else

// false case
i = 42;

#endif

#ifdef FOO
// true case
v.push_back("bar");

#else
auto _cond_statement_0 =

[&]() {
// false case
i = 42;

};
_cond_statement_0 ();
#endif

static void method_0(
std::vector <std::string >& v,
int& i

);

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Refactoring into Policies
Sample Result

int main() {
#ifdef FOO

typedef char i_t;
#else

typedef int i_t;
typedef char* string_t;

#endif

i_t i;

#ifdef FOO
i = '\0';

#else
i = 1;

#endif
}

template <bool MacroDefined >
struct FOO_class {

typedef char i_t;
// static method TBD

};
template <>
struct FOO_class <false > {

typedef int i_t;
typedef char* string_t;
// static method TBD

};
#ifdef FOO

using FOO_t = FOO_class <true >;
#else

using FOO_t = FOO_class <false >;
#endif
int main() {

using i_t = FOO_t::i_t;
i_t i;
// statements TBD...

}

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Refactoring into Policies
Watch Me Finish Up

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Conclusion

The preprocessor is a necessary evil

It is also often misused or (especially with C++11/14) unnecessary

We can write tools to remove some usage

We can make tools more aware of it

Preprocessor-
Aware

Refactoring

Je� Trull

Refactoring

Refactoring is
important

The
Preprocessor
gets in the
way

Tools

User tools

APIs

Conditional
Compilation

Calculating
Presence
Conditions

Refactoring
into Policies

Conclusion

Resources

Resources

Garrido&Johnson "Analyzing Multiple Con�gurations of a C Program" (ICSM
2005)

Tool P-Cpp, implemented in CRefactory (Eclipse/Java)

Sincero, "E�cient Extraction and Analysis of Preprocessor-Based Variability"
(2010)

Found 4 dead code blocks in the Linux kernel

Kästner "Partial Preprocessing C Code for Variability Analysis" (2011)

Rewrite all conditions in terms of user-controlled de�nes
don't handle integer expressions, just Boolean
Uses Java preprocessor jcpp and SAT solver sat4j
https://github.com/joliebig/Morpheus

Gazillo and Grimm, "Parsing all of C by Taming the Preprocessor" (2012)

More Java :)
http://cs.nyu.edu/xtc/

https://github.com/joliebig/Morpheus
http://cs.nyu.edu/xtc/

	Refactoring
	Refactoring is important
	The Preprocessor gets in the way

	Tools
	User tools
	APIs

	Conditional Compilation
	Calculating Presence Conditions
	Refactoring into Policies

	Conclusion
	Resources

