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Context

Issues coming from the hardware

■ Data access more costly than data processing
■ More and more disjoint memories to increase the bandwidth
■ More and more complex parallel architectures to increase the peak

performance

Software solutions to adapt to these changes

■ Data locality with Single Programming Mutiple Data
■ Remote Memory Access with a Partitioned Global Address Space
■ Load balance flexibility with Asynchronous programming
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Plan

What are Co-Arrays and why are they important

HPX - High Performance Parallex

Implementation of Co-arrays in C++

Performance evaluation
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Co-arrays in few words

■ Fortran extension introduced by Numrich and Reid 1

■ Co-array is a strict implementation of the PGAS Model
■ Part of the actual Fortran Standard2

1
Co-array Fortran for Parallel Programming, - R.W. Numrich et al. - ACM SIGPLAN Fortran forum, 1998

2
Co-arrays in the next Fortran Standard - R.W. Numrich et al. - ACM SIGPLAN Fortran forum, 2005
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From Co-array Fortran to Co-array C++

Why co-arrays ?

■ Improve data locality in distributed applications
■ Access to remote references are done via array-based subscripts
■ Widely accepted by the Fortran community

Our Approach3

■ Enable co-array semantics with a C++ library approach
■ Use of a C++ runtime system to manage parallel/distributed tasks
■ New features of the C++ Standard 11/14 =⇒ Easy API design

3
Extending C++ with co-array semantics - A. Tran Tan et al - ACM SIGPLAN ARRAY, 2016 (soon)
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HPX : High Performance Parallex

A C++ runtime system for applications of any scale 4,5
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4
Parallex an advanced parallel execution model for scaling-impaired applications- H. Kaiser et al - ICPPW, 2009

5
A Task Based Programming Model in a Global Address Space - H. Kaiser et al - PGAS, 2014
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Instantiation of a co-array object : Fortran vs C++

// Fortran Code
real :: z[10,*]

// C++ Code
spmd_block block;
coarray <double ,2> z( block , ”z”, {10,_}, partition <double >(1));

7 of 17



Co-Array C++ sample code

spmd_block block;
coarray <double ,1> z( block , ”z”, {_}, partition <double >(1));

if ( block.this_image () == 0 )
{

std::cin >> z.data(_);

int num_images = block.get_num_images ();
for( int image = 1; image < num_images; image++ )
{

z(image) = z.data(_);
}

}

block.barrier_sync(”b”); // sync_all () in Fortran
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Co-Array C++ sample code

spmd_block block;
coarray <double ,1> z( block , ”z”, {_}, partition <double >(1));

if ( block.this_image () == 0 )
{

std::cin >> z.data(_);

int num_images = block.get_num_images ();
for( int image = 1; image < num_images; image++ )
{

z(image) = z.data(_);
}

}

future <void > fb = block.barrier(”b”);
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Traversal of co-indexed elements with iterators

spmd_block block;
coarray <double ,3> a ( block , ”a”, {4,4,_}, partition <double >(5));

int idx = 0;
if ( block.this_image () == 0 )
{

for (auto i = a.begin (); i != a.end(); i++ )
*i = std::vector <double >(5,idx ++);

}
block.barrier_sync(”b”);

auto alocal = local_view(a);

for (auto ii = alocal.begin (); ii != alocal.end(); ii++)
{

std::vector <double > & ref = *ii;
...

}
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... with range-based for loops

spmd_block block;
coarray <double ,3> a ( block , ”a”, {4,4,_}, partition <double >(5));

int idx = 0;
if ( block.this_image () == 0 )
{

for (auto && proxy : a)
proxy = std::vector <double >(5,idx++);

}
block.barrier_sync(”b”);

auto alocal = local_view( a );

for (std::vector <double > & ref : alocal)
{

...;
}
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Creation of a distributed vector in HPX

A coarray is a multi-dimensionnal view tied to a distributed vector
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Creation of a distributed vector in HPX

A coarray is a multi-dimensionnal view tied to a distributed vector

int N, n;

std::vector <hpx::id_type > locs = hpx:: find_all_localities ();

auto layout = hpx:: container_layout(n, locs);

// Creation of the distributed vector
hpx:: partitioned_vector <double > v(N, 0.0, layout);
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Creation of a SPMD region

A SPMD region is the mean to invoke images in multiple localities
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Creation of a SPMD region

A SPMD region is the mean to invoke images in multiple localities

void example_image(spmd_block block)
{ ...
}
HPX_DEFINE_PLAIN_ACTION(example_image , my_action);

int main()
{

std::vector <hpx::id_type > locs = hpx:: find_all_localities ();

// Invocation of the spmd region
define_spmd_block( locs , my_action );

return 0;
}
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Benchmark 1 : Matrix Transpose

void transpose_coarray( spmd_block & block
, coarray <double ,2> & out
, coarray <double ,2> & in
, int height , int width
, int local_height
, int local_width
, int local_leading_dimension)

{
// Outer Transpose operation
for(int j = 0; j<width; j++)
for(int i = 0; i<height; i++)
{

// Put operation
out(j,i) = in(i,j);

}
block.barrier_sync(”outer_transpose”);

/* */

13 of 17



Benchmark 1 : Matrix Transpose

/* */

auto out_local = local_view(out);

// Inner Transpose operation
for (std::vector <double > & elt : out_local)
{

for(int jj = 0; jj <local_width -1; jj++)
for(int ii = jj+1; ii<local_height; ii++)
{

std::swap( elt[jj + ii*local_leading_dimension]
, elt[ii + jj*local_leading_dimension ]);

}
}
block.barrier_sync(”inner_transpose”);

}

13 of 17



Benchmark 1 : Matrix Transpose
performed in a 2 × 8 core machine

0 5 10 15
0

10

20

30

Number of cores

Pe
rf
or
m
an
ce

in
G
B/

s

HPX coarray
HPX coarray + tasks

OpenMP
HPX parallel::for_each

Available Bandwidth

14 of 17



Benchmark 2 : Sparse Matrix Vector Multiplication
struct spmatrix
{

// Constructor definition ...

int m_, n_, nnz_;
std::vector <int > rows_ , indices_;
std::vector <double > values_;
std::vector <int > begins_ , sizes_;

};

void spmv_coarray( spmd_block & block
, spmatrix const & a, std::vector <double > & x
, coarray <double ,1> & y)

{
int image_id = block.this_image ();
int begin = a.begins_[image_id ];
int chunksize = a.sizes_[image_id ];

/* */
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Benchmark 2 : Sparse Matrix Vector Multiplication
/* */

double * out = y.data(_).data();
const int * row = a.rows_.data() + begin;
const int * idx = a.indices_.data() + *row - 1;
const double * val = a.values_.data() + *row - 1;

for(int i = 0; i < chunksize; i++, row++, out++)
{

double tmp = 0.;
int end = *(row + 1);

for( int o = *row; o < end; o++, val++, idx++)
tmp += *val * x[*idx - 1];

*out = tmp;
}
block.barrier_sync(”spmv”);

}
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Benchmark 2 : Sparse Matrix Vector Multiplication
performed in a 2 × 8 core machine
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Thanks for your attention
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