Monoids, Monads, and
Applicative Functors

Repeated Software Patterns

Stellar Science
David Sankel - 5/10/2016 - C++Now 2016

Why Functional Software
Patterns?

In a nutshell...

Answer Desigh Questions

e What are the "fundamental" operations?
e What can the user do with the provided flexibility?
e How does this relate to other classes?

Functional Patterns are Not for the
User

e User's don't recognize them.
= "What's a monadic bind operation?"
e Code becomes less clear.
m Generic code is fun, but readable code is better.

A Bit of History

Haskell

e An academic programming language modeled after math.
e Purity is a really big deal.

e Emphasis on purity left Haskell 1.0 a toy language. Streams used as the
IO model.

Then monads hit the stage...

e 1989, Eugenio Moggi uses monads to describe model states and

exceptions.
e 1992, Wadler uses monads to express |0 in Haskell.

e Category Theory becomes popularized in Functional Programming.

What is Category Theory?

Investigation started in 1942 by Eilenberg and Mac Lane.

Attempt to abstract over various mathematical domains and map
between them.

Generality made it applicable to many domains, even music theory.
Category, Functor, Duality, Monad, Isomorphisms, ...

All about widely repeated patterns.

Monoid

A monoid is a type T with a binary operation @ which combines its values.

e D must be associative. Thatis, (a @ b) @& c = a @ (b & c) forany
a, b, c which have type T.
e T has a special value esuchthate @ x = x @ e = xfor every value x.

Numeric types with + are monoides.

e (a+b) +c=a+ (b+ c)forall numeric types.
e 9isthe special value. We have @ + x = x + @ = xfor every value x
which is numeric.

Numeric types with * are monoids.

e (a *b) *c=a* (b * c)forall numerictypes.
e 1isthe special value. We havel * x = x * 1 = xfor every value x
which is numeric.

unsigned with std: :max forms a monoid.

e max(max(a, b), c) = max(a, max(b,c)).
e 9 is the special value. We have

max(0, x) = max(x, @) = X

for every unsigned x.

Monoids are all over the place.

What is the e value for the float, std: :min monoid?

Does std: :vector form a monoid with something?

What can you do with a list of monoids?

Fancy Monoids

std::optional template

A std::optional<T> is either "null" or has a value of type T.

std::optional<double> o = std::nullopt;

// o 1s null, viz. 'bool (o) == false'

o= 3.0

// o has value 3.0, viz. 'bool (o) == true' and '*o == 3.0

Is std: :optional a monoid?

A std: :optional monoidis a
monoid

std: :optional<SomeMonoid> append(std::optional<SomeMonoid> lhs,
std::optional<SomeMonoid> rhs) {
if(!'1lhs)
return rhs;
else {
if(rhs)
return std::optional<SomeMonoid>(*lhs @ *rhs);
else
return lhs;

Another std: :optional monoid

template<typename T>
std: :optional<T> append(std::optional<T> lhs,
std::optional<T> rhs) {
1f(!'lhs)
return rhs;
else {
if(rhs)
return rhs;
else
return lhs;

Do functions returning R form a
monoid?

Functions of the same type that return monoids are a monoid

Search for n best occurances of a word in a million documents

e Key insight: An n-heap is a monoid.

e Split documents between cluster nodes.

e Send word to each cluster node.

e Each cluster node generates a heap using parallelization.
e Each cluster node sends its heap to a collection node.

e The collection node joins the heaps.

Monoids

e Monoids scale very well.
e Monoids compose via. functions, optional, and other things.
e Monoids are common.

Functor

A functor is a class template (Functor<T>) with a single template parameter
and a callable (map) which have the following properties.

e map(f, a) is alegal expression when:
® 3 is avalue of type Functor<T> for some type T.
= fis a callable that accepts a single argument of type T.
= | et U be the result type of of f(t) where t has type T. The result of
map(f, a) istype Functor<U>.
e |ff(t) == tforallvalues t of type T, thenmap(f, a) == afor all values
a of type Functor<T>.
e map(g, map(f, a)) = map(gf, a) where

auto gf = [f,qg] (auto t){ return g(f(t)), }

Functor: Intuition
e Functors are like containers.
e map applies a function to the thing in the container resulting in a new

container,
e The laws provide reasonable rules that allow map composition.

std: :vector is a functor

A more efficient map

Is std: :optional is a functor?

Is std: :set is a functor?

Is std: :pair is a functor?

Is std: : function is a functor?

std: : function functor

functors allow for transformation's within

Each map strips away one layer of your datatype.

Say you have a std: :vector<std: :optional<int>> and want to get strings
for each int.

Applicative Functor

An applicative functor (Applicative<T>) is a functor with two extra
operations, pure and apply, which obey the following rules.

e pure(t) where t is of type T results in a value of type Applicative<T>.
e apply(aff, afv) is alegal expression when:
= aff has type Applicative<F> for some callable F where f(t) is well
defined if f is of type F and t is of type T.
= afv has type Applicative<T> for some type T.
= apply(aff, afv) hastype Applicative<U> iff the result type of £(t)
is U.

Applicative Functor Laws

e If f(t) == tforallt, then apply(pure(f), a) == aforalla.

e apply(pure(f), pure(t)) == pure(f(t)) for all f and t.

e apply(a, pure(t)) == apply(pure(f), a) when f(g) == g(t) for all
g.

* apply(a, apply(b, c)) == apply(apply(apply(pure(f), a), b), c)
when f(g, h)(t) == g(h(t)) forall g, h, and t.

e map(f, a) ==apply(pure(f), a)

Applicative Functor Intuition

e pure wraps a value into the container.
e apply applies a contained function to a contained value to get a
contained result.

Note that apply can be extended to n argument functions.

std: :optional applicative functor

Pure;

std: :optional applicative functor

Apply:

std: :optional applicative functor
properties

Consider

/* etc. */;
/* etc. */;
apply (std::plus<>(), a, b);
apply(std: :negate<>(), c);

const std::optional<double>
const std::optional<double>
const std::optional<double>
const std::optional<double>

O Q O w

Is std: :vector an applicative functor?

e |sit afunctor? What is map?
e What is pure?

apply for std: :vector

You've got a vector of functions, [f1, f2, ..] and a vector of values [t1,
t2, ..]. What can you do?

std: :vector nondeterminism

Many applicative functors

std: :future

continuations

exception-style errors

behaviors in functional reactive programming
parsers

etc.

Parser applicative
functors

What are the fundamental operations for a parser?

Let Parser<T> be a stdin parser that parses into type T.

If p has type Parser<T>, p.read() tries to parse stdin. If it succeeds, it
returns type T, otherwise it throws an exception.

Some friend functions;

either

What is pure?

What is apply?

And we're done.

Everything else can be built on these pieces.

Parser<int> digitP = apply(
successP([] (char ¢){ return c¢c - '0'; }),
either (charP('0'"'"), either(charP('1"), ..))):;

Parser<int> intP = apply(
successP(/* convert digits to int */),
zeroOrMore (digitP));

template<typename A, typename B>
Parser<std::pair<A,B>> operator>>(Parser<A> aParser,
Parser bParser) {
return apply(/* etc. */);

auto twoIntsP = intP >> charP(' ') >> intP;

Review

e Monoids — Highly parallel patterns ().
e Functors — Do things to the stuff inside (map).
e Applicative Functors — Put stuff inside (pure). The stuff inside can do

things to the stuff inside (apply).

Monad

A monad (Monad<T>) is an applicative functor with an extra operation join
which obeys the following rule.

e join(a) where a is of type Monad<Monad<T>> results in a value of type
Monad<T>.

Monad Laws

A bit more complex to express in C++.

e Joining outside-in vs. inside-out shouldn't make a difference.
e Similarly for pure and join.
e See https://en.wikibooks.org/wiki/Haskell/Category_theory

https://en.wikibooks.org/wiki/Haskell/Category_theory

Join for std: :optional

template<typename T>
std::optional<T> join(std::optional<std::optional<T>> a) {
if(a)
return *a;
else
return std::nullopt;

Other monads

e std::vector
® parser
e functions with a single parameter of type A

So, what's the big deal?

The monad bind operation

The monadic bind operation is defined in terms of the other operations.
For a given Monad<T>:

template<typename T, typename U>

Monad<U> bind (Monad<T> m, std::function<Monad<U>(T)> f) {
return join (apply(pure(f), m));

}

Usually, you'd like bind to be an operator overload. Lets use >>.

Indent a bit differently...

Now squint and you'll see something like this...

Now cross your eyes and you'll see...

Which looks a lot like imperative computation.

And that was a really big deal for
SEN Gl

But, what do monads do for us?

e Express different models of computation within C++.
m std::vector gives a language with nondeterminism.
m std::optional provides a language with error fallthrough.
= Continuation language, etc.
e Provide more control over computation.
= Serialize and de-serialize computations.
= Command pattern embedded language.
e |mperative template metaprogramming.

Lets wrap it up...

This is just the beginning...

More interesting patterns:

e Semigroup
e Category
e Arrow

e Comonad

Repeated Software Patterns

Monoid, Functor, Applicative Functor, and Monad.

Any Questions?

Further information:

e https://wiki.haskell.org/Typeclassopedia
e Category Theory for Computing Science by Michael Barr and Charles
Wells

https://wiki.haskell.org/Typeclassopedia

