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Introduction

● What is the value of documentation
● Overview of Doxygen
● Why we developed DoxyPress
● Parsing C++

○ libClang
○ libTooling

● Migrating code from C++98 to C++11
● Future plans for DoxyPress
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What is the Value of Documentation

● Who needs documentation
○ developers of your application
○ users of your library or application
○ your future self

● What should be documented
○ class and method documentation
○ how to set up your environment
○ process for building your application
○ overall system design
○ timeline or change log, error conditions
○ samples code
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Why Documentation is Important

● When to create documentation
○ day one of your project

● Maintaining documentation
○ refer to your documentation to ensure it is accurate
○ use your own build documentation
○ the more out of sync your documentation is, the less 

likely you will be to update it
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Overview of Doxygen 

● Development started around 1995
● Open Source / GPL 2

● Uses obsolete/unmaintained Qt 1.9 classes
● Non standard language translation functionality
● Project config file is raw text, parsed with lex
● Excessive use of ternary ? : operator
● Parameters which shadow member variables
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Why we Developed DoxyPress

● Unable to document CopperSpice C++ libraries
● Initial direction was to help improve Doxygen 

which turned out not to be feasible
● Code was simply unmaintainable

● DoxyPress is derived from Doxygen
● DoxyPress and DoxyPressApp link with the 

CopperSpice libraries
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Problematic C++ Code 

● Macros used to simulate variadic templates
● Raw pointers used exclusively
● No smart pointers

● Code extremely difficult to read
○ limited line breaks 
○ prolific use of variable names like:  bcli, bii, 

cli, cei, cni, di, dcli, ei, eli, evi, i, ii, iii, l, li, lii, lli,
mli, mnii, mri, pli, sl, sli, slii
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Problematic C++ Code

● Container classes are all pointer based
● Autodelete memory management

● std:set<T> simulated by using the equivalent of 
std::map<std::string, void *>

accessors->insert(s, (void *)666);

● Many of the internal classes inherit from containers
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Problematic C++ Code 

// QDict<T> is like std::map<std::string, T*>
class FileNameDict : public QDict<FileName>

class FileName : public FileList  {
  // contains 3 methods, 2 data members  
}

// QList<T> is like std::list<T*>
class FileList : public QList<FileDef> {
  // contains 2 methods, 1 data member
  // one of the methods compares FileDef entries
}

class FileDef : public Definition
class Definition : public DefinitionIntf
class DefinitionIntf
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Doxygen - Example 1
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● Custom string class
○ result returns ‘\0’ if an invalid index is accessed
○ access off the end of a string is acceptable code

if (result.at(0) == ':' && result.at(1) == ':')  {
. . .

}



DoxyPress - Example 1
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● CopperSpice QString, similar to std::string
○ accessing an invalid index is an error

// A, initial fix
int len = result.size();
if (len >= 2 && result.at(0) == ':' && result.at(1) == ':') {

. . .
}

// B, optimized
if (result.startsWith(”::”))  {

. . .
}



Doxygen - Example 2

● For “3” parameters there were 9 different forms

FORALL3(bool a1, Item a2, const char *a3, a1, a2, a3)
FORALL3(bool a1, bool a2, bool a3, a1, a2, a3)
FORALL3(const ClassDiagram &a1,const char *a2, const char *a3, a1, a2, a3)
FORALL3(const char *a1, const char *a2, const char *a3, a1, a2, a3)
FORALL3(const char *a1, const char *a2, bool a3, a1, a2, a3)
FORALL3(const char *a1, int a2,const char *a3, a1, a2, a3)
FORALL3(const char *a1, const char *a2, SectionType a3, a1 ,a2, a3)
FORALL3(uchar a1, uchar a2, uchar a3, a1, a2, a3)
FORALL3(Definition *a1, const char *a2, bool a3, a1, a2, a3)
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Doxygen - Example 2

● Code also existed for passing X number of 
parameter with various data type combinations 

○ FORALL6  (2 forms)
○ FORALL5  (2 forms)
○ FORALL4  (4 forms)
○ FORALL2  (9 forms)
○ FORALL1  (12 forms)

● Over 200+ lines of code

13



Doxygen - Example 2

● FORALL3() is a macro used to forward 3 parameters 
to a method

#define FORALL3(a1,a2,a3,p1,p2,p3) \
void OutputList::forall(void (OutputGenerator::*func)(a1,a2,a3), \
     a1,a2,a3) \
{ \

QListIterator<OutputGenerator> it(m_outputs); \
OutputGenerator *og; \
for (it.toFirst();og=it.current();++it) \
{ \

if (og->isEnabled()) (og->*func)(p1,p2,p3); \
} \

}
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DoxyPress - Example 2

● The entire FORALL macros were replaced with the following 
9 lines of code

template<class BaseClass, class... Args, class... Ts>
void forall(void (BaseClass::*func)(Args...), Ts &&... Vs) 
{

for (auto item : m_outputs) {
if (item->isEnabled()) {

(item->*func)(Vs...);
}

}
}
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Part II

Parsing C++
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Parsing

● Parsing is normally done in multiple phases  (1)
○ Lexical Analysis -- Lex

■ groups the input stream into a set of tokens
● identifiers, keywords, literals, punctuation, etc

■ tokenizing produces a stream of tokens
■ regular expressions are used to define the lexical 

patterns

○ Lex is a tool for generating a scanner which can 
recognizes lexical patterns in a text stream and
produce a stream of tokens
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Parsing

● Parsing is normally done in multiple phases  (2)
○ Semantic Parsing -- Bison

■ tokens are parsed to discover the structure of the 
source code

■ during the parsing process an Abstract Syntax Tree 
(AST) is created

■ an AST reflects the syntactical structure of your 
readable code into a tree structure

○ Bison is a tool to generate a parser, a program which 
recognizes the grammatical structure of your source 
code 18



Parsing

● C++ parsing in Doxygen
○ entirely implemented using Lex
○ Lex is used for both the lexical phase and the semantic 

analysis phase

○ a single Lex parser is used for these languages:
■ C, C++, C#, Objective-C, D, IDL, Java, JS, and PHP

○ approximately 800 different rules
○ many of the rules resolve different languages
○ not always clear which rules are for which languages

19



Parsing Multiple Programming Languages

<ClassVar>{ID}   {
  QString text = QString::fromUtf8(yytext); 

  if (insideIDL && text == "switch") {
     
  } else if ((insideJava || insidePHP || insideJS) && 
             (text == "implements" || text =="extends") ) {

  } else if (insideCSharp && text == "where") {

  } else if (insideCli && text == "abstract") {

  } else if (insideCli && text == "sealed") {

  } else if (text == "final") {

  } else {

  // ... 20



Parsing Rules

BN             [ \t\n\r]
ID             "$"?[a-z_A-Z\x80-\xFF][a-z_A-Z0-9\x80-\xFF]*
TYPEDEFPREFIX  (("typedef"{BN}+)?)((("volatile"|"const"){BN}+)?)

<SkipCurly>"}"/{BN}*("/*!"|"/**"|"//!"|"///")"<!--" | 
<SkipCurly>"}" 
    // parsing comments in source

<FindMembers>{B}*{TYPEDEFPREFIX}{IDLATTR}?"enum"({BN}+("class"|"struct"))?"{" |
<FindMembers>{B}*{TYPEDEFPREFIX}{IDLATTR}?"enum"({BN}+("class"|"struct"))?{BN}+ 
    // 
    
<FindMembers>{BN}*((("disp")?"interface")|"valuetype"){BN}+ 
    // M$/Corba/UNO IDL/Java interface

<EndTemplate>">"{BN}*/"("({BN}*{ID}{BN}*"::")*({BN}*"*"{BN}*)+ 
    // function pointer returning a template instance
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Parsing Problems

● Since multiple languages are parsed from this one 
Lex file, any changes can introduce multiple bugs

● New rules must be added to this parser each time 
any language is enhanced

● Lex does not handle look ahead expressions well 
● For CopperSpice we had to add about 50 new rules 
● How do you stay current with C++17 and C++20?
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DoxyPress C++ Parsing

● Our approach was to use libClang
○ libClang is a C Interface to Clang
○ provides a relatively small API
○ exposes functionality for parsing source code into an 

abstract syntax tree (AST)

○ used by XCode
○ syntax highlighting
○ code completion
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DoxyPress C++ Parsing

● libClang
○ parse a file to generate the “cursors” 
○ traverse the AST
○ associate locations in source with elements in the AST

○ libClang was not designed to provide all of the 
information in Clang's C++ AST

○ the intent of libClang is to maintain an API that is 
relatively stable from one release to the next and  
provide only the basic functionality needed to support 
development tools
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Parsing C++ / libClang

● Parse C++   (A)
○ initial setup and configuration
○ obtain the translation unit (TU) for the given source file
○ check for syntax errors
○ walk the AST and visit all cursors, recursively

■ match on a type of cursor
● declaration, enum, class, method, members, etc

○ save the cursor attributes

● Locate the comments   (B)
○ generate the tokens for a TU
○ generate the cursors for each token
○ walk the tokens looking for comments 25



Parsing C++ / libClang

● Cursor
○ represents a location within the AST
○ libClang has methods to map between cursors and the 

physical locations where the entities occur in the source

● Token
○ smallest element of a program which is meaningful to 

the compiler
○ identifiers, keywords, literals, operators, separators
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Parsing C++ / libClang

● Match on cursor kinds  (A)

friend int kayakCapacity ( int len , int width ) ;

○ in libClang this has a CXCursorKind of 
CXCursor_CXXMethod

○ we save the appropriate data in class Entry in DoxyPress 
to simulate what was saved in the original Lex parser

● Comments  (B)
○ locate a comment by testing all the tokens
○ add the comment to an existing Entry object
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Parsing C++ / libClang

● The next seven slides contain source code from 
“parser_clang.cpp” in DoxyPress

● The code in these slides has been condensed for readability 
and to show the most meaningful lines
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Parsing C++ / libClang

// obtain the Translation Unit

class ClangParser::Private {
   CXIndex index;
   CXTranslationUnit tu;
   CXCursor *cursors;
   CXUnsavedFile *ufs;
}

uint numUnsavedFiles;

CXErrorCode errorCode = clang_parseTranslationUnit2(p->index, 0,
      argv, argc, p->ufs, numUnsavedFiles,
      CXTranslationUnit_DetailedPreprocessingRecord, &(p->tu) );
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Parsing C++ / libClang

// walk the AST and visit all cursors, recursively

// top of the cpp
static QSharedPointer<Entry> s_current_root;

// obtain tu
s_current_root = root;

CXCursor rootCursor = clang_getTranslationUnitCursor(p->tu);
clang_visitChildren(rootCursor, visitor, nullptr);
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Parsing C++ / libClang

// call back, called for each cursor node

static CXChildVisitResult visitor(CXCursor cursor, 
      CXCursor parentCursor, CXClientData clientData) 
{
  . . .

  CXCursorKind kind = clang_getCursorKind(cursor);
  QSharedPointer<Entry> parentEntry;

  switch (kind) {
    // multiple cases
  }

  return CXChildVisit_Recurse;
}
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Parsing C++ / libClang

case CXCursor_FunctionDecl:

  QString signature = getCursorDisplayName(cursor);
  QString name = getCursorSpelling(cursor);
  QString args = signature.mid(name.length());

  QSharedPointer<Entry> current = QMakeShared<Entry>();

  current->section = Entry::FUNCTION_SEC;
  current->name = name;
  current->type = getCursorResultType(cursor);
  current->args = args;

  QString key = getCursorUSR(cursor);
  s_entryMap.insert(key, current);

  break;
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Parsing C++ / libClang

case CXCursor_CXXBaseSpecifier:
  QString name = getCursorSpelling(cursor);

  if (s_lastClassEntry != nullptr && ! name.isEmpty()) {
    Protection protection = getAccessSpecifier(cursor);

    Specifier virtualType = Specifier::Normal;
    if (clang_isVirtualBase(cursor)) {
      virtualType = Specifier::Virtual;
    }

    if (name.startsWith("class ") ) {
       name = name.mid(6);
    } else if (name.startsWith("struct ") ) {
       name = name.mid(7);
    }
    // inheritance, save class name & virtualType to the parent Entry
  } 33



Parsing C++ / libClang

case CXCursor_CXXMethod:
case CXCursor_FunctionTemplate:  
 
  QSharedPointer<Entry> current = QMakeShared<Entry>();

  if (clang_CXXMethod_isPureVirtual(cursor)) {
    current->type.prepend(" virtual ");
    current->virt = Specifier::Pure;
    tmpArgs += " = 0";
    tmpList.pureSpecifier = true;

  } else if (clang_CXXMethod_isVirtual(cursor)) {
    current->type.prepend(" virtual ");
    current->virt = Specifier::Virtual;

  }

  // . . .   34



Parsing C++ / libClang

CXToken *tokens;
uint numTokens;

clang_tokenize(p->tu, range, &tokens, &numTokens);

for (int j = 0; j < numTokens - 1; j++) {
   QString text = getTokenSpelling(p->tu, tokens[j]);

  if (text == "(") {
    break;

  } else if (text == "constexpr") {
    current->type.prepend("constexpr ");

  } else if (text == "inline") {
    current->m_traits.setTrait(Entry::Virtue::Inline);
}
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Parsing C++ / libClang

● libClang wrappers are missing or do not work 
correctly when parsing a method

○ default values
○ constexpr, explicit, inline
○ delete, default, final, noexcept, volatile

● Friend declarations do not work at all
○ walking the tokens for this cursor kind and parsing the 

declaration works, except for the argument list 
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Parsing C++

● When the documentation said libClang was missing 
a “few” parts of the AST, they really meant...
○ libClang is maintained by a few users
○ it is a C interface and not intended for C++ parsing
○ used for XCode, almost no one else is using it
○ use Clang if you need full parsing

● What we gained
○ how to traverse and understand the AST
○ how to store the parsed information in an Entry to 

generate documentation
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Parsing C++ / LibTooling

● Create a few classes which inherit from
○ clang::RecursiveASTVisitor
○ clang::ASTConsumer
○ clang::ASTFrontendAction

class DoxyVisitor : public RecursiveASTVisitor<DoxyVisitor> {
  // . . . 
  bool VisitCXXRecordDecl(CXXRecordDecl *node) override { . . . } 
  bool VisitFunctionDecl(FunctionDecl *node) override   { . . . }
  // . . . 
}
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Parsing C++ / LibTooling

● Usually a libTooling project is located in the llvm 
source tree

● Deciphering include files 
○ resolved by trial and error

● Deciphering lib files
○ complicated 
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Part IV

Migrating to modern C++ 
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Migrating from C++98 to C++11

● Ensure copy constructor is a deep copy

● Raw pointers      shared pointers
○ with raw pointers it is unclear who is responsible for

object destruction
○ too easy to accidentally use a raw pointer after the object 

has been deleted 
○ use QMakeShared in CopperSpice or std::make_shared 

instead of calling new

○ this type of pointer conversion can not be done gradually
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Migrating from C++98 to C++11

● for loop
○ C++11 range based syntax
○ use auto for declaring iterators

● Container misuse
○ QHash<QString, void *> files;
○ files.insert(“myFile”, (void *)0x08);
○ a large amount of code used raw pointers  

● Override
○ ensure methods which override a base class method are 

marked with “override”
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Migrating from C++98 to C++11

● Character set encoding
○ use UTF-8 internally
○ program as if your application will be used internationally

● Strings
○ avoid using const char *  (memory management issues)
○ use std::string class, or
○ use QString class in CopperSpice

● Use nullptr instead of 0
○ improves readability
○ zero can mean nullptr or an empty string
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Part V

Future Plans
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Where DoxyPress is At

● Removed all Qt 1.9 classes and containers
● Code reformatted
● Enhanced source to use C++11
● Using shared pointers instead of raw pointers
● Variadic templates instead of macro abuse

● Project file changed from raw text to JSON format
● DoxyPressApp converts a Doxygen project file to a 

DoxyPress project file
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Future Plans for DoxyPress

● Complete integration with clang for parsing C++

● Redesign internal containers

● Update memory model

● Support for other languages like D

● User requests & developer contributions
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Libraries & Applications

● CopperSpice
○ libraries for developing GUI applications

● PepperMill
○ converts Qt headers to CS standard C++ header files

● CsSignal Library
○ standalone thread aware signal / slot library

● LibGuarded
○ standalone multithreading library for shared data
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Libraries & Applications

● KitchenSink
○ one program which contains 30 demos

○ links with almost every CopperSpice library

● Diamond
○ programmers editor which uses the CS libraries

● DoxyPress & DoxyPressApp
○ an application for generating documentation
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Where to find our libraries

● www.copperspice.com
● download.copperspice.com
● forum.copperspice.com

● ansel@copperspice.com
● barbara@copperspice.com

● Questions?  Comments?
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