Practical Performance Practices

10f116

Jason Turner

http://github.com/lefticus/presentations
http://cppcast.com
http://chaiscript.com
http://cppbestpractices.com

C++ Weekly - YouTube Series

@lefticus

Independent Contractor

| prefer an interactive session - please ask questions

20f116

Optimizing Compilers Are Amazing

30f116

Optimizing Compilers Are Amazing
g++ 5.1+

40f116

Optimizing Compilers Are Amazing

50f116

Optimizing Compilers Are Amazing

.string "basic_string::_M_construct null not valid"
__cxx1ll::basic_string<char, ::char_traits<char>, ::allocator<char> >::

OFFSET FLAT:.LCO

__throw_logic_error (char const?*)

6 0f116

Optimizing Compilers Are Amazing

basic_string<char, ::char_traits<char>,
[+8]
+07],

+16],

.string "a"

.string "b"

7 0f 116

Optimizing Compilers Are Amazing

main:

OFFSET FLAT:.LC2+1
OFFSET FLAT:.LC2
64

[+16]

[I

__cxx1ll::basic_string<char, ::char_traits<char>,
[+438]
[+32]
OFFSET FLAT:.LC3+1
OFFSET FLAT:.LC3
[rsp+8]
[+321],
__cxx1ll::basic_string<char, ::char_traits<char>,
[+32]
+48]
[+40]

.L19
operator delete (void¥*)

' []
.0 +16]

4
.L24
operator delete (void*)

8 0of 116

Optimizing Compilers Are Amazing

90f116

Optimizing Compilers Are Amazing

e But trying to predict what the compiler can optimize is a risky game

10 of 116

Profiling ChaiScript
e Performance measuring ChaiScript is difficult

e Great number of template instantations
e Nature of scripting means execution is spread over many similar functions

11 of 116

Parsed Nodes

File
Equation = For
l l
Var_Decl Constant 0 Equation = Binary < Prefix ++ Block
: A R
Id x Var_Decl Constant 0 Id i Constant 100 Id i Equation +=
i /\
Id i Id x Idi

12 of 116

Parsed Nodes

eval_internal()gval_internal()

Equation =

File

eval_internal()

Var_Decl

Constant 0

Equation =

val_internal()

eval_internal() gval_internal()

eval_internal()

For

eval_internal()gval_internal()

Binary <

eval_internal()\eval_internal()

eval_internal()

Prefix ++

val_internal()

eval_internal()

Block

Id x

Var_Decl

Constant 0

Id i

Constant 100

Id i

Equation +=

val_internal()

Id i

val_internal()

él_internalxeval_internal()
Id x I

di

13 0f 116

Performance Profiling

chaiscript::AST_Node::eval

chai.exe

Calling functions |:> Current function

)| Called functions

eval_internal

eval_internal

eval_internal

Related Views: Caller/Callee Functions

eval_intemal

eval_intemal

eval_intemal

eval_intemnal

Performance metric: Inclusive Samples %

Function Code View

c:\programming\chaiscript\include\chaiscript\language\chaiscript_common.hpp

0.3 %

100.0 %

100% ~ 4

¥

return oss.str();

/// Prints the contents of an AST node, in
std::string to_string(const std::string &t

¥

std::ostringstream oss;

oss << t_prepend << "(" << ast_node_type,
<< this->text << " : " << this->loca

for (auto & elem : this->children) {
oss << elem->to_string(t_prepend + "

}

return oss.str();

Boxed_Value eval(const chaiscript::detail:

{

¥

try {

} catch (exception::eval_error &ee) {
ee.call_stack.push_back(shared_from_th:
throw;

}

static bool get_bool_condition(const Boxed,

try {
return boxed_cast<bool>(t_bv);
¥

catch (const exception::bad_boxed_cast &
throw exception::eval_error("Condition

t
>

v

14 of 116

Performance Practices

This led to the creation of several rules and practices that | follow to make well-performing
code 'by default'

150f 116

Which Is Better In Normal Use?

o WHY?

16 of 116

std::list

std::list

e What has to happen here?

18 of 116

std::list

main:

__detail:: List node base:: M hook (:: _detail:: List_node base
Srdi

$rdi

19 0of 116

std::list

($rdi), S%Srbp

operator delete (void¥*)
$rbx, Srbp

Srbp, %rdi

.L10

20 0f 116

std::list

$rbx, %rdi

.L4

($rdi), %rl2

operator delete (void¥*)

$rl2, S%rdi
.L5

$rbp, %rdi
_Unwind_Resume

21 0of 116

std::list
Allocate a new node
Handle exception thrown during node allocation?
Assign the value
Hook up some pointers

Delete node
etc?

22 0f 116

std: :vector

std: :vector

e What has to happen here?

24 of 116

std: :vector

$8, %rsp

S4, %edi

operator new(unsigned long)
S1, (%rax)

$rax, %rdi

operator delete (void*)
$eax, %eax

$8, %rsp

e Allocate a buffer
e Assign avalue in the buffer
e Delete the buffer

250f116

What about std: :array?

What about std: :array?

e Codeis completely compiled away

27 of 116

Part 1: Don't Do More Work Than You
Have To

Don't Do More Work Than You Have To

Container Practices

Then only differ if you need specific behavior
Make sure you understand what the library has to do

29 0f 116

Don't Do More Work Than You Have To

in ()

int

e Construct a string object
e Reassign string object

30 0f 116

Don't Do More Work Than You Have To

Alwaysiconst.

e Construct and initialize in one step
® ~32% more efficient

31 0f116

Don't Do More Work Than You Have To

"long string is mod 0";
"long string is mod 1";

"long string is mod 2";

"long string is mod 3";

32 0f 116

Don't Do More Work Than You Have To

D s = [&] O){

(1 %5 4) |
0:

return "long string is mod 0";
1:

return "long string is mod 1";

return "long string is mod 2";

return "long string is mod 3";

® ~31% more efficient

33 0f116

Don't Do More Work Than You Have To

Always Initialize When Const Isn't Practical

e Same issues as previous examples

34 of 116

Don't Do More Work Than You Have To

Always Initialize When Const Isn't Practical

int () const {
return ttatoi(m_s.c_str());

e Same gains as const initializer
e What's wrong with this version now?
e val() parses string on each call

350f116

Don't Do More Work Than You Have To

Don't Recalculate Values - Calculate on First Use

{
Int (

{1}

int () const {
(!'is_calculated) {
value = c:atoi(s);
}
return value;

}

is_calculated = false;
value;
Sy

What's wrong now?
C++ Core Guidelines state that const methods should be thread safe
What else?

36 of 116

Don't Do More Work Than You Have To

Don't Recalculate Values - Calculate On First Use

{
Int (

{ }

int () const {
(!is_calculated) {
value = c:atoi(s);
is_calculated = true;
}

return value;

is_calculated = false;
value;

e Branchingis slower
e Atomics are slower

37 of 116

Don't Do More Work Than You Have To

Don't Recalculate Values - Calculate At Construction

{
Int (std::string &t_s) : m_i(std::atoi(t_s.c_str()))
{ }

int val () const {

return m_1i;

No branching, no atomics, smaller runtime (int vs string)

In the context of a large code base, this took ~2 years to find
Resulted in 10% performance improvement across system
The simpler solution is almost always the best solution

38 0of 116

Don't Do More Work Than You Have To

Initialization Practices

e Always const

e Always initialize

e Using IIFE can help you initialize

e Don'trecalculate values that can be calculated once

39 0f 116

Don't Do More Work Than You Have To

Base {
~Base () =
virtual void

57

Derived : Base {
~Derived () = p
() override {}

e What's wrong here?
e move construction / assignment is disabled (virtual destructor)

40 0f 116

Don't Do More Work Than You Have To
Don't Disable Move Operations / Use Rule of 0

Base {
~Base () =

Base () = 7
Base (Base &) 2 =(const Base&) =
Base (Base &&) = ; = (Base &&) = g

virtual void

I g

Derived : Base {
virtual void

I g

e 10% improvement with fixing this in just one commonly used class

41 0of 116

Don't Do More Work Than You Have To
On The Topic Of Copying

#include <string>

("a not very short string") + "b";

® Solet'suseistd: :move!

42 0of 116

Don't Do More Work Than You Have To
On The Topic Of Copying

#include <string>

® 29% more efficient
e 32% smaller binary
e Good! But what's better?

43 0f 116

Don't Do More Work Than You Have To

Avoid Named Temporaries

#include <string>

; ++1) |
("a not very short string") + "b");

e This is taking the "don't declare a variable until you need it" philosophy to its ultimate
conclusion

44 of 116

Don't Do More Work Than You Have To

int (I <Base> p)

{
return p->value () ;

}

int ()
{

ptr = ::make_shared<Derived> () ;
use_a_base (ptr) ;

}

o What's the problem here7

45 0f 116

Don't Do More Work Than You Have To

46 of 116

Don't Do More Work Than You Have To

Avoid Automatic Conversions

e This version is 2.5x faster than the last

47 of 116

Don't Do More Work Than You Have To

void println (ostream &os, const std::string &str)

{
0s << str << std::endl;

}

e it'sequivalenttoi'\n' << std::flush;

e Expect that flush to cost you at least 9x overhead in your |0

48 0f 116

Don't Do More Work Than You Have To

(::o0s8tream &os) {
<< "a line of text" <<
<< "another line of text" <<

<< "many more lines of text" <<
(const 3¢ &filename) {

::ofstream (filename.c_str());
write_ file (ofs);

write_ _file(ss);
return ss.str();

}

49 0of 116

Don't Do More Work Than You Have To

50 of 116

Don't Do More Work Than You Have To
Hidden Work Practices

Calculate values once - at initialization time
Obey the rule of 0

If it looks simpler, it's probably faster

Avoid object copying

Avoid automatic conversions

®m Don't pass smart pointers

m Make conversion operations explicit

51 of 116

Don't Do More Work Than You Have To

52 of 116

Don't Do More Work Than You Have To

53 0of 116

Don't Do More Work Than You Have To

shared ptr:lnstantiations

std::_Sp_counted_ptr_inplace<
std::_Sp_counted_ptr_inplace<

std::_Sp_counted_ptr_inplace<
8(%rsi), %rsi
$rdi, S%rdx
typeinfo name

typeinfo name
S24, %ecx

.L3

::allocator< (__gnu_cxx:
::allocator< >, (__gnu_cxx:

::allocator< >, (__gnu_cxx:

::_Sp_make_shared_tag, %rsi

::_Sp_make_shared_tag, %edi

:_Lock_policy)2>::
:_Lock_policy)2>::

:_Lock_policy)2>::

54 of 116

Don't Do More Work Than You Have To

.L3:

std::_Sp_counted_ptr_inplace< 0 ::allocator< >, (__gnu_cxx::_Lock_policy)2>

std::_Sp_counted_ptr_inplace<

main:

movl

pushqg
movl

shared ptrilnstantiations

$24, %esi
operator delete(void*, unsigned long)

operator delete (void¥*)
Srbx

s$24, %edi

operator new(unsigned long)

¥rax, 5%rbx

S1, 8 (%rax)

S 12 (%$rax)

vtable for ::_Sp_counted_ptr_inplace< ::allocator<
SO0, 16 (%rax)

__gthrw___pthread_key_create (unsigned *, void (*) (voidx*)),
$rax, %rax

.L17

8 (%rbx), %$rdi

$-1, %esi

__gnu_cxx::__exchange_and_add (volatile*,

S $eax

$1,
.L26

, ::allocator< >, (__gnu_cxx::_Lock_policy)2>

M

55 0f 116

Don't Do More Work Than You Have To

shared ptr Instantiations

(%$rbx), %rax

$rbx, %rdi

16 (%rax), S%Srax

*%rax

12 (%$rbx), %rdi

S—-1, %$esi

__gnu_cxx::__exchange_and_add (volatile™,
Feax

S1,
.L2¢
.L

56 of 116

Don't Do More Work Than You Have To

57 of 116

Don't Do More Work Than You Have To

e What does this have to do?

58 0of 116

Don't Do More Work Than You Have To

59 of 116

Don't Do More Work Than You Have To

|dentical

60 of 116

Part 1: Don't Do More Work Than You
Have To - Summary

e Always initialize with meaningful values
e Don't recalculate immutable results

61 of 116

Part 1: Questions?

62 0of 116

Part 2: Smaller Code Is Faster Code

Smaller Code Is Faster Code

override { return m_v; }

e With many template instantiations this code blows up in size quickly

64 of 116

Smaller Code Is Faster Code
DRY In Templates

65 0f 116

Smaller Code Is Faster Code

Factories

66 of 116

Smaller Code Is Faster Code

Factories

 d_factory () {

::make_shared<D<T>> () ;

() |
N < H > v{
d_factory<l> (), d_factory<2>(), , d_factory<29>(), d_factory<30>()
i
}

----------------------- i

e We already saw thatishared ptr<>iis big- don't make more than you have to

67 of 116

Smaller Code Is Faster Code

28 d_factory () {
return ::make_unique<D<T>> () ;

}

int () |

M < H > v{
d_factory<l>(), d_factory<2>(), , d_factory<29>(), d_factory<30>()
i
}

68 of 116

Smaller Code Is Faster Code

 d_factory ()

::make_unique<D<T>> () ;

 d_factory ()

::make_shared<D<T>> () ;

 d_factory ()

:tmake_unique<D<T>> () ;

2.43s compile, 91k exe, 190044k compile RAM

69 0of 116

Smaller Code Is Faster Code

Numbers

 d_factory ()

::make_unique<D> () ;

 d_factory ()

::make_shared<D> () ;

 d_factory ()

::make_unique<D> () ;

7573k exe, ~10% slower (very surprising when | found this bottleneck)

70 of 116

Smaller Code Is Faster Code

< T> std::shared_ptr d_factory ()

{

return std::make_shared<D<T>> () ;

}

C++ Core Guidelines are surprisingly inconsistent in examples for factories

71 of 116

Smaller Code Is Faster Code

3 8 (const 3 & &lhs, const
return lhs + rhs;

}

() |
::function< 3 g (3 &
= ::bind(add, "Hello ", std::placeholders::_
f("World") ;

}

72 of 116

Smaller Code Is Faster Code

M (const S &lhs, const
return lhs + rhs;

}

int () |
::function< 3 g (2 g

= ::bind(add, "Hello ", std::placeholders::_
f("World") ;
}

e 2.9x slower than bare function call
e 30% compile time overhead
® ~10% compile size overhead

73 0of 116

Smaller Code Is Faster Code

38 (const 3 ¢ &lhs, const
return lhs + rhs;

}

() |
::bind(add, "Hello ", std::placeholders::_1);

f("World") ;
}

1.9x slower than bare function call
~15% compile time overhead
Effective Modern C++ #34

Any talk onistd::functionifrom STL

74 of 116

Smaller Code Is Faster Code

Use Lambdas

D (const D &lhs, const
return lhs + rhs;

}

() |
= [] (const std::string &b) {
return add("Hello ", Db);

}i
f("World") ;
}

e 0 overhead compared to direct function call
® 0% compile time overhead

75 0f116

Smaller Code Is Faster Code -
Exceptions

76 of 116

Smaller Code Is Faster Code -
Exceptions

g++ pre 5.0

mycount (::vector<unsigned char, ::allocator<unsigned char> > consté&, unsigned ch

14

14

77 of 116

Smaller Code Is Faster Code -
Exceptions

g++ 5.1

mycount (::vector<unsigned char, ::allocator<unsigned char> > consté&, unsigned ch

78 of 116

Smaller Code Is Faster Code -
Exceptions

g++5.1

79 of 116

Smaller Code Is Faster Code -
Exceptions

g++5.1

80 0f 116

Smaller Code Is Faster Code -
Exceptions

g++5.1

81 0f 116

Smaller Code Is Faster Code -
Exceptions

g++5.1

82 0f 116

Smaller Code Is Faster Code -
Exceptions

g++ 5.1

83 0f 116

Smaller Code Is Faster Code -
Exceptions

g++5.1

84 0of 116

Smaller Code Is Faster Code -
Exceptions

g++5.1

850f116

Smaller Code Is Faster Code -
Exceptions

g++ 5.1

86 0f 116

Smaller Code Is Faster Code -
Exceptions

g++5.1

87 0f 116

Smaller Code Is Faster Code -
Exceptions

g++5.1

88 0f 116

Smaller Code Is Faster Code -
Exceptions

g++5.1

89 0f 116

Smaller Code Is Faster Code -
Exceptions

O O
<

O
& o o
® 0 0

KK
D D (

.by
.b

clkogiomiogiogtoaiodiogiioy
< I I
t f ct cf ct ot cf ot f cf f
® ® DO O®O® DO D O

<
=
)

K

D
el e i e e e i i

O O ¢
AL
t
D

90 0of 116

Smaller Code Is Faster Code -
Exceptions

e The compiler has unrolled and vectorized the loop for us
e So, you may see smaller/simpler code actually cause an increase in compile size
e |sthis necessarily a good thing all the time?

91 of 116

Part 2: Smaller Code Is Faster Code -
Summary

e Don'trepeat yourself in templates

O i)

92 0f 116

Part 2: Smaller Code Is Faster Code -
Questions

When | Break The Rules

When | Break The Rules

e For very small, short lived key value pairs, std::vector can be faster
e Even if you are doing lots of querying of the keys

std: :map<std::string,

95 0f 116

When | Break The Rules

Factories

| take the factory issues one step further to avoid template instantiations, to make smaller
code and have taken this:

 d_factory ()

::make_unique<D> () ;

<Base> factory ()

<Base> (static_cast<Base *> (new Derived<T>()));

2% smaller executable size, 3% better runtime

96 0f 116

Bonus Slide - Avoid Non-Local Data

Non-Locals Tend To

1. Be statics - which have a cost associated
2. Need some kind of mutex protection

97 0of 116

Summary

First ask yourself: What am | asking the compiler to do here?

Initialization Practices

Always const
Always initialize

Hidden Work Practices

Calculate values once - at initialization time
Obey the rule of 0
If it looks simpler, it's probably faster

98 0f 116

Summary (Continued)

Container Practices

Then only differ if you need specific behavior
Make sure you understand what the library has to do

Smaller Code Is Faster Code Practices

Don't repeat yourself in templates

99 0of 116

Performance History

Sum of test time by version

100 of 116

Performance Monitoring

o O O O O o o o o
o O O O O o o o o
o O O O O o o o o
389838388 °
o
o o
T
I
N
||
|
,_ \
i
w
o,,tﬁ A
|
° o_l - en
o o o
o o 0
o o 0
) 0
o o o ™o ' X}
e » X
e LI)
\e)
\® e o
° o o
® wee o6
® LN
° o ®® \
° ¢« o e \
° e o o
¢ | [2 I)
o | oo,t
o | o o
: | ..W
° L I)
o | L I)
e | o o
* [
° [)
o | o o0
o | [I
o | o o
° o o0
e oo o o
o °

101 of 116

What About constexpr?

What About constexpr?

constexpr bool (Itr begin, const Itr &end)

{

<

Itr start = begin;
++begin;
(begin != end) {
(! (*start < *begin)) { return false; }
start = begin;
++begin;
}

return true;

< T>
constexpr bool (const 88
return is_sorted(l.begin(), l.end());

}

int ()
{

return is_sorted ({1,2,3,4,5});

}

103 of 116

What About constexpr?

What About Not constexpr?

Itr>
(Itr begin, const Itr &end)

Itr start = begin;
++begin;
(begin != end) {
(! (*start < *begin)) { return false; }

start = begin;

++begin;
}
return true;

}

< T>
bool (const

return is_sorted(l.begin(), l.end());

}

<T> &1) {

int ()
{

return is_sorted ({1,2,3,4,5});

}

e What does this compile to?

105 0f 116

What About Not constexpr? (with
optimizations enabled)

constexpr

..................

Bigger code is often slower code
This is a profile and test scenario for me

107 of 116

So Why Does This All Work?

So Why Does This All Work?

Branches and Predictions

e Code branches are expensive

e Simpler code has fewer branches

e (Acccording to oprofile) ChaiScript v5.8.3 has 1.86x fewer branches then v5.1.0, and 3x
the branch prediction success rate

109 of 116

So Why Does This All Work?
Cache Hits

e CPU cacheis many (hundreds of) times faster than main memory

e Smaller code (and simpler code is smaller) is more likely to fit in to the CPU cache

e (According to oprofile) ChaiScript v5.8.3 hits the Last Level Cache 35x less often than
v5.1.0, and has 1% better cache hits rates when it does

110 of 116

So Why Does This All Work?
Doing What The Compiler Author Expects

e |diomatic C++ falls into certain patterns that compiler authors expect to find
e Well known patterns can be optimized better

111 of 116

What's Next?

What's Next?
Simplifying User Input - Before

File
Equation = For
Var_Decl Constant 0 Equation = Binary < Prefix ++ Block
: | R
Id x Var_Decl Constant 0 Idi Constant 100 Idi Equation +=
; /N
Id i Id x Idi

113 of 116

What's Next?
Simplifying User Input - After

Equation = Compiled
Var_Decl Constant 0 Equation +=
Id x Id x Id i

114 of 116

What's Next?
Simplifying User Input

Nearly every project of significance relies on user input.

Are there ways you can simplify your user input to make the execution of your program
faster?

1150f 116

Questions?

Jason Turner

http://github.com/lefticus/presentations
http://cppcast.com
http://chaiscript.com
http://cppbestpractices.com

C++ Weekly - YouTube

@lefticus

Independent Contractor

116 of 116

