
Extending C++ with Co-Array semantics

Antoine Tran Tan 1

Hartmut Kaiser 2

Louisiana State University
Center for Computation and Technology

The STEllAR Group
1atrantan@lsu.edu 2hkaiser@cct.lsu.edu

C++ Now - May 12, 2016
1 of 17

Context

Issues coming from the hardware

■ Data access more costly than data processing
■ More and more disjoint memories to increase the bandwidth
■ More and more complex parallel architectures to increase the peak

performance

Software solutions to adapt to these changes

■ Data locality with Single Programming Mutiple Data
■ Remote Memory Access with a Partitioned Global Address Space
■ Load balance flexibility with Asynchronous programming

2 of 17

Context

Issues coming from the hardware

■ Data access more costly than data processing
■ More and more disjoint memories to increase the bandwidth
■ More and more complex parallel architectures to increase the peak

performance

Software solutions to adapt to these changes

■ Data locality with Single Programming Mutiple Data
■ Remote Memory Access with a Partitioned Global Address Space
■ Load balance flexibility with Asynchronous programming

2 of 17

Plan

What are Co-Arrays and why are they important

HPX - High Performance Parallex

Implementation of Co-arrays in C++

Performance evaluation

2 of 17

Co-arrays in few words

■ Fortran extension introduced by Numrich and Reid 1

■ Co-array is a strict implementation of the PGAS Model
■ Part of the actual Fortran Standard2

1
Co-array Fortran for Parallel Programming, - R.W. Numrich et al. - ACM SIGPLAN Fortran forum, 1998

2
Co-arrays in the next Fortran Standard - R.W. Numrich et al. - ACM SIGPLAN Fortran forum, 2005

3 of 17

Illustration

Global Address Space

Memory

Locality 0

Memory

Locality 1

Memory

Locality i

Memory

Locality N − 1

CPUs CPUs CPUs CPUs

4 of 17

Illustration

real :: a(3)

Locality 0 Locality 1 Locality i Locality N − 1

CPUs CPUs CPUs CPUs

4 of 17

Illustration

real :: a(3)

Locality 0 Locality 1 Locality i Locality N − 1

CPUs CPUs CPUs CPUs

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

4 of 17

Illustration

real :: a(3)[*]

Locality 0 Locality 1 Locality i Locality N − 1

CPUs CPUs CPUs CPUs

[1]

[2]
[i+ 1]

[N]

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

4 of 17

Illustration

Where is the element =⇒ a(2)[N] ?

Locality 0 Locality 1 Locality i Locality N − 1

CPUs CPUs CPUs CPUs

[1]

[2]
[i+ 1]

[N]

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

4 of 17

Illustration

Where is the element =⇒ a(2)[N] ?

Locality 0 Locality 1 Locality i Locality N − 1

CPUs CPUs CPUs CPUs

[1]

[2]
[i+ 1]

[N]

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

4 of 17

From Co-array Fortran to Co-array C++

Why co-arrays ?

■ Improve data locality in distributed applications
■ Access to remote references are done via array-based subscripts
■ Widely accepted by the Fortran community

Our Approach3

■ Enable co-array semantics with a C++ library approach
■ Use of a C++ runtime system to manage parallel/distributed tasks
■ New features of the C++ Standard 11/14 =⇒ Easy API design

3
Extending C++ with co-array semantics - A. Tran Tan et al - ACM SIGPLAN ARRAY, 2016 (soon)

5 of 17

From Co-array Fortran to Co-array C++

Why co-arrays ?

■ Improve data locality in distributed applications
■ Access to remote references are done via array-based subscripts
■ Widely accepted by the Fortran community

Our Approach3

■ Enable co-array semantics with a C++ library approach
■ Use of a C++ runtime system to manage parallel/distributed tasks
■ New features of the C++ Standard 11/14 =⇒ Easy API design

3
Extending C++ with co-array semantics - A. Tran Tan et al - ACM SIGPLAN ARRAY, 2016 (soon)

5 of 17

Plan

What are Co-Arrays and why are they important

HPX - High Performance Parallex

Implementation of Co-arrays in C++

Performance evaluation

5 of 17

HPX : High Performance Parallex

A C++ runtime system for applications of any scale 4,5

Global Address Space

Memory

Locality 0

Memory

Locality 1

Memory

Locality i

Memory

Locality N − 1

Parcelport

AGAS

CPUs
GPUs

CPUs
GPUs

CPUs
GPUs

CPUs
GPUs

4
Parallex an advanced parallel execution model for scaling-impaired applications- H. Kaiser et al - ICPPW, 2009

5
A Task Based Programming Model in a Global Address Space - H. Kaiser et al - PGAS, 2014

6 of 17

HPX : High Performance Parallex

A C++ runtime system for applications of any scale 4,5

Global Address Space

Memory

Locality 0

Memory

Locality 1

Memory

Locality i

Memory

Locality N − 1

Parcelport

AGAS

CPUs
GPUs

CPUs
GPUs

CPUs
GPUs
CPUs
GPUs

CPUs
GPUs

Thread
Thread
Thread
Thread

Thread

Thread
Thread
Thread
Thread

Thread

Thread
Thread
Thread
Thread

Thread

Thread
Thread
Thread
Thread

Thread

4
Parallex an advanced parallel execution model for scaling-impaired applications- H. Kaiser et al - ICPPW, 2009

5
A Task Based Programming Model in a Global Address Space - H. Kaiser et al - PGAS, 2014

6 of 17

HPX : High Performance Parallex

A C++ runtime system for applications of any scale 4,5

Locality 0 Locality 1 Locality i Locality N − 1

Parcelport

AGAS

CPUs
GPUs

CPUs
GPUs

CPUs
GPUs

CPUs
GPUs

4
Parallex an advanced parallel execution model for scaling-impaired applications- H. Kaiser et al - ICPPW, 2009

5
A Task Based Programming Model in a Global Address Space - H. Kaiser et al - PGAS, 2014

6 of 17

Plan

What are Co-Arrays and why are they important

HPX - High Performance Parallex

Implementation of Co-arrays in C++

Performance evaluation

6 of 17

Instantiation of a co-array object : Fortran vs C++

// Fortran Code
real :: z[10,*]

// C++ Code
spmd_block block;
coarray <double ,2> z(block , ”z”, {10,_}, partition <double >(1));

7 of 17

Co-Array C++ sample code

spmd_block block;
coarray <double ,1> z(block , ”z”, {_}, partition <double >(1));

if (block.this_image () == 0)
{

std::cin >> z.data(_);

int num_images = block.get_num_images ();
for(int image = 1; image < num_images; image++)
{

z(image) = z.data(_);
}

}

block.barrier_sync(”b”); // sync_all () in Fortran

8 of 17

Co-Array C++ sample code

spmd_block block;
coarray <double ,1> z(block , ”z”, {_}, partition <double >(1));

if (block.this_image () == 0)
{

std::cin >> z.data(_);

int num_images = block.get_num_images ();
for(int image = 1; image < num_images; image++)
{

z(image) = z.data(_);
}

}

future <void > fb = block.barrier(”b”);

8 of 17

Traversal of co-indexed elements with iterators

spmd_block block;
coarray <double ,3> a (block , ”a”, {4,4,_}, partition <double >(5));

int idx = 0;
if (block.this_image () == 0)
{

for (auto i = a.begin (); i != a.end(); i++)
*i = std::vector <double >(5,idx ++);

}
block.barrier_sync(”b”);

auto alocal = local_view(a);

for (auto ii = alocal.begin (); ii != alocal.end(); ii++)
{

std::vector <double > & ref = *ii;
...

}

9 of 17

... with range-based for loops

spmd_block block;
coarray <double ,3> a (block , ”a”, {4,4,_}, partition <double >(5));

int idx = 0;
if (block.this_image () == 0)
{

for (auto && proxy : a)
proxy = std::vector <double >(5,idx++);

}
block.barrier_sync(”b”);

auto alocal = local_view(a);

for (std::vector <double > & ref : alocal)
{

...;
}

10 of 17

Creation of a distributed vector in HPX

A coarray is a multi-dimensionnal view tied to a distributed vector

11 of 17

Creation of a distributed vector in HPX

A coarray is a multi-dimensionnal view tied to a distributed vector

int N, n;

std::vector <hpx::id_type > locs = hpx:: find_all_localities ();

auto layout = hpx:: container_layout(n, locs);

// Creation of the distributed vector
hpx:: partitioned_vector <double > v(N, 0.0, layout);

11 of 17

Creation of a SPMD region

A SPMD region is the mean to invoke images in multiple localities

12 of 17

Creation of a SPMD region

A SPMD region is the mean to invoke images in multiple localities

void example_image(spmd_block block)
{ ...
}
HPX_DEFINE_PLAIN_ACTION(example_image , my_action);

int main()
{

std::vector <hpx::id_type > locs = hpx:: find_all_localities ();

// Invocation of the spmd region
define_spmd_block(locs , my_action);

return 0;
}

12 of 17

Plan

What are Co-Arrays and why are they important

HPX - High Performance Parallex

Implementation of Co-arrays in C++

Performance evaluation

12 of 17

Benchmark 1 : Matrix Transpose

void transpose_coarray(spmd_block & block
, coarray <double ,2> & out
, coarray <double ,2> & in
, int height , int width
, int local_height
, int local_width
, int local_leading_dimension)

{
// Outer Transpose operation
for(int j = 0; j<width; j++)
for(int i = 0; i<height; i++)
{

// Put operation
out(j,i) = in(i,j);

}
block.barrier_sync(”outer_transpose”);

/* */

13 of 17

Benchmark 1 : Matrix Transpose

/* */

auto out_local = local_view(out);

// Inner Transpose operation
for (std::vector <double > & elt : out_local)
{

for(int jj = 0; jj <local_width -1; jj++)
for(int ii = jj+1; ii<local_height; ii++)
{

std::swap(elt[jj + ii*local_leading_dimension]
, elt[ii + jj*local_leading_dimension]);

}
}
block.barrier_sync(”inner_transpose”);

}

13 of 17

Benchmark 1 : Matrix Transpose
performed in a 2 × 8 core machine

0 5 10 15
0

10

20

30

Number of cores

Pe
rf
or
m
an
ce

in
G
B/

s

HPX coarray
HPX coarray + tasks

OpenMP
HPX parallel::for_each

Available Bandwidth

14 of 17

Benchmark 2 : Sparse Matrix Vector Multiplication
struct spmatrix
{

// Constructor definition ...

int m_, n_, nnz_;
std::vector <int > rows_ , indices_;
std::vector <double > values_;
std::vector <int > begins_ , sizes_;

};

void spmv_coarray(spmd_block & block
, spmatrix const & a, std::vector <double > & x
, coarray <double ,1> & y)

{
int image_id = block.this_image ();
int begin = a.begins_[image_id];
int chunksize = a.sizes_[image_id];

/* */

15 of 17

Benchmark 2 : Sparse Matrix Vector Multiplication
/* */

double * out = y.data(_).data();
const int * row = a.rows_.data() + begin;
const int * idx = a.indices_.data() + *row - 1;
const double * val = a.values_.data() + *row - 1;

for(int i = 0; i < chunksize; i++, row++, out++)
{

double tmp = 0.;
int end = *(row + 1);

for(int o = *row; o < end; o++, val++, idx++)
tmp += *val * x[*idx - 1];

*out = tmp;
}
block.barrier_sync(”spmv”);

}

15 of 17

Benchmark 2 : Sparse Matrix Vector Multiplication
performed in a 2 × 8 core machine

0 5 10 15
0

20

40

60

80

100

120

Number of cores

Pe
rf
or
m
an
ce

in
G
B/

s

HPX coarray
HPX coarray + tasks

Intel MKL
HPX parallel::for_each

Available Bandwidth

16 of 17

Thanks for your attention

17 of 17

	What are Co-Arrays and why are they important
	HPX - High Performance Parallex
	Implementation of Co-arrays in C++
	Performance evaluation

