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Optimizing Compilers Are Amazing
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Optimizing Compilers Are Amazing
g++ 5.1+
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Optimizing Compilers Are Amazing
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Optimizing Compilers Are Amazing

.string "basic_string::_M_construct null not valid"
__cxx1ll::basic_string<char, ::char_traits<char>, ::allocator<char> >::

OFFSET FLAT:.LCO

__throw_logic_error (char const?*)
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Optimizing Compilers Are Amazing

basic_string<char, ::char_traits<char>,
[ +8 ]
+07],

+16],

.string "a"

.string "b"
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Optimizing Compilers Are Amazing

main:

OFFSET FLAT:.LC2+1
OFFSET FLAT:.LC2
64

[ +16]

[ I

__cxx1ll::basic_string<char, ::char_traits<char>,
[ +438]
[ +32]
OFFSET FLAT:.LC3+1
OFFSET FLAT:.LC3
[rsp+8]
[ +321],
__cxx1ll::basic_string<char, ::char_traits<char>,
[ +32]
+48]
[ +40]

.L19
operator delete (void¥*)

' [ ]
.0 +16]

4
.L24
operator delete (void*)
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Optimizing Compilers Are Amazing
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Optimizing Compilers Are Amazing

e But trying to predict what the compiler can optimize is a risky game
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Profiling ChaiScript
e Performance measuring ChaiScript is difficult

e Great number of template instantations
e Nature of scripting means execution is spread over many similar functions
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Parsed Nodes

File
Equation = For
l l
Var_Decl Constant 0 Equation = Binary < Prefix ++ Block
: A R
Id x Var_Decl Constant 0 Id i Constant 100 Id i Equation +=
i /\
Id i Id x Idi

12 of 116



Parsed Nodes

eval_internal()gval_internal()

Equation =

File

eval_internal()

Var_Decl

Constant 0

Equation =

val_internal()

eval_internal() gval_internal()

eval_internal()

For

eval_internal()gval_internal()

Binary <

eval_internal()\eval_internal()

eval_internal()

Prefix ++

val_internal()

eval_internal()

Block

Id x

Var_Decl

Constant 0

Id i

Constant 100

Id i

Equation +=

val_internal()

Id i

val_internal()

él_internalxeval_internal()
Id x I

di
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Performance Profiling

chaiscript::AST_Node::eval

chai.exe

Calling functions |:> Current function

)| Called functions

eval_internal

eval_internal

eval_internal

Related Views: Caller/Callee Functions

eval_intemal

eval_intemal

eval_intemal

eval_intemnal

Performance metric:  Inclusive Samples %

Function Code View

c:\programming\chaiscript\include\chaiscript\language\chaiscript_common.hpp

0.3 %

100.0 %

100% ~ 4

¥

return oss.str();

/// Prints the contents of an AST node, in
std::string to_string(const std::string &t

¥

std::ostringstream oss;

oss << t_prepend << "(" << ast_node_type,
<< this->text << " : " << this->loca

for (auto & elem : this->children) {
oss << elem->to_string(t_prepend + "

}

return oss.str();

Boxed_Value eval(const chaiscript::detail:

{

¥

try {

} catch (exception::eval_error &ee) {
ee.call_stack.push_back(shared_from_th:
throw;

}

static bool get_bool_condition(const Boxed,

try {
return boxed_cast<bool>(t_bv);
¥

catch (const exception::bad_boxed_cast &
throw exception::eval_error("Condition

t
>

v
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Performance Practices

This led to the creation of several rules and practices that | follow to make well-performing
code 'by default'
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Which Is Better In Normal Use?

______________________

o WHY?
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std::list



std::list

e What has to happen here?
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std::list

main:

__detail:: List node base:: M hook ( :: _detail:: List_node base
Srdi

$rdi
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std::list

($rdi), S%Srbp

operator delete (void¥*)
$rbx, Srbp

Srbp, %rdi

.L10
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std::list

$rbx, %rdi

.L4

($rdi), %rl2

operator delete (void¥*)

$rl2, S%rdi
.L5

$rbp, %rdi
_Unwind_Resume
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std::list
Allocate a new node
Handle exception thrown during node allocation?
Assign the value
Hook up some pointers

Delete node
etc?
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std: :vector



std: :vector

e What has to happen here?
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std: :vector

$8, %rsp

S4, %edi

operator new(unsigned long)
S1, (%rax)

$rax, %rdi

operator delete (void*)
$eax, %eax

$8, %rsp

e Allocate a buffer
e Assign avalue in the buffer
e Delete the buffer
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What about std: :array?




What about std: :array?

e Codeis completely compiled away
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Part 1: Don't Do More Work Than You
Have To



Don't Do More Work Than You Have To

Container Practices

____________________

Then only differ if you need specific behavior
Make sure you understand what the library has to do
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Don't Do More Work Than You Have To

in ()

int

e Construct a string object
e Reassign string object
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Don't Do More Work Than You Have To

Alwaysiconst.

e Construct and initialize in one step
® ~32% more efficient
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Don't Do More Work Than You Have To

"long string is mod 0";
"long string is mod 1";

"long string is mod 2";

"long string is mod 3";
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Don't Do More Work Than You Have To

D s = [&] O){

(1 %5 4) |
0:

return "long string is mod 0";
1:

return "long string is mod 1";

return "long string is mod 2";

return "long string is mod 3";

® ~31% more efficient
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Don't Do More Work Than You Have To

Always Initialize When Const Isn't Practical

e Same issues as previous examples
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Don't Do More Work Than You Have To

Always Initialize When Const Isn't Practical

int () const {
return ttatoi(m_s.c_str());

e Same gains as const initializer
e What's wrong with this version now?
e val() parses string on each call
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Don't Do More Work Than You Have To

Don't Recalculate Values - Calculate on First Use

{
Int (

{1}

int () const {
(!'is_calculated) {
value = c:atoi(s);
}
return value;

}

is_calculated = false;
value;
Sy

What's wrong now?
C++ Core Guidelines state that const methods should be thread safe
What else?

_________________________

36 of 116



Don't Do More Work Than You Have To

Don't Recalculate Values - Calculate On First Use

{
Int (

{ }

int () const {
(!is_calculated) {
value = c:atoi(s);
is_calculated = true;
}

return value;

is_calculated = false;
value;

e Branchingis slower
e Atomics are slower
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Don't Do More Work Than You Have To

Don't Recalculate Values - Calculate At Construction

{
Int ( std::string &t_s) : m_i(std::atoi(t_s.c_str()))
{ }

int val () const {

return m_1i;

No branching, no atomics, smaller runtime (int vs string)

In the context of a large code base, this took ~2 years to find
Resulted in 10% performance improvement across system
The simpler solution is almost always the best solution
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Don't Do More Work Than You Have To

Initialization Practices

e Always const

e Always initialize

e Using IIFE can help you initialize

e Don'trecalculate values that can be calculated once
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Don't Do More Work Than You Have To

Base {
~Base () =
virtual void

57

Derived : Base {
~Derived () = p
() override {}

e What's wrong here?
e move construction / assignment is disabled (virtual destructor)

__________________________________
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Don't Do More Work Than You Have To
Don't Disable Move Operations / Use Rule of 0

Base {
~Base () =

Base () = 7
Base ( Base &) 2 =(const Base&) =
Base (Base &&) = ; = (Base &&) = g

virtual void

I g

Derived : Base {
virtual void

I g

e 10% improvement with fixing this in just one commonly used class
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Don't Do More Work Than You Have To
On The Topic Of Copying

#include <string>

("a not very short string") + "b";

® Solet'suseistd: :move!

__________________
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Don't Do More Work Than You Have To
On The Topic Of Copying

#include <string>

® 29% more efficient
e 32% smaller binary
e Good! But what's better?
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Don't Do More Work Than You Have To

Avoid Named Temporaries

#include <string>

; ++1) |
("a not very short string") + "b");

e This is taking the "don't declare a variable until you need it" philosophy to its ultimate
conclusion
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Don't Do More Work Than You Have To

int ( I <Base> p)

{
return p->value () ;

}

int ()
{

ptr = ::make_shared<Derived> () ;
use_a_base (ptr) ;

}

o What's the problem here7
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Don't Do More Work Than You Have To
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Don't Do More Work Than You Have To

Avoid Automatic Conversions

e This version is 2.5x faster than the last
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Don't Do More Work Than You Have To

void println (ostream &os, const std::string &str)

{
0s << str << std::endl;

}

e it'sequivalenttoi'\n' << std::flush;

__________________________________

e Expect that flush to cost you at least 9x overhead in your |0
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Don't Do More Work Than You Have To

( ::o0s8tream &os) {
<< "a line of text" <<
<< "another line of text" <<

<< "many more lines of text" <<
(const 3¢ &filename) {

::ofstream (filename.c_str());
write_ file (ofs);

write_ _file(ss);
return ss.str();

}
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Don't Do More Work Than You Have To
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Don't Do More Work Than You Have To
Hidden Work Practices

Calculate values once - at initialization time
Obey the rule of 0

If it looks simpler, it's probably faster

Avoid object copying

Avoid automatic conversions

®m Don't pass smart pointers

m Make conversion operations explicit

__________________
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Don't Do More Work Than You Have To
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Don't Do More Work Than You Have To
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Don't Do More Work Than You Have To

shared ptr:lnstantiations

std::_Sp_counted_ptr_inplace<
std::_Sp_counted_ptr_inplace<

std::_Sp_counted_ptr_inplace<
8(%rsi), %rsi
$rdi, S%rdx
typeinfo name

typeinfo name
S24, %ecx

.L3

::allocator< (__gnu_cxx:
::allocator< >, (__gnu_cxx:

::allocator< >, (__gnu_cxx:

::_Sp_make_shared_tag, %rsi

::_Sp_make_shared_tag, %edi

:_Lock_policy)2>::
:_Lock_policy)2>::

:_Lock_policy)2>::
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Don't Do More Work Than You Have To

.L3:

std::_Sp_counted_ptr_inplace< 0 ::allocator< >, (__gnu_cxx::_Lock_policy)2>

std::_Sp_counted_ptr_inplace<

main:

movl

pushqg
movl

shared ptrilnstantiations

$24, %esi
operator delete(void*, unsigned long)

operator delete (void¥*)
Srbx

s$24, %edi

operator new(unsigned long)

¥rax, 5%rbx

S1, 8 (%rax)

S 12 (%$rax)

vtable for ::_Sp_counted_ptr_inplace< ::allocator<
SO0, 16 (%rax)

__gthrw___pthread_key_create (unsigned *, void (*) (voidx*)),
$rax, %rax

.L17

8 (%rbx), %$rdi

$-1, %esi

__gnu_cxx::__exchange_and_add ( volatile*,

S $eax

$1,
.L26

, ::allocator< >, (__gnu_cxx::_Lock_policy)2>

M
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Don't Do More Work Than You Have To

shared ptr Instantiations

(%$rbx), %rax

$rbx, %rdi

16 (%rax), S%Srax

*%rax

12 (%$rbx), %rdi

S—-1, %$esi

__gnu_cxx::__exchange_and_add ( volatile™,
Feax

S1,
.L2¢
.L
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Don't Do More Work Than You Have To
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Don't Do More Work Than You Have To

e What does this have to do?
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Don't Do More Work Than You Have To
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Don't Do More Work Than You Have To

|dentical
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Part 1: Don't Do More Work Than You
Have To - Summary

___________________

__________________

___________

e Always initialize with meaningful values
e Don't recalculate immutable results
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Part 1: Questions?
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Part 2: Smaller Code Is Faster Code



Smaller Code Is Faster Code

override { return m_v; }

e With many template instantiations this code blows up in size quickly
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Smaller Code Is Faster Code
DRY In Templates
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Smaller Code Is Faster Code

Factories
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Smaller Code Is Faster Code

Factories

<B> d_factory () {

::make_shared<D<T>> () ;

() |
N < H <B>> v{
d_factory<l> (), d_factory<2>(), , d_factory<29>(), d_factory<30>()
i
}

----------------------- i

e We already saw thatishared ptr<>iis big- don't make more than you have to
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Smaller Code Is Faster Code

28 <B> d_factory () {
return ::make_unique<D<T>> () ;

}

int () |

M < H <B>> v{
d_factory<l>(), d_factory<2>(), , d_factory<29>(), d_factory<30>()
i
}
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Smaller Code Is Faster Code

<B> d_factory ()

::make_unique<D<T>> () ;

<B> d_factory ()

::make_shared<D<T>> () ;

<B> d_factory ()

:tmake_unique<D<T>> () ;

2.43s compile, 91k exe, 190044k compile RAM
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Smaller Code Is Faster Code

Numbers

<B> d_factory ()

::make_unique<D> () ;

<B> d_factory ()

::make_shared<D> () ;

<B> d_factory ()

::make_unique<D> () ;

7573k exe, ~10% slower (very surprising when | found this bottleneck)
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Smaller Code Is Faster Code

< T> std::shared_ptr<B> d_factory ()

{

return std::make_shared<D<T>> () ;

}

C++ Core Guidelines are surprisingly inconsistent in examples for factories
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Smaller Code Is Faster Code

3 8 (const 3 & &lhs, const
return lhs + rhs;

}

() |
::function< 3 g ( 3 &
= ::bind(add, "Hello ", std::placeholders::_
f("World") ;

}
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Smaller Code Is Faster Code

M (const S &lhs, const
return lhs + rhs;

}

int () |
::function< 3 g ( 2 g

= ::bind(add, "Hello ", std::placeholders::_
f("World") ;
}

e 2.9x slower than bare function call
e 30% compile time overhead
® ~10% compile size overhead
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Smaller Code Is Faster Code

38 (const 3 ¢ &lhs, const
return lhs + rhs;

}

() |
::bind(add, "Hello ", std::placeholders::_1);

f("World") ;
}

1.9x slower than bare function call
~15% compile time overhead
Effective Modern C++ #34

Any talk onistd::functionifrom STL

_________________________
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Smaller Code Is Faster Code

Use Lambdas

D (const D &lhs, const
return lhs + rhs;

}

() |
= [] (const std::string &b) {
return add("Hello ", Db);

}i
f("World") ;
}

e 0 overhead compared to direct function call
® 0% compile time overhead

75 0f116



Smaller Code Is Faster Code -
Exceptions
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Smaller Code Is Faster Code -
Exceptions

g++ pre 5.0

mycount ( ::vector<unsigned char, ::allocator<unsigned char> > consté&, unsigned ch

14

14
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Smaller Code Is Faster Code -
Exceptions

g++ 5.1

mycount ( ::vector<unsigned char, ::allocator<unsigned char> > consté&, unsigned ch
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Smaller Code Is Faster Code -
Exceptions

g++5.1

79 of 116



Smaller Code Is Faster Code -
Exceptions

g++5.1
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Smaller Code Is Faster Code -
Exceptions

g++5.1
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Smaller Code Is Faster Code -
Exceptions

g++5.1
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Smaller Code Is Faster Code -
Exceptions

g++ 5.1
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Smaller Code Is Faster Code -
Exceptions

g++5.1
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Smaller Code Is Faster Code -
Exceptions

g++5.1
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Smaller Code Is Faster Code -
Exceptions

g++ 5.1
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Smaller Code Is Faster Code -
Exceptions

g++5.1
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Smaller Code Is Faster Code -
Exceptions

g++5.1
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Smaller Code Is Faster Code -
Exceptions

g++5.1
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Smaller Code Is Faster Code -
Exceptions

O O
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Smaller Code Is Faster Code -
Exceptions

e The compiler has unrolled and vectorized the loop for us
e So, you may see smaller/simpler code actually cause an increase in compile size
e |sthis necessarily a good thing all the time?
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Part 2: Smaller Code Is Faster Code -
Summary

e Don'trepeat yourself in templates

____________________

O i)

__________________
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Part 2: Smaller Code Is Faster Code -
Questions



When | Break The Rules



When | Break The Rules

-------------------------

_________________________

e For very small, short lived key value pairs, std::vector can be faster
e Even if you are doing lots of querying of the keys

std: :map<std::string,
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When | Break The Rules

Factories

| take the factory issues one step further to avoid template instantiations, to make smaller
code and have taken this:

<B> d_factory ()

::make_unique<D> () ;

<Base> factory ()

<Base> (static_cast<Base *> (new Derived<T>()));

2% smaller executable size, 3% better runtime
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Bonus Slide - Avoid Non-Local Data

Non-Locals Tend To

1. Be statics - which have a cost associated
2. Need some kind of mutex protection

____________________
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Summary

First ask yourself: What am | asking the compiler to do here?

Initialization Practices

Always const
Always initialize

Hidden Work Practices

Calculate values once - at initialization time
Obey the rule of 0
If it looks simpler, it's probably faster

_________________
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Summary (Continued)

Container Practices

____________________

Then only differ if you need specific behavior
Make sure you understand what the library has to do

Smaller Code Is Faster Code Practices

Don't repeat yourself in templates

_____________________________

_________________________

_________________
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Performance History

Sum of test time by version
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Performance Monitoring
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What About constexpr?



What About constexpr?

constexpr bool (Itr begin, const Itr &end)

{

<

Itr start = begin;
++begin;
(begin != end) {
(! (*start < *begin)) { return false; }
start = begin;
++begin;
}

return true;

< T>
constexpr bool (const 88
return is_sorted(l.begin(), l.end());

}

int ()
{

return is_sorted ({1,2,3,4,5});

}
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What About constexpr?




What About Not constexpr?

Itr>
(Itr begin, const Itr &end)

Itr start = begin;
++begin;
(begin != end) {
(! (*start < *begin)) { return false; }

start = begin;

++begin;
}
return true;

}

< T>
bool (const

return is_sorted(l.begin(), l.end());

}

<T> &1) {

int ()
{

return is_sorted ({1,2,3,4,5});

}

e What does this compile to?
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What About Not constexpr? (with
optimizations enabled)




constexpr

..................

__________________

Bigger code is often slower code
This is a profile and test scenario for me
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So Why Does This All Work?



So Why Does This All Work?

Branches and Predictions

e Code branches are expensive

e Simpler code has fewer branches

e (Acccording to oprofile) ChaiScript v5.8.3 has 1.86x fewer branches then v5.1.0, and 3x
the branch prediction success rate
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So Why Does This All Work?
Cache Hits

e CPU cacheis many (hundreds of) times faster than main memory

e Smaller code (and simpler code is smaller) is more likely to fit in to the CPU cache

e (According to oprofile) ChaiScript v5.8.3 hits the Last Level Cache 35x less often than
v5.1.0, and has 1% better cache hits rates when it does
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So Why Does This All Work?
Doing What The Compiler Author Expects

e |diomatic C++ falls into certain patterns that compiler authors expect to find
e Well known patterns can be optimized better
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What's Next?



What's Next?
Simplifying User Input - Before

File
Equation = For
Var_Decl Constant 0 Equation = Binary < Prefix ++ Block
: | R
Id x Var_Decl Constant 0 Idi Constant 100 Idi Equation +=
; /N
Id i Id x Idi
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What's Next?
Simplifying User Input - After

Equation = Compiled
Var_Decl Constant 0 Equation +=
Id x Id x Id i
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What's Next?
Simplifying User Input

Nearly every project of significance relies on user input.

Are there ways you can simplify your user input to make the execution of your program
faster?
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Questions?

Jason Turner

http://github.com/lefticus/presentations
http://cppcast.com
http://chaiscript.com
http://cppbestpractices.com

C++ Weekly - YouTube

@lefticus

Independent Contractor
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