Proper Inheritance

John Lakos
Tuesday, May 10, 2016

Copyright Notice

© 2016 Bloomberg L.P. Permission is granted to copy, distribute, and display
this material, and to make derivative works and commercial use of it. The
information in this material is provided "AS IS", without warranty of any
kind. Neither Bloomberg nor any employee guarantees the correctness or
completeness of such information. Bloomberg, its employees, and its
affiliated entities and persons shall not be liable, directly or indirectly, in any
way, for any inaccuracies, errors or omissions in such information. Nothing
herein should be interpreted as stating the opinions, policies,
recommendations, or positions of Bloomberg.

Abstract

All essential behavior of our software must be documented, and yet there are
Important advantages, with respect to development, verification and testing,
performance, and stability, for leaving the behavior for some combinations of
inputs and initial conditions undefined. What is and is not defined behavior
should therefore be readily discernible from the contract, especially when
creating contracts that must span classes related by inheritance.

In this two-part talk, we begin by reviewing components, interfaces and
contracts in general, and the significance of narrow versus wide contracts. In
the second part, we go on to explore three kinds of inheritance: (1) Interface
Inheritance resulting from pure-virtual functions, (2) Structural Inheritance
resulting from non-virtual functions, and (3) Implementation Inheritance
resulting from non-pure virtual functions. Proper contracts involving each of
these distinct forms have different criteria that must be addressed. The three
kinds of inheritance are compared, and their relative utility is explained.
What's more, several common uses of inheritance that are provably improper
are summarily debunked.

What’s The Problem?

What’s The Problem?

Large-Scale C++ Software Design is Multi-Dimensional:

What’s The Problem?

Large-Scale C++ Software Design is Multi-Dimensional:
* |tinvolves many subtle logical and physical aspects.

What’s The Problem?

Large-Scale C++ Software Design is Multi-Dimensional:

* |t requires an ability to isolate and modularize
logical functionality within discrete, fine-grain
physical components.

What’s The Problem?

Large-Scale C++ Software Design is Multi-Dimensional:

* It requires the designer to delineate logical
behavior precisely, while managing the physical
dependencies on other subordinate components.

What’s The Problem?

Large-Scale C++ Software Design is Multi-Dimensional:

* It requires attention to numerous logical and
physical rules that govern sound software design.

Purpose of this Talk

Purpose of this Talk

Review:

Purpose of this Talk

Review:
1. Components —

Our fundamental unit of logical and physical design

12

Purpose of this Talk

Review:
1. Components —

Our fundamental unit of logical and physical design
2. Interfaces and contracts (in general)

13

Purpose of this Talk

Review:
1. Components —
Our fundamental unit of logical and physical design
2. Interfaces and contracts (in general)
3. Narrow versus Wide contracts (in particular)

14

Purpose of this Talk

Review:
1. Components —

Our fundamental unit of logical and physical design
2. Interfaces and contracts (in general)
3. Narrow versus Wide contracts (in particular)

4. Explore these basic ideas
in the context inheritance.

15

Outline

Components (review)

Modularity, Logical/Physical Dependencies, & Level numbers

Interfaces and Contracts (review)

Syntax versus Semantics & Essential Behavior

Narrow versus Wide Contracts (review)

The Significance of Undefined Behavior

Proper Inheritance

Is-A for Interface, Structural, & Implementation Inheritance

16

Outline

Components (review)

Modularity, Logical/Physical Dependencies, & Level numbers

Interfaces and Contracts (review)

Syntax versus Semantics & Essential Behavior

Narrow versus Wide Contracts (review)

The Significance of Undefined Behavior

Proper Inheritance

Is-A for Interface, Structural, & Implementation Inheritance

17

1. Components (review)

Logical versus Physical Design

What distinguishes Logical from Physical Design?

physical

18

1. Components (review)

Logical versus Physical Design

What distinguishes Logical from Physical Design?

physical

Logical: Classes and Functions

19

1. Components (review)

Logical versus Physical Design

What distinguishes Logical from Physical Design?

physical

Logical: Classes and Functions
Physical: Files and Libraries

20

1. Components (review)

Logical versus Physical Design

Logical content aggregated into a
Physical hierarchy of components

21

1. Components (review)

Component: Uniform Physical Structure

A Component Is Physical

// component.t.cpp
#include <component.h>

/] ...
int main(...)

{
/... // component.h // component.cpp

#include <component.h

/... /...

}
//-- END OF FILE --

component. t.cpp

//-- END OF FILE - //-- END OF FILE -

component .

1. Components (review)

Component: Uniform Physical Structure

Implementation

// component.t.cpp
#include <component.h>

/] ...

int main(...)
{
/] ...

}
//-- END OF FILE --

component. t.cpp

// component.h

/] ...

//-- END OF FILE -

component

component.cpp

//-- END OF FILE -

23

1. Components (review)

Component: Uniform Physical Structure

Header

// component.t.cpp
#include <component.h>

/] ...

int main(...)

{

/] .. // component.cpp

#include <component.h

/]

}
//-- END OF FILE --

component. t.cpp

//-- END OF FILE - //-- END OF FILE -

component >

1. Components (review)

Component: Uniform Physical Structure

Test Driver

// component.t.cpp
#include <component.h>

/] ...

int main(...)
{
/... // component.h // component.cpp
#include <component.h

/... /...

}
//-- END OF FILE --

component. t.cpp

//-- END OF FILE - //-- END OF FILE -

component .

1. Components (review)

Component: Uniform Physical Structure

The Fundamental Unit of Design

// component.t.cpp
#include <component.h>
/..

int main(...)

{
/... // component.h // component.cpp

#include <component.h

/... /...

}
//-- END OF FILE --

component. t.cpp

//-- END OF FILE - //-- END OF FILE -

component .

1. Components (review)

Component: Not Justa .h/.cpp Pair

my: :Widget

my widget

27

1. Components (review)

Component: Not Justa .h/.cpp Pair

There are four Properties...

1. Components (review)

Component: Not Just a .h/.cpp Pair

1. <] The .cpp file includes its . h file as the first

substantive line of code.

1. Components (review)

Component: Not Justa .h/.cpp Pair

| The . cpp file includes its . h file as the first
substantive line of code.

<> All logical constructs having external linkage
defined in a . cpp file are declared in the
corresponding . h file.

<> All constructs having external or dual bindage
declared in a . h file (if defined at all) are defined
within the component.

<> A component’s functionality is accessed via a

#include of its header, and never via a forward
(extern) declaration.

30

1. Components (review)

Component: Not Justa .h/.cpp Pair

1. <

The . cpp file includes its . h file as the first

substantive line of code.

n'ir‘ 4

We could easily

spend 20 minutes

on this slide alone!

Avoid Global 1 Ao Enable Efficient
: : Extraction of
Namespace t , Logical/Physical / S
Pollution . Modularity N y

Slantive line of code.

defined in a . cpp file arefleclared in the
corresponding . h file.

3. <&

declared in a . h file (if defined at all) are
within the component.

4, <O

Dependencies

he . cpp file inclug its . h file as th

All logical constructs

All constructs having external or dualpindage
lefined

A component’s functionality is accessed via a

#include of its header, and never via a forward
(extern) declaration.

32

Enable Efficient
Extraction of
Physical
Dependencies

Avoid Global Achieve
Namespace . Logical/Physical /
Pollution . Modularity

ADVANCED
LEVELIZATION
TECHNIQUES

1. Components (review)

Logical Relationships

(PointList)

éointList_Link

(Polygon)

(Point)

Underscore Implies
Component-Local Class

(Shape)

34

1. Components (review)

Logical Relationships

CPointList)
€ointList_Lir9

C Polygon)

(Point)

(shape)

— IS'A

1. Components (review)

Logical Relationships

(PointList)
€ointList_Lir9

(Polygon)

(Point)

(shape)

— IS'A

1. Components (review)

Logical Relationships

(PointList)
€ointList_Lir9

(Polygon)

(Point)

O—— Uses-in-the-Interface

(shape)

— IS'A

37

1. Components (review)

Logical Relationships

(PointList)
€ointList_Lir9

(Polygon)
O

/
(Point)

O—— Uses-in-the-Interface

(shape)

— IS'A

38

1. Components (review)

Logical Relationships

(PointList

o intLi st L1n

\\

(Polygon)
O

(Point)

O—— Uses-in-the-Interface

(shape)

— IS'A

1. Components (review)

Logical Relationships

(PointList

01ntLlst L1n

\\

(Polygon)
O

(Point)

O—— Uses-in-the-Interface
@ —— Uses-in-the-Implementation

(shape)

— IS'A

1. Components (review)

Logical Relationships

(PointList\

01ntLlst L1n

\\

{ Polygon)
O

(Point)

O—— Uses-in-the-Interface
@ —— Uses-in-the-Implementation

(shape)

— IS'A

1. Components (review)

Logical Relationships

(PointList\

T

01ntLlst L1n

\\

{ Polygon)
O

(Point)

O—— Uses-in-the-Interface
@ —— Uses-in-the-Implementation

(shape)

— IS'A

1. Components (review)

Logical Relationships

(PointList\ { Polygon)
T O

01ntLlst L1n

\\

(Po:l.nt) (Shape)

O—— Uses-in-the-Interface O------- Uses in name only
@ —— Uses-in-the-Implementation — |- A -

1. Components (review)

Logical Relationships

(PointList\ { Polygon)
T O

01ntLlst L1n

\\

(Po:l.nt} --------- - Shape)

O—— Uses-in-the-Interface O------- Uses in name only
@ ———— Uses-in-the-Implementation — | A i

1. Components (review)

Implied Dependency

(PointList\ { Polygon)
T O

01ntLlst L1n

\\

(Po:l.nt} --------- - Shape)

O—— Uses-in-the-Interface O------- Uses in name only
@ ———— Uses-in-the-Implementation — | A "

1. Components (review)

Implied Dependency

(PointList\ { Polygon)
T O

01ntLlst L1n

\\

(Po:l.nt} --------- - Shape)

—> Depends-On

O—— Uses-in-the-Interface O------- Uses in name only
@ —— Uses-in-the-Implementation — |- A 40

1. Components (review)

Implied Dependency

(PointList\

T

01ntLlst L1n

\\

(Point)

O—— Uses-in-the-Interface
@ —— Uses-in-the-Implementation

{ Polygon)
O

......... (shape)

—> Depends-On

O------- Uses in name only
— Is-A 47

1. Components (review)

Implied Dependency

(PointList\

T

01ntLlst L1n

\\

(Po:l.nt} --------- - Shape)

—> Depends-On

O—— Uses-in-the-Interface O------- Uses in name only
@ —— Uses-in-the-Implementation — |- A 4

1. Components (review)

Implied Dependency

(PointList\ { Polygon)
T @)
€ointList_Lir9

Q

—> Depends-On

O—— Uses-in-the-Interface O------- Uses in name only
@ —— Uses-in-the-Implementation — |- A 49

1. Components (review)

Implied Dependency

(PointList\ ' { Polygon)
O

€ointList_Lir9

Q

—> Depends-On

O—— Uses-in-the-Interface O------- Uses in name only
@ —— Uses-in-the-Implementation — |- A o0

1. Components (review)

Level Numbers

(PointList\ ' { Polygon)
O

€ointList_Lir9

Q

—> Depends-On

O—— Uses-in-the-Interface O------- Uses in name only
@ —— Uses-in-the-Implementation — |- A

1. Components (review)

Level Numbers

(PointList\ ' { Polygon)
O

€ointList_Lir9

Q

—> Depends-On

O—— Uses-in-the-Interface O------- Uses in name only
@ —— Uses-in-the-Implementation — |- A

1. Components (review)

Level Numbers

(PointList\ ' { Polygon)
O

€ointList_Lir9

Q

—> Depends-On

O—— Uses-in-the-Interface O------- Uses in name only
@ —— Uses-in-the-Implementation — |- A

1. Components (review)

Level Numbers

2 ‘
(PointList\ { Polygon)
®)

€ointList_Lir9

Q

—> Depends-On

O—— Uses-in-the-Interface O------- Uses in name only
@ —— Uses-in-the-Implementation — |- A

1. Components (review)

Level Numbers

2 ‘ 3

(PointList\ { Polygon)
T @)

€ointList_Lir9

Q

—> Depends-On

O—— Uses-in-the-Interface O------- Uses in name only
@ —— Uses-in-the-Implementation — |- A

1. Components (review)

Essential Physical Design Rules

56

1. Components (review)

Essential Physical Design Rules

There are two:

57

1. Components (review)

Essential Physical Design Rules

There are two:

1.No Cyclic Physical
Dependencies!

1. Components (review)

Essential Physical Design Rules

There are two:

2.No Long-Distance
Friendships!

1. Components (review)

End of Section

Questions?

1. Components (review)

What Questions are we Answering?

What distinguishes Logical and Physical Design?

What is the first of the (four) fundamental properties of
a .h/.cpp pair that make it a component?

Which of these fundamental properties helps us extract
physical dependencies efficiently? Eextra credit: Why? How?

What are the (four) logical-relationship annotations?
Which logical relationship does not imply a physical one?

How do we infer physical relationships (Depends-On)
from logical ones?

What do we mean by the term /level number?
What are the (two) quintessential physical design rules?

61

Outline

Components (review)

Modularity, Logical/Physical Dependencies, & Level numbers

Interfaces and Contracts (review)

Syntax versus Semantics & Essential Behavior

Narrow versus Wide Contracts (review)

The Significance of Undefined Behavior

Proper Inheritance

Is-A for Interface, Structural, & Implementation Inheritance

62

Outline

Components (review)

Modularity, Logical/Physical Dependencies, & Level numbers

Interfaces and Contracts (review)

Syntax versus Semantics & Essential Behavior

Narrow versus Wide Contracts (review)

The Significance of Undefined Behavior

Proper Inheritance

Is-A for Interface, Structural, & Implementation Inheritance

63

2. Interfaces and Contracts (review)

Interfaces and Contracts

What do we mean by Interface versus Contract for

* A Function?
e A Class?
* AComponent?

64

2. Interfaces and Contracts (review)

Interfaces and Contracts
Function

std::ostream& print(std::ostreamé& stream,
Int level

Int spacesPerLevel

I
o

4) const;

65

2. Interfaces and Contracts (review)

Interfaces and Contracts
Function

\ 4 \ 4
std::ostream& print(std::ostreamé& stream,
B int level = 0,
B int spacesPerLevel = 4) const;
Types Used
In the Interface

66

2. Interfaces and Contracts (review)

Interfaces and Contracts
Function

// Format this object to the specified output 'stream' at the (absolute
// value of) the optionally specified indentation 'level’ and return a

Il reference to 'stream'. If 'level' is specified, optionally specify

I/ 'spacesPerLevel’, the number of spaces per indentation level for
// this and all of its nested objects. If 'level' is negative,

I/ suppress indentation of the first line. If 'spacesPerLevel is

I/l negative, format the entire output on one line, suppressing all but
// the initial indentation (as governed by 'level’). If 'stream’ is

/[not valid on entry, this operation has no effect.

67

2. Interfaces and Contracts (review)

Interfaces and Contracts

Class

class Date {

...

public:
Date(int year, int month, int day);

Date(const Date& original);

...

68

2. Interfaces and Contracts (review)

Interfaces and Contracts

Class

class Date {

...

public:
Date(int year, int month, int day);

Date(const Date& original);

...

—_—

Public
Interface

69

2. Interfaces and Contracts (review)

Interfaces and Contracts

Class

class Date {

...

public:
Date(int year, int month, int day);

Date(const Date& original);

...

70

2. Interfaces and Contracts (review)

Interfaces and Contracts

Class

// This class implements a value-semantic type representing
/[a valid date in history between the dates 0001/01/01 and
// 9999/12/31 inclusive.

71

2. Interfaces and Contracts (review)

Interfaces and Contracts

Class

// This class implements a value-semantic type representing
/[a valid date in history between the dates 0001/01/01 and
// 9999/12/31 inclusive.

// Create a valid date from the specified ‘year’, ‘month’, and
// ‘day’. The behavior is undefined unless ‘year’/’/month’/'day’
I/ represents a valid date in the range [0001/01/01 .. 9999/12/31].

72

2. Interfaces and Contracts (review)

Interfaces and Contracts

Class

// This class implements a value-semantic type representing
/[a valid date in history between the dates 0001/01/01 and

/1 9999/12/31 inclusive.

// Create a valid date from the specified ‘year’, ‘month’, and
// ‘day’. The behavior is undefined unless ‘year’/’/month’/day
I/ represents a valid date in the range [0001/01/01 .. 9999/12/31].

L

// Create a date having the value of the specified ‘original’ date.

73

2. Interfaces and Contracts (review)

Interfaces and Contracts
“wsoet - Component

public:
...

I3

bool operator==(const Date& Ihs, const Date& rhs);
bool operator!=(const Date& Ihs, const Date& rhs);

std::ostream& operator<<(std:.ostreamé& stream, const Date& date);

74

2. Interfaces and Contracts (review)

Interfaces and Contracts
“wsoet - Component

public:
/...

“Public”

%
» bool operator==(const Date& Ihs, const Date& rhs);
Interface

» bool operator!=(const Date& Ihs, const Date& rhs);

» std::ostream& operator<<(std::ostreamé& stream, const Date& date);

75

2. Interfaces and Contracts (review)

Interfaces and Contracts
et Component

public:
/...

I3

bool operator==(const Date& Ihs, const Date& rhs);
bool operator!=(const Date& |lhs, const Date& rhs);

std::ostreamé& operator<<(std:..ostreamé& stream, const Date& date);

76

2. Interfaces and Contracts (review)

Interfaces and Contracts

Component

// Return ‘true’ if the specified ‘Ihs’ and ‘rhs’ dates have the same
// value, and ‘false’ otherwise. Two ‘Date’ objects have the same
// value if their respective ‘year’, ‘month’, and ‘day’ attributes

/[have the same value.

77

2. Interfaces and Contracts (review)

Interfaces and Contracts

Component

// Return ‘true’ if the specified ‘Ihs’ and ‘rhs’ dates have the same
// value, and ‘false’ otherwise. Two ‘Date’ objects have the same
// value if their respective ‘year’, ‘month’, and ‘day’ attributes

/[have the same value.

// Return ‘true’ if the specified ‘Ihs’ and ‘rhs’ dates do not have the

// same value, and ‘false’ otherwise. Two ‘Date’ objects do not have
// the same value if any of their respective ‘year’, ‘month’, and ‘day’
/I attributes do not have the same value.

78

2. Interfaces and Contracts (review)

Interfaces and Contracts
Component

// Return ‘true’ if the specified ‘Ihs’ and ‘rhs’ dates have the same
// value, and ‘false’ otherwise. Two ‘Date’ objects have the same
// value if their respective ‘year’, ‘month’, and ‘day’ attributes

/[have the same value.

// Return ‘true’ if the specified ‘Ihs’ and ‘rhs’ dates do not have the

// same value, and ‘false’ otherwise. Two ‘Date’ objects do not have
// the same value if any of their respective ‘year’, ‘month’, and ‘day’
/I attributes do not have the same value.

// Format the value of the specified ‘date’ object to the specified
/l output ‘stream’ as ‘yyyy/mm/dd’, and return a reference to ‘stream’.

2. Interfaces and Contracts (review)

Preconditions and Postconditions

80

2. Interfaces and Contracts (review)

Preconditions and Postconditions
Function

81

2. Interfaces and Contracts (review)

Preconditions and Postconditions
Function

double sqrt(double value);
// Return the square root of the specified ‘value’.
// The behavior is undefined unless ‘0 <= value’.

82

2. Interfaces and Contracts (review)

Preconditions and Postconditions
Function

double sqrt(double value);
// Return the square root of the specified ‘value’.
// The behavior is undefined unless ‘O <= value’.

83

2. Interfaces and Contracts (review)

Preconditions and Postconditions
Function

// The behavior is undefined unless ‘0 <= value’.

Precondition

84

2. Interfaces and Contracts (review)

Preconditions and Postconditions
Function

// The behavior is undefined unless ‘0 <= value’.

Precondition

~or a Stateless Function:
Restriction on syntactically legal inputs.

85

2. Interfaces and Contracts (review)

Preconditions and Postconditions
Function

double sqrt(double value);
// Return the square root of the specified ‘value’.
// The behavior is undefined unless ‘0 <= value’.

86

2. Interfaces and Contracts (review)

Preconditions and Postconditions
Function

// Return the square root of the specified ‘value’.

Postcondition

87

2. Interfaces and Contracts (review)

Preconditions and Postconditions
Function

// Return the square root of the specified ‘value’.

Postcondition

For a Stateless Function:
What it “returns.”

88

2. Interfaces and Contracts (review)

Preconditions and Postconditions

Object Method

2. Interfaces and Contracts (review)

Preconditions and Postconditions

Object Method

» Preconditions: What must be true of both
(object) state and method inputs;
otherwise the behavior is undefined.

90

2. Interfaces and Contracts (review)

Preconditions and Postconditions

Object Method

» Postconditions: What must happen as a
function of (object) state and input if all
Preconditions are satisfied.

91

2. Interfaces and Contracts (review)

Preconditions and Postconditions

Object Methac

» Postconditions: What must happen as a
function of (object) state and input if all
Preconditions are satisfied.

92

Note that Essential Behavior refers to a
superset of Postconditions that includes
behavioral guarantees, such as
runtime complexity.

» Postconditions: What must happen as a
function of (object) state and method
inputs if all preconditions are sat*~fied.

Observation By
Kevlin Henny

93

2. Interfaces and Contracts (review)

Preconditions and Postconditions

Defined & Essential Behavior

4 N

Not
Undefined
Behavior

_ Undefined Behavior /

2. Interfaces and Contracts (review)

Preconditions and Postconditions

Defined & Essential Behavior

4 N

Essential
Behavior

_ Undefined Behavior /

2. Interfaces and Contracts (review)

Preconditions and Postconditions

Defined & Essential Behavior
Defined \
but not

Essential

Essential
Behavior

_ Undefined Behavior /

2. Interfaces and Contracts (review)

Preconditions and Postconditions

Defined & Essential Behavior

Defined Unspecified and
but not Implementation

Essential -dependent

Essential
Behavior

_ Undefined Behavior /

2. Interfaces and Contracts (review)

Preconditions and Postconditions

Defined & Essential Behavior

// Format this object to the specified output 'stream’ at the (absolute
/I value of) the optionally specified indentation 'level' and return a
// reference to 'stream'.

98

2. Interfaces and Contracts (review)

Preconditions and Postconditions

Defined & Essential Behavior

If 'level' is specified, optionally specify
/I 'spacesPerLevel', the number of spaces per indentation level for
/I this and all of its nested objects.

99

2. Interfaces and Contracts (review)

Preconditions and Postconditions

Defined & Essential Behavior

std:.ostreamé& print(std::ostreamé& stream,
Int level = 0,
Int spacesPerLevel = 4) const;

// Format this object to the specified output 'stream' at the (absolute
/I value of) the optionally specified indentation 'level' and return a

/I reference to 'stream’. If level' Iis specified, optionally specify

/I 'spacesPerLevel', the number of spaces per indentation level for
[this and all ot is nested objecis. If'level is negative,

/I suppress indentation of the firstline. " cpacesherlcvel s

// negative, format the entire output on one line, suppressing all but
// the Initial iIndentation (as governed by 'level’). If 'stream’is
// not valid on entry, this operation has no effect.

100

2. Interfaces and Contracts (review)

Preconditions and Postconditions

Defined & Essential Behavior

If 'spacesPerLevel' is
// negative, format the entire output on one line, suppressing all but
// the initial indentation (as governed by ‘level).

101

2. Interfaces and Contracts (review)

Preconditions and Postconditions

Defined & Essential Behavior

std:.ostreamé& print(std::ostreamé& stream,
Int level = 0,
Int spacesPerLevel = 4) const;

// Format this object to the specified output 'stream' at the (absolute
/I value of) the optionally specified indentation 'level' and return a

/I reference to 'stream’. If level' Iis specified, optionally specify

/I 'spacesPerLevel', the number of spaces per indentation level for
// this and all of its nested objects. If 'level is negative,

/I suppress indentation of the first line. If 'spacesPerLevel' is

// negative, format the entire output on one line, suppressing all but
// the initial indentation (as governed by 'level’). If ‘stream’is
// not valid on entry, this operation has no effect.

102

2. Interfaces and Contract

Preconditions and Pgp- Any
) Undefined
Deﬂned & Essent Behavior?

std::ostream& print(std::ostreamé& stream,
Int level ,
Int spacesPerLevel = 4) const;

// Format this object to the specified output 'stream’ at the (absolute
/I value of) the optionally specified indentation 'level' and return a

Il reference to 'stream’. If level' is specified, optionally specify

/I 'spacesPerLevel', the number of spaces per indentation level for
/I this and all of its nested objects. If level is negative,

/I suppress indentation of the first line. If 'spacesPerLevel' is

// negative, format the entire output on one line, suppressing all but
/I the initial indentation (as governed by 'level). If 'stream’ is
// not valid on entry, this operation has no effect.

103

2. Interfaces and Contract

Preconditions and Pp+ Any
) Non-Essential
Deflned & ESSE Nt Behavior?

std::ostream& print(std::ostreamé& stream,
Int level ,
Int spacesPerLevel = 4) const;

// Format this object to the specified output 'stream’ at the (absolute
/I value of) the optionally specified indentation 'level' and return a

Il reference to 'stream’. If level' is specified, optionally specify

/I 'spacesPerLevel', the number of spaces per indentation level for
/I this and all of its nested objects. If level is negative,

/I suppress indentation of the first line. If 'spacesPerLevel' is

// negative, format the entire output on one line, suppressing all but
/I the initial indentation (as governed by 'level). If 'stream’ is
// not valid on entry, this operation has no effect.

104

Hint
/ " 2. Interfaces and Contract

Preconditions and Pp- Any
) Non-Essential
Defined & Essent Behavior?

std::ostream& print(std::ostreamé& stream,
int level = 0,©
Int spacesPerLevel = 4) const;

// Format this object to the specified output 'stream’ at the (absolute
/I value of) the optionally specified indentation 'level' and return a

Il reference to 'stream’. If level' is specified, optionally specify

/I 'spacesPerLevel', the number of spaces per indentation level for
/I this and all of its nested objects. If level is negative,

/I suppress indentation of the first line. If 'spacesPerLevel' is

/I negative, format the entire output on one line, suppressing all but

N / the initial indentation (as governed by 'level). If 'stream’ is
//not valid on entry, this operation has no effect. .

2. Interfaces and Contracts (review)

Preconditions and Postconditions

Defined & Essential Behavior

Date(int year, int month, int day);
// Create a valid date from the specified ‘year’, ‘month’, and
// ‘day’. The behavior is undefined unless ‘year’/’'month’/day’
I/ represents a valid date in the range [0001/01/01 .. 9999/12/31].

106

2. Interfaces and Contracts (review)

Preconditions and Postconditions

Defined & Essential Be

Undefined
Behavior?

Date(int year, int month, int day);
// Create a valid date from the specified ‘year’, ‘month’, and
// ‘day’. The behavior is undefined unless ‘year’/’'month’/day’
I/ represents a valid date in the range [0001/01/01 .. 9999/12/31].

107

2. Interfaces and Contracts (review)

Preconditions and Postconditions

Defined & Essential Be

Undefined
Behavior?

Date(int year, int month, int day);
// Create a valid date from the specified ‘year’, ‘month’, and
// ‘day’. The behavior is undefined unless ‘year’/’'month’/day’
I/ represents a valid date in the range [0001/01/01 .. 9999/12/31].

108

2. Interfaces and Contracts (review)

Preconditions and Postconditions

Defined & Essential Behavior

Date(const Date& original);
// Create a date having the value of the specified ‘original’ date.

109

2. Interfaces and Contracts (review)

Preconditions and Postconditions

Defined & Essential Behavior

Any
Undefined
Behavior?

Date(const Date& original);
// Create a date having the value of the specified ‘original’ date.

110

2. Interfaces and Contracts (review)

Preconditions and Postconditions

(Object) Invariants

class Date {
// This class implements a value-semantic type representing
/[a valid date in history between the dates 0001/01/01 and
// 9999/12/31 inclusive.

l...

public:
Date(int year, int month, int day);
// Create a valid date from the specified ‘year’, ‘month’, and
// ‘'day’. The behavior is undefined unless ‘year’/’/month’/’'day’
// represents a valid date in the range [0001/01/01 .. 9999/12/31].

Date(const Date& original);

// Create a date having the value of the specified ‘original’ date

. ...

111

2. Interfaces and Contracts (review)

Preconditions and Postconditions

(Object) Invariants

class Date {
I/l This class implements a value-semantic type representing
/[a valid date in history between the dates 0001/01/01 and
[/ 9999/12/31 inclusive.

...

public:
Date(int year, int month, int day);
/I Create a valid date from the specified ‘year’, ‘month’, and
// ‘'day’. The behavior is undefined unless ‘year’/’/month’/’'day’
// represents a valid date in the range [0001/01/01 .. 9999/12/31].

Date(const Date& original);

// Create a date having the value of the specified ‘original’ date.

) ...

112

2. Interfaces and Contracts (review)

Preconditions and Postconditions
(Object) Invariants

class Date {
I/l This class implements a value-semantic type representing
/[a valid date in history between the dates 0001/01/01 and
// 9999/12/31 inclusive.

Question: Must the code itself
preserve invariants even if oné
or more preconditions.of the

method’s contract is violated?

113

2. Interfaces and Contracts (review)

Preconditions and Postconditions

(Object) Invariants

class Date {
I/l This class implements a value-semantic type representing
/[a valid date in history between the dates 0001/01/01 and
// 9999/12/31 inclusive.

Date(int year, int month, int day);
// Create a valid date from the specified ‘year’, ‘month’, and
// ‘day’. The behavior is undefined unless ‘year’/’'month’/'day’
Il represents a valid date in the range [0001/01/01 .. 9999/12/31].

114

2. Interfaces and Contracts (review)

Preconditions and Postconditions

(Object) Invariants

class Date {
I/l This class implements a value-semantic type representing
/[a valid date in history between the dates 0001/01/01 and
// 9999/12/31 inclusive.

Answer: No!
Date(int year, int month, int day);

// Create a valid date from the specified ‘year’, ‘month’, and
// ‘day’. The behavior is undefined unless ‘year’/'month’/’'day’
Il represents a valid date in the range [0001/01/01 .. 9999/12/31].

115

2. Interfaces and Contracts (review)

What happeﬁ‘gﬂpst?onditions
When behaViOr ariants

i " emantic type representing
S Undeflned e dates 0001/01/01 and

—

IS u :
<N defined! Answer: No!

Date(int year, int month, int day);
/I Create a valid date from the specified ‘year’, ‘month’, and
// ‘'day’. The behavior is undefined unless ‘year’/’/month’/’'day’
// represents a valid date in the range [0001/01/01 .. 9999/12/31].

116

2. Interfaces and Contracts (review)

Design by Contract

117

2. Interfaces and Contracts (review)

Design by Contract

(DbC)
“If you give me valid input*,
| will behave as advertised:
otherwise, all bets are off!”

*including state

2. Interfaces and Contracts (review)

Design by Contract
Documentation

There are five aspects:
1. What it does.

2. What it returns.

3. Essential Behavior.
/
5

Undefined Behavior.

Note that...

119

2. Interfaces and Contracts (review)

Design by Contract
Documentation

There are five aspects:
What it does.
What it returns.
Essential Behavior.

U WNPR

Note that...

Undefined Behavior.

120

2. Interfaces and Contracts (review)

Design by Contract
Documentation

There are five aspects:
What it does.
What it returns.
Essential Behavior.

i

Note that...

Undefined Behavior.

121

2. Interfaces and Contracts (review)

Design by Contract
Documentation

There are five aspects:
1. What it does.

2. What it returns.
Essential Behavior.

W

Note that...

Undefined Behavior.

122

2. Interfaces and Contracts (review)

Design by Contract
Documentation

There are five aspects:
What it does.

What it returns.
Essential Behavior.
Undefined Behavior.
Note that...

TR LDE

123

2. Interfaces and Contracts (review)

Design by Contract
Documentation

There are five aspects:

1. What it does.

2. What it returns.

3. Essential Behavior.
4. Undefined Behavior.
5. Note that...

124

2. Interfaces and Contracts (review)

Design by Contract
Verification

125

2. Interfaces and Contracts (review)

Design by Contract
Verification

> Preconditions:

126

2. Interfaces and Contracts (review)

Design by Contract
Verification

» Preconditions:
v'RTFM (Read the Manual).

2. Interfaces and Contracts (review)

Design by Contract
Verification

» Preconditions:
v'RTFM (Read the Manual).
v’ Assert (only in ‘debug’ or ‘safe’ mode).

2. Interfaces and Contracts (review)

Design by Contract
Verification

> Postconditions:

129

2. Interfaces and Contracts (review)

Design by Contract
Verification

» Postconditions:
v'"Component-level test drivers.

130

2. Interfaces and Contracts (review)

Design by Contract
Verification

> Invariants:

131

2. Interfaces and Contracts (review)

Design by Contract
Verification

> Invariants:
v’ Assert invariants in the destructor.

132

2. Interfaces and Contracts (review)

Contracts and Exceptions

Preconditions always Imply Postconditions:

133

2. Interfaces and Contracts (review)

Contracts and Exceptions

Preconditions always Imply Postconditions:

» If a function cannot satisfy its contract (given valid

preconditions) it must not return normally.

134

2. Interfaces and Contracts (review)

Contracts and Exceptions

Preconditions always Imply Postconditions:

> If a function cannot satisfy its contract (given valid

preconditions) it must not return normally.

» abort () should be considered a viable alternative to

throw in virtually all cases (if exceptions are disabled).

135

2. Interfaces and Contracts (review)

Contracts and Exceptions

Preconditions always Imply Postconditions:

> If a function cannot satisfy its contract (given valid

preconditions) it must not return normally.

» abort () should be considered a viable alternative to

throw in virtually all cases (if exceptions are disabled).

» Good library components are exception agnostic (via RAIl).

136

2. Interfaces and Contracts (review)

End of Section

Questions?

2. Interfaces and Contracts (review)

What Questions are we Answering?

What do we mean by Interface versus Contract for a
function, a class, or a component?

What do we mean by preconditions, postconditions,
and invariants?

What do we mean by essential & undefined behavior?

Must the code itself preserve invariants even if one or
more preconditions ot the contract are violated?

What is the idea behind Design-by-Contract (DbC)?
How do we document the contract for a function?

How can clients ensure that preconditions are satisfied?
How do we guarantee that postconditions are satisfied?
How can we test to make sure invariants are preserved?
What must be true if a client satisfies all preconditions?

138

Outline

Components (review)

Modularity, Logical/Physical Dependencies, & Level numbers

Interfaces and Contracts (review)

Syntax versus Semantics & Essential Behavior

Narrow versus Wide Contracts (review)

The Significance of Undefined Behavior

Proper Inheritance

Is-A for Interface, Structural, & Implementation Inheritance

139

Outline

3. Narrow versus Wide Contracts (review)

The Significance of Undefined Behavior

140

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

141

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Pejorative terms:

142

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Pejorative terms:
‘Fat Inte rfaCe (4. Proper Inheritance)

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Pejorative terms:

*Large (Non-Primitive)
Interface

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Pejorative terms:

e Wide Contract

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

146

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

What should happen with the following call?

1nt x = std::strlen(0);

147

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

What should happen with the following call?

1nt x = std::strlen(0);

How about it must return 0?

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

1nt strlen(const char *s)

{
1f (!s) return 0O;]-Wide

[/ ..
J

How about it must return 0?

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

1nt strlen(const char *s)

{
1f (!s) return 0O;]-Wide

} // -~ Likely to mask a defect

How about it must return 0?

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefin ¢ 2havior:

int strlen(colilst cndar *s)

{
NA\NEA) re=ucrod]'Wide

} /) l+zely“0'mask a defect

Ho v apout it must return O0?

151

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

What should happen with the following call?

1nt x = std::strlen(0);

152

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

What should happen with the following call?

1nt x = std::strlen(0);

153

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

1nt strlen(const char *s)

{
assert(s) ;]- Narrow

// ..

154

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

1nt strlen(const char *s)

{
]- Narrow
//

155

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

1nt strlen(const ckAar \ *s)

{
2\]- Narrow

156

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

Should

Date: :setDate(1nt, 1int, int);

Return a status?

157

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefin

Should

158

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

| “know” this date is valid (It’s my birthday)!

date.setDate (3, 8, 59);

Therefore, why should | bother to check status?

159

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

| “know” this date is valid (It’s my birthday)!

date.setDate (3, 8, 59);
Therefore, why should | bother to check status?

date.setDate (1959, 3, 8);

160

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

| “know” this date is valid (It’s my bi‘%a\y‘)!
date.setDate (? ®;\b)9) ;
Therefore, w\@other to check status?

eO.SetDate (1959, 3, 8);

161

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

»Returning status implies a
wide contract.

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

»Wide contracts prevent
defending against such
errors in any build mode.

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

vold Date::setDate(int v,
int m,
int d)

d year = y;
d month
d day

|l
Q. 3

164

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:
vold Date::setDate(int v,

int m,
int d)
{
assert(lsvalld(y m,d));
d year = vy;
d month = m;

d day d;

165

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:
vold Date::setDate(int v,

int m,
int d)
{
assert(lsValld(y m,d));
d year = vy;
d_month ~ m’, Narrow Contract:
d day = d;
) — Checked Only In
“Debug Mode”

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

int Date::setDatelIfValid(int v,
1nt m,
int d)

if (!isVali?éy, m, d)) {

} return

d year = y;
d month = m;
d day = d;

return O;

} 167

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:
int Date::setDatelIfValid(int v,

1f (!i1sValil
return

}

d year
d month
d day
return 0;

Vs
m;
d;

H

1nt m,
int d)

m, d)) {

Wide Contract:
Checked In
Every Build Mode

168

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

* What should happen when the behavior is
undefined?

TYPE& vector::operator[] (int 1dx);

169

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

* What should happen when the behavior is
undefined?

TYPE& vector::operator[] (int 1dx);

* Should what happens be part of the
contract?

TYPES& vector::at(int 1dx);

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

 What should happen when the behavior is
undefined? It depends on the build mode.

TYPE& vector::operator[] (int 1dx);

* Should what happens be part of the
contract?

TYPES& vector::at(int 1dx);

171

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

 What should happen when the behavior is
undefined? It depends on the build mode.

TYPE& vector::operator[] (int 1dx);

* Should what happens be part of the
contract? Ifitis, then it's essential behavior!

TYPES& vector::at(int 1dx);

172

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

 What should happen when the behavior is
undefined? It depends on the build mode.

TYPE& vector::operator[] (int 1dx);

173

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

 What should happen when the behavior is
undefined? It depends on the build mode.

TYPE& vector::operator[] (int 1dx);

at happens be part Bad
Af it is, then it’s esse |dea| ior!

YPE& vector::at(int .~

174

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:
Should the behavior for

vold 1nsert (int 1dx, const TYPE& value);

be defined when idx is greater than 1ength ()
or less than zero?

175

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

vold 1nsert (int 1dx, const TYPE& value);

If so, what should it be?

176

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

vold 1nsert (int 1dx, const TYPE& value);

If so, what should it be?

if (idx < 0) idx = 0;
1f (1dx > length()) 1dx = length();

177

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

vold 1nsert (int 1dx, const TYPE& value);

If so, what should it be?

1dx = abs(1dx) % (length() + 1);

178

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

vold 1nsert (int 1dx, const TYPE& value);

If L2, . @l s 0)7L be?
1f (1dx < 0) 1dx = 0;
17 1dx > lemgth ™ v\ 502581 (;
1(x = Lks12LK) « (length() + 1);

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:

vold 1nsert (int 1dx, const TYPE& value);

If so_awbat="Hy|d it be?
if (ic 0;
1f (1d —eze-=""length () ;
1dx = '%wos (1dx) % (length() + 1);

Ng

3. Narrow versus Wide Contracts (review)

What happeﬁ‘;ﬁe Contracts
V\{hen behaViOr 1defined Behavior:

IS Undefineg

ronst TYPES& value) ;

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:
Should the behavior for

vold 1nsert (int 1dx, const TYPE& value);

be defined when idx is greater than 1ength ()
or less than zero?

182

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:
Should the behavior fo

vold 1nsert (int 1dx, const TYPE& value);

be defined when idx is greater than 1ength ()
or less than zero? Answer: No!

183

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:
Should the behavior for

vold 1nsert (1nt 1dx, const TYPE& value);

be defined when idx is greater than 1ength ()
or less than zero? Answer: No!

assert (0 <= idx); assert(idx <= length());

184

3. Narrow versus Wide Contracts (review)

Narrow versus Wide Contracts

Narrow Contracts Imply Undefined Behavior:
Should the behavior for

vold 1nsert (int 1dx, const TYPE& value);

be defined when idx is greater than 1ength ()
or less than zero? Answer: No!

3. Narrow versus Wide Contracts (review)

Appropriately Narrow Contracts

186

3. Narrow versus Wide Contracts (review)

Appropriately Narrow Contracts

Narrow, but not too narrow.

187

3. Narrow versus Wide Contracts (review)

Appropriately Narrow Contracts

Narrow, but not too narrow.
Should the behavior for

vold replace (1int 1ndex,
const TYPE& value,
int numElements) ;

be defined when index is length () and
numElements is zero?

188

3. Narrow versus Wide Contracts (review)

Appropriately Narrow Contracts

index T ?
+“/;gqlength()55.

O R N W P~ o

01 2 3 4 5 numElements

189

3. Narrow versus Wide Contracts (review)

Appropriately Narrow Contracts

lndex5 T/

E.g., length () is5.

O N W B

01 2 3 4 5 numElements

vold replace (int 1ndex,
const TYPE& value,
1nt numElements)

assert (0 <= index) ;
assert (0 <= numkElements) ;
assert (1ndex + numkElements <= length());
// ..
} 190

3. Narrow versus Wide Contracts (review)

Appropriately Narrow Contracts

lndex5 T/

E.g., length () is5.

O N W B

01 2 3 4 5 numElements

vold replace (int 1ndex,
const TYPE& value,
1nt numElements)

assert (0 <= index) ;
assert (0 <= numkElements) ;
assert (1ndex + numkElements <= length());
// ..
} 191

3. Narrow versus Wide Contracts (review)

Appropriately Narrow Contracts

index / R
E.g., length () is5.

Now a client f .
would have 3t °
to check for this i :
special case. ’ 01 2 3 4 5 numElements

vold replace (int 1ndex,
const TYPE& value,
1nt numElements)

assert (0 <= index) ;
assert (0 <= numkElements) ;
assert (1ndex + numkElements <= length());
// ..
} 192

3. Narrow versus Wide Contracts (review)

Appropriately Narrow Contracts

index / R
E.g., length () is5.

Now a client f .
would have 3t °
to check for this i :
special case. ’ 01 2 3 4 5 numElements

vold replace (int 1ndex,
const TYPE& value,
1nt numElements)

assert (0 <= index) ;
assert (0 <= numkElements) ;
assert (1ndex + numkElements <= length());
// ..
} 193

3. Narrow versus Wide Contracts (review)

Appropriately Narrow Contracts

index T«//-?
. S®<« E.g., length () is5.
Assuming no extra

code is needed to
handle it ...

01 2 3 4 5 numElements

vold replace (int 1ndex,
const TYPE& value,
1nt numElements)

assert (0 <= index) ;
assert (0 <= numElements);
assert (1ndex + numkElements <= length());

/] ..

194

3. Narrow versus Wide Contracts (review)

Appropriately Narrow Contracts

Assuming no extra
code is needed to
handle it ...

index !
4’/;g.,length()isS.

... it is naturally
more efficient to
allow it.

01 2 3 4 5 numElements

vold replace (int 1ndex,
const TYPE& value,
1nt numElements)

assert (0 <= index) ;
assert (0 <= numElements) ;
assert (1ndex + numkElements <= length());

/] ..

195

3. Narrow versus Wide Contracts (review)

End of Section

Questions?

3. Narrow versus Wide Contracts (review)
What Questions are we Answering?

What do we mean by a narrow versus a wide contract?
— Should std: :strlen(0) be required to do something reasonable?
— Should pate: :setbate (int, int, int) return a status?

What should happen when the behavior is undefined?
— Should what happens be part of the component-level contract?

What about the behavior for these specific interfaces:

— Should operator[] (int index) check to see if indexis less than
zero or greater than 1ength () ?

* And what should happen if index is out of range?

— Should insert (int index, const TYPE& value) be defined
when index is greater than 1ength () or less than zero?

— Should replace (int index, const TYPE& value, int numElements)
be defined when index iS 1ength () and numElements iS zero?

What do we mean by Defensive Programming (DP)?

197

Outline

Components (review)

Modularity, Logical/Physical Dependencies, & Level numbers

Interfaces and Contracts (review)

Syntax versus Semantics & Essential Behavior

Narrow versus Wide Contracts (review)

The Significance of Undefined Behavior

Proper Inheritance

Is-A for Interface, Structural, & Implementation Inheritance

198

Outline

4. Proper Inheritance

Is-A for Interface, Structural, & Implementation Inheritance

199

4. Proper Inheritance

Three Kinds of Inheritance

200

4. Proper Inheritance

Three Kinds of Inheritance

There are three kinds of inheritance because
there are three kinds of member functions:

201

4. Proper Inheritance

Three Kinds of Inheritance

There are three kinds of inheritance because
there are three kinds of member functions:

Public,
Protected,
Private?

4. Proper Inheritance

Three Kinds of Inheritance

There are three kinds of inheritance because
there are three kinds of member functions:

203

4. Proper Inheritance

Three Kinds of Inheritance

There are three kinds of inheritance because
there are three kinds of member functions:

204

4. Proper Inheritance

Three Kinds of Inheritance

There are three kinds of inheritance because
there are three kinds of member functions:

* Interface Inheritance:
— Pure Virtual Functions

205

4. Proper Inheritance

Three Kinds of Inheritance

There are three kinds of inheritance because
there are three kinds of member functions:

* Interface Inheritance:
— Pure Virtual Functions
e Structural Inheritance:
— Non-Virtual Functions

206

4. Proper Inheritance

Three Kinds of Inheritance

There are three kinds of inheritance because
there are three kinds of member functions:

* Interface Inheritance:
— Pure Virtual Functions
e Structural Inheritance:
— Non-Virtual Functions

* Implementation Inheritance:
—Non-Pure Virtual Functions

207

TcpChannel

Channel

4. Proper Inheritance

Interface Inheritance

class TcpChannel : public Channel {
[* .0
public:
Il ... (creators)
virtual int read(char *buffer, int numBytes) {...}

virtual int write(const char *buffer, int numBytes) {...}

J

class Channel {
public:
virtual ~Channel() { }
virtual int read(char *buffer, int numBytes) = 0O;

virtual int write(const char *buffer, int numBytes) = 0;

208

4. Proper Inheritance

Structural Inheritance

class Pixel : public Point {
public:
enum Color { RED, GREEN, BLUE };
private:
Color d_color;
public:
Il ... (creators)
void setColor(Color color) { /* ... */ }
) Color color () const {/* ... */ }

class Point {
intd_x;
intd_y;
public:
/Il ... (creators)
void setX(int x) { /* ... */ }
void setY(inty) {/* ... */}
int x() const{/* ... */}
inty() const{/* ... */}
} 209

4. Proper Inheritance

Implementation Inheritance

class CompositeWidget : public Widget {

/...
public:
Il ... (creators)

CompositeWidget virtual const char *widgetCategory() const { return "COMP"; }
virtual int numChildren() const { /* ... */ }
/...

I3
class Widget {
Point d_origin;
/...
public:

Il ... (creators)

virtual bool isNameable() const { return false; }

virtual const char *instanceName() const { return O; }

virtual bool hasLocation() const { return true; }

virtual Point origin() const { return d_origin; }

virtual const char *widgetCategory() const { return "LEAF"; }
virtual int numChildren const { return 0; }

...
. 210

4. Proper Inheritance

What Is Proper Inheritance?

Derived

2

Is-A Extends

Implements

Is-Substitutable-For

1

211

4. Proper Inheritance

What Is Proper Inheritance?

* The “IsA” Relationship?
—What does it mean?

212

4. Proper Inheritance

What Is Proper Inheritance?

 Weaker Preconditions?
e Stronger Postconditions?
e Same Invariants?

213

4. Proper Inheritance

What Is Proper Inheritance?

* Providing a Proper Superset of Behavior?

214

4. Proper Inheritance

What Is Proper Inheritance?

e Substitutability?
— Of what?
—What criteria?

215

4. Proper Inheritance

What Is Proper Inheritance?

Derived

Implements
Extends
Is-Substitutable-For

IS-A

1

216

4. Proper Inheritance

What Is Proper Inheritance?

2 The Is-A Relation:

Derived

The iImplementation

of a derived class
Implements .
Extends must satisfy
Is-Substitutable-For (Simultaneously) itS

IS-A

1 own contract, as
well as that of
“each” base class.

217

4. Proper Inheritance

What Is Proper Inheritance?

What about the following general property:

218

4. Proper Inheritance

What Is Proper Inheritance?

For inheritance to be proper, any
operation that can be invoked on a
derived-class object via a base-class
pointer ‘or reference) must behave
identically if we replace that base-
class pointer (or reference) with a
corresponding derived-class one.

4. Proper Inheritance

What Is Proper Inheritance?

For inheritance to be proper, any
operation that can be invoked on a
derived-class object via a base-class
pointer ‘or reference) must behave
identically if we replace that base-
class pointer (or reference) with a
corresponding derived-class one.

4. Proper Inheritance

What Is Proper Inheritance?

Derived

221

4. Proper Inheritance

What Is Proper Inheritance?

Derived

f(int, double, const char *)

222

4. Proper Inheritance

What Is Proper Inheritance?

Derived

f(int, double, const char *)

f(int, double, const char *)

223

4. Proper Inheritance

What Is Proper Inheritance?

Derived

f(int, double, const char *)

f(int, double, const char *)
224

4. Proper Inheritance

What Is Proper Inheritance?

Derived *dp = new Derived();

Derived

f(int, double, const char *)

f(int, double, const char *)
225

4. Proper Inheritance

What Is Proper Inheritance?

Derived *dp = new Derived();

0x002130:
Derived 0x002138:
0x002140:
f(int, double, const char *) 0x002148:
0x002150:
0x002158:
0x002160:
0x002168:
0x002170:

f(int, double, const char *)
226

4. Proper Inheritance

What Is Proper Inheritance?

Derived *dp = new Derived();

0x002130:
Derived 0x002138:
0x002140:
f(int, double, const char *) 0x002148:
0x002150:
0x002158:
0x002160:
0x002168:
0x002170:

f(int, double, const char *)

227

4. Proper Inheritance

What Is Proper Inheritance?

Derived *dp = new Derived();

Derived

f(int, double, const char *)

f(int, double, const char *)

0x002130:
0x002138:
0x002140:
0x002148:
0x002150:
0x002158:
0x002160:
0x002168:
0x002170:

Object

of type

Derived

228

4. Proper Inheritance

What Is Proper Inheritance?

Derived *dp = new Derived(); // dp = 0x002140

0x002130:
Derived 0x002138:
0x002140: .
f(int, double, const char *) 0x002148: O bJ eCt
0x002150: oftype
0x002158:

el Derived

0x002170:

f(int, double, const char *)

229

4. Proper Inheritance

What Is Proper Inheritance?

Derived *dp.= new Derived(); // dp = 0x002140

0x002130:
Derived 0x002138%
0x002140: .
f(int, double, const char *) 0x002148: O bJ eCt
0x002150: oftype
0x002158:

el Derived

0x002170:

f(int, double, const char *)

230

4. Proper Inheritance

What Is Proper Inheritance?

Derived *dp.= new Derived(); // dp = 0x002140

Base *bp =dp; /Il bp = 0x002140

0x002130:
Derived 0x002138%
0x002140: .
f(int, double, const char *) 0x002148: O bJ eCt
0x002150: oftype
0x002158:

el Derived

0x002170:

f(int, double, const char *)

231

4. Proper Inheritance

What Is Proper Inheritance?

Derived *dp.= new Derived(); // dp = 0x002140

Base *bp-=dp; /Il bp = 0x002140

0x0021:30:
Derived 0x002138%
0x002140: .
f(int, double, const char *) 0x002148: O bJ eCt
0x002150: oftype
0x002158:

el Derived

0x002170:

f(int, double, const char *)

232

4. Proper Inheritance

What Is Proper Inheritance?

Derived *dp.= new Derived(); // dp = 0x002140

Base *bp-=dp; /Il bp = 0x002140

0x0021:30:
Derived 0x002138%
0x002140: .
f(int, double, const char *) 0x002148: O bJ eCt
0x002150: oftype
0x002158:

el Derived

0x002170:

f(int, double, const char *)

233

4. Proper Inheritance

What Is Proper Inheritance?

Derived *dp.= new Derived(); // dp = 0x002140

Base *bp-=dp; /Il bp = 0x002140

bp->f(1, 2.0, “three”);

0x0021:30:
Derived 0x002138%
0x002140: .
f(int, double, const char *) 0x002148: O bJ eCt
0x002150: oftype
0x002158:

el Derived

0x002170:

f(int, double, const char *)

234

4. Proper Inheritance

What Is Proper Inheritance?

Derived *dp.= new Derived(); // dp = 0x002140

Base *bp-=dp; /Il bp = 0x002140

bp->f(1, 2.0, “three”);
dp->f(1, 2.0, “three”);

0x002130:
Derived 0x0021386%
0x002140:
f(int, double, const char *) 0x002148:
0x002150:
0x002158:
0x002160: - (j
0x002168: Derlve

0x002170:

Object

of type

f(int, double, const char *)

235

4. Proper Inheritance

What Is Proper Inheritance?

Derived *dp.= new Derived(); // dp = 0x002140

Base *bp-=dp; /Il bp = 0x002140

bp->f(1, 2.0, “three”); | ldentical
dp->f(1, 2.0, “three”); | Behavior

0x0021:30:
Derived 0x002138%
0x002140: .
f(int, double, const char *) 0x002148: O bJ eCt
0x002150: oftype
0x002158:

el Derived

0x002170:

f(int, double, const char *)

236

4. Proper Inheritance

What Is Proper Inheritance?

For inheritance to be proper, any
operation that can be invoked on a
derived-class object via a base-class
pointer ‘or reference) must behave
identically if we replace that base-
class pointer (or reference) with a
corresponding derived-class one.

4. Proper Inheritance

What Is Proper Inheritance?

Note that this is how virtual functions behave!

238

4. Proper Inheritance

What Is Proper Inheritance?

Derived::f (int x); // Defined for all x.
Derived::g(int x); // Defined for all x.
Derived::h () ; // Note: not accessible from Base class.

_ i Derived Interface
Derived . and Contract

Base Interface

Base::f(int x); // Defined for all x. and Contract

Base::g(int x); // Defined only for 0 <= x.
239

4. Proper Inheritance

What Is Proper Inheritance?

Derived: :f(int x); // Defined for all x.
Derived::g(int x); // Defined for all x.
Derived::h () ; // Note: not accessible from Base class.

_ i Derived Interface
Derived . and Contract

Base Interface

Base::f(int x); // Defined for all x. and Contract

Base::g(int x); // Defined only for 0 <= x.
240

4. Proper Inheritance

What Is Proper Inheritance?

Derived::f (int x); // Defined for all x.
Derived::g(int x); // Defined for all x.
Derived::h () ; // Note: not accessible from Base class.

_ i Derived Interface
Derived . and Contract

Base Interface

Base::f(int x); // Defined for all x. and Contract

Base::g(int x); // Defined only for 0 <= x.
241

4. Proper Inheritance

What Is Proper Inheritance?

Derived::f (int x); // Defined for all x.
Derived::g(int x); // Defined for all x.
Derived: :h() ; // Note: not accessible from Base class.

_ i Derived Interface
Derived . and Contract

Base Interface

Base::f(int x); // Defined for all x. and Contract

Base::g(int x); // Defined only for 0 <= x.
242

4. Proper Inheritance

Pure Interface Inheritance

Implementation

Derived

@/ Interface

For each function D::f in the derived class overriding
a virtual one B::f in the base class, the (documented)
preconditions of D::f must be no stronger than
those for B::f, and the postconditions no weaker.

4. Proper Inheritance

Pure Interface Inheritance

Implementation

Derived

Implements
the Interface

@/ Interface

For each function D::f in the derived class overriding
a virtual one B::f in the base class, the (documented)
preconditions of D::f must be no stronger than

those for B::1, and the postconditions no weaker.

-

4. Proper Inheritance

Pure Interface Inheritance

Implementation

Derived

Implements
the Interface

@/ Interface

For each function D::f in the derived class overriding
a virtual one B::f in the base class, the (documented)
preconditions of D::f must be no stronger than
those for B::1, and the postconditions no weaker.

4. Proper Inheritance

Pure Interface Inheritance

Implementation

Derived

Implements
the Interface

@/ Interface

For each function D::f in the derived class overriding
a virtual one B::f in the base class, the (documented)
preconditions of D::f are typically the same as
those for B::f, and the postconditions no weaker.

B:

:f

4. Proper Inheritance

Pure Interface Inheritance

247

B:

:f

4. Proper Inheritance

Pure Interface Inheritance

virtual int write(const char *buffer, int numBytes) = 0;
/[Write the specified 'numBytes' from the specified

w /I 'buffer'. Return 0 on success, and a non-zero value
/| otherwise. The behavior is undefined unless

//''0 <= numBytes <= 32767".

248

4. Proper Inheritance

Pure Interface Inheritance

TcpChannel

virtual int write(const char *buffer, int numBytes) = 0;

/[Write the specified 'numBytes' from the specified

/l 'buffer’. Return O on success, and a non-zero value
Channel I/ otherwise. The behavior is undefined unless
//''0 <= numBytes <= 32767".

249

4. Proper Inheritance

Pure Interface Inheritance

TcpChannel

Channel

virtual int write(const char *buffer, int numBytes);
I/ ' Write to this TCP/IP channel the specified
I/ 'numBytes' from the specified 'buffer’. Return 0 on
I/ success, and a non-zero value otherwise.

virtual int write(const char *buffer, int numBytes) = 0;
/[Write the specified 'numBytes' from the specified
/l 'buffer’. Return O on success, and a non-zero value
/I otherwise. The behavior is undefined unless
//''0 <= numBytes <= 32767".

250

4. Proper Inheritance

Pure Interface Inheritance

TcpChannel

Channel

virtual int write(const char *buffer, int numBytes);
/[Write to this TCP/IP channel the specified
// 'numBytes' from the specified 'buffer’. Return 0 on
// success, 1 if '0 '= numBytes % 4', and a
// value otherwise.

virtual int write(const char *buffer, int numBytes) = 0;
/[Write the specified 'numBytes' from the specified
/l 'buffer’. Return O on success, and a non-zero value
/I otherwise. The behavior is undefined unless
//''0 <= numBytes <= 32767".

251

4. Proper Inheritance

Pure Interface Inheritance

TcpChannel

Channel

virtual int write(const char *buffer, int numBytes);
I/ ' Write to this TCP/IP channel the specified
// 'numBytes' from the specified 'buffer’. Return 0 on
I/ success, and a non-zero value otherwise.

virtual int write(const char *buffer, int numBytes) = 0;
/[Write the specified 'numBytes' from the specified
/l 'buffer’. Return O on success, and a non-zero value
/I otherwise. The behavior is undefined unless
//''0 <= numBytes <= 32767".

252

4. Proper Inheritance

What Is a Proper Subtype/Subclass?

253

4. Proper Inheritance

What Is a Proper Subtype/Subclass?

“A type hierarchy is composed of subtypes and supertypes. The intuitive
iIdea of a subtype is one whose objects provide all the behavior of objects

of another type (the supertype) plus something extra.” — Barbara Liskov

(OOPSLA '87)

254

4. Proper Inheritance

What Is a Proper Subtype/Subclass?

“A type hierarchy is composed of subtypes and supertypes. The intuitive
iIdea of a subtype is one whose objects provide all the behavior of objects

of another type (the supertype) plus something extra.” — Barbara Liskov

(OOPSLA '87)

Can Create it.

TcpChannel

Channel

Interface

Inheritance e

4. Proper Inheritance

What Is a Proper Subtype/Subclass?

“A type hierarchy is composed of subtypes and supertypes. The intuitive
idea of a subtype is one whose objects provide all the behavior of objects

of another type (the supertype) plus something extra.” — Barbara Liskov

(OOPSLA '87)

can Create it Can dO something
More with it.

TcpChannel

Channel

Interface Structural

Inheritance Inheritance -

4. Proper Inheritance

What Is a Proper Subtype/Subclass?

“A type hierarchy is composed of subtypes and supertypes. The intuitive
idea of a subtype is one whose objects provide all the behavior of objects

of another type (the supertype) plus something extra.” — Barbara Liskov

(OOPSLA '87)

can Createit Can do something Can Create something
more with it. else with it.

CompositeWidget
TcpChannel

Channel

Interface Structural Implementation

Inheritance Inheritance Inheritance .

4. Proper Inheritance

What Is Liskov Substitution?

258

4. Proper Inheritance

What Is Liskov Substitution?

What exactly is the Liskov Substitution Principle (LSP)?

259

4. Proper Inheritance

What Is Liskov Substitution?

What exactly is the Liskov Substitution Principle (LSP)?
 What motivated LSP in the first place?

260

4. Proper Inheritance

What Is Liskov Substitution?

What exactly is the Liskov Substitution Principle (LSP)?
 What motivated LSP in the first place?
 (How?) Does LSP relate to inheritance in C++7?

261

4. Proper Inheritance

What Is Liskov Substitution?

What exactly is the Liskov Substitution Principle (LSP)?
 What motivated LSP in the first place?
 (How?) Does LSP relate to inheritance in C++7?

* After Liskov substitution is applied, can
(observable) behavior be (subtly) different?

4. Proper Inheritance

What Is Liskov Substitution?

What exactly is the Liskov Substitution Principle (LSP)?
 What motivated LSP in the first place?
 (How?) Does LSP relate to inheritance in C++7?

» After Liskov substitution is app
(observable) behavior be (subt

ied, can
y) different?

* Does LSP apply to all three kinc

s of inheritance?

4. Proper Inheritance

What Is Liskov Substitution?

What exactly is the Liskov Substitution Principle (LSP)?
 What motivated LSP in the first place?
 (How?) Does LSP relate to inheritance in C++7?

* After Liskov substitution is applied, can
(observable) behavior be (subtly) different?

* Does LSP apply to all three kinds of inheritance?
* Does LSP have any other practical applications?

4. Proper Inheritance

What Is Liskov Substitution?

What exactly is the Liskov Substitution Principle (LSP)?
 What motivated LSP in the first place?
 (How?) Does LSP relate to inheritance in C++7?

* After Liskov substitution is applied, can
(observable) behavior be (subtly) different?

* Does LSP apply to all three kinds of inheritance?
* Does LSP have any other practical applications?

e Let’s have a look...

4. Proper Inheritance

What Is Liskov Substitution?

“If for each object o0, of type S there is an object o, of type T such that for
all programs P defined in terms of T, the behavior of P is unchanged when
0, IS substituted for 0,, then S is a subtype of T.” — Barbara Liskov (oops.a s7)

266

4. Proper Inheritance

What Is Liskov Substitution?

“If for each object o0, of type S there is an object o, of type T such that for
all programs P defined in terms of T, the behavior of P is unchanged when
0, IS substituted for 0,, then S is a subtype of T.” — Barbara Liskov (oops.a s7)

Type. Bool Subtype Fool ..

4. Proper Inheritance

What Is Liskov Substitution?

“If for each object o3 of type S there is an object o, of type T such that for
all programs P defined in terms of T, the behavior of P is unchanged when
03 is substituted for o0,, then S is a subtype of T.” — Barbara Liskov (oopsLa s7)

Type. Bool Subtype Fool ..

4. Proper Inheritance

What Is Liskov Substitution?

“If for each object 9] of type[S there is an object o0, of type T such that for
all programs P defined in terms of T, the behavior of P is unchanged when
0] is substituted for 0,, thenlS is a subtype of T.” — Barbara Liskov (oops.a s7)

Type. Bool Subtype Fool ..

4. Proper Inheritance

What Is Liskov Substitution?

“If for each object 9] of type[S there is an object 0, of type T such that for
all programs P defined in terms of T, the behavior of P is unchanged when
0] is substituted for 0,, thenlS is a subtype of T.” — Barbara Liskov (oops.a s7)

main ()
{
Bool b0 (false) ;

Bool bl (true) ;

// ..
p(b0, bl, .);

}
Type. Bool Subtype Fool .

4. Proper Inheritance

What Is Liskov Substitution?

“If for each object 9] of type[S there is an object 0, of type T such that for
all programs P defined in terms of T, the behavior of P is unchanged when
0] is substituted for 0,, thenlS is a subtype of T.” — Barbara Liskov (oopsa s7)

class Bool {

bool 4d v;
public:

operator bool() const {return d_v;) _
};

Bool (int x) d v(x) { }

main ()
{

Bool b0 (false) ;
Bool bl (true) ;
// ..

p(b0, bl, .);

}
Type. Bool Subtype Fool ..

4. Proper Inheritance

What Is Liskov Substitution?

“If for each object o3 of type!S there is an object 0, of type T such that for
all programs P defined in terms of T, the behavior of P is unchanged when
01 Is substituted for 0,, thenS is a subtype of T.” — Barbara Liskov (oopsLa s7)

class Bool {

ugi?l d v; class Fool

P ic: s .

Bool (int x) : d v(x) { } public:
operator bool() const {return d v;} };

};

Fool (int x)

: public Bool {

: Bool('x) { }

void p(const Bool& x, const Bool& y, ..) { /* .. */ }

main ()

{

main ()

{

Bool b0 (false) ;
Bool bl (true) ;

// ..
p(b0, bl, .);

}
Type. Bool

Fool £0 (false);
Fool f1 (true);

// ..
p(f1, £0, ..);

}
Subtype Fool .-

4. Proper Inheritance

What Is Liskov Substitution?

“If for each object 9] of type[S there is an object 0, of type T such that for
all programs P defined in terms of T, the behavior of P is unchanged when
0] is substituted for 0,, thenlS is a subtype of T.” — Barbara Liskov (oopsa s7)

class Bool {

bool 4d v;
public:

operator bool () const {return d v} _

Bool(int x) : d v(x) { }

};

void p(const Bool& x, const Bool& y, ..) { /* .. */ }

main ()

{ Note order
Bool b0 (false) ; [
qul bl (true) ;

b [...

| o, b1,);
—};

Type Bool Subtype Fool -

4. Proper Inheritance

What Is Liskov Substitution?

“If for each object o3 of type!S there is an object 0, of type T such that for
all programs P defined in terms of T, the behavior of P is unchanged when
01 Is substituted for 0,, thenS is a subtype of T.” — Barbara Liskov (oopsLa s7)

(by this deflnltlon)
Fool IS a

‘subtype” of Bool
and vice versa!

4. Proper Inheritance

What Is Liskov Substitution?

“If for each object 9] of type[S there is an object 0, of type T such that for
all programs P defined in terms of T, the behavior of P is unchanged when
0] is substituted for 0,, thenlS is a subtype of T.” — Barbara Liskov (oopsa s7)

class Bool {

bool 4d v;
public:

operator bool () const {return d v} _

Bool(int x) : d v(x) { }

};

void p(const Bool& x, const Bool& y, ..) { /* .. */ }

main ()

{ Note order
Bool b0 (false) ; [
qul bl (true) ;

b [...

| o, b1,);
—};

Type Bool Subtype Fool -

4. Proper Inheritance

What Is Liskov Substitution?

“If for each object o0, of type S there is an object o, of type T such that for
all programs P defined in terms of T, the behavior of P is unchanged when
0, IS substituted for 0,, then S is a subtype of T.” — Barbara Liskov (oops.a s7)

276

4. Proper Inheritance

What Is Liskov Substitution?

“If for each object o, of type S there is an object o, of type T such that
the behavior of P is unchanged when
0, Is substituted for 0,, then S is a subtype of T.” — Barbara Liskov (oorsLa s7)

277

4. Proper Inheritance

What Is Liskov Substitution?

“If for each object o, of type S there is an object o, of type T such that
the behavior of P is unchanged when

0, Is substituted for 0,, then S is a subtype of T.” — Barbara Liskov (oorsLa s7)

If, for each “derived-class” object 0, of type S, there exists a “base-class”
object 0, of type T such that,

the behavior of P is unchanged when the “derived-class” object 0, is
substituted for the “base-class” object 0,, then S is a subtype of T.

278

4. Proper Inheritance

What Is Liskov Substitution?

)

If, for each “derived-class” object 0, of type S, there exists a “base-class

object 0, of type T such that,
the behavior of P is unchanged when the “derived-class” object 0, is

substituted for the “base-class” object 0,, then S is a subtype of T.

7

If, for each “derived-class” object d of type D, there exists a “base-class”

object b of type B such that,
the behavior of P is unchanged when the “derived-class” object d is

substituted for the “base-class” object b, then D is a subtype of B.

279

4. Proper Inheritance

What Is Liskov Substitution?

If, for each “derived-class” object d of type D, there exists a “base-class”

object b of type B such that,
the behavior of P is unchanged when the “derived-class” object d is

substituted for the “base-class” object b, then D is a subtype of B.

If, for each object d of type D, there exists an object b of type B such that,
the behavior of P is unchanged

when d is substituted for b, then D is a subtype of B.

280

4. Proper Inheritance

What Is Liskov Substitution?

“If for each object o, of type S there is an object o, of type T such that
the behavior of P is unchanged when
0, Is substituted for 0,, then S is a subtype of T.” — Barbara Liskov (oorsLa s7)

If, for each object d of type D, there exists an object b of type B such that,
the behavior of P is unchanged
when d is substituted for b, then D is a subtype of B.

281

4. Proper Inheritance

What Is Liskov Substitution?

If, for each objectid of type D, there exists an object b of type B such that,
for all programs P defined in terms of B, the behavior of P is unchanged

whenid is substituted for b, thenD is a subtype of B.

class Bool {
class Fool : public Bool {

bool d v;
public: e

Bool(int x) : d v(x) { } P - :

operator bool() const {return d v;} }; Fool (int x) : Bool('x) { }

}i
void p(const Bool& x, const Bool& y, ..) { /* .. */ }

main () main ()

{ {
Bool b0 (false) ; Fool £0 (false);
Bool bl (true) ; Fool f1 (true);
// .. // ..
p(b0, bl, .); p(£1, £0, .));

I }
Type. Bool Subtype Fool ..

4. Proper Inheritance

What Is Liskov Substitution?

If, for each objectid of type D, there exists an object b of type B such that,
for all programs P defined in terms of B, the behavior of P is unchanged

whenid is substituted for b, thenD is a subtype of B.

class Bool {
bool d v;
public:
Bool (int x) :

public Bool {

x) : Bool('x) { }

operator bool

Necessary,

};

. */ '}

void p(const

main ()

{

Bool b
Bool b

// ..
p(b0, L

}
Type Subtype Fool -

4. Proper Inheritance

What Is Liskov Substitution?

If, for each objectid of type D, there exists an object b of type B such that,
for all programs P defined in terms of B, the behavior of P is unchanged
whenid is substituted for b, thenD is a subtype of B.

(by this definition)
Every empty type

IS a "subtype”
of all types!

4. Proper Inheritance

What Is Proper Inheritance?

Recall the following general property:

For inheritance to be proper, any
operation that can be invoked on a
derived-class object via a base-class
pointer ‘or reference) must behave
identically if we replace that base-
class pointer (or reference) with a
corresponding derived-class one.

285

4. Proper Inheritance

What Is Proper Inheritance?

void example(Derived *pDerived)

{

Base * = pDerived,;

#ifdef

pDerived->someMethod(/* ... */);

Derived

int result = someFunction(*pDerive);

Helse

->someMethod(/* ... */);

int result = someFunction(*);

#endif

286

4. Proper Inheritance

Pure Structural Inheritance

#Hifdef

typedef Point Type;
#else

typedef Pixel Type;
#endif

void anyProgram(Type *p);

void main()

{
Pixel pixel(1, 2, Pixel::BLUE);
anyProgram(&pixel);

}

using std:.cout; // (We do this only
using std::endl; // in test drivers.)

287

4. Proper Inheritance

Pure Structural Inheritance

void anyProgram(Type *p)
{

}

cout << p->x() << endl;

int Point::x() const

{

return d_x;

}

288

4. Proper Inheritance

Pure Structural Inheritance

void anyProgram(Type *p)
{

}

p->setY(10);

void Point::setY(int y)
{

d_y=y;
}

289

4. Proper Inheritance

Pure Structural Inheritance

class Pixel : public Point {
/... void anyProgram(Type *p)
Color d_color; {
/... cout << p->color() << endl;
3 }

Pixel::Color Pixel::color() const

return d_color;

}

290

4. Proper Inheritance

Pure Structural Inheritance

void anyProgram(Type *p)
{

}

p->setY(10);

void Pixel::setY(int y)

cout << "Pixel::setY(int y)" << endl;
d_y=y;
}

void Point::setY(int y)
{

d_y=y;
}

291

4. Proper Inheritance

Pure Structural Inheritance

void anyProgram(Type *p)
{

}

p->setY(10);

ixel::setY(int y)

Y(inty)" << endl;

void Point::setY(int y)
{
d

292

4. Proper Inheritance

Pure Structural Inheritance

class Pixel : public Point {

/... void anyProgram(Type *p)
static int s_numSetY:; {

public: p->setY(10);
I ... }

;

void Pixel::setY(int y)

++s_numsSetY; // Pixel class data
d_y=y;
}

void Point::setY(int y)
{

d_y=y;
}

293

4. Proper Inheritance

Pure Structural Inheritance

class Pixel : public Point {
/... void anyProgram(Type *p)
static int s_numSetY; {
public: p->setY(10);
/... cout << p->numSetY() << endl;
3 }

void Pixel::setY(int y)

++s_numsSetY; // Pixel class data
d_y=y;
}

void Point::setY(int y)
{

d_y=y;
}

294

4. Proper Inheritance

Pure Structural Inheritance

void anyProgram(Type *p)
{

}

p->setY(10);

void Pixel::setY(int y)
I/l Set the y-coordinate of this object to the absolute value of the
I/ specified 'y'. The behavior is undefined unless 'INT_MIN <"

{
}

void Point::setY(int y)
/] Set the y-coordinate of this object to the specified 'y'.
// The behavior is undefined unless '0 <=y".

dy=y<07?-y:y,

295

4. Proper Inheritance

Pure Structural Inheritance

class Pixel : public Point {

/... void anyProgram(Type *p)
Color d_color; {

... if (> sizeof(Point))
}; cout << "It's not a Point!" << end|;

}

const Pixel& Pixel::self() const

return *this:

}

const Point& Point::self() const

{

return *this;

}

296

4. Proper Inheritance

Pure Structural Inheritance

class Pixel : public Point {

/... void anyProgram(Type *p)
Color d_color; {
/... if (Gizeof(Poinf)p ?

cout << "It's not a Point!" << endl:

;

}

const Pixel& Pixel::self() const

return *this:

}

const Point& Point::self() const

{

return *this;

}

297

4. Proper Inheritance

Pure Structural Inheritance

class Pixel : public Point {

/... void anyProgram(Type *p)
Color d_color; {

/... if (> 8) /I sizeof(Point)
}; cout << "It's not a Point!" << end|;

}

const Pixel& Pixel::self() const

return *this:

}

const Point& Point::self() const

{

return *this;

}

298

4. Proper Inheritance

Pure Structural Inheritance

class Pixel : public Point {

/... void anyProgram(Type *p)
Color d_color; {

/... if (> 8) /I sizeof(Point)
3 cout << "It's not a@" << end!:

}

const Pixel& Pixel::self() const

return *this:

}

const Point& Point::self() const

{

return *this;

}

299

4. Proper Inheritance

Pure Structural Inheritance

class Pixel : public Point {

/... void anyProgram(Type *p)
Color d_color; {

/... if (> 8) /I sizeof(Point)
}; cout << "It's not a point!" << endl;

}

const Pixel& Pixel::self() const

return *this:

}

const Point& Point::self() const

{

return *this;

}

300

4. Proper Inheritance

Pure Structural Inheritance

class Pixel : public Point {

/... void anyProgram(Type *p)
Color d_color; {

... if (> sizeof(Point))
}; cout << "It's not a Point!" << end|;

}

const Pixel& Pixel::self() const

return *this:

}

const Point& Point::self() const

{

return *this;

}

301

4. Proper Inheritance

Pure Structural Inheritance

class Pixel : public Point {

/... void anyProgram(Type *p)
Color d_color; {

/... if (sizeof p->self() > sizeof(Point))
}; cout << "It's not a Point!" << endl;

}

Pixel& Pixel::self() con

return *this

const Point& Point::self() const

{

return *this;

}

302

4. Proper Inheritance

Pure Structural Inheritance

class Pixel : public Point {

/... void anyProgram(Type *p)
Color d_color; {

... if (> sizeof(Point))
}; cout << "It's not a Point!" << endl;

303

4. Proper Inheritance

Pure Structural Inheritance

class Pixel : public Point

void anyProgram(Type *p)
{

if (sizeof *p > sizeof(Point))
cout << "It's not a Point!" << endl;

304

4. Proper Inheritance

Pure Structural Inheritance

class Pixel : public Point

void anyProgram(Type *p)
{

if (sizeof *p > sizeof(Point))
cout << "lt's not a Point!" << endl;

305

4. Proper Inheritance

Pure Structural Inheritance

class Pixel : public Point
void anyProgram(Type *p)

{

if (sizeof *p > sizeof(Point))
cout << "It's not a Point!" << endl;

}

Proper Structural
Inheritance extends

functionality, but
does not extend the
object’s footprint.

306

4. Proper Inheritance

Pure Structural Inheritance

class Pixel : public Point

void anyProgram(Type *p)
{
double alignmentHack; // Don'’t do it!
char buffer[sizeof(Point)];
(Type *)&buffer = *p;

}

buffer

The same
“size” issue
applies to

arrays of

buffer

objects!

4. Proper Inheritance

Implementation Inheritance

Implementation hierarchies
CompositeWidget are higth pmbvemaﬁcl!

Incorporating implementation with interface

Inheritance:

— Makes software brittle, inflexible, and hard to
maintain.

— Exposes public clients to physical (compile-
and link-time) dependencies on the shared
Implementation.

— Adds nothing that cannot be done with pure
Interface inheritance and layering.

Its only value Is as a syntactic expedient!

4. Proper Inheritance

Using Interface Inheritance Effectively

Rectangle

MyRectangle

309

4. Proper Inheritance

Using Interface Inheritance Effectively

@« oo
origin; numVertices; m origin: width
operator[](int index) o'ygon gin;

origin; width; length

Rectangle

MyRectangle

310

4. Proper Inheritance

Using Interface Inheritance Effectively

A Rectangle
Is-A Square
with a length
attribute?

origin; width

origin; width; length

MyRectangle

311

4. Proper Inheritance

Using Interface Inheritance Effectively

A Rectangle
Is-A Square
with a length
attribute?

origin; width

Wn; width; length

Rectangle
MyRectangle does not respect
Square
Invariant

4. Proper Inheritance

Using Interface Inheritance Effectively

origin; numVertices;

operator[](int index) origin; width

Polygon

origin; width; length

MyRectangle

313

4. Proper Inheritance

Using Interface Inheritance Effectively

@« oo
origin; numVertices; m origin: width
operator[](int index) o'ygon gin;

origin; width; length

Rectangle

MyRectangle

314

4. Proper Inheritance

Using Interface Inheritance Effectively

origin

m origin; width

Rectangle origin; width; length

origin; numVertices;
operator[](int index)

MyRectangle

315

4. Proper Inheritance

Using Interface Inheritance Effectively

origin

origin; numVertices; m i
operator[](int index) origin,

Rectangle origin; width; length

MyRectangle

316

4. Proper Inheritance

Using Interface Inheritance Effectively

origin

origin; numVertices;

operator[](int index) origin; width

Rectangle origin; width; length

MyRectangle

317

4. Proper Inheritance

Using Interface Inheritance Effectively

Rectangle

318

4. Proper Inheritance

Using Interface Inheritance Effectively

Rectangle VOId StretCh Byl(ReCtangle *r)

{

319

4. Proper Inheritance

Using Interface Inheritance Effectively

eyi(Rectangle
Rectangle VOId StretCh Byl(ReCtangle *r)

{

320

4. Proper Inheritance

Using Interface Inheritance Effectively

Byi(Rectangle
Rectangle VOId StretCh Byl(ReCtangle *r)

{
int wid = r->width();

321

4. Proper Inheritance

Using Interface Inheritance Effectively

Byi(Rectangle
Rectangle VOId StretCh Byl(ReCtangle *r)

{
Int wid = r->width();
int len = r->length();

322

4. Proper Inheritance

Using Interface Inheritance Effectively

Byi(Rectangle
Rectangle VOId StretCh Byl(ReCtangle *r)

{
Int wid = r->width();
int len = r->length();
r->setLength(len + 1);

323

4. Proper Inheritance

Using Interface Inheritance Effectively

eyi(Rectangle
Rectangle VOId StretCh Byl(ReCtangle *r)

{
int wid = r->width();
int len = r->length();
r->setLength(len + 1);
assert(wid == r->width());

324

4. Proper Inheritance

Using Interface Inheritance Effectively

eyi(Rectangle
Rectangle VOId StretCh Byl(ReCtangle *r)

{
int wid = r->width();

int len = r->length();
r->setLength(len + 1);
assert(wid == r->width());
assert(len + 1 == r->length());

325

4. Proper Inheritance

Using Interface Inheritance Effectively

eyi(Rectangle
Rectangle VOId StretCh Byl(ReCtangle *r)

{
int wid = r->width();
int len = r->length();
r->setLength(len + 1);
Either Assert assert(wid —— r'>W|dth());
o et { assert(len + 1 == r->length());

Square

}

326

4. Proper Inheritance

Using Interface Inheritance Effectively

oy1(Rectange
Rectangle VOId StretCh Byl(ReCtangle *r)

{
int wid = r->width();
int len = r->length();
r->setLength(len + 1);
Either Assert assert(wid —— r'>W|dth());
o et { assert(len + 1 == r->length());

Square

}

327

4. Proper Inheritance

Using Interface Inheritance Effectively

origin

origin; numVertices;

operator[](int index) origin; width

Rectangle origin; width; length

MyRectangle

328

4. Proper Inheritance

Using Interface Inheritance Effectively

origin

origin; numVertices; m i
operator[](int index) origin,

Rectangle origin; width; length

MyRectangle

329

4. Proper Inheritance

Using Interface Inheritance Effectively

origin

origin; numVertices; m i
operator[](int index) origin,

Rectangle origin; width; length

MyRectangle

330

4. Proper Inheritance

Using Interface Inheritance Effectively

origin

m origin; width

Rectangle origin; width; length

origin; numVertices;
operator[](int index)

MyRectangle

331

4. Proper Inheritance

Using Interface Inheritance Effectively

origin

origin; numVertices;

operator[](int index) origin; width

Rectangle origin; width; length

MyRectangle

332

4. Proper Inheritance

Using Interface Inheritance Effectively

origin

origin; numVertices;

operator[](int index) origin; width

Rectangle origin; width; length

MyRectangle

333

4. Proper Inheritance

Using Interface Inheritance Effectively

TheirPolygon() YourSquare() MyRectangle()

(Concrete) (Concrete)
TheirPolygon YourSquare

(Concrete)

MyRectangle

void setSide(int side) (Modifiable)
Square

ConstSquare

void setWidth(int width) int side() const

void setLength(int length) (Modifiable)
Rectangle

ConstRectangle
void appendVertex(const Point& v)

void removeVertex(int i) (Modifiable)

int width() const
int length() const

Polygon

ConstPolygon

void setOrigin(const Point& v); Point vertex(int i) const

(Modifiable) int numVertices() const
Shape

origin() const; 334

ConstShape

4. Proper Inheritance

Using Interface Inheritance Effectively

TheirPolygon() YourSquare() MyRectangle()
(Concrete) (Concrete)
TheirPolygon YourSquare
void setSide(int side) (Modifiable)
Square
ConstSquare

void setWidth(int width) int side() const

void setLength(int length) (Modifiable)
Rectangle

void appendVertex(const Point& v) int width() const

void removeVertex(int i) (Modifiable) int length() const
Polygon

(Concrete)

MyRectangle

ConstRectangle

ConstPolygon

void setOrigin(const Point& v); Point vertex(int i) const

(Modifiable) int numVertices() const
Shape

ConstShape

origin() const; 335

4. Proper Inheritance

Using Interface Inheritance Effectively

TheirPolygon() YourSquare() MyRectangle()
(Concrete) (Concrete)
TheirPolygon YourSquare

void setSide(int side)
Square
void setWidth(int width) int side() const

void setLength(int length) (Modifiable)
Rectangle
ConstRectangle

void appendVertex(const Point& v) int width() const
void removeVertex(int i) (Modifiable) int length() const

(Concrete)
MyRectangle

Polygon
ConstPolygon

void setOrigin(const Point& v); Point vertex(int i) const

(Modifiable) int numVertices() const
Shape

ConstShape

origin() const; 336

4. Proper Inheritance

Using Interface Inheritance Effectively

TheirPolygon() YourSquare() MyRectangle()

(Concrete)

(Concrete) (Concrete)
MyRectangle

TheirPolygon YourSquare

void setSide(int side) (Modifiable)
Square

void setWidth(int width)
void setLength(int length) (Modifiable)

Rectangle

ConstSquare
int side() const

ConstRectangle
void appendVertex(const Point& v)

: o int width() const
void removeVertex(int i) (Modifiable)

int length() const

Polygon
ConstPolygon

void setOrigin(const Point& v); Point vertex(int i) const

(Modifiable) int numVertices() const
Shape

ConstShape

origin() const; 337

4. Proper Inheritance

Using Interface Inheritance Effectively

TheirPolygon() YourSquare() MyRectangle()

(Concrete) (Concrete)
TheirPolygon YourSquare

(Concrete)

MyRectangle

void setSide(int side) (Modifiable)
Square

ConstSquare

void setWidth(int width)
void setLength(int length) (Modifiable)

Rectangle

int side() const

ConstRectangle
void appendVertex(const Point& v)

: o int width() const
void removeVertex(int i) (Modifiable)

int length() const

Polygon
ConstPolygon

void setOrigin(const Point& v); Point vertex(int i) const

(Modifiable) int numVertices() const
Shape

ConstShape

origin() const; 338

4. Proper Inheritance

Using Interface Inheritance Effectively

TheirPolygon() YourSquare() MyRectangle()

(Concrete) (Concrete)
TheirPolygon YourSquare

(Concrete)

MyRectangle

void setSide(int side) (Modifiable)
Square

ConstSquare

void setWidth(int width)
void setLength(int length) (Modifiable)

Rectangle

int side() const

ConstRectangle
void appendVertex(const Point& v)

: o int width() const
void removeVertex(int i) (Modifiable)

int length() const

Polygon
ConstPolygon

void setOrigin(const Point& v); Point vertex(int i) const

(Modifiable) int numVertices() const
Shape

ConstShape

origin() const; 339

4. Proper Inheritance

Using Interface Inheritance Effectively

TheirPolygon() YourSquare() MyRectangle()

(Concrete) (Concrete)
TheirPolygon YourSquare

(Concrete)

MyRectangle

void setSide(int side) (Modifiable)
Square

ConstSquare

void setWidth(int width)
void setLength(int length) (Modifiable)

Rectangle

int side() const

ConstRectangle
void appendVertex(const Point& v)

: o int width() const
void removeVertex(int i) (Modifiable)

int length() const
Polygon
ConstPolygon

void setOrigin(const Point& v); Point vertex(int i) const

(Modifiable) int numVertices() const
Shape

ConstShape

origin() const; 340

4. Proper Inheritance

Using Interface Inheritance Effectively

TheirPolygon() YourSquare() MyRectangle()

(Concrete) (Concrete)
TheirPolygon YourSquare

(Concrete)

MyRectangle

void setSide(int side) (Modifiable)
Square

ConstSquare

void setWidth(int width)
void setLength(int length) (Modifiable)

Rectangle

int side() const

ConstRectangle
void appendVertex(const Point& v)

: o int width() const
void removeVertex(int i) (Modifiable)

int length() const
Polygon
ConstPolygon

void setOrigin(const Point& v); Point vertex(int i) const

int numVertices() const

(Modifiable)

Shape

ConstShape
origin() const; 341

4. Proper Inheritance

Using Interface Inheritance Effectively

TheirPolygon() YourSquare() MyRectangle()

(Concrete) (Concrete)
TheirPolygon YourSquare

(Concrete)

MyRectangle

void setSide(int side) (Modifiable)
Square

ConstSquare

void setWidth(int width)
void setLength(int length) (Modifiable)

Rectangle

int side() const

ConstRectangle
void appendVertex(const Point& v)

: o int width() const
void removeVertex(int i) (Modifiable)

int length() const
Polygon
ConstPolygon

void setOrigin(const Point& v); Point vertex(int i) const

(Modifiable) int numVertices() const
Shape
ConstShape
origin() const; 342

4. Proper Inheritance

Using Interface Inheritance Effectively

TheirPolygon() YourSquare() MyRectangle()

(Concrete) (Concrete)
TheirPolygon YourSquare

(Concrete)

MyRectangle

void setSide(int side) (Modifiable)

Square
ConstSquare

void setWidth(int width)
void setLength(int length) (Modifiable)

Rectangle

int side() const

ConstRectangle
void appendVertex(cong#

i . int width() const
void removeVertex(iny (Modifiable)

int length() const
Polygon
ConstPolygon

void setOrigin(const Point& Point vertex(int 1) const

(Modifiable) int numVertices() const
Shape

ConstShape
origin() const; 343

4. Proper Inheritance

Using Interface Inheritance Effectively

TheirPolygon() YourSquare() MyRectangle()

(Concrete) (Concrete)
TheirPolygon YourSquare

(Concrete)

MyRectangle

void setSide(int side) (Modifiable)
Square
ConstSquare

void setWidth(int wid int side() const
void setLength(j» (Modifiable)

Rectangle

ConstRectangle

int width() const

void removeVertex(inj (Modifiable) int length() const

Polygon
ConstPolygon

void setOrigin(cons™NRQiInts Point vertex(int 1) const

(Modifiable) int numVertices() const
Shape

ConstShape
origin() const; 344

4. Proper Inheritance

Using Interface Inheritance Effectively

TheirPolygon() YourSquare() MyRectangle()

(Concrete) (Concrete)

YourSquare

(Concrete)
MyRectangle

TheirPolygon

void setSide(int side) (Modifiable)
Square
ConstSquare

void setWidth(int wid int side() const
void setLength(j» (Modifiable)

Rectangle

ConstRectangle

int width() const

void removeVertex(inj (Modifiable) int length() const

Polygon
ConstPolygon

void setOrigin(cons™NRQiInts Point vertex(int 1) const

(Modifiable) int numVertices() const
Shape

ConstShape
origin() const; 345

4. Proper Inheritance

Using Interface Inheritance Effectively

TheirPolygon() YourSquare() MyRectangle()

(Concrete) (Concrete)
YourSquare MyRectangle

(Concrete)

TheirPolygon

void setSide(int side) (Modifiable)
Square
ConstSquare

void setWidth(int wid int side() const
void setLength(j» (Modifiable)

Rectangle

ConstRectangle

int width() const

void removeVertex(inj (Modifiable) int length() const

Polygon
ConstPolygon

void setOrigin(cons™NRQiInts Point vertex(int 1) const

(Modifiable) int numVertices() const
Shape

ConstShape
origin() const; 346

4. Proper Inheritance

Using Interface Inheritance Effectively

TheirPolygon() YourSquare() MyRectangle()

(Concrete) (Concrete) (Concrete)
TheirPolygon YourSquare MyRectangle

void setSide(inflside) (Modifiable)
Square
ConstSquare
void setWidth(int W\ int side() const
void setLength(afla (Modifiable)
Rectangle

ConstRectangle
void apgendVertex(congXP

: _ int width() const
void removeVertex(iny

(Modifiable) int length() const
Polygon
ConstPolygon
void setOrigin(cons™NRQiInts Point vertex(int 1) const
(Modifiable) int numVertices() const
Shape
ConstShape
origin() const; 347

4. Proper Inheritance

Using Interface Inheritance Effectively

The principal clients of
Interface Inheritance
are both the

and the
DERIVED-CLASS AUTHOR.

4. Proper Inheritance

Using Interface Inheritance Effectively

int write(const char *b, int n);

int read(char *b, int n);
349

4. Proper Inheritance

Using Interface Inheritance Effectively

MyChannel

Channel

int write(const char *b, int n);

int read(char *b, int n);
350

4. Proper Inheritance

Using Interface Inheritance Effectively

MyChannel

Channel

int write(const char *b, int n);

int read(char *b, int n);
351

4. Proper Inheritance

Using Interface Inheritance Effectively

TimedChannel

int write(const char *b, int n, int t);
int read(char *b, int n, int t);

MyChannel

Channel

int write(const char *b, int n);

int read(char *b, int n);
352

4. Proper Inheritance

Using Interface Inheritance Effectively

>

TimedChannel

int write(const char *b, int n, int t);
int read(char *b, int n, int t);

MyChannel

Channel

int write(const char *b, int n);

int read(char *b, int n);
353

4. Proper Inheritance

Using Interface Inheritance Effectively

>

TimedChannel

int write(const char *b, int n, int t);
int read(char *b, int n, int t);

MyChannel

Channel

int write(const char *b, int n);

int read(char *b, int n);
354

4. Proper Inheritance

Using Interface Inheritance Effectively

>

TimedChannel

int write(const char *b, int n, int t);
int read(char *b, int n, int t);

MyChannel

Channel

int write(const char *b, int n); | 3" Party
int read(char *b, int n); Product A

355

4. Proper Inheritance

Using Interface Inheritance Effectively

>

TimedChannel

int read(char *b, int n, int t);

int write(const char *b, int n, int t);

MyChannel

Channel

=

int write(const char *b, int n);
int read(char *b, int n);

3d Party
Product A

356

4. Proper Inheritance

Using Interface Inheritance Effectively

>

TimedChannel

int read(char *b, int n, int t);

int write(const char *b, int n, int t);

MyChannel

Channel

=

int write(const char *b, int n);
int read(char *b, int n);

3d Party
Product A

357

4. Proper Inheritance

Using Interface Inheritance Effectively

>

TimedChannel

int write(const char *b, int n, int t);
int read(char *b, int n, int t);

MyChannel

Channel

=

int write(const char *b, int n);
int read(char *b, int n);

3d Party
Product A

3 Party
Product B

TIO

4. Proper Inheritance

Using Interface Inheritance Effectively

YourTimedChannel

PbTimedChannelAdapter

Client2 @

TimedChannel

int write(const char *b, int n, int t);
int read(char *b, int n, int t);

PaChannelAdapter
Client3

O
MyChannel

Clientl @

Channel

int write(const char *b, int n);
int read(char *b, int n);

4. Proper Inheritance

Using Interface Inheritance Effectively

YourTimedChannel

PbTimedChannelAdapter

Client2 @

TimedChannel

int write(const char *b, int n, int t);
int read(char *b, int n, int t);

PaChannelAdapter

Client3 A

MyChannel

Clientl @
Channel

int write(const char *b, int n);
int read(char *b, int n);

4. Proper Inheritance

Using Interface Inheritance Effectively

YourTimedChannel

Client2 g PbTimedChannelAdapter

TimedChannel

int write(const char *b, int n, int t);
int read(char *b, int n, int t);

PaChannelAdapter
Client3

O
MyChannel

Clientl @
Channel

int write(const char *b, int n);
int read(char *b, int n);

4. Proper Inheritance

Using Structural Inheritance Effectively

(Non-Modifiable)
ConstElemRef

(Modifiable)

ElemRef

362

4. Proper Inheritance

Using Structural Inheritance Effectively

template <class TYPE>
class ConstElemRef<TYPE> {
LIRSS const TYPE *d_elem_p;

ConstElemRef

&

private: // Not Implemented. TBD
ConstElemRef& operator=(Const ConstElemRef&);

public:
/| CREATORS
ConstElemRef(const TYPE *elem);
ConstElemRef(const ConstElemRef& ref);
~ConstElemRef();

Il ACCESSORS
const TYPE& elem() const;

363

4. Proper Inheritance

Using Structural Inheritance Effectively

(Non-Modifiable)

ConstElemRef

C

template <class TYPE> Sinele Pointer
lass ConstElemRef<TYPE> Datga Member
const TYPE *d_elem_p;

&

private: // Not Implemented. TBD
ConstElemRef& operator=(Const ConstElemRef&);

public:
/| CREATORS
ConstElemRef(const TYPE *elem);
ConstElemRef(const ConstElemRef& ref);
~ConstElemRef();

Il ACCESSORS
const TYPE& elem() const;

364

4. Proper Inheritance

Using Structural Inheritance Effectively

template <class TYPE> Derived Class
class ConstElemRef<TYPE> { Declared Friend
el const TYPE *d_elem_p; SClared THen

&
private: // Not Implemented. TBD
ConstElemRef& operator=(Const ConstElemRef&);

ConstElemRef

public:
/| CREATORS
ConstElemRef(const TYPE *elem);
ConstElemRef(const ConstElemRef& ref);
~ConstElemRef();

Il ACCESSORS
const TYPE& elem() const;

365

4. Proper Inheritance

Using Structural Inheritance Effectively

template <class TYPE>
class ConstElemRef<TYPE> {
LIRSS const TYPE *d_elem_p;

Copy Assignment
Not Implemented

ConstElemRef

private: // Not Implemented. TBD
ConstElemRef& operator=(Const ConstElemRef&);

public:
/| CREATORS
ConstElemRef(const TYPE *elem);
ConstElemRef(const ConstElemRef& ref);
~ConstElemRef();

Il ACCESSORS
const TYPE& elem() const;

366

4. Proper Inheritance

Using Structural Inheritance Effectively

(Non-Modifiable)

ConstElemRef

Read-Only

Access

template <class TYPE>
class ConstElemRef<TYPE> {
const TYPE *d_elem_p;

&

private: // Not Implemented. TBD
ConstElemRef& operator=(Const ConstElemRef&);

public:
/| CREATORS
ConstElemRef(const TYPE *elem);
ConstElemRef(const ConstElemRef& ref);
~ConstElemRef();

Il ACCESSORS
const TYPE& elem() const;

367

4. Proper Inheritance

Using Structural Inheritance Effectively

class ConstElemRef<TYPE> {
const TYPE *d_elem_p;
...
const TYPE& elem() const;

|8

ConstElemRef

template <class TYPE>

Jiefiel=lc) class ElemRef<TYPE> : public ConstElemRef<TYPE> {
ElemRef public:

/| CREATORS

elem() ; ElemRef(TYPE *elem);

ElemRef(const ElemRef& ref);

~ElemRef();

/[MANIPULATORS
ElemRef& operator=(const ElemRef&); // Fine. TBD

Il ACCESSORS
TYPE& elem() const;

h 368

4. Proper Inheritance

Using Structural Inheritance Effectively

class ConstElemRef<TYPE> { Public
const TYPE *d_elem_p; Structural
...
const TYPE& elem() const;

|8

ConstElemRef

Inheritance

template <class TYPE>

Jiefiel=lc) class ElemRef<TYPE> : public ConstElemRef<TYPE> {
ElemRef public:

/| CREATORS

elem() ; ElemRef(TYPE *elem);

ElemRef(const ElemRef& ref);

~ElemRef();

/[MANIPULATORS
ElemRef& operator=(const ElemRef&); // Fine. TBD

Il ACCESSORS
TYPE& elem() const;

h 369

4. Proper Inheritance

Using Structural Inheritance Effectively

class ConstElemRef<TYPE> {
ConstElermRar const TYPE *d_elem_p; No Additional
.. Member Data
) const TYPE& elem() const;

|8

template <class

(Modifiable) class Ele <TYPE> publlc ConstElemRef<TYPE> {
ElemRef public:

/| CREATORS

elem() ; ElemRef(TYPE *elem);

ElemRef(const ElemRef& ref);

~ElemRef();

/[MANIPULATORS
ElemRef& operator=(const ElemRef&); // Fine. TBD

Il ACCESSORS
TYPE& elem() const;

h 370

4. Proper Inheritance

Using Structural Inheritance Effectively

class ConstElemRef<TYPE> { .
const TYPE *d_elem_p; Copy Assignment

... Implemented
const TYPE& elem() const;

|8

ConstElemRef

template <class TYPE>
Jiefiel=lc) class ElemRef<TYPE> : public ConstEle| Ef<TYPE> {
ElemRef public:

/| CREATORS

elem() ; ElemRef(TYPE *elem);
ElemRef(const ElemRef& ref);
~ElemRef();

/[MANIPULATORS
ElemRef& operator=(const ElemRef&); // Fine. TBD

Il ACCESSORS
TYPE& elem() const;

h 371

4. Proper Inheritance

Using Structural Inheritance Effectively

class ConstElemRef<TYPE> {
const TYPE *d_elem_p;
...
const TYPE& elem() const;

|8

ConstElemRef

template <class TYPE>

Jiefiel=lc) class ElemRef<TYPE> : public ConstElemRef<TYPE> {
ElemRef public:

/| CREATORS

elem() ; ElemRef(TYPE *elem);

ElemRef(const ElemRef& ref);

~ElemRef();

/[MANIPULATORS
ElemRef& operator=(const ElemRef&); // Fine. TBD

Read-Write /| ACCESSORS
Access TYPE& elem() const;
h 372

4. Proper Inheritance

Using Structural Inheritance

class ConstElemRef<TYPE> {
const TYPE *d_elem_p;
...
const TYPE& elem() const;

|8

ConstElemRef

template <class Tj
(Modifiable) class ElemRef<
ElemRef public:

/[CREATORS
elem() ; ElemRef(TYPE
ElemRef(const
~ElemRef();

Il MANIPULATO
ElemRef& oper

Read-Write /| ACCESSORS
Access TYPE& elem() const;
h 373

4. Proper Inheritance

Using Structural Inh
clas \

ConstElemRef

An
std: :1terator

Is-A

(Modifiable)

ElemRef std: :const i1terator
with

“Write Access”

Ref&); // Fine. TBD

Read-Write /[ACCESSORS
Access TYPE& elem() co
%

374

4. Proper Inheritance

Using Structural Inheritance Effectively

const TYPE& ConstElemRef:.elem() const

(Non-Modifiable) {
ConstElemRef return *d_elem_p;

}

TYPE& ElemRef:.:elem() const
{

}

\ Note: same component due to friendship.

375

(Modifiable)
ElemRef

return * d elem p);

(Non-Modifiable)
ConstElemRef

(Modifiable)
ElemRef

4. Proper Inheritance

Using Structural Inheritance Effectively

Note we are
casting-away

}

const TYPE& ConstElemRef:: const
{
return *d_elem_p;
}
TYPE& ElemRef::eleyA() const
{
return * d_elem_p};

\ Note: same component due to friendship.

376

4. Proper Inheritance

Using Structural Inheritance Effectively

Be especially careful to ensure const-correctness when const-casting Is involved.

(Non-Modifiable)
ConstElemRef

(Modifiable)
ElemRef

377

4. Proper Inheritance

Using Structural Inheritance Effectively

Be especially careful to ensure const-correctness when const-casting Is involved.

void g(ConstElemRef *cerl, const ConstElemRef& cer2)

*cerl = cer2; /I Enable const-correctness violation due to slicing.
} I/ Assumes copy assignment is enabled on the ConstElemRef base class.

(Non-Modifiable)
ConstElemRef

(Modifiable)
ElemRef

378

4. Proper Inheritance

Using Structural Inheritance Effectively

Be especially careful to ensure const-correctness when const-casting Is involved.

void g(ConstElemRef *cerl, const ConstElemRef& cer2)

*cerl = cer2; /I Enable const-correctness violation due to slicing.
} I/ Assumes copy assignment is enabled on the ConstElemRef base class.

template < class TYPE>
o vodabl void f(const TYPE& constElem)

ConstElemRef {

(Modifiable)
ElemRef

379

4. Proper Inheritance

Using Structural Inheritance Effectively

Be especially careful to ensure const-correctness when const-casting Is involved.

void g(ConstElemRef *cerl, const ConstElemRef& cer2)

*cerl = cer2; /I Enable const-correctness violation due to slicing.
} I/ Assumes copy assignment is enabled on the ConstElemRef base class.

template < class TYPE>
o vodabl void f(const TYPE& constElem)

ConstElemRef {

I TYPE dummy;

(Modifiable)
ElemRef

380

4. Proper Inheritance

Using Structural Inheritance Effectively

Be especially careful to ensure const-correctness when const-casting is involved.

void g(ConstElemRef *cerl, const ConstElemRef& cer2)

*cerl = cer2; /I Enable const-correctness violation due to slicing.
} I/ Assumes copy assignment is enabled on the ConstElemRef base class.

template < class TYPE>

b void f(const TYPE& constElem)

ConstElemRef {
TYPE dummy;

I ElemRef er(&dummy);

(Modifiable)
ElemRef

381

4. Proper Inheritance

Using Structural Inheritance Effectively

Be especially careful to ensure const-correctness when const-casting is involved.

void g(ConstElemRef *cerl, const ConstElemRef& cer2)

*cerl = cer2; /I Enable const-correctness violation due to slicing.
} I/ Assumes copy assignment is enabled on the ConstElemRef base class.

template < class TYPE>
o vodabl void f(const TYPE& constElem)

ConstElemRef {

TYPE dummy;
I ElemRef er(&dummy);

ConstElemRef cer(&constElem);

(Modifiable)
ElemRef

382

4. Proper Inheritance

Using Structural Inheritance Effectively

Be especially careful to ensure const-correctness when const-casting is involved.

void g(ConstElemRef *cerl, const ConstElemRef& cer2)

*cerl = cer2; /I Enable const-correctness violation due to slicing.
} I/ Assumes copy assignment is enabled on the ConstElemRef base class.

template < class TYPE>
o vodabl void f(const TYPE& constElem)

ConstElemRef {

TYPE dummy;
I ElemRef er(&dummy);

ConstElemRef cer(&constElem);

(Modifiable)

FlemAct g(&er, cer); // Rebind (modifiable) 'ElemRef' ‘er'.

383

4. Proper Inheritance

Using Structural Inheritance Effectively

Be especially careful to ensure const-correctness when const-casting is involved.

void g(ConstElemRef *cerl, const ConstElemRef& cer2)

{

*cerl = cer2; /I Enable const-correctness violation due to slicing.
} I/ Assumes copy assignment is enabled on the ConstElemRef base class.

(Non-Modifiable)
ConstElemRef

(Modifiable)
ElemRef

template < class TYPE>
void f(const TYPE& constElem)

{
TYPE dummy;

ElemRef er(&dummy);

ConstElemRef cer(&constElem);

g(&er, cer); // Rebind (modifiable) 'ElemRef' ‘er'.
er.elem() = TYPE(); // Clobber 'constElem'. ...

4. Proper Inheritance

Using Structural Inheritance Effectively

The principal client of
Structural Inheritance
is the

385

4. Proper Inheritance

Using Structural Inheritance Effectively

ConstElemRefClient

e

(Non-Modifiable)
ConstElemRef

ElemRefClient

(Modifiable)
ElemRef Note: No Runtime-Performance
Overhead (e.g., due to Dynamic
Binding).

386

4. Proper Inheritance

Using Implementation Inheritance Effectively

CompositeWidget

WidgetClient
O

instanceName
origin

move
draw_
numcChildren

addChild

removeChild 387

4. Proper Inheritance

Using Implementation Inheritance Effectively

CompositeWidgetClient
O

CompositeWidget

numChildren
addcChild
removeChild

WidgetClient

instanceName
origin
move
draw

388

4. Proper Inheritance

Using Implementation Inheritance Effectively

CompositeWidgetClient
O

CompositeWidget

numChildren
addcChild
removeChild

WidgetClient

instanceName
origin
move
draw

389

4. Proper Inheritance

Using Implementation Inheritance Effectively

CompositeWidgetClient
O

CompositeWidget

numChildren
addcChild
removeChild

WidgetClient

Widgetimp

Widget
instanceName

origin
move
draw 390

4. Proper Inheritance

Using Implementation Inheritance Effectively

CompositeWidgetClient
O

CompositeWidget

numChildren
addcChild
removeChild

WidgetClient

Widgetimp

YourWidget

Widget
instanceName

origin
move
draw 391

4. Proper Inheritance

Using Implementation Inheritance Effectively

) yCon

YourWidget

CompositeWidgetClient
O

CompositeWidget

numChildren
addcChild
removeChild

WidgetClient

Widgetimp

Widget
instanceName

origin
move

draw 392

4. Proper Inheritance

Using Implementation Inheritance Effectively

) yCon

YourWidget

CompositeWidgetClient
®

CompositeWidgetimp

CompositeWidget

numcChildren
addcChild
removeChild

WidgetClient

Widgetimp

Widget
instanceName

origin
move

draw 393

4. Proper Inheritance

Using Implementation Inheritance Effectively

< CompositeWidgetClient
®

CompositeWidgetimp

YourCompositeWidget

CompositeWidget

numcChildren
addcChild
removeChild

WidgetClient

Widgetimp

YourWidget

Widget
instanceName

origin
move

draw 394

4. Proper Inheritance

Using Implementation Inheritance Effectively

< CompositeWidgetClient
®

CompositeWidgetimp

YourCompositeWidget

CompositeWidget

numcChildren
addcChild
removeChild

WidgetClient

Widgetimp

YourWidget

Widget
instanceName

origin
move

draw 395

4. Proper Inheritance

Using Implementation Inheritance Effectively

yCom
 ourcor
>

YourWidget

CompositeWidgetClient
®

CompositeWidgetimp

CompositeWidget

numcChildren
addcChild
removeChild

WidgetClient

Widgetimp

Widget
instanceName

origin
move
draw 396

4. Proper Inheritance

Using Implementation Inheritance Effectively

CompositeWidgetClient
®

CompositeWidgetimp

CompositeWidget

NI numChildren
addChild
removeChild

WidgetClient

yCom
 ourcor
>

Widgetimp

YourWidget

Widget
instanceName

origin
move
draw 397

4. Proper Inheritance

Using Implementation Inheritance Effectively

< CompositeWidgetClient
®

CompositeWidgetimp

CompositeWidget

numcChildren
addcChild
removeChild

WidgetClient

Widgetimp

YourWidget

Widget
instanceName

origin
move
draw 398

4. Proper Inheritance

Using Implementation Inheritance Effectively

< CompositeWidgetClient
®

CompositeWidgetimp

CompositeWidget

numcChildren
addcChild
removeChild

WidgetClient

Widgetimp

YourWidget

Widget
instanceName

origin
move
draw 399

4. Proper Inheritance

Using Implementation Inheritance Effectively

< CompositeWidgetClient
®

CompositeWidgetimp

YourCompositeWidget
CompositeWidget

numcChildren
addcChild
removeChild

WidgetClient

Widgetimp

YourWidget

Widget
instanceName

origin
move

draw 400

4. Proper Inheritance

Using Implementation Inheritance Effectively

< CompositeWidgetClient
®

CompositeWidgetimp

YourCompositeWidget
CompositeWidget

numcChildren
addcChild
removeChild

WidgetClient
O

Widgetimp

Widen interface
YourWidget first:

Widget
InstanceName
origin
move
draw

401

4. Proper Inheritance

Using Implementation Inheritance Effectively

< CompositeWidgetClient
®

CompositeWidgetimp

YourCompositeWidget <

CompositeWidget

numcChildren
addcChild
removeChild

WidgetClient
O

Widgetimp
Widen interface

YourWidget ' first; then provide
Widget Implementation

InstanceName . h . .
5%%'2 without widening.
raw e

4. Proper Inheritance

Using Implementation Inheritance Effectively

The principal client of
Implementation Inheritance
is the
DERIVED-CLASS AUTHOR.

4. Proper Inheritance

Using Implementation Inheritance Effectively

CompositeWidget

numChildren
addcChild
removeChild

instanceName

origin

move

draw 404

4. Proper Inheritance

Using Implementation Inheritance Effectively

CompositeWidget

numChildren
addcChild
removeChild

instanceName
origin
move

draw

Part of Framework using
CompositeWidget

Part of Framework using
Widget

Framework %%

4. Proper Inheritance

Using Implementation Inheritance Effectively

. . Part of Framework using
CompositeWidget S . :
CompositeWidget
numcChildren
addChild
removeChild

Part of Framework using
Widget

instanceName
origin
move

draw Framework 4%

4. Proper Inheritance

Using Implementation Inheritance Effectively

WidgetPartiallmp

. . Part of Framework using
CompositeWidget S . :
CompositeWidget
numcChildren
addChild
removeChild

Part of Framework using
Widget

instanceName
origin
move

draw Framework “7

4. Proper Inheritance

Using Implementation Inheritance Effectively

CompositeWidgetPartiallmp

WidgetPartiallmp

Part of Framework using
CompositeWidget

CompositeWlidget s m®

numChildren
addcChild
removeChild

!

Part of Framework using
Widget

instanceName
origin

move
draw Framework 08

4. Proper Inheritance

Using Implementation Inheritance Effectively

CompositeWidgetPartiallmp

WidgetPartiallmp

Part of Framework using
CompositeWidget

CompositeWlidget s m®

numChildren
addcChild
removeChild

!

Part of Framework using
Widget

instanceName
origin

move
draw Framework %

4. Proper Inheritance

Using Implementation Inheritance Effectively

CompositeWidgetPartiallmp

WidgetPartiallmp

. . Part of Framework using
CompositeWidget tusm® : :

POSL +ed CompositeWidget

numcChildren

addcChild
removeChild

!

Part of Framework using
Widget

instanceName
origin
move

draw Framework 10

4. Proper Inheritance

Using Implementation Inheritance Effectively

YourWidget

CompositeWidgetPartiallmp

WidgetPartiallmp

. . Part of Framework using
CompositeWidget tusm® : :

POSL +ed CompositeWidget

numcChildren

addcChild
removeChild

!

Part of Framework using
Widget

instanceName
origin
move

draw Framework %!

4. Proper Inheritance

Using Implementation Inheritance Effectively

YourCompositeWidge

CompositeWidgetPartiallmp

YourWidget

WidgetPartiallmp

. . Part of Framework using
CompositeWidget tusm® : :

POSL +ed CompositeWidget

numcChildren

addcChild
removeChild

!

Part of Framework using
Widget

instanceName
origin

move
draw Framework “2

4. Proper Inheritance

Using Implementation Inheritance Effectively

YourCompositeWidge

YourWidget -

TheirCompositeWidget
CompositeWidgetPartiallmp

WidgetPartiallmp

. . Part of Framework using
CompositeWidget tusm® : :

POSL +ed CompositeWidget

numcChildren

addcChild
removeChild

!

Part of Framework using
Widget

instanceName
origin

move
draw Framework “2

4. Proper Inheritance

Using Implementation Inheritance Effectively

YourCompositeWidge

YourWidget -

TheirCompositeWidget
CompositeWidgetPartiallmp

WidgetPartiallmp

TheirWidget Part of Framework using
—— .
Sompositenidget CompositeWidget

numChildren
addcChild
removeChild

!

Part of Framework using
Widget

instanceName
origin

move
draw Framework

4. Proper Inheritance

Combining Kinds of Inheritance

415

4. Proper Inheritance

Combining Kinds of Inheritance
* Structural & Interface

416

4. Proper Inheritance

Combining Kinds of Inheritance

* Structural & Interface
—Typically for Efficiency and Syntactic Sugar.

417

4. Proper Inheritance

Combining Kinds of Inheritance
* Structural & Interface

* Interface & Implementation

418

4. Proper Inheritance

Combining Kinds of Inheritance
* Structural & Interface

* Interface & Implementation

419

4. Proper Inheritance

Combining Kinds of Inheritance
* Structural & Interface

* Interface & Implementation

* Implementation & Structural

420

4. Proper Inheritance

Combining Kinds of Inheritance
* Structural & Interface

* Interface & Implementation

* Implementation & Structural

—Bad Idea: Unnecessarily addresses the
needs of derived class authors and public
clients in the same physical component,

4. Proper Inheritance

Combining Kinds of Inheritance

- inline int f();
<2‘:.MID virtual void g() = 0;
LAl virtual void h() = 0;

\

/

422

4. Proper Inheritance

Combining Kinds of Inheritance

Public
Client

423

4. Proper Inheritance

Combining Kinds of Inheritance

424

4. Proper Inheritance

Combining Kinds of Inheritance

dea‘

4. Proper Inheritance
Relative Utility

Theory! Interface Inheritance

proper in oo™Mon ;,

2o

\ Structural Inheritance

Implementation Inheritance

426

4. Proper Inheritance

Physical Substitutability

4. Proper Inheritance

Physical Substitutability

4. Proper Inheritance

Physical Substitutability

4. Proper Inheritance

Physical Substitutability
What Criteria Must Be Satisfied?

>
OO

OO
_ > K N O D

C O o o o [D

4. Proper Inheritance

Physical Substitutability

The new component’s logical behavior:

431

4. Proper Inheritance

Physical Substitutability

The new component’s logical behavior:

* Preconditions needed for defined behavior
can be made weaker, but no stronger.

432

4. Proper Inheritance

Physical Substitutability

The new component’s logical behavior:

* Pre-existing essential behavior of the
component must remain unchanged.

433

4. Proper Inheritance

Physical Substitutability

The new component’s logical behavior:

* New behaviors may be defined, and essential
onhes extended, so long as the component is
backward compatible with pre-existing clients.

4. Proper Inheritance

Physical Substitutability

The new component’s physical characteristics:

435

4. Proper Inheritance

Physical Substitutability

The new component’s physical characteristics:
* Physical dependencies cannot increase (much).

436

4. Proper Inheritance

Physical Substitutability

The new component’s physical characteristics:

 Compile-time cannot increase substantially.

437

4. Proper Inheritance

Physical Substitutability

The new component’s physical characteristics:

 Size (footprint) cannot increase (much).

438

4. Proper Inheritance

Physical Substitutability

The new component’s physical characteristics:

 Dynamic memory usage can’t increase (much).

439

4. Proper Inheritance

Physical Substitutability

The new component’s physical characteristics:

e Can’t introduce dynamic memory allocation.

440

4. Proper Inheritance

Physical Substitutability

The new component’s physical characteristics:

* Runtime must not be increased significantly for
important (relevant) use-cases.

441

4. Proper Inheritance

End of Section

Questions?

4. Proper Inheritance
What Questions are we Answering?

What distinguishes Interface, Structural, and
Implementation inheritance?

What do we mean by the /s-A relationship, & how does
proper inheritance vary from one form to the next.

— What does LSP (Liskov Substitution Principle) have to do with it?

How are each of the three inheritances used effectively?
— Who is the principal client of each kind of inheritance?

— How are interface and implementation inheritance ordered?

— Does it make sense to combine two (or all three) inheritances?
— What is the relative utility of the three forms of inheritance?

How are structural inheritance, (logical) substitutability, &
backward compatibility of (physical) components related?

443

Outline

Components (review)

Modularity, Logical/Physical Dependencies, & Level numbers

Interfaces and Contracts (review)

Syntax versus Semantics & Essential Behavior

Narrow versus Wide Contracts (review)

The Significance of Undefined Behavior

Proper Inheritance

Is-A for Interface, Structural, & Implementation Inheritance

444

Conclusion

1. Components (review)

Modularity, Logical/Physical Dependencies, & Levelnumbers

445

Conclusion

1. Components (review)

Modularity, Logical/Physical Dependencies, & Levelnumbers

A Component—a .h/.cpp pair satisfying four
essential properties — is our fundamental unit
of both logical and physical software design.

446

Conclusion

1. Components (review)

Modularity, Logical/Physical Dependencies, & Levelnumbers

A Component—a .h/.cpp pair satisfying four
essential properties — is our fundamental unit
of both logical and physical software design.

* Logical relationships, such as Is-A and Uses

between classes, imply physical dependencies
among the components that defined them.

447

Conclusion

1. Components (review)

Modularity, Logical/Physical Dependencies, & Levelnumbers

A Component—a .h/.cpp pair satisfying four
essential properties — is our fundamental unit
of both logical and physical software design.

* Logical relationships, such as Is-A and Uses
between classes, imply physical dependencies
among the components that defined them.

* No cyclic dependencies/long-distance friendships!

448

Conclusion

2. Interfaces and Contracts (review)

Syntax versus Semantics & Essential Behavior

449

Conclusion

2. Interfaces and Contracts (review)
Syntax versus Semantics & Essential Behavior
* Aninterface is syntactic; a contract is semantic.

450

Conclusion

2. Interfaces and Contracts (review)
Syntax versus Semantics & Essential Behavior
* Aninterface is syntactic; a contract is semantic.

* A contract defines both pre- & postconditions.

451

Conclusion

2. Interfaces and Contracts (review)
Syntax versus Semantics & Essential Behavior
* Aninterface is syntactic; a contract is semantic.

* A contract defines both pre- & postconditions.
* Undefined Behavior if a precondition isn’t met.

452

2.

Conclusion

Interfaces and Contracts (review)
Syntax versus Semantics & Essential Behavior
An interface is syntactic; a contract is semantic.

A contract defines both pre- & postconditions.
Undefined Behavior if a precondition isn’t met.
What undefined behavior does is undefined!

453

Conclusion

2. Interfaces and Contracts (review)
Syntax versus Semantics & Essential Behavior
* Aninterface is syntactic; a contract is semantic.

* A contract defines both pre- & postconditions.
* Undefined Behavior if a precondition isn’t met.
 What undefined behavior does is undefined!

 Documented essential behavior must not change!

454

Conclusion

2. Interfaces and Contracts (review)
Syntax versus Semantics & Essential Behavior
* Aninterface is syntactic; a contract is semantic.

* A contract defines both pre- & postconditions.

* Undefined Behavior if a precondition isn’t met.
 What undefined behavior does is undefined!

* Documented essential behavior must not change!
* Test drivers must verify all essential behavior.

455

Conclusion

2. Interfaces and Contracts (review)
Syntax versus Semantics & Essential Behavior
* Aninterface is syntactic; a contract is semantic.

* A contract defines both pre- & postconditions.
* Undefined Behavior if a precondition isn’t met.
 What undefined behavior does is undefined!
 Documented essential behavior must not change!
* Test drivers must verify all essential behavior.

e Assertions in destructors help verify invariants.

456

Conclusion

3. Narrow versus Wide Contracts (review)

The Significance of Undefined Behavior

457

Conclusion

3. Narrow versus Wide Contracts (review)

The Significance of Undefined Behavior

 Narrow contracts admit undefined behavior.

458

Conclusion

3. Narrow versus Wide Contracts (review)

The Significance of Undefined Behavior

 Narrow contracts admit undefined behavior.
* Appropriately narrow contracts are GOOD:

459

Conclusion

3. Narrow versus Wide Contracts (review)

The Significance of Undefined Behavior

 Narrow contracts admit undefined behavior.
* Appropriately narrow contracts are GOOD:

— Reduce costs associated with development/testing

460

Conclusion

3. Narrow versus Wide Contracts (review)

The Significance of Undefined Behavior

 Narrow contracts admit undefined behavior.
* Appropriately narrow contracts are GOOD:

— Reduce costs associated with development/testing
— Improve performance and reduces object-code size

461

Conclusion

3. Narrow versus Wide Contracts (review)

The Significance of Undefined Behavior

 Narrow contracts admit undefined behavior.
* Appropriately narrow contracts are GOOD:

— Reduce costs associated with development/testing
— Improve performance and reduces object-code size
— Allow useful behavior to be added as needed

462

Conclusion

3. Narrow versus Wide Contracts (review)

The Significance of Undefined Behavior

 Narrow contracts admit undefined behavior.
* Appropriately narrow contracts are GOOD:

— Reduce costs associated with development/testing
— Improve performance and reduces object-code size
— Allow useful behavior to be added as needed

— Enable practical/effective Defensive Programming

463

Conclusion

3. Narrow versus Wide Contracts (review)

The Significance of Undefined Behavior

 Narrow contracts admit undefined behavior.
* Appropriately narrow contracts are GOOD:

— Reduce costs associated with development/testing
— Improve performance and reduces object-code size
— Allow useful behavior to be added as needed

— Enable practical/effective Defensive Programming

* Defensive programming means fault intolerance!

464

Conclusion

4. Proper Inheritance

Is-A for Interface, Structural, & Implementation Inheritance

465

Conclusion

4. Proper Inheritance

Is-A for Interface, Structural, & Implementation Inheritance

e The derived class must adhere to both contracts.

466

Conclusion

4. Proper Inheritance

Is-A for Interface, Structural, & Implementation Inheritance

e The derived class must adhere to both contracts.

* The static type of the pointer/reference should
make no difference in programmatic behavior.

467

Conclusion

4. Proper Inheritance

Is-A for Interface, Structural, & Implementation Inheritance

e The derived class must adhere to both contracts.

* The static type of the pointer/reference should
make no difference in programmatic behavior.

* Interface inheritance is (virtually :-) all we need!

468

Conclusion

4. Proper Inheritance

Is-A for Interface, Structural, & Implementation Inheritance

e The derived class must adhere to both contracts.

* The static type of the pointer/reference should
make no difference in programmatic behavior.

* Interface inheritance is (virtually :-) all we need!

* Backward compatibility for components is a
whole lot like proper structural inheritance.

469

Conclusion

The End

