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Abstract

Quantum-optical communication combines quantum aspects of light and communication
engineering to bring forth novel approaches to communication. One of these approaches is
quantum-key distribution, enabling practical and secure-key generation. As a fledgling dis-
cipline, quantum-optical communication lacks a unified theoretical framework on which
both communication engineers and quantum physicists agree. Single-mode quantum op-
tics, the standard framework used to describe the quantum properties of light, lacks the
notion of a continuous spectrum, essential for communication theory.

The present thesis aims to deliver the missing theoretical framework for quantum-optical
communication by reviewing the quantum description of a coherent-state transmission sys-
tem implementing quantum-key distribution (QKD) in three steps: First, we present and
compare QKD protocols and argue why continuous-variable quantum-key distribution (CV-
QKD) resembles a coherent-state transmission system. Second, we derive a continuous-
mode quantum theory of light rooted in quantum field-theory and apply it to describe the
building blocks of a coherent-state transmission system. Third, we assemble the previously
derived building blocks into a coherent-state transmission system and compare them to a
software-defined implementation of a coherent-transmission system, emphasizing signal-
processing aspects.

Our continuous-mode quantum theory of light is compatible with the few references on
continuous-mode quantum optics but is more transparent in the underlying assumptions.
Applied to quantum-optical communication, we motivate a generalized quadrature opera-
tor, which accounts formeasurements of particular frequency bands. Furthermore, we show
that the electro-optical in-phase/quadrature (I/Q) modulator and balanced detector imple-
ment up- and downconversion of classical signal processing. Applied to CV-QKD, we find
a self-contained description that the respective domain experts can agree on, allowing for a
future transfer of methods between quantum optics and communication engineering.

I



Notation

Wemostly adopt the mathematical notation from popular quantum field-theory books, e.g.
Refs. [1, 2].

Throughout the thesis, we exclusively use the natural unit system, where the natural con-
stants, i.e., speed of light 𝑐, reduced Planck constant ℏ, electric charge 𝑒, electron mass 𝑚𝑒,
dielectric constant 𝜀0, are set to one, significantly reducing notational clutter. If required,
one can restore the SI units by dimensional analysis.

If not explicitly stated, the integration domain covers the𝑛-dimensional real numbers,ℝ𝑛.

For the temporal Fourier transform, we choose the convention

𝑓(𝑡) = ∫ d𝜔
2𝜋𝑓(𝜔)𝑒

+𝑖𝜔𝑡 𝑓(𝜔) = ∫ d𝑡 𝑓(𝑡)𝑒−𝑖𝜔𝑡.

For the spatial Fourier transform, we choose the convention

𝑓(𝐱) = ∫
d3𝑝
(2𝜋)3

𝑓(𝐩)𝑒−𝑖𝐩⋅𝐱 𝑓(𝐩) = ∫ d3𝑥𝑓(𝐱)𝑒+𝑖𝐩⋅𝐱.

The four-dimensional (spacetime), Fourier transform follows from the combined temporal
and spatial Fourier transform

𝑓(𝑡, 𝐱) = ∫
d4𝑝
(2𝜋)4

𝑓(𝑝0, 𝐩)𝑒+𝑖𝑝0𝑡−𝑖𝐩⋅𝐱 𝑓(𝑝0, 𝐩) = ∫ d4𝑥𝑓(𝑡, 𝐱)𝑒−𝑖𝑝0𝑡+𝑖𝐩⋅𝐱

where we identify 𝑝0 with the energy 𝜔. We denote the convolution operator with ∗, i.e,

(𝑓 ∗ 𝑔) (𝑡) = ∫ d𝑡′ 𝑓(𝑡′)𝑔(𝑡 − 𝑡′) = ∫ d𝜔
2𝜋𝑓(𝜔)𝑔(𝜔)𝑒

+𝑖𝜔𝑡

in the frequency and

(𝑓 ∗ 𝑔) (𝜔) = ∫ d𝜔′
2𝜋 𝑓(𝜔′)𝑔(𝜔 − 𝜔′) = ∫ d𝑡 𝑓(𝑡)𝑔(𝑡)𝑒−𝑖𝜔𝑡

in the time domain.

To become proficient with the Minkowski metric and tensors, we recommend the study of
Ref. [3]. Three-dimensional vectors are denoted by boldface, i.e.,

𝐚 = (
𝑎1
𝑎2
𝑎3
) .
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Sometimes, we express vectors as linear combinations of unit vectors, e.g.,

𝐚 = 𝑎𝑖𝐞̂𝑖 =
3
∑
𝑖=1

𝑎𝑖𝐞̂𝑖

wherein we used the Einstein summation convention, summing over a pair of lower and
upper indices, named ”contraction”. Three-dimensional vector components carry a latin
index, e.g., 𝑖, 𝑗, 𝑘, 𝑙. Four-dimensional vector components carry a greek index, e.g., 𝜇, 𝜈, 𝜌.
Four-dimensional vectors are denoted without boldface, i.e.,

𝑎 = 𝑎𝜇𝐞̂𝜇 = (𝑎
0

𝐚 ) =
⎛
⎜
⎜
⎝

𝑎0
𝑎1
𝑎2
𝑎3

⎞
⎟
⎟
⎠

and we refer to the zeroth component 𝑎0 as the time component and the other components
𝑎𝑖 as the spatial components. It is common practice to refer to a vector by its component,
i.e., 𝑎𝜇 refers to the four-dimensional vector 𝑎.

For the Minkowski metric 𝑔𝜇𝜈 we adopt the ”mostly minus” convention, i.e.,

𝑔𝜇𝜈 =
⎛
⎜
⎜
⎝

𝑔00 𝑔01 𝑔02 𝑔03
𝑔10 𝑔11 𝑔12 𝑔13
𝑔20 𝑔21 𝑔22 𝑔23
𝑔30 𝑔31 𝑔32 𝑔33

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟
⎟
⎠

.

TheMinkowski product given two four-dimensional vectors, 𝑎𝜇 and 𝑏𝜇, is given by the con-
traction

𝑎𝜇𝑔𝜇𝜈𝑏𝜈 = 𝑎0𝑏0 − 𝐚 ⋅ 𝐛 = 𝑎0𝑏0 − 𝑎𝑖𝑏𝑖

wherein 𝐚 ⋅ 𝐛 is the scalar product on Euclidean space. The Minkowski metric can be used
to raise and lower indices,

𝑎𝜇 = 𝑔𝜇𝜈𝑎𝜈 =
⎛
⎜
⎜
⎝

𝑎0
−𝑎1
−𝑎2
−𝑎3

⎞
⎟
⎟
⎠

,

and a spatial component with a lower index is not in general equal to a spatial component
with a raised index, 𝑎𝑖 ≠ 𝑎𝑖!

With regard to quantummechanics, we use the standard bra-ket notation where we denote
scalar-valued operators by a hat, e.g., ̂𝑋, and vector-valued operators by boldface hat, e.g.,
𝐗̂.

Analog to the continuous-time signal 𝑥(𝑡), we define the discrete-time signal

𝑥[𝑛] = ∫ d𝑡 𝑥(𝑡)𝛿(1)(𝑡 − 𝑛𝑇),
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wherein 𝑇 is the sampling period. Sometimes we refer to 𝑥[𝑛] as samples or a sample similar
as 𝑥(𝑡) denotes a function or the function evaluated at 𝑡. To distinguish samples from sym-
bols, which do not require a sampling period 𝑇, we use the index notation, i.e., 𝑥𝑚 denotes
a symbol while 𝑥[𝑚] denotes a sample.

Regarding operator ordering, we note the normal-ordering symbol, moving the creation op-
erators, e.g., ̂𝑎†, to the left and the annihilation operators, e.g., ̂𝑎, to the right, by

∶ ̂𝑎 ̂𝑎† ̂𝑏∶ = ̂𝑎† ̂𝑎 ̂𝑏.

As time-ordering symbol we adopt𝒯+, which evaluates an operator in forward time-order [2,
p. 84],

1
2

̂𝑇+∫
𝑡

𝑡0
d𝑡1∫

𝑡

𝑡0
d𝑡2 ̂𝐴(𝑡1) ̂𝐵(𝑡2) = ∫

𝑡

𝑡0
d𝑡1∫

𝑡1

𝑡0
d𝑡2 ̂𝐴(𝑡1) ̂𝐵(𝑡2).

IV



Acronyms

ADC analog-to-digital converter.

AES advanced encryption standard.

AM amplitude modulation.

AR anti-reflective.

BCH Baker-Campbell-Hausdorff.

BD balanced detector.

BS beam splitter.

CCR canonical commutation relation.

COM center of mass.

CV-QKD continuous-variable quantum-key distribution.

DAC digital-to-analog converter.

DOF degrees of freedom.

DPS-QKD differential phase-shift quantum-key distribution.

DSP digital signal processing.

DV-QKD discrete-variable quantum-key distribution.

EB entanglement-based.
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ECDH elliptic-curve Diffie-Hellman.

EOM equation(s) of motion.

ETCR equal-time commutation relation.

FC fiber coupler.

GNFS generalized number field sieve.

I/Q in-phase/quadrature.

IQM in-phase and quadrature modulator.

LDPC low-density parity-check.

LO local oscillator.

LP low-pass.

LTI linear time-invariant.

MAC message authentication code.

MZI Mach-Zehnder interferometer.

MZM Mach-Zehnder modulator.

OFDM orthogonal frequency-division multiplexing.

OTP one-time pad.

P&M prepare-and-measure.

PBS polarized beam splitter.

PC polarization controller.

PD photodiode.
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PKD public-key distribution.

POVM positive operator-valued measure.

PS phase-shifter.

PWM power meter.

QBER quantum-bit error-rate.

QED quantum electrodynamics.

QKD quantum-key distribution.

QPSK quadrature phase-shift keying.

RF radio frequency.

RRC root-raised-cosine.

RX receiver.

SNR signal-to-noise ratio.

SPD Single-photon detector.

SPS Single-photon source.

TIA transimpedance amplifier.

TX transmitter.

VOA variable optical attenuator.
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Introduction

Optical communication enables humanity worldwide to share information in a split sec-
ond, with companies like Huawei undergoing tremendous efforts to advance the frontiers.
In addition to incremental innovation increasing the performance and decreasing the cost
of optical communication technology, we observe intensified activities towards disruptive
innovations that challenge our present understanding of communication. One such branch
of activity is quantum-optical communication, incorporating quantum aspects of light into
classical communication and leading to novel communication technology like quantum-
key distribution (QKD), which enables practical and secure-key generation. As a still young
discipline, which emerged from two highly advanced fields, communication engineering
and quantum physics, quantum communication lacks a unified description on which both
communication engineers and quantum physicists agree. The present thesis aims to resolve
the seeming discrepancies between communication engineering and quantum physics by
reviewing a practical implementation of a quantum-communication system employing a
continuous-variable quantum-key distribution (CV-QKD) protocol. In the process, we in-
tend to develop a theoretical framework for quantum-optical communication, incorporating
quantum effects into classical communication, which has applicability beyond CV-QKD.

Problem statement

To raise awareness of the challenges ahead, we review the best-known quantum theory of
light, single-mode quantum optics, along with central ideas from classical communication
and outline where these pictures conflict.

In single-mode quantum optics, we model monochromatic light with frequency 𝜔0 as a
quantum harmonic oscillator with unit mass,𝑚 = 1, and Hamiltonian [4, 5]

𝐻̂ = 𝜔0 ̂𝑎† ̂𝑎, (0.0.1)

wherein ̂𝑎 and ̂𝑎† are the quantum annihilation and creation operators, destroying or creat-
ing an excitation or ”mode” of frequency 𝜔0. The electric field operator,

̂𝐸(𝑡, 𝑥) = ℰ0 ( ̂𝑎 + ̂𝑎†) sin(𝜔0𝑥), (0.0.2)

wherein ℰ0 has the interpretation of an electric field density, establishes the connection
between the quantum harmonic oscillator and electromagnetic radiation, including light [4,
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p. 12]. Two of the most important quantum states are the number and the coherent state,

|𝑛⟩ = 1
√𝑛!

( ̂𝑎†)𝑛 |0⟩ and |𝛼⟩ = exp (−12|𝛼|
2)

∞
∑
𝑛=0

𝛼𝑛

√𝑛!
|𝑛⟩. (0.0.3)

The number state is parametrized by a natural number 𝑛 ∈ ℕ0 counting the number of exci-
tations. The coherent state is parametrized by a complex number 𝛼 ∈ ℂ encoding amplitude
and phase. The expectation value of the electric field operator with respect to a coherent
state,

⟨𝛼| ̂𝐸(𝑡)|𝛼⟩ = √2|𝛼|ℰ0 sin (𝜔0𝑡 − 𝜃) , (0.0.4)

equals a classical monochromatic wave with amplitude proportional to |𝛼| and phase 𝜃 [4,
p. 45].

The central concept in communication engineering is that of a signal, not specific to a par-
ticular physical realization, e.g., mechanical or electromagnetic waves. In that sense, light is
primarily an implementation detail for carrying information-bearing signals. In the follow-
ing, we assume the information-bearing signals to be narrowband, i.e., have a well-defined
narrow bandwidth 𝐵𝑑 in the power spectrum.1 Complementary, the carrying signal, ideally,
only comprises a single well-defined frequency component, tailored to the physical trans-
mission channel, which typically is many magnitudes higher than the frequency compo-
nents of the information-bearing signal. Superimposing carrier signals with frequencies
sufficiently spaced apart allows multiplexing of information-bearing signals on a common
transmission medium. Affiliating an information-bearing signal with a carrier is imple-

|𝑥(𝜔)|2

𝜔
0 𝜔𝑐

𝐵𝑠

Figure 0.1.: Power spectrum comprising an information-bearing signal with bandwidth 𝐵𝑠
at zero frequency, 𝜔 = 0, a carrier signal at a carrier frequency much greater
than the bandwidth, 𝜔𝑐 ≫ 𝐵𝑠. The upconverted information-bearing spectrum
is indicated by dashed lines.

mented by modulating the information-bearing signal onto the carrier signal. On a more
abstract level, the power spectrum of the information-bearing signal is shifted by the carrier
frequency, as illustrated in Figure 0.1. The asymmetry of the information-bearing spectrum
around zero frequency, 𝜔 = 0, in Figure 0.1 implies that the information-bearing signal is
1In general, there is no requirement for the information-bearing signal to be narrowband, see, for instance,
orthogonal frequency-division multiplexing (OFDM) and spread-spectrum techniques.

2



complex-valued. At the same time, the spectrum of the information-bearing signal modu-
lated onto the carrier, denoted by the dashed spectrum around 𝜔𝑐, has complex conjugate
symmetry, i.e., is thus real-valued, as we would expect from a physical signal. As it is techni-

|𝑥(𝜔)|2

𝜔
0 𝜔𝑙 − 𝜔𝑐 𝜔𝑐 𝜔𝑙 𝜔𝑙 + 𝜔𝑐

𝐵𝑠𝐵𝑑

Figure 0.2.: Power spectrum comprising a modulated carrier signal at carrier frequency 𝜔𝑐
with bandwidth 𝐵𝑠, a local oscillator (LO) signal with frequency slightly above
the carrier frequency, 𝜔𝑙 > 𝜔𝑐. The downconverted modulated-carrier spectra
are indicated by dashed lines, lower band at 𝜔𝑙−𝜔𝑐 > 0, and dotted lines, upper
band at 𝜔𝑙 + 𝜔𝑐. The detector bandwidth is indicated by 𝐵𝑑 > 𝜔𝑙 − 𝜔𝑐.

cal unfeasible to measure themodulated carrier directly at the carrier frequency, we demod-
ulate or downconvert the information-bearing signal from the carrier bymixing the received
signal with a LO at frequency 𝜔𝑙, producing a low- and high-frequency signal at 𝜔𝑙 − 𝜔𝑐 re-
spectively 𝜔𝑙+𝜔𝑐, as depicted in Figure 0.2. For a useful measurement, the LO frequency 𝜔𝑙
should be chosen such that the detector bandwidth 𝐵𝑑 covers the complete low-frequency
signal, i.e., 𝜔𝑙−𝜔𝑐+𝐵𝑠/2 < 𝐵𝑑. The relative dependence of themeasured spectrum from the
LO frequency 𝜔𝑙 and the fact that the modulated carrier signal and the information-bearing
signal contain the same information suggests introducing the concept of base- and passband
representation [6]. The passband representation corresponds to the physical reality where
the information-bearing signal is modulated onto the carrier. The passband signal is real-
valued, and the spectrumhas complex conjugate symmetry. However, whenwemeasure the
spectrum, we do so with a relative frequency and obtain an asymmetric spectrum centered
at zero frequency, the baseband representation. Figure 0.3 shows the power spectrum of a
received signal in baseband representation comprising two signal bands and a pilot tone.

To sum up, single-mode quantum optics provides precise physical meaning to light, includ-
ing quantum effects, although limited to monochromatic light. On the other side, commu-
nication engineering provides a framework for efficiently encoding, transmitting, receiving,
and decoding information but attempts no statements about the underlying physics. For
quantum-optical communication, it is inevitable to welcome and incorporate both views.
For instance, people with a background in quantum optics but foreign to communication
engineering often advocate the concept of ”one state, one universe”, where each quantum
transmission is completely independent. However, if we include practical considerations,
like assuming a single transmission line, the picture of ”one state, one universe” is plagued
by several ambiguities. For example, a single-mode quantum state with well-defined fre-

3
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Figure 0.3.: Power spectrum comprising showing the received signal as baseband. At
100MHz, the spectrum has a pilot tone. Centered at −25MHz, the spec-
trum shows a first passband signal with 12.5MHz bandwidth. Centered at
−168.75MHz, the spectrum has a second passband signal with 12.5MHz band-
width.

quency 𝜔0 represents a perfect sinusoidal wave with infinite duration, making information
transmission absurd. The typical counter-argument is that single-mode quantum optics im-
plicitly assumes pulses with 𝜔0 being the center frequency of the pulse. While the counter-
argument is technically valid, we must admit that it only raises new questions, such as
bandwidth-limitations on the pulse parameters, all properly addressed in communication
engineering.

The multi-mode quantum-optics mentioned in popular quantum-optics books [4, 5] are in-
sufficient to represent continuous-time signals, and performing a continuum limit might
not be correct if we consider the huge differences between linear algebra and functional
analysis. The advanced quantum-optics literature [7, 8] does sometimes use a continuous-
mode formalism but does not explicitly investigate its properties. We are only aware of
two quantum-optics books [9, 10] that explicitly discuss a continuous-mode theory of light
but again open up new questions regarding the fundamental assumptions and justification
thereof. If we are willing to go one step deeper, we find answers in the quantum field-theory
literature [2, 11, 12, 13], but it is up to us to transfer these insights from particle physics to
quantum-optics applications. We even have to go a bit deeper and look into mathematical
quantum field-theory [14, 15, 16] to answer some questions. Finally, we want to understand
and upgrade quantum models of (electro-)optical components in the literature [7, 17, 18,
8] to a mode continuum for comparison with the results from the optical-communication
community [19, 20]. Regarding communication engineering, we retain the well-established
signal-processing fundamentals, as presented, for example, in Refs. [21, 22, 23, 6, 24, 25].
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Thesis outline

Our work is divided into four chapters. In Chapter 1, we present an introduction to QKD,
emphasizing the similarities between the plethora of seemingly different protocols and at-
tempting to argue why CV-QKD resembles a coherent-state communication system. In the
following three chapters, we construct our theoretical framework for quantum-optical com-
munication towards CV-QKD. Starting from a general quantum theory of light in Chapter 2,
applying the quantum theory to describe the building blocks of coherent communication
systems in Chapter 3, to an abstract description of a coherent-state transmission system’s
signal processing in Chapter 4. While the thesis chapter structure supports a bottom-up ap-
proach, it is equally possible to read the thesis from the back to the front, revealing more
and more details.

5



Chapter 1.
Quantum-key distribution

Before diving deep into the technical details of our quantum theory of light, we would like
to introduce the reader to quantum-key distribution (QKD) as an example of quantum op-
tical communication. In particular, we want to emphasize the many different layers, quan-
tum and classical, involved in practical quantum optical communication. Our introduction
favors breadth over depth and ignores protocol-specific details to highlight the similarities,
specifically between discrete-variable quantum-key distribution (DV-QKD) and continuous-
variable quantum-key distribution (CV-QKD).

The literature divides QKD protocols among DV-QKD and CV-QKD and differential phase-
shift quantum-key distribution (DPS-QKD), though this thesis will not address DPS-QKD
further. One of the few resources painting a comprehensive and decisive picture of QKD,
and providing much inspiration for the present chapter, is Ref. [26]. Other notable refer-
ences are Ref. [27], reviewing the practical aspects of QKD, and Refs. [28, 29] for CV-QKD.
DV-QKD is often approached in the context of Gaussian quantum information theory, see
Refs. [30, 31]. More advanced resources highlighting the practical implementation of QKD
are found in Refs. [32, 33, 34]. Compared to the existing literature, our introduction to QKD
attempts to weaken the distinction between DV-QKD and CV-QKD by framing it as an en-
coding detail.

The chapter organizes as follows. First, we motivate the challenge of secure and practical
key distribution in the context of secure communication. Second, we present the key con-
cepts of protocols based on qubit and bosonic quantum information. Third, we discuss the
classical post-processing procedure required to distill a shared secret key. Fourth, we provide
rough ideas on how to perform a security analysis of QKD. Finally, we argue for the concept
of a logical and encoding quantum layer for practical QKD. One of the most relevant con-
clusions to draw from this chapter is that a coherent-state transmission system resembles
the encoding quantum layer for CV-QKD protocols.
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1.1. Secret-key distribution problem

Two spatially distanced parties, Alice and Bob, share a communication channel that allows
Alice to send messages to Bob. How can Alice and Bob secure their communication against
an opposing third party, Eve? Alice needs to ensure that the message she transmits is con-
fidential, i.e., only Bob can read it. Bob needs to ensure that the message he receives is
integer, i.e., only Alice can have sent it. Figure 1.1 depicts a secure communication system

Plaintext

Ciphertext

Message Channel Message

Ciphertext

Plaintext

Alice Bob

encrypt

hash unhash

decrypt

Figure 1.1.: Secure communication system comprising a transmitter (Alice), a receiver (Bob)
and a public communication channel. Alice encrypts a plaintext message yield-
ing a ciphertext. By adding the hash to the ciphertext, Alice constructs amessage
she transmits through the channel to Bob. Bob removes the hash from his re-
ceived message to resolve the ciphertext. Decrypting the ciphertext unveils the
plaintext for Bob.

implementing integrity and confidentiality between Alice and Bob.1 First, Alice encrypts
a plaintext message, using symmetric encryption like the one-time pad (OTP) [38] or the
more practical advanced encryption standard (AES) [39], to ensure confidentiality. Second,
she adds a message authentication code (MAC) using, e.g., universal hash functions [40], to
ensure integrity. Bob receives the encrypted message with MAC from Alice. He confirms
the integrity of the message by checking the MAC, then he decrypts the message to access
the plaintext.

Message authentication and cipher require Alice and Bob to possess a shared secret key. If
Alice and Bob use the OTP cipher and their secret key is truly random, the communication
system is eternally secure [38] — provided that Alice and Bob do not re-use their secret key.
Unless Alice and Bob do not want tomeet in person every time they initiate communication,
Alice and Bob need a practical method to distribute a secret key.
1For a discussion on the order of hashing and encryption, see Ref. [35, 36, 37].
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1.1.1. Public-key distribution

The standard attempt to solve the key-distribution problem is to use an asymmetric cipher
comprising a public key for encryption and a private key for decryption. One of the parties,
for example, Bob, first generates an asymmetric key pair of which he discloses the public
key to Alice. Alice generates a secret key from a true random generator, encrypts it with
the public key, and sends it to Bob, see the left-hand side of Figure 1.2. Bob decrypts the
message he received fromAlice with his private key to obtain Alice’s secret key, see the right-
hand side of Figure 1.2. Assuming the asymmetric cipher to be secure, Alice and Bob now
share a secret key. Public-key distribution algorithms, for instance, Diffie-Hellman [41] and

Secret key Message

Public key

Channel Message Secret key

Private key

Alice Bob

Figure 1.2.: Alices and Bob use an asymmetric cipher to distribute a secret key. Alice pos-
sesses the secret key and a public key, and Bob owns a private key corresponding
to Alice’s public key. Alice encrypts the secret key with the public key and trans-
mits the message over a (public) channel to Bob. Bob decrypts the message with
the private key to obtain the secret key.

variants thereof, e.g., elliptic-curve Diffie-Hellman (ECDH), are heavily employed on the
internet because they are effortless to deploy.

The core principle behind asymmetric ciphers is the concept of one-way functions, functions
easy to compute but difficult to invert. Here, easy and difficult refer to the computational
complexity, denoting the upper bound of the best (known) algorithm to solve the problem.
The time to break an asymmetric cipher depends on the computational resources and com-
plexity. In practice, one chooses a key length, such that attacks, possible with present com-
putational resources, become impractical. However, computational resources advance with
time.2 A key length that was considered secure in the past might be rendered useless in the
future. It is imaginable to store communication from the present in the hope of breaking it in
the future. In addition to technological progress in computing, discovering new algorithms
may decrease the computational complexity and make certain attacks practicable. For ex-
ample, Shor’s quantum algorithm [43] provides an exponential speed-up in prime number
factorization compared to the fastest (known) classical algorithm, GNFS, see Figure 1.3. As
prime number factorization is used by, for instance, Diffie-Hellman key exchange, as a one-
way function, a sufficiently-powerful quantum computer can break previously, assumed to
2According to Moore’s observation, the number of transistors in integrated circuits doubles every two years.
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Figure 1.3.: Computational runtimes for prime number factorization algorithms: The
most efficient known classical algorithm is the generalized number field sieve
(GNFS) [42] (green) and Shor’s algorithm [43] (orange). The runtime of the
classical algorithm increases exponentially with the number of bits, while the
quantum algorithm rises almost linearly.

be, secure communication.

As long as there exists no mathematical proof for a theoretical lower bound of the computa-
tional complexity of a particular class of one-way functions, PKD is not forward secure, i.e.,
might be broken in the future.3

3Post-quantum cryptography [44, 45] attempts to mitigate the vulnerability of present asymmetric ciphers
against quantum algorithms by choosing a different class of one-way functions suspected to be secure. But
again, as long as there is no absolute lower bound for the computational complexity of a particular class of
one-way functions, forward security of PKD, including post-quantum ciphers, remains contestable.
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1.1.2. Quantum-key distribution

The potential of public-key distribution (PKD) becoming a vulnerability inflames the de-
mand for a practical and forward secure key distribution scheme. Ideally, the key-distribution
scheme should dynamically react to any third-party interaction by compensating for the in-
formation leak or aborting the protocol. QKD claims to be such a key-distribution scheme.
Based on the laws of quantum physics, QKD exploits the inherent uncertainty of measuring
non-orthogonal quantum states to generate random correlations betweenAlice andBob. Al-
ice’s and Bob’s correlations provide insights about potential information loss to a third party.
Using classical techniques, Alice andBob can then compensate for the potential information
loss or abort the protocol if necessary. Figure 1.4 presents a communication system profi-

Secret key Transmitter

Alice

Eve Receiver Secret key

Bob

Quantum channel

Classical channel

read and write

read

Figure 1.4.: Alice and Bob use a quantum and classical channel to generate a shared secret-
key. Alice possesses a transmitter, and Bob owns a receiver. Transmitter and
receiver both output a secret key and connect to a quantum and classical chan-
nel. A potential adversary, Eve, has read and write access to the quantum but
only read access to the classical channel.

cient for QKD. The classical and quantum channel connecting Bob’s receiver with Alice’s
transmitter is usually the same physical medium. For example, an optical fiber where the
quantum and classical channels occupy different wavelengths or polarization. If the QKD
protocol succeeds, Alice’s transmitter and Bob’s receiver output the same secret key to Alice,
respectively Bob. The adversary, Eve, has full access (read and write) to the quantum chan-
nel but has only read access to the classical channel. The restriction that Eve has only read
access over the classical channel is important to exclude man-in-the-middle attacks. How-
ever, the restriction is not a practical limitation as we can ensure integrity by promoting the
classical channel to an authenticated channel using MACs.

The details on QKD strongly depend on the particular implementation at hand, the QKD
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protocol. A huge zoo of QKD protocols exists, and it is useful to overview common features
for a systematic presentation. The QKD literature typically distinguishes between DV-QKD,
CV-QKD, andDPS-QKD.Leaving outDPS-QKD, it is unclearwhich features unambiguously
differentiate between CV-QKD and DV-QKD. For instance, most practical DV-QKD proto-
cols use weak coherent states [28], which are anything but discrete. The accepted opinion
considers a protocol discrete when using a single photon and continuous when using a co-
herent detector. However, this view is challenged by discrete QKD protocols, like BB84 [46],
using coherent detection [47]. What other feature can we use if the detection method does
not clearly distinguish between CV-QKD and DV-QKD? Figure 1.5 summarizes common

QKD

Logical
Hilbert space

Finite

Countable

Schema

Entangle-
ment-based

Prepare-
and-

measure

Measurement
basis selection

Active

Passive

Physical
encoding

Polarization

Quadra-
tures

Squeezing

Detection

Coherent

Single-
photon

Figure 1.5.: Common characteristics of QKD protocols in a tree diagram. The protocol
schema is either prepare-and-measure (P&M) or entanglement-based (EB). The
Measurement basis selection is either passive or active. The detection is usually
coherent or based on single-photon clicks. The logical Hilbert space is either
finite or countable. Among many, the physical encoding uses the field quadra-
tures, polarization, or squeezing degrees of freedoms (DOFs) of light.
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features among QKD protocols. Features like the protocol schema, the measurement basis
selection, and the detector are uniquely determined. More opaque is the distinction be-
tween the physical encoding and the logical Hilbert space, a concept which we introduce
here. The physical encoding refers to the light DOFs used to encode the data, for example,
the polarization of light or the particular quantum state. More often, the technical facili-
ties determine the physical encoding. For example, coherent light sources and detectors are
mature technologies. At the same time, many QKD protocols assume a more simple quan-
tum system than that of light, which we refer to as the logical Hilbert space. The logical
Hilbert space is either finite or countable. If it is finite, it is often a qubit or generalization
thereof. If it is countable, it is often bosonic. Therefore, we propose not to partition QKD
protocols among CV-QKD or DV-QKD but by their logical Hilbert space being bosonic- or
qubit-based4, which we both present in the next two sections.

1.2. Qubit-based protocols

Many DV-QKD protocols, e.g., the BB84 [46], BB92, or the six-state protocol [48], are qubit-
based in that the logical quantum system underlying the key generation is a two-state quan-
tum system, a qubit.

A qubit state |𝜓⟩ is an element of a two-dimensional complex Hilbert space with norm one,
i.e., |⟨𝜓|𝜓⟩|2 = 1. In the qubit basis {|0⟩, |1⟩}, a generic qubit state takes the form

|𝜓⟩ = 𝑐1|0⟩ + 𝑐2|1⟩ with |𝑐1|2 + |𝑐2|2 = 1. (1.2.1)

Table 1.1 lists different quantum systems which allow encoding of a qubit. To encode a

Encoding variable Standard basis

|0⟩ |1⟩

Polarization Horizontal Vertical
Photon number Vacuum Single-photon
Time-bin Early Late
Phase-bin 0 deg 180 deg

Table 1.1.: Possible physical systems to encode a qubit with possible choices for the standard
basis elements.

qubit the actual quantum systems does not have to be two-dimensional. For example, the
photon Fock space is countable. Still, by restricting the basis elements to the vacuum and
single-photon state, we have a qubit. Similar, we can partition the continuous time and
phase parameters of a quantum system to separate bins.
4Such a distinction is also indicated in quantum information theory, see, for instance, Ref. [30, p. 2].
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A useful visualization of qubit states is the Bloch sphere, see Figure 1.6. The Bloch sphere is

|𝜓⟩

|𝑧+⟩ = |0⟩

|𝑥+⟩

|𝑦+⟩

|𝑧−⟩ = |1⟩

|𝑦−⟩

Figure 1.6.: Two-state quantum system in the Bloch sphere representation. The Bloch
sphere is a three-dimensional sphere with unit radius. A pure quantum state
|𝜓⟩ resides on its surface of a sphere.

a unit sphere embedded in three-dimensional space. Pure quantum states are elements on
the surface of the Bloch sphere. Two antiparallel vectors correspond to orthogonal states.
Typically, the standard axis in ℝ3 are assigned to the three orthogonal Pauli eigenbases. A
generic quantum state |𝜓⟩ in a certain basis can be found by projection. Figure 1.7 shows
the projection among the 𝑋 and 𝑍 Pauli eigenbases. In quantum mechanics, the projection
coefficients, i.e., the inner product of two states, correspond to the probability amplitude of
measuring the given state in particular basis. We can formalize this concept by introducing
the generalized spin operator

̂𝑆(𝐧̂) = 𝐒̂ ⋅ 𝐧̂ = 1
2𝜎̂𝑗𝑛

𝑗 = ( 𝑛3 𝑛1 − 𝑖𝑛2
𝑛1 + 𝑖𝑛2 −𝑛 + 3 ) (1.2.2)

wherein 𝐧̂ ∈ ℝ3 is a unit norm vector and 𝜎̂𝑗 is the 𝑗th Pauli matrix. Let |±, 𝐧̂⟩ be the eigen-
state of the generalized spin operator ̂𝑆(𝐧̂) to eigenvalues ±1/2, i.e.,

̂𝑆(𝐧̂)|±, 𝐧̂⟩ = ±12|±, 𝐧̂⟩, (1.2.3)
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Figure 1.7.: Two-dimensional state space spanned by the 𝑋, 𝑍 Pauli eigenbases: Projecting
the |𝑥−⟩ state onto the 𝑍 eigenbasis yields a constant probability amplitude of
1/√2.

then for 𝐧̂ = 𝐞̂𝑗 we obtain the 𝜎̂𝑗 Pauli eigenstates, i.e.,

̂𝑆𝑥|𝑥±⟩ = 𝐒̂(𝐞̂𝑥)|±, 𝐞̂𝑥⟩ = ±12|±, 𝐞̂𝑥⟩ = ±12|𝑥±⟩ (1.2.4)

̂𝑆𝑦|𝑦±⟩ = 𝐒̂(𝐞̂𝑦)|±, 𝐞̂𝑦⟩ = ±12|±, 𝐞̂𝑦⟩ = ±12|𝑦±⟩ (1.2.5)

̂𝑆𝑧|𝑧±⟩ = 𝐒̂(𝐞̂𝑧)|±, 𝐞̂𝑧⟩ = ±12|±, 𝐞̂𝑧⟩ = ±12|𝑧±⟩. (1.2.6)

By convention one identifies the 𝑍 Pauli eigenbasis with the qubit basis {|0⟩, |1⟩}.

Having introduced the concept of basis projections and the spin operator, we can discuss the
BB84 (six state) protocol for which Alice and Bob must agree on two (or three) orthogonal
bases5 and a mapping between the basis states and some bit sequence, then

1. Alice encodes her bits into the state |𝜓⟩ and sends it to Bob.

2. Bob receives the state |𝜓⟩ fromAlice and performs ameasurement decoding some bits.

If Alice and Bob select the same basis, Bob can accurately decode Alice’s key bit from the
measurement. Alice and Bob’s probability of choosing the same basis for one transmission
is one divided by the number of orthogonal bases Alice and Bob have agreed on, e.g., 50% if
Alice and Bob agreed to use the 𝑋 and 𝑍 Pauli eigenbasis, also called the quantum-bit error-
rate (QBER). In the asymptotic limit of many transmissions, the QBER should approach the
5BB92 using non-orthogonal bases can be implemented by using the generalized spin operator with non-
orthogonal vectors.
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theoretical limit. Otherwise, an opposing third party, Eve, might have tempered with the
transmission. Table 1.2 displays a possible transmission sequence between Alice and Bob.
Alice randomly selects an initial key bit 0 or 1 and a state basis 𝑋 or 𝑍 where 𝑋 respective 𝑍
denote the eigenbasis of the Pauli 𝜎𝑥 respective 𝜎𝑧matrix. Alice’s initial key bit and selected
basis determine the quantum state she prepares and sends to Bob. Bob randomly chooses a
measurement basis. Only if Alice’s and Bob’s basis agree, the key bit is not discarded. After

Transmission

Party Step 1 2 3 4 5

Alice
Initial key bit 0 1 1 0 0
State basis 𝑍 𝑋 𝑋 𝑍 𝑋
Prepared state |𝑧+⟩ |𝑥−⟩ |𝑥−⟩ |𝑧+⟩ |𝑥+⟩

Bob
Measurement basis 𝑋 𝑍 𝑋 𝑍 𝑍
Possible outcomes 0,1 0,1 1 0 0,1
Sifted outcomes - - 1 0 -

Table 1.2.: Possible transmission sequence for qubit-based QKD illustrating how Alice en-
codes a key bit into a qubit state and Bob attempt to decode.

the transmission sequence, Alice and Bob hold a partially correlated and partially secret bit
string fromwhich they can distill a shared secret bit string using classical post-processing.

1.2.1. Polarization-encoding BB84

In polarization-encoding BB84, the polarization of light is used as physical quantum system
to encode the logical qubit system. Let |↔⟩ and |↕⟩ denote the horizontal respective vertical
polarization states forming the rectilinear basis. Let |⤡⟩ and |⤢⟩ denote the left- and right-
diagonal polarization states forming the diagonal basis. Let |↺⟩ and |↻⟩ denote the left- and
right-circular polarization states forming the circular basis. We can express the diagonal and
circular basis elements in terms of the rectilinear basis elements:

|⤡⟩ = 1
√2

(|↔⟩ + |↕⟩) |⤢⟩ = 1
√2

(|↔⟩ − |↕⟩) (1.2.7)

|↺⟩ = 1
√2

(|↔⟩ + 𝑖|↕⟩) |↻⟩ = 1
√2

(|↔⟩ − 𝑖|↕⟩) (1.2.8)

For clarity, we restrict the following discussion to qubit-based QKD protocols where two
orthogonal bases are used, e.g., rectilinear and diagonal. Other protocols exist that use three
orthogonal bases (six-state protocol) or even non-orthogonal bases.

A possible optical setup to implement such polarization-encoding is depicted in Figure 1.8.
Alice configures her linear polarizer to select a basis element of the rectilinear or diagonal
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polarization basis. Bob receivesAlice’s polarization state through the polarization controlled
quantumchannel. He rotates a rectilinear polarized beam splitter by either 0∘ or 45∘ to detect
either rectilinear or diagonal polarized photons with his two single-photon detectors placed
at the beam splitter output. Alice selects one of four polarization states |↔⟩, |↕⟩, |⤡⟩, |⤢⟩ by

SPS Polarizer Fiber PC FC PBS SPD1

SPD2

Figure 1.8.: Optical setup to implement polarization-encoding BB84 with active basis selec-
tion. The transmitter comprises an Single-photon source (SPS) and a polarizer
connected to a fiber. The receiver comprises a polarization controller (PC), a
fiber coupler (FC), a rotatable polarized beam splitter (PBS) with two Single-
photon detectors (SPDs) at its outputs.

adjusting her linear polarizer to one of four angles 𝜃 ∈ {0, 𝜋, 𝜋/2, 3𝜋/2}. We canwrite Alice’s
state as

|𝜃⟩ = 1
√2

(|↺⟩ + 𝑒𝑖𝜃|↻⟩) . (1.2.9)

Unrotated, Bob’s rectilinear polarized beam splitter monitored by two single-photon detec-
tors is equivalent to the positive operator-valued measure (POVM) for detecting rectilinear-
polarized light

{ ̂𝑃↔ = |↔⟩⟨↔|, ̂𝑃↕ = |↕⟩⟨↕|}. (1.2.10)

Rotated by 45∘, Bob’s rectilinear polarized beam splitter monitored by two single-photon
detectors is equivalent to the POVM for detecting diagonal-polarized light

{ ̂𝑃⤡ = |⤡⟩⟨⤡|, ̂𝑃⤢ = |⤢⟩⟨⤢|}. (1.2.11)

Instead of Bob actively selecting the measurement basis, he can passively let the quantum
randomness decide by splitting the photon with an unpolarized beam splitter towards a rec-
tilinear and diagonal polarization detector. Figure 1.9 shows an optical setup implementing
polarization-encoding BB84 with passive measurement basis selection. While Alice’s trans-
mitter setup is unchanged to the previous setup, Bob now has two polarization detectors.
One polarization detector comprises a rectilinear-polarized beam splitter and two single-
photon detectors. Another polarization detector comprises a diagonal-polarized beam split-
ter. The POVM describing Bob’s measurement with passive basis selection is

{12
̂𝑃↔,

1
2

̂𝑃↕,
1
2

̂𝑃⤡,
1
2

̂𝑃⤢}. (1.2.12)
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SPS Polarizer Fiber PC FC BS

PBS
(rectilinear)

SPD

PBS
(diagonal)

SPD

SPD

Figure 1.9.: Optical setup to implement polarization-encoding BB84 with passive basis se-
lection. The transmitter comprises a SPS and a polarizer connected to a fiber.
The receiver comprises a PC, a FC, an unpolarized beam splitter (BS), a rectilin-
ear PBS with two SPDs at the outputs, and a diagonal PBS with two SPDs at the
outputs. The receiver connects with the fiber through the PC. The FC couples
the output of the PC with the BS which splits the beam among the two PBSs.

Bob may still have inconclusive measurements. For instance, if he receives a horizontal
polarization state |↔⟩ and the photon chooses the path towards the diagonal polarization
detector, the clicks among the two single-photon detectors are equally distributed. The po-
larization of light is a qubit and we can simply relabel the polarization states with the Pauli
eigenstates, i.e.,

|⤡⟩ = |𝑥+⟩ |↺⟩ = |𝑦+⟩, |↔⟩ = |𝑧+⟩, (1.2.13)
|⤢⟩ = |𝑥−⟩ |↻⟩ = |𝑦−⟩ |↕⟩ = |𝑧−⟩ (1.2.14)

to show equivalence to the general qubit description.
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Prepared Measurement Click probability
state basis 𝑝1 𝑝2

|↕⟩ Rectilinear 100% 0%
Diagonal 50% 50%

|↔⟩ Rectilinear 0% 100%
Diagonal 50% 50%

|⤡⟩ Rectilinear 50% 50%
Diagonal 100% 0%

|⤢⟩ Rectilinear 50% 50%
Diagonal 0% 100%

Table 1.3.: Click probabilities for the polarization-encoding BB84 with active measurement
basis selection depending on the states Alice prepared and the measurement
bases Bob selected.

1.2.2. Time-phase-encoding BB84

In the following, we discuss the practical time-phase-encoding BB84 protocol and show its
equivalence to the polarization-encoding BB84. The idea of using phase-encoding was first
proposed as part of the BB92 protocol [49]. The basic setup is illustrated in Figure 1.10: Alice
creates an entangled photon state using a first Mach-Zehnder interferometer (MZI) with
phase 𝜃 ∈ {0, 𝜋/2, 𝜋, 3𝜋/2} and sends it to Bob. Bob detects the photon state using a second
MZI with phase 𝜙 ∈ {0, 𝜋/2} and two single-photon detectors monitoring the outputs.

To understand the time-phase encoding, we analyze the action of the asymmetric MZI with
variable phase 𝜑 on a photon pulse |𝑡0⟩ arriving at time 𝑡0, see Figure 1.11. An ideal (lossless)
and symmetric beam splitter transforms the single-photon input states into a superposition
according to6

𝑈̂BS|1, 0⟩ =
1
√2

(|1, 0⟩ + 𝑖|0, 1⟩) (1.2.15)

𝑈̂BS|0, 1⟩ =
1
√2

(𝑖|1, 0⟩ + |0, 1⟩) . (1.2.16)

Then, the first beam splitter BS1 in Figure 1.11 (instantly) splits a photon pulse |𝑡0⟩ arriving
at 𝑡0 into the superposition

𝑈̂BS|𝑡0, 0⟩ =
1
√2

(|𝑡0, 0⟩ + 𝑖|0, 𝑡0⟩) (1.2.17)

6See Ref. [18, p. 137] and Ref. [4, p. 143]
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Figure 1.10.: Fiber-optical setup of the phase-encoding BB84 using active basis selection.
The transmitter comprises a SPS and a first asymmetric MZI with variable
phase-shift 𝜃. The transmitter is connected to the receiver through a fiber. The
receiver comprises a second asymmetric MZI with variable phase-shift 𝜙. The
first and secondMZI are bothmade of two fiber couplers with a variable phase-
shifter in the longer optical path. The outputs of the second asymmetric MZI
is monitored by two SPDs.

where the first mode corresponds to the upper and the second mode to the lower optical
path in Figure 1.11. The phase shifter adds a relative phase of 𝜑 between the upper and
lower path and the input state to the second beam splitter BS2 is

𝑈̂PS𝑈̂BS|𝑡0, 0⟩ =
1
√2

(|𝑡0 + 𝜏, 0⟩ + 𝑖𝑒𝑖𝜑|0, 𝑡0 + 𝜏 + Δ𝜏⟩) (1.2.18)

wherein 𝜏 is the time delay the pulse accumulates over the short upper path and Δ𝜏 is the
difference in time delay between the shorter, lower and longer, upper path. The output state
of BS2 is equal to the action of the MZI

𝑈̂MZM|𝑡0, 0⟩ = 𝑈̂BS𝑈̂PS𝑈̂BS|𝑡0, 0⟩

= 1
2[(|𝑡0 + 𝜏, 0⟩ + 𝑖|0, 𝑡0 + 𝜏⟩) + 𝑖𝑒𝑖𝜑 (𝑖|𝑡0 + 𝜏 + Δ𝜏, 0⟩ + |0, 𝑡0 + 𝜏 + Δ𝜏⟩)]

= 1
2[|𝑡0 + 𝜏, 0⟩ − 𝑒𝑖𝜑|𝑡0 + 𝜏 + Δ𝜏, 0⟩ + 𝑖 (|0, 𝑡0 + 𝜏⟩ + 𝑒𝑖𝜑|0, 𝑡0 + 𝜏 + Δ𝜏⟩)].

(1.2.19)

Ignoring the vacuum state, we project the product state in eq. (1.2.19) onto each of the output
modes and obtain

|𝑡1, 𝜙⟩1 =
1
√2

(|𝑡1⟩ − 𝑒𝑖𝜑|𝑡1 + Δ𝜏⟩) (1.2.20)

|𝑡1, 𝜙⟩2 =
𝑖
√2

(|𝑡1⟩ + 𝑒𝑖𝜑|𝑡1 + Δ𝜏⟩) , (1.2.21)
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BS1

M1
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BS2

Figure 1.11.: Asymmetric MZI adding a constant time delay and variable phase difference
between the upper and lower path. A pulsed state enters the first BS, BS1, to
the left and is split among a longer upper path and a shorter lower path. A first
mirror M1 directs the pulse from the upper path to a phase shifter which adds
a relative phase of 𝜑 between the upper and lower path. A second mirror M2
directs the pulse from the phase shifter to a second BS, BS2, while the lower
path is between BS1 and BS2.

wherein 𝑡1 = 𝑡0 + 𝜏.

Back to the time-phase-encoding BB84 setup depicted in Figure 1.10, we note that Alice’s
transmitter consists of a single-photon source and an asymmetric MZI where one output is
dumped. Therefore, Alice’s states are parametrized by the relative phase 𝜃,

|𝑡0, 𝜃⟩ =
1
√2

(|𝑡0⟩ − 𝑒𝑖𝜃|𝑡0 + Δ𝜏⟩) , (1.2.22)

which equals the first output mode of theMZI, eq. (1.2.20), adapting the new time reference
𝑡1 → 𝑡0. If Bob receives a pulse with time delay Δ𝜏 at some time 𝑡1, i.e., |𝑡1 + Δ𝜏⟩, then his
MZI provides the two detectors with the states

|𝑡1 + Δ𝜏, 𝜙⟩1 =
1
√2

(|𝑡1 + Δ𝜏⟩ − 𝑒𝑖𝜙|𝑡1 + 2Δ𝜏⟩) (1.2.23)

|𝑡1 + Δ𝜏, 𝜙⟩2 =
𝑖
√2

(|𝑡1 + Δ𝜏⟩ + 𝑒𝑖𝜙|𝑡1 + 2Δ𝜏⟩) . (1.2.24)

We note that these are superpositions of states at three different time instances 0, Δ𝜏, 2Δ𝜏.
We drop the pulse time and introduce the state

|Δ𝜏 = 𝑚⟩ = |𝑡1 +𝑚Δ𝜏⟩ (1.2.25)

corresponding to the𝑚th detection time slot. In the new notation, Bob’s detectors receive a
superposition of Alice’s states, eq. (1.2.24) and eq. (1.2.26),

|𝜃, 𝜙⟩± =
𝑐±(𝜃 − 𝜙)

√2
[|Δ𝜏 = 0⟩ ∓ (𝑒𝑖𝜙 ± 𝑒𝑖𝜃) |Δ𝜏 = 1⟩ ± 𝑒𝑖(𝜙+𝜃)|Δ𝜏 = 2⟩] (1.2.26)
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with phase-dependent normalization constant

𝑐±(𝜃 − 𝜙) = 1
√2 ± cos(𝜃 − 𝜙)

. (1.2.27)

Using the POVM for detecting a click at time slot𝑚,

{ ̂𝑃𝑚 = |Δ𝜏 = 𝑚⟩⟨Δ𝜏 = 𝑚|}𝑚=0,1,2
, (1.2.28)

we find the click probabilities for the Bob’s detectors to equal

𝑝±,𝑚 = Tr ̂𝜌± ̂𝑃𝑚 = ⟨ ̂𝑃𝑚⟩𝜃, 𝜙±

= {
|𝑐±(𝜃 − 𝜙)|2 (1 ± cos(𝜃 − 𝜙)) 𝑚 = 1
|𝑐±(𝜃 − 𝜙)|2 1

2
𝑚 = 0, 2

.
(1.2.29)

If we configure the detectors to trigger only on the𝑚 = 1 time slot, we find the probability
for a click of the plus and minus detectors to be

𝑝±(𝜃 − 𝜙) = 1
2 [1 ± cos(𝜃 − 𝜙)] . (1.2.30)

Table 1.4 summarizes the click probability of the plus and minus detectors triggered on the
𝑚 = 1 time slot for a restricted choice of phases: Alice choosing 𝜃 ∈ {0, 𝜋} corresponds to
choosing the 𝑍 eigenbasis while 𝜃 ∈ {𝜋/2, 3𝜋/2} corresponds to her choosing the 𝑋 eigen-
basis. Bob using no phase shift 𝜙 = 0 corresponds to a selection of the 𝑋 basis while Bob
adding a phase shift of 𝜙 = 𝜋/2 corresponds to selection of 𝑋 as measurement basis. Only if
Alice and Bob choose the same basis, Bob’s click is perfectly correlated with Alice’s choice
for a basis element. Otherwise, it is completely random. Comparing the click probabilities

Phase Detector click probability
𝜃 𝜙 𝑝1(𝜃 − 𝜙) 𝑝2(𝜃 − 𝜙)

0 0 100% 0%
𝜋/2 50% 50%

𝜋 0 0% 100%
𝜋/2 50% 50%

𝜋/2 0 50% 50%
𝜋/2 100% 0%

3𝜋/2 0 50% 50%
𝜋/2 0% 100%

Table 1.4.: Click probabilities for the time-phase-encoding BB84 protocol depending on the
MZI phase angles set by Alice and Bob.
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of Table 1.4 with the probabilities of the qubit-based BB84, suggests equivalence of the time-
phase-encoding BB84 with themore general qubit-based description of BB84. While we can
identify Alice’s state in the time basis in terms of the 𝑌 qubit basis,

|𝑡0, 𝜃⟩ =
1
√2

(|𝑡0⟩ − 𝑒𝑖𝜃|𝑡0 + Δ𝜏⟩) = 1
√2

(|𝑦+⟩ − 𝑒𝑖𝜃|𝑦−⟩) = |𝜃⟩, (1.2.31)

the receiver side cannot simply be relabeled into the qubit-based description: Bob’s Hilbert
space, spanned by the three time slot states, |Δ𝜏 = 𝑚⟩𝑚=0,1,2, has one additional dimension
compared to the qubit Hilbert space. Such complication can be addressed using ”squash-
ing” [50, 51]: We first find a unitary transformation for the input mode of Bob’s receiver.
Second, we show that the POVM yields the same probability distribution as the qubit-based
description for all possible quantum states. The number state basis {|𝑛⟩}𝑛∈ℕ0

is complete and
countable allowing a proof by induction. It is important to show equivalence for all number
states as Eve’s not limited to the single-photon state.

1.3. Boson-based protocols

The quantum system of interest in boson-based protocols is a single bosonic mode, i.e.,
a quantum harmonic oscillator. For more information on boson information theory, see
Ref. [30, 31] and Ref. [52, 53] for a particular application towards CV-QKD.

The central observable is the generalized quadrature operator [10, p. 36]

̂𝑋(𝜗) = 1
√2

( ̂𝑎𝑒−𝑖𝜗 + ̂𝑎†𝑒+𝑖𝜗) (1.3.1)

wherein ̂𝑎†, ̂𝑎 are the bosonic creation and annihilation operators satisfying the canonical
commutation relation (CCR)

[ ̂𝑎, ̂𝑎†] = 1 [ ̂𝑎, ̂𝑎] = 0 = [ ̂𝑎†, ̂𝑎†]. (1.3.2)

It follows that the generalized quadrature operator satisfies the commutator

[ ̂𝑋(𝜗), ̂𝑋(𝜗 + Δ𝜗)] = 𝑖 sinΔ𝜗. (1.3.3)

The Robertson uncertainty relation provides a lower bound for the product of the standard
deviation of two operators in terms of their commutator. TheRobertson uncertainty relation
for the generalized quadrature operator,

⟨Δ ̂𝑋(𝜗)⟩⟨Δ ̂𝑋(𝜗 + Δ𝜗)⟩ ≥ 1
2|⟨[

̂𝑋(𝜗), ̂𝑋(𝜗 + Δ𝜗)]⟩| = 1
2 sinΔ𝜗, (1.3.4)
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generalizes Heisenberg’s uncertainty relation and implies maximal uncertainty for orthog-
onal quadratures Δ𝜗 = 𝜋/2. Let us assume the existence of an eigenstate |𝑥, 𝜗⟩ of the gen-
eralized quadrature operator Δ ̂𝑋(𝜗) with eigenvalue 𝑥 ∈ ℝ, i.e.,7

̂𝑋(𝜗)|𝑥, 𝜗⟩ = 𝑥|𝑥, 𝜗⟩, (1.3.5)

then the uncertainty relation implies that |𝑥, 𝜗⟩ and |𝑝, 𝜗 + Δ𝜗⟩ for Δ𝜗 > 0 are conjugate
variables, i.e., increasing the precision of one variable decreases the precision of the other.
Unsurprisingly, we can show that these eigenstates are non-orthogonal [54, p. 29]

⟨𝑥, 𝜗|𝑝, 𝜗 + 𝜋/2⟩ = 𝑒𝑖𝑝𝑥

√2𝜋
. (1.3.6)

Furthermore, by using the completeness of eigenstates, we can show that the eigenstates of
orthogonal quadratures are related by an unitary transform,

|𝑥, 𝜗⟩ = ∫
d𝑝
√2𝜋

𝑒−𝑖𝑝𝑥|𝑝, 𝜗 + 𝜋/2⟩ = 𝑈̂|𝑝, 𝜗 + 𝜋/2⟩, (1.3.7)

the Fourier transform. The non-orthogonality of the quadrature eigenstates, makes the
bosonic system a candidate for QKD. For instance, we can envision a bosonic BB84 pro-
tocol:

1. Alice prepares the state |±𝑥, 𝜗 + Δ𝜗⟩ where she randomly picks the sign of the eigen-
value ±𝑥 and Δ𝜗 = 0, 𝜋/2.

2. Bob performs a homodynemeasurement of one (active) or both (passive) quadratures.

Figure 1.12 visualizes Alice’s four quantum states in the optical phase space. If she chooses
the quadrature corresponding to Δ𝜗 = 0, a measurement in the orthogonal quadrature
eigenbasis yields a completely uncorrelated outcome. Only if Bob measures in the same
quadrature, can he decode the sign of the eigenvalue. Table 1.5 summarizes a possible
quantum-transmission sequence of bosonic BB84. Alice randomly selects the eigenvalue
sign 𝑥/|𝑥| and a quadrature 𝜗 ∈ {0, 𝜋/2}which she encodes into a quantum state |±𝑥, 𝜗⟩ and
sends it to Bob. Bob selects a quadrature for measurement. Only if Alice’s and Bob’s basis
match, is Bob’s outcome correlated with Alice’s value. To convert the sifted outcome to bits,
we can simply assign the bit value according to the sign. More advanced symbol mapping
techniques are discussed in the post-processing section.

The suggested bosonic BB84 highlights the differences and similarities of boson- and qubit-
based QKD. However, it cannot be implemented as no quadrature eigenstates exist - not
even theoretically on the Hilbert space! That said, we can use squeezed coherent states as
an approximation for quadrature eigenstates as discussed in the next section.
7Actually, the quadrature eigenstates only exist on the extended Hilbert space as they itself are not square-
integrable.
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̂𝑋(𝜗)

̂𝑋(𝜗 + 𝜋/2)

Figure 1.12.: Phase space representation of Alice’s quantumstates in bosonic BB84. The ana-
log of Alice’s basis selection is to choose between the two orthogonal quadra-
tures with Δ𝜗 = 𝜋/2. The analog of Alice’s basis element selection is to choose
the sign of the eigenvalue ±𝑥.

Transmission

Party Step 1 2 3 4 5

Alice
Quadrature value +𝑥 −𝑥 −𝑥 +𝑥 −𝑥
Quadrature angle 0 𝜋/2 0 𝜋/2 0
Prepared state |+𝑥, 0⟩ |−𝑥, 𝜋/2⟩ |−𝑥, 0⟩ |+𝑥, 𝜋/2⟩ |−𝑥, 0⟩

Bob Quadrature angle 𝜋/2 𝜋/2 0 𝜋/2 0
Sifted outcome - −𝑥 −𝑥 +𝑥 −𝑥

Table 1.5.: Possible quantum-transmission sequence for bosonic BB84 with active basis se-
lection.
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1.3.1. Squeezed-coherent-encoding BB84

Asqueezed coherent state, denoted |𝛼, 𝜉⟩, has the special property that the quadrature standard-
deviation is parametrized [7, p. 95]

⟨𝛼, 𝜉|Δ ̂𝑋(𝜗)|𝛼, 𝜉⟩ = |𝜇𝑒+𝑖𝜗 − 𝜈∗𝑒−𝑖𝜗| (1.3.8)

wherein parameters 𝜈, 𝜇 relate to the complex squeezing parameter 𝜉 = |𝜉|𝑒𝑖𝜑 via [7, p. 90]

𝜇 = cosh|𝜉| = 1 + |𝜈|2 𝜈 = 𝑒𝑖𝜑 sinh|𝜉| = |𝜈|𝑒𝑖𝜑. (1.3.9)

If the squeezing angle 𝜑 satisfies a particular phase relation with the quadrature angle 𝜗, the
quadrature standard deviation takes the form [7, p. 96]

⟨𝛼, 𝜉max/min|Δ ̂𝑋(𝜗)|𝛼, 𝜉max/min⟩ = exp(±|𝜉max/min|). (1.3.10)

In the limit of infinite squeezing magnitude |𝜉max/min| → ∞, we obtain the previously dis-
cussed quadrature eigenstates |𝑥, 𝜗⟩. Therefore, we can implement bosonic BB84 using
strongly squeezed coherent states. Figure 1.13 depicts the optical phase space for Alice’s
strongly squeezed coherent states for bosonic BB84. Contrary to quadrature eigenstates, the
uncertainty in the unsqueezed quadrature is not infinite. Measurements of the unsqueezed
quadrature are not completely uncorrelated. However, the squeezing magnitude |𝜉| can (in
theory) be chosen arbitrarily large such that the correlation can be arbitrarily reduced. To
implement the quadrature measurement, Bob can employ a homodyne detection. A fiber-
optical setup for homodyne detection is depicted in Figure 1.14. At its heart, the homodyne
detector consists of a local oscillator (LO), a balanced coupler (or beam splitter) and two
photodiodes in balanced configuration. The LO is superimposedwith the signal through the
coupler and the two coupler outputs are monitored by one photodiode. In balanced config-
uration, the photocurrent of the photodiodes is subtracted removing the constant power of
the signal and LO. Assuming a perfect detector and strong LO with coherent state |𝛼𝑙⟩ and
|𝛼𝑙| ≫ 1, the mean balanced photodiode current is proportional to [7, p. 217]

⟨Δ𝑁̂′⟩ = ⟨𝑁̂′
1⟩ − ⟨𝑁̂′

2⟩ = |𝛼𝑙|⟨ ̂𝑋(𝜗)⟩ (1.3.11)

wherein 𝜗 is the phase difference between the signal and the LO. Moreover, it can be shown
that the POVM of an ideal homodyne detector is [7, p. 220]

{ ̂𝑃Δ𝑛 =
1
|𝛼𝑙|

|𝑥, 𝜗⟩⟨𝑥, 𝜗|}
Δ𝑛∈ℤ

(1.3.12)

wherein |𝑥, 𝜗⟩ has quadrature eigenvalue 𝑥 = Δ𝑛/|𝛼𝑙|. The single homodyne detector corre-
sponds to an active measurement basis selection of Bob. As in the case of the polarization-
encoding qubit-based QKD, Bob can also use a second homodyne detector to implement
passive measurement basis selection. Such a setup is illustrated in Figure 1.15. Contrary to
the quadrature eigenstates, squeezed coherent states are physical and have been prepared
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̂𝑋(𝜗)

̂𝑋(𝜗 + 𝜋/2)

Figure 1.13.: Phase space representation of Alice’s squeezed coherent states in bosonic BB84.
The uncertainty is sufficiently squeezed to approximate the quadrature eigen-
states.

and measured with up to 15 dB squeezing [55]. However, the production of squeezed co-
herent states requires nonlinear interactions, which are challenging to control and require
with the current state of art a complex optical setup. Additionally, squeezed states quickly
loose their squeezing by attenuation. We conclude that although squeezed coherent states
present a possible quantum state for boson-based QKD, we prefer a more practical and reli-
able quantum state.
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Figure 1.14.: Fiber-optical setup of a coherent receiver with active basis selection. The re-
ceiver comprises a receiver (RX) laser connected to a phase-shifter (PS) with
phase 𝜑 in the lower left branch, and the signal fiber connected with a PC and
protected by an optical isolator in the upper left branch. The phase-shifted RX
laser is superimposed with the isolated and polarization-controlled signal in a
balanced coupler where the two coupler outputs are monitored by two photo-
diodes (PDs) in balanced configuration, a balanced detector (BD).
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Figure 1.15.: Fiber-optical setup of a coherent receiver with passive basis selection. The up-
per left branch connects to the signal fiberwith a PCand an optical isolator. The
lower left branch splits a RX laser with equal power into two branches, where
the lower one of them is phase-shifted by 𝜋/2. The isolated and polarization-
controlled upper branch is coupled with the phase-shifted and non-phase
shifted RX laser branches and then monitored by two BDs.
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1.3.2. Coherent-encoding GG02

Coherent states are the ”most classical” quantum states and can be prepared using standard
telecommunication components, see, for instance, Figure 1.16. Moreover, coherent states

TX laser IQM VOA
Splitter
(99:1) PWM

Isolator

Fiber

Figure 1.16.: Fiber-optical setup of a coherent transmitter. A transmitter (TX) laser is con-
nected with an in-phase and quadrature modulator (IQM), followed by a vari-
able optical attenuator (VOA). The output of the VOA is split into an upper
low-power and a lower high-power branch. The high-power branch is moni-
tored by a power meter (PWM), while the low-power branch passes an optical
isolator connected with a fiber.

do not deteriorate to a different quantum state when interacting with the environment, e.g.,
inside a fiber channel. In sum, coherent states seem to be themost practical quantum states.
One apparent disadvantage of coherent states is that the quadrature standard deviation is
independent of the quadrature angle and the state parameters [10, p. 59]

⟨𝛼|Δ ̂𝑋(𝜗)|𝛼⟩ = 1
√2

. (1.3.13)

We cannot emulate a basis selection by changing the statistics of the quadratures and we
need to rethink our approach to QKD: Instead of slowly producing highly correlated vari-
ables, we quickly produce hardly correlated variables. By employing sophisticated error cor-
rection techniques, Alice and Bob can still distill a shared bit string, see the post-processing
section for details.

Figure 1.17 highlights the quantum transmission of two coherent states in coherent-encoding
boson-based QKD. The mean (quadrature) of the coherent state is indicated by the colored
marker. The variance of the coherent state is indicated by the shaded circles around the
markers. The channel attenuates the coherent state by reducing the mean but the variance
remains constant. An intercept-resend attempt by Eve is illustrated in Figure 1.18. When
Eve intercepts andmeasures Alice’s coherent state |𝛼⟩, her outcome 𝛽 (red star) is distributed
around the mean 𝛼 due to the quadrature uncertainty. Eve’s best guess is to prepare a new
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̂𝑋(𝜗)

̂𝑋(𝜗 + 𝜋/2)

Figure 1.17.: Phase space representation of two coherent-state transmissions. Alice prepares
the coherent states |𝛼1⟩ (green), |𝛼2⟩ (blue) with mean quadratures 𝛼1 (green
dot) respectively 𝛼2 (blue dot) and sends them to Bob through a channel (gray
arrow). Bob receives the attenuated coherent states |𝛽1⟩ (orange) and |𝛽2⟩ (red).
He performs a dual homodynemeasurement with outcomes 𝛽′1 respectively 𝛽′2.

coherent state |𝛽⟩ where she prepares the mean 𝛽 to be equal to her measurement outcome
𝛽. Although, the channel attenuation strongly deteriorates the signal-to-noise ratio (SNR),
Bob’s measurement distribution will be ragged due to Eve’s imperfect state copy. Alice and
Bob notice a higher than usual error when performing error correction. Alternatively, Eve
can only measure a single quadrature and prepare a squeezed coherent state |𝛽, 𝜉⟩ to hide
her measurement. If Bob uses a dual-quadrature homodyne receiver, he will directly notice
the increase of noise in one of the quadratures. If Bob uses a single homodyne receiver,
he will only notice every second measurement on average, which is still sufficient to detect
Eve’s tempering.
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̂𝑋(𝜗)

̂𝑋(𝜗 + 𝜋/2)

̂𝑋(𝜗)

̂𝑋(𝜗 + 𝜋/2)

Figure 1.18.: Phase space representation of coherent-state transmission with an intercept-
resend attack from Eve using a coherent state (left) and a squeezed coherent
state (right). Alice always prepares the same coherent state (green circle).
In a first realization, Eve intercepts Alice’s state (green circle) and measures
(red square) for the quadrature. She then prepares a coherent state with that
quadrature and sends it to Bob. Through the attenuated channel (black ar-
row), Bob receives the coherent state (red circle) and measures (red cross) for
the quadrature. In a second realization, Eve measures (orange square) for the
quadrature of the intercepted state. She then prepares a new coherent state (or-
ange circle) and sends it to Bob. Bob receives the attenuated state (orange cir-
cle) and finds (orange cross) in a quadrature measurement. Instead of prepar-
ing a coherent state, Eve can prepare squeezed coherent states (right) for which
Bob receives squeezed coherent states of which he measures the quadrature.

1.4. Post-processing

In the previous sections, we focused on the quantum transmission producing raw data for
Alice and Bob. Post-processing summarizes methods Alice and Bob employ over the clas-
sical channel to distill a shared secret key from the raw data. It is an important part of the
protocol and may be very different depending on the particular implementation. In an at-
tempt to identify common steps in post-processing, we found the data flow diagramdepicted
in Figure 1.19. The starting point of the post-processing is the raw data from the quan-
tum transmission. For the transmitter, the raw data includes the bits determining the state
preparation for transmission. On the contrary, the receiver’s raw data consists of the mea-
surement data. Alice and Bob agree over the classical channel on partitioning their raw data
into raw key data (≈ 80%) and raw calibration data (≈ 20%). They disclose their raw cali-
bration data to perform parameter estimation mainly used for error estimation, correlating
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to Eve’s information on the raw (key) data. Optionally, a comparison of the raw calibration
data reveals information about the channel characteristics, improving error correction. The
symbol mapping extracts correlated key data from the raw key data and might include base
sifting. Information reconciliation transforms the correlated key data, which is different for
Alice and Bob, into a partially secret key, which Alice and Bob agree. Unlike error correc-
tion, which might fail, information reconciliation ensures that Alice and Bob hold the same
partially secret key, even at the cost of having a partially secret key of length zero. Privacy
amplification removes Eve’s information from the partially secret key by reducing the par-
tially secret key length by Eve’s information. Finally, by comparing a checksum, Alice and
Bob verify that they indeed share the same secret key. If Eve’s information is beyond a cer-
tain threshold or Alice and Bob do not share the same key, in the end, the post-processing
is assumed to have failed, and the protocol is either aborted or the transmission block dis-
carded. In the following, we introduce some of the most important steps in post-processing:
symbol mapping, information reconciliation, and privacy amplification.
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Figure 1.19.: Flow diagram of a generalized QKD post-processing procedure. The quantum
transmission produces raw data, and partitioning splits the raw data into raw
calibration and key data. Parameter estimation on the raw calibration data as-
sesses the channel characteristics and Eve’s information’s upper bound, which
decides whether to abort the protocol or discard the transmission block. Sym-
bol mapping transforms the raw key data to correlated key data. Information
reconciliation includes the channel characteristics to correct errors in the cor-
related key data or discard data blocks where error correction failed, yielding
a partially secret key. Privacy amplification produces a secret key by removing
the estimate for Eve’s information from the partially secret key. Verification
confirms if the post-processing produced a correct secret key, otherwise, abort
the protocol or discards the transmission block.
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1.4.1. Symbol mapping

The symbol mapping takes a sequence of symbols andmaps it to a sequence of bits. The two
basis elements of qubit-based QKD protocols have a natural interpretation as bits, i.e.,

𝐬∶ Ω → {0, 1}

𝜔 ↦ 𝐬(𝜔) = {
1 ”click”
0 ”no click”

.
(1.4.1)

Not so the quadrature value in boson-based QKD protocol. While we can assign bits accord-
ing to the sign of the quadrature

𝐬∶ 𝑋 ⊆ ℝ → {0, 1}

𝑥 ↦ 𝐬(𝑥) = {
1 𝑥 ≥ 0
0 𝑥 < 0

, (1.4.2)

such a symbol mapping turns out to be highly inefficient and more powerful techniques
have been developed [56, 57].

Many CV-QKD protocols implement slice reconciliation [58] which includes a first error
correction. The idea of slice reconciliation is to partition the value range into 2𝑚 bins of
equalwidth and assign thema bit string according to the binary representation of their index
number. Figure 1.20 illustrates slice reconciliation for 𝑚 = 3 yielding 2𝑚 = 8 different
bins for a standard normal distributed random variable. Alice’s 𝑥𝑖 and Bob’s variables 𝑥′𝑖
are not equal but correlated. Alice and Bob assign bits to their variable according to the
binning scheme. If Alice and Bob are lucky, the assignment yields the same bit sequence.
For example, Alice and Bob both assign 𝑥1 and 𝑥′1 to the third bin and now share bit string
011. However, it happens that Alice and Bob assign different bins, see, for instance, 𝑥2 and
𝑥′2 which are assigned to the fourth bin (Alice) and the fifth bin (Bob). In this particular
case, if Bob knows the least significant bit from Alice, he is able to correct his bit string
assignment to 100.

In an alternative scheme, known as multidimensional reconciliation [57], Alice and Bob
combine multiple variables into a 𝑑-dimensional vector, e.g., 𝐱 = (𝑥1,… , 𝑥𝑑) respectively
𝐱′ = (𝑥′1,… , 𝑥′𝑑) and agree on a set of equally-spaced apart symbol vectors 𝐯̂1,… , 𝐯̂𝑚 ∈
ℝ𝑑. Now, Bob finds a rotation matrix 𝑅′ ∈ ℝ𝑑×𝑑 which maps his variable vector onto a
symbol vector 𝐯𝑗 = 𝑅′𝐱′. Bob then discloses the parameters of his rotation matrix 𝑅′ to
Alice. Alice rotates her variable vector 𝑅𝐱 and finds the symbol vector 𝐯𝑘 with least distance
to 𝑅𝐱. Multidimensional reconciliation works best in high-dimensional spaces as the norm
of a random vector approaches one (unit sphere) for 𝑛 → ∞.
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Figure 1.20.: Slice reconciliation for 𝑚 = 3 with 2𝑚 = 8 bins for samples from a standard
normal distribution. Alice prepared the values 𝑥1, 𝑥2 and Bob measured the
values 𝑥′1, 𝑥′2. 𝑥1 and 𝑥′1 are located in the same bin 3 but 𝑥2 and 𝑥′2 are located
in bin 4 respectively bin 5. Slice reconciliation is able to detect and correct such
errors with high probability.
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Figure 1.21.: Multidimensional reconciliation in ℝ2: Alice and Bob encoded their prepared
andmeasured values into two-dimensional vectors 𝐱 and 𝐱′. Bob calculates the
rotation matrix 𝑅 that rotates 𝐱′ close to the symbol vector 𝐯̂4 and shares the
rotational parameters with Alice. Alice applies the rotation to her vector 𝑅𝐱.
Both rotated vectors of Alice and Bob 𝑅𝐱 and 𝑅𝐱′ are assigned the 11 bit string
with high confidence.
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1.4.2. Information reconciliation

Information reconciliation summarizes methods required for Alice and Bob to agree on
shared data. It includes error correction, and discarding of data failed to correct.

Let us first consider procedures for error correction. Error correction is a subdiscipline of
coding theory, or more precisely, channel coding, which studies the arrangement of data for
efficient and reliable transmission. The following discussion is a very brief introduction to
binary linear codes based of Ref. [59, 60]. A (𝑛, 𝑘) binary linear code encodes 𝑘-bit message-
words into 𝑛-bit codewords. The additional 𝑛 − 𝑘 check bits are used to detect and correct
errors, e.g., bit flips. In general, it is impossible to correct for all errors although practical
linear block codes closely approach the theoretical (Shannon) limit set by the noisy-channel
coding theorem.

Let𝐦 ∈ {0, 1}1×𝑘 be a messageword, then the generator matrix

𝐺 = (𝟙𝑘|𝑃) =
⎛
⎜
⎜
⎝

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

|
|
|
|
|
|

𝑝1,1 𝑝1,2 ⋯ 𝑝1,𝑚
𝑝2,1 𝑝2,2 ⋯ 𝑝2,𝑚
⋮ ⋮ ⋱ ⋮

𝑝𝑛−𝑚,1 𝑝𝑛−𝑚,2 ⋯ 𝑝𝑛−𝑚,𝑚

⎞
⎟
⎟
⎠

∈ {0, 1}𝑘×𝑛, (1.4.3)

wherein 𝟙𝑘 ∈ {0, 1}𝑘×𝑘 denotes an identity matrix and 𝑃 ∈ {0, 1}𝑘×(𝑛−𝑘) denotes the (parity)
check matrix, encodes the messageword𝐦 into the codeword

𝐱 = 𝐦𝐺 ∈ {0, 1}1×𝑛 (1.4.4)

with thematrixmultiplication being defined on the binary field 𝔽28. The explicit form of the
generator matrix depends on the linear block code. For instance, the (𝑛, 1) repetition code
has the generator matrix

𝐺 = (1 1 ⋯ 1) ∈ {0, 1}1×𝑛 (1.4.5)

and the (7, 4) Hamming code has the generator matrix

𝐺 =
⎛
⎜
⎜
⎝

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

⎞
⎟
⎟
⎠

∈ {0, 1}4×7. (1.4.6)

For the post-processing, we use low-density parity-check (LDPC) [61] where the generator
matrix is a sparse random matrix. Table 1.6 and Table 1.7 show the possible codewords for
the (3, 1) repetition and (7, 4) Hamming code. From Table 1.6, we note that the repetition
code repeats the message word 𝑛−𝑘 times. The (𝑛, 1) repetition code is able to detect all bit
errors except the error when all bits are flipped and correct up to ⌊(𝑛 − 1)/2⌋ bit errors [59,
p. 5]. The (7, 4) Hamming code is a more efficient block code which uses parity checks to
detect and correct single-bit errors [59, p. 10]. The received codeword 𝐲 of a linear channel
8Alternatively, we can define the addition and multiplication on the real field with modulo two.
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Nr. Information Check

1 0 0 0
2 1 1 1

Table 1.6.: Possible codewords for (3, 1) repetition code.

Nr. Information Check

1 0 0 0 0 0 0 0
2 0 0 0 1 1 1 1
3 0 0 1 0 1 1 0
4 0 0 1 1 0 0 1
5 0 1 0 0 1 0 1
6 0 1 0 1 0 1 0
7 0 1 1 0 0 1 1
8 0 1 1 1 1 0 0
9 1 0 0 0 0 1 1
10 1 0 0 1 1 0 0
11 1 0 1 0 1 0 1
12 1 0 1 1 0 1 0
13 1 1 0 0 1 1 0
14 1 1 0 1 0 0 1
15 1 1 1 0 0 0 0
16 1 1 1 1 1 1 1

Table 1.7.: Possible codewords for (7, 4) Hamming code [60, p. 109].

equals the sent codeword 𝐱 plus a noise (row) vector 𝐧, i.e.,

𝐲 = 𝐱 + 𝐧 ∈ {0, 1}𝑛. (1.4.7)

The noise vector introduces bit flips according to an assumed channel model, for example,
the binary symmetric channel where a single bit flip occurs with probability 𝑝, see, e.g.,
Ref. [59, p. 148]. To detect errors of a received codeword 𝐲, one uses the parity-check ma-
trix

𝐻 = (−𝑃T|𝟙𝑛−𝑘) =
⎛
⎜
⎜
⎝

𝑝1,1 𝑝2,1 ⋯ 𝑝𝑛−𝑚,1
𝑝1,2 𝑝2,2 ⋯ 𝑝𝑛−𝑚,2
⋮ ⋮ ⋱ ⋮

𝑝1,𝑚 𝑝2,𝑚 ⋯ 𝑝𝑛−𝑚,𝑚

|
|
|
|
|
|

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

⎞
⎟
⎟
⎠

∈ {0, 1}(𝑛−𝑘)×𝑛 (1.4.8)

where we used −𝑝𝑖,𝑗 = 𝑝𝑖,𝑗 for elements of the binary field 𝑝𝑖,𝑗 ∈ 𝔽2. The parity-check
matrix is orthogonal to the generator matrix [60, p. 95], i.e.,

𝐺𝐻T = 𝟎 = 𝐻𝐺T. (1.4.9)
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The orthogonality between generator and parity-check matrix implies that for the received
codeword 𝐲, the parity-check matrix yields, a binary vector called the syndrome (column)
vector

𝐬 = 𝐻𝐲T = 𝐻𝐺T𝐦T + 𝐻𝐧T = 𝐻𝐧T (1.4.10)

which only depends on the noise (row) vector 𝐧. If the block code does not detect any error,
we have 𝐬 = 0. Table 1.8 lists the possible syndromes for the (3, 1) repetition code. To correct

Nr. Received Syn-
codeword drome

1 0 0 0 0 0 0 0
2 0 0 0 1 0 0 1
3 0 0 1 0 0 1 0
4 0 0 1 1 0 1 1
5 0 1 0 0 1 0 0
6 0 1 0 1 1 0 1
7 0 1 1 0 1 1 0
8 0 1 1 1 1 1 1
9 1 0 0 0 1 1 1
10 1 0 0 1 1 1 0
11 1 0 1 0 1 0 1
12 1 0 1 1 1 0 0
13 1 1 0 0 0 1 1
14 1 1 0 1 0 1 0
15 1 1 1 0 0 0 1
16 1 1 1 1 0 0 0

Table 1.8.: Possible syndromes for the (3, 1) repetition code. The first and last row are correct
codewords (without noise) and yield a zero syndrome indicating no error. All
other received codewords contain bit flips and thereby non-zero syndromes.

the error, one looks up the calculated syndrome in an error correction table. For example,
Table 1.9 lists the bit-error corrections assigned to each syndrome of the (7, 4) Hamming
code.

Syndrome 𝐬 001 010 011 100 101 110 111
Unflip bit 𝑦7 𝑦6 𝑦4 𝑦5 𝑦1 𝑦2 𝑦3

Table 1.9.: Bit-error correction lookup table for the (7, 4) Hamming code [59, p. 11].

So far, we have implicitly assumed the (parity) check bits to be transmitted together with the
data bits such that errors can be directly detected and corrected (forward error correction).
Forward error correction does not make sense for QKD as the data bits are a result of the
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post-processing and not directly transmitted. Instead of exchanging the check bits together
with a data index as part of the error correction in QKD, one instead directly calculates the
syndromes and transmits these depending on the implementation details.

There cannot exist a perfect error correction protocol as it is always possible that bits are
flipped such that a different valid codeword is received. However, we have no use of data
blocks where error correction have failed and we can simply discard them. To identify these
data blocks, Alice and Bob exchange hashes of their data blocks to verify success of the error
correction.

1.4.3. Privacy amplification

The final step of most QKD protocols is privacy amplification which removes Eve’s informa-
tion from the key. More formally, let us assume a key of length 𝑛, 𝑠 ∈ {0, 1}𝑛, and that Eve
has partial information over the key equivalent to 𝑘 bits. For privacy amplification, Alice
and Bob need to agree on a map 𝑓∶ {0, 1}𝑛 → {0, 1}𝑟 with 𝑟 ≤ 𝑛 − 𝑘 which extracts Eve’s
information from the key.

Bennett and Brassard proposed privacy amplification four years after BB84 in 1988. An
information-secure proof that privacy amplification is possible was published one year later,
now known as the leftover-hash-lemma [62] and later extended to the quantum leftover-
hash-lemma [63]. In 1995, Bennett and Brassard generalized the privacy amplification out-
side of QKD [64].

In practice, privacy amplification is performed by randomly XORing the bits of a key. Let
us illustrate this using a partially secret key (𝑠1, 𝑠2, 𝑠3) ∈ {0, 1}3 where Eve knows the value
of 𝑠3. After privacy amplification the initial key could be for example (𝑠1 ⊕ 𝑠3, 𝑠2 ⊕ 𝑠3) or
(𝑠1⊕𝑠2, 𝑠2⊕𝑠3) and Eve’s knowledge of the key bit 𝑠3 does not help her infering a single bit
of the new secret key.

Although not directly related to privacy amplification, it is helpful to consider the following
Gedankenexperiment to gain intuition about XORing: Let us assume Alice and Bob gener-
ate a key by flipping a coin 𝑛 times and assigning heads to zero and tails to one. Eve having
no information about the key corresponds to Alice and Bob using an unbiased coin yielding
heads and tails with equal probability. Eve having full information about the key corre-
sponds to Alice and Bob using a biased coin always yielding, e.g., heads. Therefore, we can
use the probability of the coin yielding heads, 𝑝 ∈ [0, 1], to indicate Eve’s information. If
we now start to XOR all outcomes, we see the probability for obtaining either a one or zero
to approach 1/2. More precisely, let 𝑋1, 𝑋2,… , 𝑋𝑁 be independent- and identical-distributed
Bernoulli random-variables with probability𝑝,𝑋𝑖 ∼ Bern(𝑝), then the probability that XOR-
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ing of all outcomes equals one is

ℙ [”XOR of outcomes equals one”] = ℙ [
𝑁
∑
𝑛=1

𝑋𝑛 mod 2 = 1] . (1.4.11)

The sum of Bernoulli random variables 𝑋1,… , 𝑋𝑛 equals a Binomial random variable 𝑌 =
∑𝑁

𝑛=1 𝑋𝑛 ∼ Binom(𝑁, 𝑝), yielding

ℙ [𝑌 mod 2 = 1] =
𝑁
∑
𝑘 odd

ℙ [𝑌 = 𝑘] =
𝑁
∑
𝑘 odd

(
𝑁
𝑘
)𝑝𝑘(1 − 𝑝)𝑁−𝑘. (1.4.12)

Using the identity from Ref. [65], we can simplify eq. (1.4.12) to

ℙ [𝑌 mod 2 = 1] = 1
2 (1 − (2𝑝 − 1)𝑁)

𝑁→∞
−−−−→ 1

2 (1.4.13)

where limit is true for 𝑝 ∈]0, 1[ so even for 𝑝 = 0.9999. Moreover, for any 𝜀 > 0 we can
choose𝑁 such that ℙ [𝑌 mod 2 = 1]−1/2 < 𝜀, meaning that we can arbitrarily reduce Eve’s
information by XORing more coin flips.

For practical applications, privacy amplification operates on the class of linear maps,

𝑓∶ {0, 1}𝑛 → {0, 1}𝑛−𝑘

𝐬 ↦ 𝑀𝐬 mod 2
(1.4.14)

where𝑀 ∈ {0, 1}𝑟×𝑛 is a random boolean matrix with at least 𝑘 + 1 ones [66]. For construc-
tion of 𝑀 it is convenient to use Toeplitz matrices [33, p. 11]. A 𝑛 ×𝑚 Toeplitz matrix 𝐴 has
the form

𝐴 = (𝑎𝑖,𝑗) = (𝑎𝑖−𝑗) =
⎛
⎜
⎜
⎝

𝑎0 𝑎−1 ⋯ 𝑎1−𝑚
𝑎1 𝑎0 ⋯ 𝑎2−𝑚
⋮ ⋱ ⋯ ⋮

𝑎𝑛−1 𝑎𝑛−2 ⋯ 𝑎𝑛−𝑚

⎞
⎟
⎟
⎠

. (1.4.15)

For example, if Alice and Bob estimate Eve to know three bits, they could agree on the
Toeplitz coefficients (𝑎−4, 𝑎−3,… , 𝑎1, 𝑎2) = (0, 1, 1, 1, 0, 1, 0) yielding the mapping

𝑓(𝐬) = (
0 1 1 1 0
1 0 1 1 1
0 1 0 1 1

)

⎛
⎜
⎜
⎜
⎝

0
1
1
0
1

⎞
⎟
⎟
⎟
⎠

mod 2 (1.4.16)

which for the key 𝐬 = (0, 1, 1, 0, 1) would yield the secret key 𝐬′ = (0, 0, 0).
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1.5. Security analysis

For completeness, we provide a brief introduction to the security analysis of QKD in which
we show under which assumptions a QKD protocol is secure. An overview of security
proofs, including background information, can be found in Ref. [32]. For a security analysis
of CV-QKD, see Ref. [53] and Ref. [34]. Amathematical treatment using recent information-
theoretical tools, see Ref. [26].

Every QKD security proof assumes fundamentally [32, p. 10]:

1. Quantum theory to be complete and correct.

2. Authenticated communication to be possible.

The first assumption provides us with the framework of quantum (information) theory to
formulate our proof. Furthermore, it states that an adversary is only limited by physical -
not technological - means. The second assumption is vital to exclude man-in-the-middle
attacks from an adversary. It can be practical implemented using MACs, for a security proof
of Wegman-Carter-Shoup-type authenticators, see Ref. [67]. Most security proofs further
assume ideal implementation [26, p. 124]:

1. Isolation of the transmitter and receiver from the adversary.

2. Perfect quantum state preparation and measurement.

3. True randomness in the state and bases selection.

4. Perfect timing and synchronization of the transmitter and receiver.

5. Post-processing protocols are secure and work as intended.

After establishing the security proof of the ideal protocol implementation, we can discuss
side-channel attacks originating from imperfect implementations separately. For example,
Ref. [68, p. 8] discusses attacks due to hardware imperfections, Ref. [33] analysis the security
of a practical post-processing pipeline for BB84, andRef. [63] gives a security proof of privacy
amplification in the context of QKD.

So far, we have been rather vague about the notion of security. In particular, we need to
parametrize the security of a key as there is no strict security. For example, consider the
security of a binary key of length 𝑛. The probability for an adversary to guess the correct key
is 𝜀 = 2−𝑛. Such a brute-force attack marks the absolute floor of a key’s security which we
refer to as 𝜀-secure.
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More formally, we define an 𝜖-secure key obtained by a QKD protocol to satisfy [32, p. 10]

1
2‖𝜌𝐴𝐸 − 𝜌𝑈 ⊗ 𝜌𝐸‖Tr ≤ 𝜀 (1.5.1)

where 𝜌𝐴𝐸 is the quantum state encoding the correlations between Alice’s final key9 and
Eve, 𝜌𝑈 is the mixed state of possible key configurations, 𝜌𝐸 is a generic state of Eve, and
‖⋅‖Tr is the trace norm which measures the distance between quantum states, see Ref. [26,
p. 49]. Intuitively Equation (1.5.1) encodes the distance between an ideal key state 𝜌𝑈⊗𝜌𝐸
and a real key state 𝜌𝐴𝐸. The real key state 𝜌𝐴𝐸 may be entangled with Eve’s system while
for the ideal key state, Eve’s state 𝜌𝐸 factorizes as a tensor product with the key state 𝜌𝑈, i.e.,
𝜌𝐸 and 𝜌𝑈 describe independent systems. Further definitions with respect to security, for
instance, 𝜖-correctness, -robustness, and composability, are formalized in Ref. [26, p. 119].
Additionally, one classifies Eve’s eavesdropping strategies according to how her ancillas in-
teract with the states Alice sends and whether she performs a local or global measurement
of her ancillas, see Table 1.10. Sometimes it is possible to reduce coherent attacks, the most

Attack Alice’s Eve’s
State Unitary Measurement

Individual 𝜌𝑗𝐴 Local Local
Collective 𝜌𝑗𝐴 Local Global
Coherent ⨂𝑛

𝑗=1 𝜌
𝑗
𝐴 Global Global

Table 1.10.: Summary of Eve’s attacks according to Ref. [26, p. 128]. Alice sends 𝑛 quantum
states 𝜌1𝐴,… , 𝜌𝑛𝐴 to Bob. For the individual attack, Eve attaches a single ancilla
system to each of Alice’s states 𝜌𝑗𝐴, applies a local unitary transformation and
performs a separate measurement. The collective attack generalizes the indi-
vidual attack by Eve performing a global measurement of all ancillas. For the
coherent attack, Eve interacts with all of Alice’s states⨂𝑛

𝑗=1 𝜌
𝑗
𝐴 at once and per-

forms a single global measurement.

powerful attacks, to collective attacks, see the de Finetti theorem [26, p. 148].

One approach for a security proof is to derive an inequality of the form [32, p. 11]

ℙ [12‖𝜌𝐴𝐸 − 𝜌𝑈 ⊗ 𝜌𝐸‖Tr ≤ 𝜀] ≲ 𝑒𝑙−𝐹(𝜌𝐴𝐸,𝜀) (1.5.2)

where 𝑙 is the secret-key length and 𝐹 is the reference scale of the secret-key length. The
reference scale 𝐹 of the secret-key length depends on the protocol and channel parameters,
for instance, Figure 1.22 shows the estimated secret-key rate for our CV-QKD protocol given
different shot-noise levels. For secure key generation, the secret key length must be chosen
smaller than the secret key length reference scale, i.e., 𝑙 ≪ 𝐹. In another approach, the
9It is sufficient to only consider Alice’s state as Bob’s shares the exact same state after post-processing.
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Figure 1.22.: Estimated minimum secret key rate for our CV-QKD protocol as a function of
the channel length for different values of excess noise.

Devetak-Winter rate [26, p. 144] is derived. The Devetak-Winter rate provides a lower bound
on the asymptotic secret key rate

𝑟sec ≲ 𝑟raw(𝐼𝐴𝐵 − 𝜒𝐵𝐸) (1.5.3)

wherein 𝑟raw is the raw transmission rate, 𝐼𝐴𝐵 is the mutual information between Alice
and Bob, and 𝜒𝐵𝐸 is the Holevo information encoding Eve’s information on Bob’s measure-
ments.

A systematic approach to security proofs, first pioneered by Lo and Chau [69] and later ex-
tended by Shor [70], includes the following steps:

1. Convert the prepare-and-measure to an entanglement-based description.10

2. Employ quantum error correction codes to correct Alice’s and Bob’s qubits which then
equals the secret key state.

3. Show equivalence of classical with quantum post-processing.
10If the protocol is entanglement-based, we can skip this step. For an equivalence proof of the BB84, see Ref. [26,
p. 106].
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Summary

We introduced QKD as an example of quantum-optical communication and a mechanism
for practical and secure key-distribution, which, together with classical symmetric ciphers,
enables secure communication, including means to estimate information leakage. To keep
track of the diversity of QKDprotocols, we restricted our treatment toCV-QKDandCV-QKD
protocols. In an attempt to formalize the notion of CV-QKD and CV-QKD, we proposed the
concept of logical and encoding quantum system, which suggests itself, when comparing
theoretical with practical QKD transmission systems as illustrated in Figure 1.23. The idea
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Quantum
channel

Received
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Theoretical QKD transmission system
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source

Prepared
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Quantum
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destination
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Figure 1.23.: Block diagram comparing a theoretical with a practical QKD transmission sys-
tem. The theoretical QKD transmission system comprises a classical informa-
tion source, a prepared qubit or boson state, a quantum channel, a received
qubit or boson state, and a classical information source. Compared to the the-
oretical QKD transmission system, the practical QKD transmission system pre-
pares and receives a light instead of a qubit or boson state.

here is that from an idealistic viewpoint, we encode classical information into a qubit or bo-
son state, while for any practical implementation, we use light states for encoding. Table 1.11
summarizes the differences between qubit- and boson-based QKD for which discussed par-
ticular encoding schemes like the time-phase-encoding BB84 for qubit-based QKD or the
coherent-encoding GG02 for boson-based QKD. Although security has been proven indi-
vidually for theoretical and practical QKD protocols, the larger Hilbert space of light makes
a unitary mapping between qubit or boson states and light states problematic [71], requir-
ing further investigations. The technological maturity of coherent communication makes it
highly practical to implement qubit- and boson-based using weak coherent states. However,
the concept of a coherent-state transmission system opens up a new gap between theory and
practice. While quantum information theory assumes the coherent states to be independent,
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Qubit-based Boson-based

Visualization Bloch sphere Phase space
Hilbert space (dim) Finite (two) Countable (infinite)
Measurement operator 𝐒̂(𝐧) = ̂𝑆𝑖𝑛𝑖 ̂𝑋(𝜗) = 1

√2
( ̂𝑎𝑒−𝑖𝜗 + ̂𝑎†𝑒+𝑖𝜗)

Standard basis {|0⟩, |1⟩} {|𝑥⟩, |𝑝⟩∶ 𝑥, 𝑝 ∈ ℝ}

Table 1.11.: Comparison of qubit- and boson-based QKD protocols.

i.e., the transmission sequence involves a tensor-product of (bosonic) coherent states, do we
know from communication engineering that we need to consider continuously-modulated
coherent states. In any case, we have shown that practical QKD implementations are very
different from their original theoretical protocol, demanding an abstraction for these encod-
ing details.

Back to our general treatment of QKD, we compiled classical methods to distill a shared
secret-key between the transmitter and receiver, known as classical post-processing, from
the quantum-transmission data. The classical post-processing maps the discrete or contin-
uous data from the transmission sequence to binary symbols, corrects errors, discards failed
data blocks, and removes information from the partially secret-key using privacy amplifica-
tion. Finally, we roughly outlined some ideas for the security analysis of QKD.
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Figure 1.24.: Block diagram comparing a theoretical with a practical coherent-state trans-
mission system. The theoretical coherent-state transmission system comprises
a classical information source, a prepared tensor-product coherent state, a
quantum channel, a received tensor-product coherent state, and a classical
information source. Compared to the theoretical coherent-state transmis-
sion system, the practical coherent-state transmission system continuously-
modulates and -demodulates a (continuous-time) coherent state.
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Chapter 2.
Quantum theory of light

As stated in the introduction, a continuous-mode quantum theory of light is essential to
describe time-continuous information-bearing signals. However, single-mode quantum op-
tics [5, 4, 18, 72], the most established physical theory for describing quantum aspects of
light, strictly assumesmonochromatic, i.e., time-independent, light. The few references [10,
9] presenting a continuous-mode quantum theory of light are sparse on the justification or
origin of their results, making the results overall difficult to assess. On the other hand, in
quantum field theory, we find a description of light with a continuous momentum distribu-
tion but towards scattering experiments [13, 12, 11, 2].

In the following chapter, we derive a continuous-mode quantum theory of light rooted in
quantum-field theory, which acts as the foundation of our theoretical framework. In the
first part, we recap the classical description of the Maxwell field, which we quantize canon-
ically in the last step to derive the relevant quantum field operators. In the second part, we
axiomatically motivate the more general quantum states of the Maxwell field and discuss
some of their properties.

2.1. Maxwell theory

The Maxwell field is the quantm field whose excitations correspond to photons, the media-
tors of the electromagnetic force. Our presentation of the Maxwell field heavily exploits the
modern field-theoretic arguments that have shown great success in developing the standard
model. First, we motivate the Maxwell Lagrangian from which we derive the equation(s)
of motions (EOMs) encoding the field dynamics. Second, we relate the Maxwell field to
the electromagnetic field components and discussMaxwell theory in the context of classical
electromagnetism. Third, we discuss and interpret the physical implications of the gauge
symmetry of the Maxwell field. In the last two sections, we perform a plane-wave expan-
sion of the Maxwell field and observables, followed by the canonical quantization in the
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Coulomb gauge.

2.1.1. Maxwell Lagrangian

From a theoretical-physics viewpoint, Maxwell theory is a relativistic vector field theory
with gauge symmetry. That alone is sufficient to ”guess” the Maxwell Lagrangian from first
principles [12, p. 149]. Having established the Maxwell Lagrangian, we can fully infer the
physics of electromagnetism inside the field-theoretical framework.

As a relativistic vector field, we expect the Maxwell field 𝐴𝜇 to have four components, one
time and three spatial components, and to transform as a Lorentz vector [2, p. 37]

𝐴𝜇(𝑥) → 𝐴′𝜇(𝑥′) = Λ𝜇𝜈𝐴𝜈(Λ−1𝑥). (2.1.1)

Contracting Lorentz vectors, or in general Lorentz tensors, to a scalar yields a Lorentz-
invariant quantity. Exclusively using Lorentz invariant quantities when constructing our
theory ensures the compatibility of our theory with special relativity.

As a starting point for our theory’s the Lagrangian (density), we propose

ℒ = 𝑐1 (𝜕𝜇𝐴𝜈) (𝜕𝜇𝐴𝜈) + 𝑐2 (𝜕𝜇𝐴𝜇) (𝜕𝜈𝐴𝜈) + 𝑐3 (𝜕𝜇𝐴𝜈) (𝜕𝜈𝐴𝜇) + 𝑐4𝑚2𝐴𝜇𝐴𝜇, (2.1.2)

whereinwe restricted ourselves to termswhich allow for dimensionless coefficients 𝑐1, 𝑐2, 𝑐3, 𝑐4 ∈
ℝ, a mass term, and no (self-)interactions.1 For the action integral

𝑆 = ∫ d𝑡 𝐿 = ∫ d4𝑥ℒ (2.1.3)

to exist, we need 𝐴𝜇 to be square-integrable, i.e., vanish at the integration boundaries. The
second and third term in eq. (2.1.2) are redundant [73], e.g.,

∫ d4𝑥 (𝜕𝜇𝐴𝜈) (𝜕𝜈𝐴𝜇) = −∫ d4𝑥𝐴𝜈 (𝜕𝜇𝜕𝜈𝐴𝜇)

= −∫ d4𝑥𝐴𝜈 (𝜕𝜈𝜕𝜇𝐴𝜇)

= ∫ d4𝑥 (𝜕𝜈𝐴𝜈) (𝜕𝜇𝐴𝜇) ,

(2.1.4)

where we used partial integration with vanishing boundaries twice and commutation of the
partial derivatives. To remove the redundancy, we set the third coefficient to zero, 𝑐3 = 0.
Demanding invariance under gauge transformations, i.e.,

𝐴𝜇 → 𝐴′𝜇 = 𝐴𝜇 + 𝜕𝜇𝜒, (2.1.5)

1The restriction to dimensionless coefficients can be further motivated by renormalization arguments.
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wherein 𝜒 is the scalar gauge field, requires removing the mass term and determining the
Lagrangian up to an overall constant. The overall constant does not affect the dynamics,
and its absolute value is equal to 1/2 by convention. We finally arrive at the well-known
Lagrangian density of the Maxwell field,

ℒ = −12 (𝜕𝜇𝐴
𝜈) (𝜕𝜇𝐴𝜈) +

1
2 (𝜕𝜇𝐴

𝜇) (𝜕𝜈𝐴𝜈) . (2.1.6)

Whilewe can experimentally verify the vector nature of theMaxwell field by polarization ex-
periments, the requirement of the Maxwell field having gauge symmetry appears artificial.
If we accept the Dirac Lagrangian, describing charged fermions, then Noether’s theorem
links gauge symmetry to charge conservation. However, the Dirac Lagrangian itself cannot
be made gauge-invariant without coupling to a gauge-invariant vector field, which turns
out to be the Maxwell field. The complete gauge-invariant Lagrangian describing charged
fermions coupled to the Maxwell field lays down the foundation of quantum electrodynam-
ics (QED).

2.1.2. Electromagnetism

We have introduced the Maxwell field as the fundamental mediator of the electromagnetic
force. However, so far, it is unclear how the electromagnetic field components relate to the
Maxwell field. The manifest-covariant formulation makes it particularly difficult to iden-
tify the non-covariant electromagnetic vector fields. To shed some light, we first derive the
covariant Lorentz force law and then compare it to the non-covariant vector formulation to
identify the electromagnetic field components.

To derive the covariant Lorentz force law, let us consider the action of a point particle with
mass𝑚 and charge 𝑞 coupled to the Maxwell field 𝐴𝜇 [74, p. 244]

𝑆 = −𝑚∫ d𝜏√−𝑔𝜇𝜈
d𝑥𝜇
d𝜏

d𝑥𝜈
d𝜏 + 𝑞∫ d𝜏𝐴𝜇 (𝑥(𝜏))

d𝑥𝜇
d𝜏 (2.1.7)

wherein 𝑔𝜇𝜈 is the Minkowski metric. The first term is the generalization of a line integral,
parametrized by 𝜏, to Minkowski spacetime. The second term describes the coordinate-
dependent coupling of the Maxwell field with the charge of the particle. Invoking the vari-
ational calculus on the action, we recover the covariant formulation of Lorentz force law

𝑚d2𝑥𝜇

d𝜏2 = 𝑞𝐹𝜇𝜈 (𝑥)
d𝑥𝜈
d𝜏 (2.1.8)

where we introduced the asymmetric field-strength tensor

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇. (2.1.9)

The field-strength tensor covariantly encodes the electromagnetic field components.
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Using the field-strength tensor 𝐹𝜇𝜈 and including the interaction of the Maxwell field with
an external classical current 𝑗𝜇, we can rewrite the Maxwell Lagrangian of eq. (2.1.6) as

ℒ = −14𝐹𝜇𝜈𝐹
𝜇𝜈 + 𝐴𝜇𝑗𝜇. (2.1.10)

We note that the action of the interaction term in eq. (2.1.10) reduces to the second action
term in eq. (2.1.7) when using the current of a point particle with charge 𝑞 [2, p. 177]

𝑗𝜇(𝑥) = 𝑞∫ d𝜏
d𝑦𝜇(𝜏)
d𝜏 𝛿(4) (𝑥 − 𝑦(𝜏)) . (2.1.11)

Comparison of the covariant Lorentz force law, eq. (2.1.8), with the non-covariant version

𝑚d2𝐱
d𝑡2 = 𝑞 (𝐄 + d𝐱

d𝑡 ⨯ 𝐁) , (2.1.12)

we can relate the components of the field-strength tensor and the electromagnetic field [74,
p. 245]

𝐸1 = 𝐹01 = −𝐹01 𝐸2 = 𝐹02 = −𝐹02 𝐸3 = 𝐹03 = −𝐹03 (2.1.13)
𝐵1 = 𝐹23 = −𝐹23 𝐵2 = 𝐹31 = −𝐹31 𝐵3 = 𝐹12 = −𝐹12, (2.1.14)

which we can compactly summarize. [11, p. 336]

𝐹0𝑖 = 𝐸𝑖 𝐹 𝑖𝑗 = 𝜀𝑖𝑗𝑘𝐵𝑘. (2.1.15)

We have successfully related the rather abstract Maxwell field with the observable electro-
magnetic field components using the covariant field-strength tensor.

In a final step, we would like to express the Maxwell Lagrangian in terms of the electromag-
netic fields to complete the bridge to classical electrodynamics. Using eq. (2.1.15), we can
derive the identity [12, p. 142]

𝐹𝜇𝜈𝐹𝜇𝜈 = −2 (𝐄2 − 𝐁2) . (2.1.16)

Inserting eq. (2.1.16) into eq. (2.1.10) we find the Maxwell Lagrangian as reported in many
books on classical electrodynamics

ℒ = 1
2 (𝐄

2 − 𝐁2) + 𝐴0𝑗0 − 𝐀 ⋅ 𝐣 (2.1.17)

where we expanded the Minkowski inner product 𝐴𝜇𝑗𝜇 in terms of the time and spatial
components. We identify 𝑗0 as the charge and 𝐣 as the current density as well as 𝐴0 as the
scalar and 𝐀 as the vector potential of electromagnetism.

The manifest Lorentz-covariant Maxwell equations are [11, p. 336]

𝜕𝜇 ̃𝐹𝜇𝜈 = 0 (2.1.18)
𝜕𝜇𝐹𝜇𝜈 = 𝑗𝜇 (2.1.19)
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where we defined the dual field-strength tensor [12, p. 142]

̃𝐹𝜇𝜈 = 1
2𝜀

𝜇𝜈𝜌𝜍𝐹𝜌𝜍 (2.1.20)

with 𝜀𝜇𝜈𝜌𝜍 being the completely antisymmetric tensor. Equation (2.1.18) summarizes the
homogeneousMaxwell equations and canbe derived from theBianchi identity. Equation (2.1.19)
summarizes the inhomogeneous Maxwell equations and follows from the variational cal-
culus of the Maxwell Lagrangian, i.e., represents the Maxwell field’s EOMs. Evaluating
the non-zero components of the Lorentz tensor equations and inserting the relation of the
field-strength to the electromagnetic field, eq. (2.1.15), we arrive at themicroscopicMaxwell
equations

𝛁⋅𝐄 = 𝑗0 𝛁⋅𝐁 = 0 (2.1.21)
𝛁⨯𝐄 = −𝜕𝑡𝐁 𝛁⨯𝐁 = 𝐣 + 𝜕𝑡𝐄. (2.1.22)

We derivedMaxwell equations by guessing theMaxwell Lagrangian from fundamental prin-
ciples and symmetries, whereas historically, Maxwell equations summarized decades of ex-
periments studying the electromagnetic field.

2.1.3. Gauge conditions

As a four-dimensional vector field, we would expect the Maxwell field 𝐴𝜇 to have four de-
grees of freedoms (DOFs), one temporal 𝐴0, one longitudinal 𝐴∥, and two transverse𝐀⟂. At
the same time, freely propagating electromagnetic waves have only two DOFs, the polariza-
tion.2 The zero mass of the photon requires the photon to travel at light speed, restricting
the photon’s temporal and longitudinal DOF. Gauge symmetry reflects the non-physicality,
more precisely, the mathematical redundancy of two of the four DOFs. To remove the un-
physical DOFs, we impose a gauge condition, i.e., we choose a specific gauge field 𝜒 and
perform a gauge transformation

𝐴𝜇 → 𝐴′𝜇 = 𝐴𝜇 + 𝜕𝜇𝜒 (2.1.23)

to remove some components of the Maxwell field. Different gauge conditions exist, see
Ref. [12, p. 144] and Ref. [11, p. 339], and some gauges may be more convenient than others
depending on the problem under consideration. For instance, the Lorenz gauge

𝜕𝜇𝐴𝜇 = 0 (2.1.24)

has the advantage of being manifestly Lorentz covariant at the cost of having the different
DOFs intertwined to be independent of a particular reference frame. The Coulomb gauge

𝜕𝑖𝐴𝑖 = 𝛁⋅𝐀 = 0 (2.1.25)
2Alternatively, we can take the particle picture and say that the photon has two helicities, ±1.
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corresponds to selecting a stationary reference frame inwhich the electromagnetic radiation
is purely transverse [15, p. 40]. Imposing the Coulomb gauge only removes one DOF from
the Maxwell field. We use the remaining residual gauge freedom to impose the temporal
gauge

𝐴0 = 0. (2.1.26)

The temporal gauge is valid when there is no charge distribution, 𝑗0 = 0. Static charge
distributions add a Coulomb interaction that does not involve the exchange of physical pho-
tons and is not subject to quantization. However, static charges add constant energy to the
system and a longitudinal component to the electric field. In most cases, it is sufficient to
discuss the effects of the Coulomb interaction separately from the radiation, justifying the
temporal gauge. See Ref. [12, p. 145, 187, 200] for more detail on the Coulomb interaction
and the Maxwell field’s longitudinal DOF.

2.1.4. Plane-wave expansion

The next step is to find a general solution to the free EOM, eq. (2.1.19), which in theCoulomb
and temporal gauge reduces to the relativistic wave equation

𝜕2𝑡𝐀⟂ = 𝛁2𝐀⟂ (2.1.27)

wherein 𝐀⟂ denotes the transverse Maxwell field. From now on, we drop the subscript
and assume the Maxwell field to be transverse, i.e., to satisfy the Coulomb gauge condition,
eq. (2.1.25). The existence of the Maxwell action requires the Maxwell field to be square-
integrable which implies the existence of the Fourier expansion

𝐀(𝑡, 𝐱) = ∫
d3𝑝
(2𝜋)3

𝐀(𝑡, 𝐩)𝑒+𝑖𝐩⋅𝐱 = ∫
d4𝑝
(2𝜋)4

𝐀(𝑝0, 𝐩)𝑒−𝑖𝑝0𝑡+𝑖𝐩⋅𝐱 (2.1.28)

with 𝐀(𝑝0, 𝐩) being the complex-valued Fourier vector amplitudes. Inserting the Maxwell
field’s Fourier expansion, eq. (2.1.28), into the relativisticwave equation, eq. (2.1.27), reduces
the EOM in momentum space to

0 = 𝑝20 − 𝐩2 = (𝑝0 − ‖𝐩‖) (𝑝0 + ‖𝐩‖) . (2.1.29)

Requiring the energy to be positive, 𝑝0 > 0, we arrive at the relativistic energy-momentum
relation

𝑝0 = 𝜔(𝐩) = ‖𝐩‖ (2.1.30)

for massless particles. Fourier amplitudes satisfying the relativistic-energy momentum re-
lation are plane-wave solutions to the Maxwell field’s free EOM. We define the plane-wave
expansion as the Fourier expansion, eq. (2.1.28), where we constrain the integration domain
to

Σ = {(𝑝0, 𝐩) ∈ ℝ4∶ 𝑝20 = 𝜔(𝐩)2} .

52



Each plane-wave is a solution to the free EOM and the plane-wave expansion denotes a
general solution. We can extend the integration domain of the plane-wave expansion back to
theℝ4 by having the delta distribution ensure the relativistic energy-momentum relation

𝐀(𝑡, 𝐱) = ∫
Σ

d4𝑝
(2𝜋)4

𝐀(𝑝0, 𝐩)𝑒−𝑖𝑝𝜇𝑥
𝜇

= ∫
ℝ4

d4𝑝
(2𝜋)3

𝛿(1) (𝑝20 − 𝜔(𝐩)2)𝐀(𝑝0, 𝐩)𝑒−𝑖𝑝𝜇𝑥
𝜇.

(2.1.31)

Exploiting the composition property of the delta distribution,

𝛿(1) (𝑝20 − 𝜔(𝐩)2) =
𝛿(1) (𝑝0 − 𝜔(𝐩)) + 𝛿(1) (𝑝0 + 𝜔(𝐩))

√2𝜔(𝐩)
, (2.1.32)

we further decompose the plane-wave expansion into a positive and negative frequency
part

𝐀(𝑡, 𝐱) = ∫
d4𝑝

(2𝜋)3√2𝜔(𝐩)
𝛿(1) (𝑝0 − 𝜔(𝐩))𝐀(𝑝0, 𝐩)𝑒−𝑖𝑝0𝑡+𝑖𝐩⋅𝐱

+∫
d4𝑝

(2𝜋)3√2𝜔(𝐩)
𝛿(1) (𝑝0 + 𝜔(𝐩))𝐀(𝑝0, 𝐩)𝑒−𝑖𝑝0𝑡+𝑖𝐩⋅𝐱

= ∫
d3𝑝

(2𝜋)3√2𝜔(𝐩)
𝐀 (𝜔(𝐩), 𝐩) 𝑒−𝑖𝜔(𝐩)𝑡+𝑖𝐩⋅𝐱

+∫
d3𝑝

(2𝜋)3√2𝜔(𝐩)
𝐀 (−𝜔(𝐩), 𝐩) 𝑒+𝑖𝜔(𝐩)𝑡+𝑖𝐩⋅𝐱

= ∫
d3𝑝

(2𝜋)3√2𝜔(𝐩)
𝐀 (𝜔(𝐩), 𝐩) 𝑒−𝑖𝜔(𝐩)𝑡+𝑖𝐩⋅𝐱

+∫
d3𝑝

(2𝜋)3√2𝜔(𝐩)
𝐀 (𝜔(𝐩), 𝐩)∗ 𝑒+𝑖𝜔(𝐩)𝑡−𝑖𝐩⋅𝐱.

(2.1.33)

To arrive at eq. (2.1.33), we evaluated the delta distributions, performed the variable substi-
tution 𝐩 → −𝐩 in the second term and used the conjugate symmetry of the Maxwell field in
momentum space, 𝐴(−𝑝0, −𝐩) = 𝐴(𝑝0, 𝐩)∗. The Maxwell field being transverse implies the
momentum vector 𝐩 being orthogonal to the Fourier amplitude,

𝐩 ⋅ 𝐀 (𝜔(𝐩), 𝐩) = 0. (2.1.34)

We construct a orthonormal basis {𝐞̂𝜆}𝜆=1,2 for each momentum vector 𝐩, the polarization
basis to momentum 𝐩, which is orthogonal to the momentum 𝐩 and complete [11, p. 341],
i.e.,

𝐩 ⋅ 𝐞̂𝜆(𝐩) = 0 (2.1.35)
𝐞̂𝜆(𝐩) ⋅ 𝐞̂𝜆′(𝐩) = 𝛿𝜆,𝜆′ (2.1.36)

∑
𝜆=1,2

𝐞̂𝜆(𝐩)𝑖𝐞̂𝜆(𝐩)𝑗 = 𝛿𝑖𝑗 −
𝑝𝑖𝑝𝑗

𝐩2 . (2.1.37)
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Writing the Fourier vector amplitude in terms of the polarization basis

𝐀 (𝜔(𝐩), 𝐩) = ∑
𝜆=1,2

𝑎𝜆(𝐩)𝐞̂𝜆(𝐩) (2.1.38)

and inserting it back into the plane-wave expansion, eq. (2.1.33), we arrive at our final re-
sult

𝐀(𝑡, 𝐱) = ∑
𝜆=1,2

∫
d3𝑝

(2𝜋)3√2𝜔(𝐩)
{𝑎𝜆(𝐩)𝐞̂𝜆(𝐩)𝑒−𝑖𝜔(𝐩)𝑡+𝑖𝐩⋅𝐱 + c.c.} (2.1.39)

The plane-wave expansion looks already similar to the quantum mode expansion of the
Maxwell field but relies only on classical arguments.3 In principle, we could stop here, re-
place the Fourier modes with the annihilation operator satisfying the canonical commu-
tation relation (CCR), and we have quantized our field.4 However, for completeness, we
review the standard canonical quantization of the Maxwell field in the next section.

2.1.5. Canonical quantization

In canonical quantization, we work in the Hamiltonian picture, promoting the conjugate
variables with operators that satisfy the equal-time commutation relation (ETCR). In the
canonical quantization of gauge theories, like theMaxwell field, wehave the additional tech-
nical complication of handling the unphysical DOFs. In the Coulomb gauge, we can take
care of the transverse gauge condition by amending the equal-time commutation relations
to be transverse, more to that later. In the Lorenz gauge, the Gupta-Bleuler method includes
the unphysical DOF in the quantization process but removes them later by constraining the
state space, see Ref. [12, p. 180].

Before performing the canonical quantization, we need to find the conjugate field vari-
ables and Hamiltonian (density). The conjugate momentum to the Maxwell field 𝐴𝑖 is [11,
p. 342]

Π𝑖 =
𝜕ℒ

𝜕(𝜕𝑡𝐴𝑖)
= −𝜕𝑡𝐴𝑖 = 𝜕𝑡𝐴𝑖 (2.1.40)

where the sign change occurs due to the spatial components of the Minkowski metric when
lowering a spatial index, 𝐴𝑖 = 𝑔𝑖𝑗𝐴𝑗 = −𝛿𝑖𝑗𝐴𝑗 = −𝐴𝑗. In the Coulomb gauge, the electric
field components are equal to the negative conjugate momentum components, i.e.,

𝐸𝑖 = 𝐹0𝑖 = 𝜕𝑡𝐴𝑖 = −Π𝑖 (2.1.41)

where we used eq. (2.1.15) and the temporal gauge, 𝐴0 = 0.5 In the following, we replace
the conjugate momentum with the electric field components, Π𝑖 = −𝐸𝑖. The Hamiltonian
3The similarity is not surprising if we consider 𝐴(𝑡, 𝐱) as the expectation value of the Maxwell field operator
given a coherent state, ⟨𝛼|𝐀̂(𝑡, 𝐱)|𝛼⟩.

4The equivalence of Fourier and quantum modes has been experimentally established, see Ref. [75].
5We may not always explicitly write that we use the temporal gauge,𝐴0 = 0.
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density of the Maxwell field is equal to

ℋ = 1
2𝐸𝑖𝐸

𝑖 + 1
2𝜕𝑖𝐴𝑗𝜕

𝑗𝐴𝑖 (2.1.42)

and can be found by Legendre transform of the Lagrangian density [11, p. 342] or using the
energy density component from the energy-momentum tensor [12, p. 148].

Wenowperform the canonical quantization by replacing the dynamical field variables𝐴𝑖, −𝐸𝑖
with the field operators ̂𝐴𝑖, − ̂𝐸𝑖 satisfying the ETCR [12, p. 197]

[ ̂𝐴𝑖(𝑡, 𝐱), ̂𝐸𝑗(𝑡, 𝐲)] = −𝑖𝛿(3)⟂𝑖𝑗(𝐱 − 𝐲) (2.1.43)

[ ̂𝐴𝑖(𝑡, 𝐱), ̂𝐴𝑗(𝑡, 𝐲)] = [ ̂𝐸𝑖(𝑡, 𝐱), ̂𝐸𝑗(𝑡, 𝐲)] = 0 (2.1.44)

where we adapted the transverse delta distribution [12, p. 198]

𝛿(3)⟂𝑖𝑗(𝐱) = (𝛿𝑖𝑗 −
𝜕𝑖𝜕𝑗
𝜕2 ) 𝛿

(3)(𝐱) = ∫
d3𝑝
(2𝜋)3 (

𝛿𝑖𝑗 −
𝑝𝑖𝑝𝑗
𝐩2 ) 𝑒

𝑖𝐩⋅𝐱 (2.1.45)

which implements the Coulomb gauge on the operator level.

Replacing the Fourier amplitudes, 𝑎𝜆(𝐩) and 𝑎𝜆(𝐩)∗ in the plane-wave expansion of the
Maxwell field with the annihilation operators ̂𝑎𝜆(𝐩) and the creation operator ̂𝑎†𝜆(𝐩), we
find the Maxwell field operator to be

𝐀̂(𝑡, 𝐱) = 𝐀̂(−)(𝑡, 𝐱) + 𝐀̂(+)(𝑡, 𝐱) (2.1.46)

where we defined the positive and negative frequency parts to be

𝐀̂(−)(𝑡, 𝐱) = ∑
𝜆=1,2

∫
d3𝑝

(2𝜋)3√2𝜔(𝐩)
̂𝑎𝜆(𝐩)𝐞̂𝜆(𝐩)𝑒−𝑖𝜔(𝐩)𝑡+𝑖𝐩⋅𝐱 (2.1.47)

𝐀̂(+)(𝑡, 𝐱) = ∑
𝜆=1,2

∫
d3𝑝

(2𝜋)3√2𝜔(𝐩)
̂𝑎†𝜆(𝐩)𝐞̂𝜆(𝐩)

∗𝑒+𝑖𝜔(𝐩)𝑡−𝑖𝐩⋅𝐱. (2.1.48)

In the literature, we find different conventions concerning the integrationmeasure, the sign
of the complex exponentials, and the complex conjugation of the of polarization basis vec-
tors in eqs. (2.1.47) and (2.1.48) originating from different conventions for the Fourier trans-
form. For example, Refs. [2, 12] use ̂𝑎𝜆(𝐩)𝑒−𝑖𝜔(𝐩)𝑡 while Refs. [11, 1] use ̂𝑎𝜆(𝐩)𝑒+𝑖𝜔(𝐩)𝑡. Ana-
log to the Maxwell field operator, we decompose the electric field operator into a positive
and negative frequency part

𝐄̂(𝑡, 𝐱) = 𝐄̂(−)(𝑡, 𝐱) + 𝐄̂(+)(𝑡, 𝐱) (2.1.49)

where we find the electric field operator components via ̂𝐸𝑖 = 𝜕𝑡 ̂𝐴𝑖 leading to

𝐄̂(−)(𝑡, 𝐱) = −𝑖 ∑
𝜆=1,2

∫
d3𝑝

(2𝜋)3√2𝜔(𝐩)
𝜔(𝐩) ̂𝑎𝜆(𝐩)𝐞̂𝜆(𝐩)𝑒−𝑖𝜔(𝐩)𝑡+𝑖𝐩⋅𝐱 (2.1.50)

𝐄̂(+)(𝑡, 𝐱) = +𝑖 ∑
𝜆=1,2

∫
d3𝑝

(2𝜋)3√2𝜔(𝐩)
𝜔(𝐩) ̂𝑎†𝜆(𝐩)𝐞̂𝜆(𝐩)

∗𝑒+𝑖𝜔(𝐩)𝑡−𝑖𝐩⋅𝐱. (2.1.51)
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Inserting theMaxwell and electric field operators into the equal-time commutation relation,
we derive the CCR

[ ̂𝑎𝜆(𝐩), ̂𝑎†𝜆′(𝐪)] = (2𝜋)3𝛿𝜆𝜆′𝛿(3) (𝐩 − 𝐪) (2.1.52)

[ ̂𝑎𝜆(𝐩), ̂𝑎𝜆′(𝐪)] = [ ̂𝑎†𝜆(𝐩), ̂𝑎†𝜆′(𝐪)] = 0. (2.1.53)

The Maxwell field’s Hamilton and momentum operator are [12, p. 199]

𝐻̂ = ∑
𝜆=1,2

∫
d3𝑝
(2𝜋)3

𝜔(𝐩) ̂𝑎†𝜆(𝐩) ̂𝑎𝜆(𝐩) (2.1.54)

𝐏̂ = ∑
𝜆=1,2

∫
d3𝑝
(2𝜋)3

𝐩 ̂𝑎†𝜆(𝐩) ̂𝑎𝜆(𝐩) (2.1.55)

and can be found by inserting the Maxwell field operator into the classical definitions of
energy and momentum and performing normal ordering.6 Reading the combination of an-
nihilation and creation operator as particle number density

̂𝑛𝜆(𝐩) = ̂𝑎†𝜆(𝐩) ̂𝑎𝜆(𝐩), (2.1.56)

the energy and momentum operators then read as the total energy 𝜔(𝐩) and momentum
𝐩 weighted by the number density. Equation (2.1.56) suggests the total particle number
operator to be

𝑁̂ = ∫
d3𝑝
(2𝜋)3

̂𝑎†𝜆(𝐩) ̂𝑎𝜆(𝐩). (2.1.57)

Unsurprisingly, total particle number and total momentum are conserved quantities

[𝐻̂, 𝐏̂] = 𝟎 [𝐻̂, 𝐍̂] = 0. (2.1.58)

In the next section, we provide a more rigorous discussion of the particle aspects by con-
structing the quantum states.

2.2. Quantum states

In the previous section, we derived the relevant field operators for the Maxwell field en-
coding electromagnetism. In the present section, we construct quantum states from these
operators in a rather axiomatic approach as done in Ref. [76, p. 506] for the quantum har-
monic oscillator, or in axiomatic field theory [14, 77, 16].

To keep the arguments and notation concise, we restrict the quantum state construction to
one polarization mode of the Maxwell field. The Maxwell field then effectively becomes a

6Normal ordering removes infinite terms like the ”vacuum energy”.
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Klein-Gordon field with field operator

̂𝐴(𝑡, 𝐱) = ∫
d3𝑝

(2𝜋)3√2𝜔(𝐩)
{ ̂𝑎(𝐩)𝑒−𝑖𝜔(𝐩)𝑡+𝑖𝐩⋅𝐱 + ̂𝑎†(𝐩)𝑒+𝑖𝜔(𝐩)𝑡−𝑖𝐩⋅𝐱} (2.2.1)

wherein the annihilation and creation operator, ̂𝑎(𝐩), ̂𝑎†(𝐩), satisfy the CCR

[ ̂𝑎(𝐩), ̂𝑎†(𝐪)] = (2𝜋)3𝛿(3) (𝐩 − 𝐪) (2.2.2)
[ ̂𝑎(𝐩), ̂𝑎(𝐪)] = [ ̂𝑎†(𝐩), ̂𝑎†(𝐪)] = 0. (2.2.3)

To extend the results back to two polarization modes, we can construct a two-dimensional
tensor product space from the single polarization mode.

2.2.1. Vacuum state

The fundamental assumption our state construction relies upon is the existence of a unique,
up to a constant phase factor, vacuum state |0⟩ invariant under the unitary Poincaré trans-
formation [14, p. 97]

𝑈̂(𝑎, Λ)|0⟩ = |0⟩ (2.2.4)

whereΛ denotes a Lorentz transformation and 𝑎 a spacetime translation. The vacuum state
is an element of a one-dimensional complex Hilbert space,ℋ(0) = ℋ(ℂ), the zero-particle
state space. The generator of the unitary spacetime translation is the four-momentum op-
erator ̂𝑃𝜇 = (𝐻̂, 𝐏̂) [77, p. 28]

𝑈̂(𝑎) = 𝑈̂(𝑎, 𝟙) = 𝑒𝑖 ̂𝑃𝜇𝑎𝜇. (2.2.5)

The invariance of the vacuum under spacetime translations, eq. (2.2.5), implies that the
vacuum is a zero eigenstate to the Hamilton and momentum operator

𝐻̂|0⟩ = 0 𝐏̂|0⟩ = |0⟩. (2.2.6)

From themode expansion of theHamilton operator, eq. (2.1.54), and the vacuum state being
a zero eigenstate to the Hamilton operator, we conclude that the vacuum state is also a zero
eigenstate to the annihilation operator

̂𝑎(𝐩)|0⟩ = 0. (2.2.7)

In the next paragraph, we motivate why we understand the annihilation and creation oper-
ators as adding or removing a particle excitation to and from the field. Under these circum-
stances, we can read eq. (2.2.7) as destroying the vacuum state, ensuring no negative energy
or negative particle number states.
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2.2.2. Particle states

Themotivation of why the annihilation and creation operators add or remove a particle with
energy and momentum to and from the field follows from applying the commutators of the
number and momentum operator with the creation operator

[𝑁̂, ̂𝑎†(𝐩)] = ̂𝑎†(𝐩) [𝐏̂, ̂𝑎†(𝐩)] = 𝐩 ̂𝑎†(𝐩). (2.2.8)

Applying the vacuum state |0⟩ to the right of the commutator equations, yields eigenvalue
equations for the number and momentum operator

𝑁̂ ̂𝑎†(𝐩)|0⟩ = 1 ̂𝑎†(𝐩)|0⟩ 𝐏̂ ̂𝑎†(𝐩)|0⟩ = 𝐩 ̂𝑎†(𝐩)|0⟩. (2.2.9)

The eigenvalue equations suggest
|𝐩⟩ = ̂𝑎†(𝐩)|0⟩ (2.2.10)

to be a single-particle statewithmomentum𝐩 and energy𝜔(𝐩), amomentum state. [2, p. 23].
Unfortunately, the inner product between two momentum states does not yield a complex
number ℂ but, a distribution,

⟨𝐩|𝐪⟩ = ⟨0|[ ̂𝑎(𝐩), ̂𝑎†(𝐪)]|0⟩ = (2𝜋)3𝛿(3)(𝐩 − 𝐪) (2.2.11)

suggesting that something essential is missing in our description.

It makes sense to take a step back and recap some mathematical context regarding distri-
butions.7 One approach considers distributions as functionals, i.e., maps from a function
space, e.g., the space of real-valued square-integrable functions 𝐿2(ℝ), to real numbers ℝ.
Implicitly, we already used functionals when we considered the action integral

̂𝑆 [𝑥(𝑡)] = ∫
𝑡1

𝑡0
d𝑡 𝐿 (𝑥(𝑡), ̇𝑥(𝑡)) , (2.2.12)

wherein 𝐿 is some classical Lagrangian, evaluated for some finite time interval [𝑡0, 𝑡1]maps
the trajectory 𝑥(𝑡) of a point particle to a real number ℝ. Often a functional 𝐴 acting on a
function 𝑓 is written

𝐴[𝑓] = ∫ d𝑥𝑓(𝑥)𝐴(𝑥) (2.2.13)

wherein 𝐴(𝑥) is denoted the integration kernel representing the functional, which may be
an ordinary function or a distribution. For example, the delta distribution 𝛿(𝑥 − 𝑦) is the
integration kernel of the functional 𝛿𝑦

𝛿𝑦[𝑓] = ∫ d𝑥𝑓(𝑥)𝛿(𝑥 − 𝑦) = 𝑓(𝑦). (2.2.14)

7See Ref. [78, p. 590] and Ref. [54, p. 193] for a mathematical discussion of distributions in a physical context.
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Fourier transforms are another class of functionals we already used frequently. Linear func-
tionals share many convenient properties with ordinary functions and physicists often skip
the distinction. In axiomatic quantum field theory, the quantum field operators are precisely
defined as operator-valued tempered distributions mapping from the space of smearing or
test functions 𝒮(ℝ4) to the the set of operators defined on the corresponding Hilbert space
𝒪(ℋ) [77, p. 56].8 A typical functional space for smearing functions is the Schwartz space,
a subset of the space of square-integrable functions 𝐿2, which rapidly fall off at infinity, a
property which we exploit for partial integration with vanishing boundary terms of the ac-
tion integral.9

Let us reinterpret the positive-frequency field operator with this mathematical background
by considering its action on a smearing function, i.e.,

̂𝐴(+)[𝑓] = ∫ d4𝑥𝑓(𝑡, 𝐱) ̂𝐴(+)(𝑡, 𝐱) = ∫
d3𝑝

(2𝜋)3√2𝜔(𝐩)
𝑓(𝜔(𝐩), 𝐩) ̂𝑎†(𝐩) (2.2.15)

where we inserted the plane-wave expansion for the field and the spacetime Fourier trans-
form for the smearing function and used the orthogonality of the Fourier modes in the sec-
ond equation. Applying the smeared positive frequency field operator to the vacuumstate,

|1𝑓⟩ = ̂𝐴(+)[𝑓]|0⟩, (2.2.16)

and comparing the result to the momentum state, eq. (2.2.10), we find the function 𝑓 to
smear the function in momentum and spacetime space [11, p. 35].10 The inner product of
two such smeared states yields a complex number ℂ

⟨1𝑓|1𝑔⟩ = ∫
d3𝑝

(2𝜋)32𝜔(𝐪)
𝑓(𝐩)∗𝑔(𝐩) (2.2.17)

implying the smeared state |1𝑓⟩ being normalizable if we require the smearing function to
satisfy

⟨1𝑓|1𝑓⟩ = ∫
d3𝑝

(2𝜋)32𝜔(𝐪)
|𝑓(𝐩)|2 = 1. (2.2.18)

With the normalization condition imposed, the smeared state |1𝑓⟩ is an eigenstate of the
number operator to eigenvalue one

𝑁̂|1𝑓⟩ = 1|1𝑓⟩ (2.2.19)

suggesting the smeared state |1𝑓⟩ to be the physical single-particle state we were looking for.
The smeared state |1𝑓⟩ is not an eigenstate of the energy and momentum operator anymore

8A criticism of this approach is that the space of test functions covers only a subset of the Hilbert space.
9Typical Schwartz functions are Gaussian functionsmultiplied with amonomial, e.g., 𝑥𝑛𝑒−𝑎‖𝑥‖2 where𝑛 ∈ ℕ0
and 𝑎 ∈ ℝ+.

10Interestingly though, only momentum components satisfying the energy-momentum relation, eq. (2.1.30),
contribute to momentum space.
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but has expectation values

⟨1𝑓|𝐻̂|1𝑓⟩ = ∫
d3𝑝
(2𝜋)3

𝜔(𝐩)|𝑓(𝜔(𝐩), 𝐩)|2 (2.2.20)

⟨1𝑓|𝐏̂|1𝑓⟩ = ∫
d3𝑝
(2𝜋)3

𝐩|𝑓(𝜔(𝐩), 𝐩)|2 (2.2.21)

suggesting that the smearing function has the physical interpretation of a frequency spec-
trum.

Let |1𝑓⟩ be a smeared particle state, then the single-particle wave function providing the
probability amplitude density of finding the particle at (𝑡, 𝐱) [2, p. 24] equals

Ψ(𝑡, 𝐱) = ⟨0| ̂𝐴(𝑡, 𝐱)|1𝑓⟩ = ∫ d𝑡′ d3𝑥′𝐷(𝑡 − 𝑡′, 𝐱 − 𝐱′)𝑓(𝑡′, 𝐱′), (2.2.22)

wherein 𝑓(𝑡, 𝐱) is the spacetime representation of the (initial) smearing function and

𝐷(𝑡, 𝐱) = ∫
d3𝑝

(2𝜋)32𝜔(𝐩)
𝑒−𝑖𝜔(𝐩)𝑡+𝑖𝐩⋅𝐱 (2.2.23)

is the propagator as defined in Ref. [2, p. 27]. Given the single-particle wave function, the
relativistic probability current

𝑗𝜇(𝑡, 𝐱) = 2 Im {Ψ(𝑡, 𝐱)∗𝜕𝜇Ψ(𝑡, 𝐱)} (2.2.24)

allows us to estimate the center-of-mass position and velocity of the particle, i.e.,

⟨𝐱(𝑡)⟩ = ∫ d3𝑥𝐱𝜌(𝑡, 𝐱) ⟨𝐯(𝑡)⟩ = ∫ d3𝑥 𝐣(𝑡, 𝐱) (2.2.25)

wherein 𝜌(𝑡, 𝐱) = 𝑗0(𝑡, 𝐱) is the relativistic probability density. For more details on the prop-
erties of relativistic wave packets, e.g., dispersion, see Ref. [79] and Ref. [80].

To summarize our findings, we first motivated momentum eigenstates from the commuta-
tion algebra. However, the momentum eigenstates are prone to mathematical inconsisten-
cies, following that the momentum states are strictly speaking distributions, not functions.
Physically, the momentum states correspond to unphysical plane-waves. A mathematical
consistent single-particle state requires a momentum spectrum. The momentum spectrum
encodes many important physical properties like the localization and velocity of the parti-
cle.

2.2.3. Fock space

The single-particle state defined in eq. (2.2.16) is an element of the one-particleHilbert space
of square-integrable functions defined on three-dimensional spaceℋ(1) = ℋ(𝐿2(ℝ3)). The
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generalization of the one-particle Hilbert spaceℋ(1) to an 𝑛-particle Hilbert spaceℋ(𝑛) is
the tensor product of one-particle Hilbert spaces

ℋ(𝑛) =
𝑛

⨂
𝑖=1

ℋ(1). (2.2.26)

Now, it is possible to have a superposition of, e.g., the vacuum state and a particle state

|𝜓⟩ = 𝑐1|0⟩ + 𝑐2|1𝑓⟩ (2.2.27)

with 𝑐1, 𝑐2 ∈ ℂ which means that we need to combine orthonormal 𝑛-particle states. We
first construct a tensor algebra over the Hilbert spaceℋ(1) as the direct sum [16, p. 290]

∞

⨁
𝑛=0

𝑆+ℋ(𝑛) (2.2.28)

wherein 𝑆+ symmetrizes the Hilbert space for bosons. Equipping the tensor algebra with an
inner product and using the completeness of the 𝑛-particle Hilbert spaces, we obtain again
a Hilbert space, named the symmetric Fock space ℱ+ [77, p. 35].

2.2.4. Number states

Applying the creation operator ̂𝐴(+)[𝑓]wherein𝑓 is a smearing function ormomentumspec-
trum satisfying the normalization condition, eq. (2.2.18), suggests defining

|𝑛𝑓⟩ =
1
√𝑛!

̂𝐴(+)[𝑓]𝑛|0⟩ (2.2.29)

as number state with spectrum 𝑓.11 The positive and negative frequency field operators
̂𝐴(±)(𝑡, 𝐱) generalize the quantum harmonic annihilation and creation operators by adding

or removing a particle with spectrum 𝑓 from the field

̂𝐴(+)[𝑓]|𝑛𝑓⟩ = √𝑛 + 1|𝑛 + 1𝑓⟩ (2.2.30)
̂𝐴(−)[𝑓]|𝑛𝑓⟩ = √𝑛|𝑛 − 1𝑓⟩. (2.2.31)

While the generalized number state |𝑛𝑓⟩ is still an eigenstate of the number operator to
eigenvalue 𝑛𝑓,

𝑁̂|𝑛𝑓⟩ = 𝑛𝑓|𝑛𝑓⟩, (2.2.32)
and has energy and momentum expectation values

⟨𝑛𝑓|𝐻̂|𝑛𝑓⟩ = 𝑛∫
d3𝑝
(2𝜋)3

𝜔(𝐩)
||||
𝑓(𝜔(𝐪), 𝐪)
√2𝜔(𝐩)

||||

2

(2.2.33)

⟨𝑛𝑓|𝐏̂|𝑛𝑓⟩ = 𝑛∫
d3𝑝
(2𝜋)3

𝐩
||||
𝑓(𝜔(𝐪), 𝐪)
√2𝜔(𝐩)

||||

2

. (2.2.34)

11The factorial is required for normalization because bosons are indistinguishable.
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The expectation value and variance of the electric field operator are

⟨𝑛𝑓| ̂𝐸(𝑡, 𝐱)|𝑛𝑓⟩ = 0 (2.2.35)

⟨𝑛𝑓| (Δ ̂𝐸(𝑡, 𝐱))2 |𝑛𝑓⟩ =
1
2 ∫

d3𝑝
(2𝜋)3

𝜔(𝐩) + 𝑛|Ψ(𝑡, 𝐱)|2. (2.2.36)

The electric field vanishes for our number states as known in quantum optics, see, for in-
stance, Ref. [4], but the variance contains an additional term to the ”vacuum fluctuations”
from the momentum spectrum. The vacuum fluctuations are in principle infinite, however,
our detector is only able to detect a limited bandwidthwhichmakes the vacuum fluctuations
in practical applications finite again.

2.2.5. Coherent states

The interaction of a classical current 𝐣(𝑡, 𝐱) with the Maxwell field operator in the Coulomb
gauge 𝐀̂(𝑡, 𝐱) is given by the interaction Hamiltonian

𝐻̂int(𝑡) = −∫ d3𝑥 𝐣(𝑡, 𝐱) ⋅ 𝐀̂(𝑡, 𝐱). (2.2.37)

Inserting the spatial Fourier transform of the current 𝐣(𝑡, 𝐩) and the plane-wave expansion,
eqs. (2.1.47) and (2.1.48), the interaction Hamiltonian becomes

𝐻̂int(𝑡) = − ∑
𝜆=1,2

∫
d3𝑝

(2𝜋)3√2𝜔(𝐩)
{(𝐣(𝑡, 𝐩)∗ ⋅ 𝐞̂𝜆(𝐩)) ̂𝑎𝜆(𝐩)𝑒−𝑖𝜔(𝐩)𝑡 +H.c.} . (2.2.38)

where we used the conjugate symmetry 𝐣(𝑡, 𝐩)∗ = 𝐣(𝑡, −𝐩).

The effect of an interaction acting on a quantum state from time 𝑡0 to 𝑡 is encoded in the
time-evolution operator12

𝑈̂(𝑡0, 𝑡) = 𝒯+ exp {−𝑖∫
𝑡

𝑡0
d𝑡′ 𝐻̂int(𝑡′)} (2.2.39)

wherein𝒯+ denotes the time-ordering symbol. TheMagnus expansion presents a systematic
approach in finding an explicit form of the time-evolution operator13, it is given by

𝑈̂(𝑡0, 𝑡) = exp {∑
𝑛=1

Ω(𝑛)(𝑡0, 𝑡)} (2.2.40)

12See Ref. [12, p. 215] for an introduction into the time-evolution operator and interactions.
13See Ref. [81, p. 42], for an introduction to the Magnus expansion with application to nonlinear processes.
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wherein the first two terms are given by

Ω̂(1)(𝑡0, 𝑡) = −𝑖∫
𝑡

𝑡0
d𝑡′ 𝐻̂int(𝑡′) (2.2.41)

Ω̂(2)(𝑡0, 𝑡) =
(−𝑖)2
2! ∫

𝑡

𝑡0
d𝑡′∫

𝑡′

𝑡0
d𝑡′′[𝐻̂int(𝑡′), 𝐻̂int(𝑡′′)]. (2.2.42)

For some interactions there exists no exact solution and we can truncate the expansion up
to some finite term. Compared to other expansions, e.g. the Neumann expansion, the trun-
cated Magnus expansion is still unitary.

Let us apply theMagnus expansion to find the time-evolution operator corresponding to the
interaction Hamiltonian of eq. (2.2.38). The first term of the Magnus expansion turns out to
be

Ω̂(1)(𝑡0, 𝑡) = 𝑖 ∑
𝜆=1,2

∫
d3𝑝

(2𝜋)3√2𝜔(𝐩)
{𝐽𝜆(𝑡, 𝑡0; 𝐩) ̂𝑎𝜆(𝐩) +H.c.} (2.2.43)

where we defined the time-integrated current for polarization 𝜆

𝐽𝜆(𝑡0, 𝑡; 𝐩) = ∫
𝑡

𝑡0
d𝑡′ (𝐣(𝑡, 𝐩)∗ ⋅ 𝐞̂𝜆(𝐩)) 𝑒−𝑖𝜔(𝐩)𝑡

′. (2.2.44)

The second term in the Magnus expansion turns out to be complex

Ω̂(2)(𝑡0, 𝑡) = 𝑖 ∑
𝜆=1,2

∫
d3𝑝

(2𝜋)3𝜔(𝐩)
Im {𝐽𝜆(𝑡0, 𝑡′; 𝐩)𝐽𝜆(𝑡0, 𝑡′′; 𝐩)∗} (2.2.45)

which only contributes a phase to the time-evolution operator. As the second commuta-
tor is complex-valued, and therefore commutes, higher order commutators vanish and the
Magnus expansion is exact with the first two terms. As long as we consider a single current
source, no interference of phases can occur and we can ignore the complex phase originat-
ing from the second Magnus coefficient. The time-evolution operator of the Maxwell field
interacting with a classical source current therefore is [13, p. 168]

𝑈̂(𝑡0, 𝑡) = exp {𝑖 ∑
𝜆=1,2

∫
d3𝑝

(2𝜋)3√2𝜔(𝐩)
{𝐽𝜆(𝑡, 𝑡0; 𝐩) ̂𝑎𝜆(𝐩) +H.c.}} . (2.2.46)

Neglecting the polarization

𝑈̂(𝑡0, 𝑡) = exp {∫
d3𝑝

(2𝜋)3√2𝜔(𝐩)
{𝑖𝐽(𝑡, 𝑡0; 𝐩) ̂𝑎(𝐩) −H.c.}} (2.2.47)

we identify the time-evolution operatorwith the generalization of the displacement operator
from quantum optics [10, p. 47]

lim
𝑡→∞

𝑈̂(−𝑡, +𝑡) = 𝐷̂ [−𝑖𝐽(𝐩)] (2.2.48)
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where we take the generalized displacement operator to be

𝐷̂[𝛼] = exp { ̂𝐴(+)[𝛼] − ̂𝐴(−)[𝛼∗]}

= exp {∫
d3𝑝

(2𝜋)3√2𝜔(𝐩)
{𝛼(𝐩) ̂𝑎†(𝐩) − 𝛼(𝐩)∗ ̂𝑎(𝐩)}}

(2.2.49)

where we identified the generalized field creation and annihilation operators, ̂𝐴(+)[𝛼] and
̂𝐴(−)[𝛼∗]. Noting that

[ ̂𝐴(+)[𝛼], ̂𝐴(−)[𝛼∗]] = ∫
d3𝑝

(2𝜋)32𝜔(𝐩)
|𝛼(𝐩)|2 (2.2.50)

we can employ the Baker-Campbell-Hausdorff (BCH) formula as in Ref. [10, p. 48] to write
the displacement operator in normal-order

𝐷̂[𝛼] = exp {−12[
̂𝐴(+)[𝛼], ̂𝐴(−)[𝛼∗]]} exp {+ ̂𝐴(+)[𝛼]} exp {− ̂𝐴(−)[𝛼]} . (2.2.51)

Now, let us discuss some properties of the displacement operator. The product of two dif-
ferent displacements is equal to the sum of the displacement times a suppression factor
depending on the overlap for the displacement, i.e.,

𝐷̂[𝛼]𝐷̂[𝛽] = 𝐷̂[𝛼 + 𝛽] exp {−12[
̂𝐴(+)[𝛼], ̂𝐴(−)[𝛽∗]] + 1

2[
̂𝐴(+)[𝛽], ̂𝐴(−)[𝛼∗]]}

= 𝐷̂[𝛼 + 𝛽] exp {−12 ∫
d𝑝

(2𝜋)32𝜔(𝐩) {
𝛼(𝐩)𝛽(𝐩)∗ − 𝛼(𝐩)∗𝛽(𝐩)}} .

(2.2.52)

Using the product formula, we can quickly show that the displacement operator is unitary

𝐷̂[𝛼]𝐷̂[𝛼]† = 𝐷̂[𝛼]𝐷̂[−𝛼] = 𝟙 (2.2.53)

which is not too surprising given the time-evolution is unitary.

The radiation emitted by a classical current is coherent, suggesting to identify the quantum
state produced by a classical current as the coherent state

|𝛼⟩ = 𝐷̂[𝛼]|0⟩ = exp {−12[
̂𝐴(+)[𝛼], ̂𝐴(−)[𝛼∗]]} exp { ̂𝐴(+)[𝛼]} |0⟩ (2.2.54)

where we used that the exponential of the generalized annihilation operator acting on the
vacuum state produces the vacuum state. Coherent states are non-orthogonal, i.e.,

⟨𝛼|𝛽⟩ = exp {−12[
̂𝐴(+)[𝛼], ̂𝐴(−)[𝛼∗]] − 1

2[
̂𝐴(+)[𝛽], ̂𝐴(−)[𝛽∗]] + [ ̂𝐴(+)[𝛽], ̂𝐴(−)[𝛼∗]]}

= exp {−12 ∫
d𝑝

(2𝜋)32𝜔(𝐩) {
|𝛼(𝐩)|2 + |𝛽(𝐩)|2 − 2𝛼(𝐩)∗𝛽(𝐩)}} .

(2.2.55)
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The inner product of a coherent state with a number state yields

⟨𝑛𝑓|𝛼⟩ =
1
√𝑛!

𝑒−𝑛/2 (∫
d𝑝

(2𝜋)32𝜔(𝐩)
𝑓(𝜔(𝐩), 𝐩)∗ 𝛼(𝐩))

𝑛
. (2.2.56)

The coherent state is an eigenstate to the annihilation operator

̂𝑎(𝐩)|𝛼⟩ =
𝛼(𝐩)

√2𝜔(𝐩)
|𝛼⟩, (2.2.57)

and therefore also an eigenstate of the negative-frequency Maxwell field operator

̂𝐴(𝑡, 𝐱)|𝛼⟩ = ∫
d3𝑝

(2𝜋)32𝜔(𝐩)
𝛼(𝐩)𝑒−𝑖𝜔(𝐩)𝑡+𝑖𝐩⋅𝐱|𝛼⟩. (2.2.58)

The coherent state being an eigenstate of the annihilation operator makes it easy to derive
most expectation values, for instance, for the Hamiltonian operator

⟨𝛼|𝐻̂|𝛼⟩ = ∫
d𝑝
(2𝜋)3

𝜔(𝐩)
||||
𝛼(𝐩)

√2𝜔(𝐩)

||||

2

(2.2.59)

and its variance

⟨𝛼| (Δ𝐻̂)2 |𝛼⟩ = ∫
d𝑝
(2𝜋)3

𝜔(𝐩)2
||||
𝛼(𝐩)

√2𝜔(𝐩)

||||

2

. (2.2.60)

For the number operator we find the mean to equal the variance

⟨𝛼|𝑁̂|𝛼⟩ = ∫
d𝑝
(2𝜋)3

||||
𝛼(𝐩)

√2𝜔(𝐩)

||||

2

= 𝑛 (2.2.61)

⟨𝛼| (Δ𝑁̂)2 |𝛼⟩ = 𝑛2, (2.2.62)

i.e., the photon number to be Poisson distributed, which follows simply by setting 𝜔(𝐩) = 1
in the results obtained for the Hamilton operator. The expectation value of the electric field
operator reads

⟨𝛼| ̂𝐸(𝑡, 𝐱)|𝛼⟩ = ∫
d3𝑝
(2𝜋)3

Im {𝛼(𝐩)𝑒−𝑖𝜔(𝐩)𝑡+𝑖𝐩⋅𝐱}

= ∫
d3𝑝
(2𝜋)3

|𝛼(𝐩)| sin(𝐩 ⋅ 𝐱 − 𝜔(𝐩)𝑡 + 𝜑)
(2.2.63)

where we used the polar representation 𝛼(𝐩) = |𝛼(𝐩)|𝑒𝑖𝜑. The variance of the electric field
operator,

⟨𝛼| (Δ ̂𝐸(𝑡, 𝐱))2 |𝛼⟩ = 1
2 ∫

d3𝑝
(2𝜋)3

𝜔(𝐩), (2.2.64)
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is equal to the contribution from the vacuum fluctuations. The coherent state is also an
eigenstate of the negative-frequency electric field operator

̂𝐸(−)(𝑡, 𝐱)|𝛼⟩ = 1
2𝑖 ∫

d3𝑝
(2𝜋)3

𝛼(𝐩)𝑒−𝑖𝜔(𝐩)𝑡+𝑖𝐩⋅𝐱|𝛼⟩, (2.2.65)

which appears similar to a Fourier transform.

We have derived the generalized coherent state from the interaction of the Maxwell field
with a classical current where we found the time-evolution operator to yield the displace-
ment operator. The generalized coherent state and displacement operators share the same
properties as their single-mode quantum optics counterparts which is not too surprising
given that the modes are independent of another.

Summary

The present chapter consists of two stages. In the first stage, we derived the plane-mode
expansions of the quantum Maxwell and electric field operators in the Coulomb gauge,
eq. (2.1.46) and eq. (2.1.49), from field-theoretic arguments. In the second second, we ax-
iomatically motivated a generalization of the number and coherent states to a momentum
distribution. Themomentumdistribution is related to thewave function and generalizes the
frequency spectrum, essential for communication, to three dimensions. While the proper-
ties of our generalized quantum states are qualitatively compatible with the simplified states
from single-mode quantum optics, we presented them in a consistent framework justified
by established results from quantum field theory.

Our field-theoretic description reduces to continuous-mode quantum optics [10, 9] if we
ignore

1. the polarization DOFs of the Maxwell vector field,

2. the transverse momentum distribution, and

3. the Lorentz factor 1/√2𝜔.

The first approximation is straightforward and not a strong limitation as it is easy to restore
the polarizationDOFs through a tensor product of two scalar fields. For optical communica-
tion, and quantum optics, the transverse momentum profile transversal to the propagation
axis carries no information and it is reasonable to ignore the transversal DOFs [76, p. 53]

∫
ℝ3

d3𝑝
(2𝜋)3√2𝜔(𝐩)

→ ∫
∞

−∞

d𝑝
(2𝜋)√2𝑝

. (2.3.1)
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The approximation can be made even stronger when neglecting back-scattering and reflec-
tion effects and restricting the momentum distribution to forward propagation, i.e.,

∫
∞

−∞

d𝑝
(2𝜋)√2𝑝

≈ ∫
∞

0

d𝑝
(2𝜋)√2𝑝

(2.3.2)

where the identification of the forwardmomentumwith the frequency, 𝑝 = 𝜔 is oftenmade.
The third approximation requires some additional investigation. For one, every physical
measurement is bandwidth-limited such that by the mean-value theorem for definite inte-
grals

∫
∞

0

d𝜔
(2𝜋)√2𝜔

≈ 1
√2𝜔0

∫
∞

0

d𝜔
2𝜋 , (2.3.3)

the Lorentz factor is effectively constant. However, in principle, it should be possible to
measure the Lorentz factor. That said, the Lorentz factor breaks our Fourier transform,
making some results difficult for interpretation.14 For instance, if we ignore the Lorentz
factor and ignore the transverse momentum distribution, we find that the eigenvalue of the
coherent state with regard to the Maxwell field operator, eq. (2.2.58), simplifies to

̂𝐴(−)(𝑡, 𝑥)|𝛼⟩ = ∫
d𝑝
2𝜋𝛼(𝑝)𝑒

−𝑖𝑝(𝑡−𝑥)|𝛼⟩ = 𝛼(𝑡 − 𝑥)∗|𝛼⟩, (2.3.4)

where 𝛼(𝑡 − 𝑥) is the time-domain signal.15 Another assumption or restriction, which we
have not mentioned explicitly yet, is the use of the Coulomb gauge. The Coulomb gauge
restricts our predictions to a stationary reference frame. While a stationary reference frame
appears reasonable for terrestrial communication, it must be questioned for space commu-
nication.

Another important operator, subject to controversies, which we have not mentioned so far,
is the quadrature operator. Ref. [10, p. 79] defines the continuous-mode quadrature operator
as16

̂𝑋(𝜗) = 1
√2

∫
d𝑝
2𝜋 { ̂𝑎(𝑝)𝑒−𝑖(𝑝𝑡+𝜗) + ̂𝑎†(𝑝)𝑒+𝑖(𝑝𝑡+𝜗)} . (2.3.5)

Comparing eq. (2.3.5) with the one-dimensional Maxwell operator,

̂𝐴(𝑡, 𝑥) = ∫
d𝑝
2𝜋

1
√2𝑝

{ ̂𝑎𝜆(𝑝)𝑒−𝑖𝑝(𝑡−𝑥) + ̂𝑎†𝜆(𝑝)𝑒
+𝑖𝑝(𝑡−𝑥)} , (2.3.6)

we note that these are equal up to the Lorentz factor, a phase, and the spatial dependency
𝑥. For a measurement at a stationary location, the spatial dependency reduces to a phase,
14More precisely, we need to distinguish between the four-dimensional Fourier transform and the Fourier trans-
form implementing the energy-momentum relation.

15We identify the negative-frequency Maxwell operator 𝐴̂(−) with the Fourier transform of the annihilation
operator used by Loudon [9].

16We adapted the quadrature operator to our convention of the Fourier transform, dividing the integration
measure by 2𝜋, and added time evolution.
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which can be further modified using the phase-rotation operator [82, p. 38], i.e.,

𝑒−𝑖𝜗𝑁̂ ̂𝐴(𝑡)𝑒+𝑖𝜗𝑁̂ = ∫
d𝑝
2𝜋

1
√2𝑝

{ ̂𝑎𝜆(𝑝)𝑒−𝑖𝑝(𝑡+𝜗) + ̂𝑎†𝜆(𝑝)𝑒
+𝑖𝑝(𝑡+𝜗)} , (2.3.7)

where 𝑁̂ denotes the number operator defined in eq. (2.1.57). Using that practical measure-
ments are bandwidth-limited, we can invoke the mean-value theorem for definite integrals
and pull out the Lorentz factor 1/√2𝑝 from the integrand and thereby fully recovering the
quadrature operator proposed by in Ref. [10], eq. (2.3.5). How can the Maxwell field be an
observable when it is not gauge invariant? While it is true that the Maxwell field shows a
gauge symmetry, the gauge symmetry is uniquely fixed through the Coulomb gauge, which
is required to remove unphysical polarization DOFs.17

17See Ref. [83] for a discussion on the physicality of the Maxwell field and the gauge freedom.
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Chapter 3.
Quantum theory of (electro-)optical
components

In the last chapter, we derived a general quantum theory of light for optical communication.
Now it is time to apply it to describe the electro-optical building blocks from which we later
assemble a coherent-state transmission system. In particular, we present quantum models
for the optical coupler, electro-optical modulators, and detectors, which we use to derive
input-output relations for coherent states.

First, we introduce the optical coupler as a generalization of the beam splitter and thewaveg-
uide coupler. Second, we apply nonlinear quantum-optics to model electro-optical phase
modulation [84] as nonlinear frequency-conversion [81] and employ it to perform ampli-
tude modulation through electrically-driven interference. Third, we briefly review the pho-
toelectric effect [8, 7] and derive direct and balanced detectors and their interpretation in
terms of quantum measurements.

For the first two parts, we aim to motivate an evolution operator from some interaction
Hamiltonian. At some point, we cannot give an explicit evolution operator but only argue
why such an operator may, in principle, exist.

3.1. Coupler

An optical coupler is a passive component with two optical in- and outputs, generally as-
sumed to be linear time-invariant (LTI), which appears in almost every optical setup or as a
building block of ore complex components.1

1The optical splitter is a special case of the optical coupler where one of the two optical inputs is zero, or, more
precisely, the vacuum state.
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In the following, we would like to illuminate the versatile aspects of the optical coupler. We
begin our investigation with the beam splitter, implementing an optical coupler and split-
ter, considering its reflection and transmission properties [4, 7]. Subsequently, we examine
the waveguide coupler, which offers an alternative approach using an interaction Hamilto-
nian [18]. Finally, we provide a third entry point using a unitary transformation to transform
the displacement operator yielding input-output relations for coherent states and discuss ap-
plications as a splitter and spectral filter [82, 7].

3.1.1. Beam splitter

The most commonly employed designs of the beam splitter are the cubic, plate, and pellicle
beam splitters, see Figure 3.1. The cubic beam splitter is made of two triangular prisms. The

a) b) c)

Figure 3.1.: Different types of free-ray beam splitters. (a) Cubic beam splitter made of two
triangular prisms glued at their base (grey). (b) Plate beam splitter made of a
dielectric plate. (c) Pellicle beam splitter made from a thin membrane.

interface between the two prisms is finished with a dielectric coating. The outward-facing
surface of the prisms is graftedwith an anti-reflective (AR) coating.2 he pellicle beam splitter
consists of a fewmicrometer thinmembrane, optionally with a one-sided coating. The plate
beam splitter is like a thick pellicle beam splitter made of glass.

To deduce the relation between the in- and output fields, we sequentially couple a laser pulse
into each input while monitoring both outputs with a spectrum analyzer, see Figure 3.2.
Assuming the beam splitter to be an LTI system, knowing the spectral shape of the laser
pulse lets us infer the frequency responses of the beam splitter. Invoking the superposition
principle for electromagnetic waves, we find the frequency responses of the beam splitter to
relate the electric fields by

(⟨
̂𝐸′1(𝜔)⟩

⟨ ̂𝐸′2(𝜔)⟩
) = (𝑡(𝜔) 𝑟′(𝜔)

𝑟(𝜔) 𝑡′(𝜔)) (
⟨ ̂𝐸1(𝜔)⟩
⟨ ̂𝐸2(𝜔)⟩

) (3.1.1)

wherein 𝑟(𝜔), 𝑟′(𝜔) and 𝑡(𝜔), 𝑡′(𝜔) are the complex reflection respective transmission coeffi-
cients. The absolute values of the transmission, |𝑡(𝜔)| and |𝑡′(𝜔)|, and reflection coefficients,
|𝑟(𝜔)| and |𝑟′(𝜔)|, determine the splitting ratio of the input power among the outputs. The
2The incident angle of the electric field is perpendicular to the surface of the cubic beam splitter. As the
reflection angle is equal to the incidence angle, we have back-reflection of the input fields.
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̂𝐸1(𝜔) ̂𝐸′1(𝜔)

̂𝐸2(𝜔)

̂𝐸′2(𝜔)

̂𝐸1(𝜔) ̂𝐸′1(𝜔)

̂𝐸2(𝜔)

̂𝐸′2(𝜔)

Figure 3.2.: Cubic (left) and plate beam splitter (right) with the two input fields, ̂𝐸1(𝜔) and
̂𝐸2(𝜔), and two output fields, ̂𝐸′1(𝜔) and ̂𝐸′2(𝜔), labelled by the momentum rep-

resentation of the electric field operators.

complex phase factor of the reflection and transmission coefficients characterizes the phase
shifts the output fields concerning the input fields. The beam splitter is a passive device
implying the output energy to be bound by the input energy

|⟨ ̂𝐸′1(𝜔)⟩|2 + |⟨ ̂𝐸′2(𝜔)⟩|2 ≤ |⟨ ̂𝐸1(𝜔)⟩|2 + |⟨ ̂𝐸2(𝜔)⟩|2, (3.1.2)

or equivalently, constraining the reflection and transmission coefficients by

|𝑟(𝜔)|2 + |𝑡(𝜔)|2 ≤ 1, |𝑟′(𝜔)|2 + |𝑡′(𝜔)|2 ≤ 1. (3.1.3)

The equality of these inequalities is only true for lossless devices for which there is no back-
scattering.3 Sometimes, one finds the claim [18, p. 129] that the matrix transformation in
eq. (3.1.1) is required to be symmetric (or reciprocal) due to Maxwell’s equations. However,
only optical systemswith a single dielectric layer are reciprocal [85], butmost physical beam
splitters comprise multiple dielectric layers.4 It is possible to derive exact expressions of
the complex reflection, 𝑟(𝜔), 𝑟′(𝜔), and transmission coefficients, 𝑡(𝜔), 𝑡′(𝜔) using classical
wave optics and perfect knowledge of the dimensions andmaterial properties. For example,
Hénault [86] derived an exact expression for the reflected and transmitted amplitudes of
a plate beam splitter with one input and a single dielectric layer. Likewise, Hamilton [87]
discusses the cubic beam splitter with two inputs and different coatings. In general, the
complex reflection and transmission coefficients need to account for multiple reflections at
different dielectric layers inside the beam splitter.

Inserting the mode expansion of the electric field operators, eqs. (2.1.49) to (2.1.51), and
using the linearity of the device and the expectation value, we recover the transformation

3Using an optical circulator it is in principle possible to measure all 16 scattering parameters.
4For example, cubic beam splitters typically have a coating followed by optical cement between the prisms
breaking reciprocal symmetry of the system.
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for the annihilation operators, sometimes referred to as quantum modes,

( ̂𝑎′1(𝜔)
̂𝑎′2(𝜔)

) = (𝑡(𝜔) 𝑟′(𝜔)
𝑟(𝜔) 𝑡′(𝜔)) (

̂𝑎1(𝜔)
̂𝑎2(𝜔)

) (3.1.4)

in agreement with Refs. [82, 4].

3.1.2. Waveguide coupler

Contrary to the direct coupling in free-ray beam splitters, a fiber or waveguide coupler uses
indirect coupling through the evanescent field. The evanescent field of an electromagnetic
field does not propagate but decays exponentially. We often observe evanescent fields at
the boundary of waveguiding structures. One must bring the waveguides in proximity for
the evanescent fields of two waveguided modes to couple efficiently. The range where the
waveguides are close is the interaction length 𝑙, see Figure 3.3. Over the interaction length,
the two energy of the field modes oscillates back and forth between the two waveguides.
The weak coupling through evanescent fields is conceptionally similar to weakly coupled

̂𝑎1(𝜔) ̂𝑎′1(𝜔)

̂𝑎2(𝜔) ̂𝑎′1(𝜔)

𝑙

Figure 3.3.: Waveguide coupler with input quantummodes ̂𝑎1(𝜔) and ̂𝑎2(𝜔) coupled evanes-
cent over an interaction length 𝑙 yielding the output quantum modes ̂𝑎′1(𝜔) and
̂𝑎′2(𝜔).

harmonic oscillators. Haroche [18, p. 131] successfully exploits the analogy to derive the
quantum beam splitter transform from interaction theory. We generalize his approach for
the mode continuum derived in the previous chapter.

Let ̂𝑎1(𝜔) and ̂𝑎2(𝜔) be the annihilation operators of the first and second waveguide modes.
The interaction Hamiltonian

𝐻̂int = −∫ d𝜔
2𝜋 {𝑔(𝜔) ̂𝑎1(𝜔) ̂𝑎†2(𝜔) + 𝑔∗(𝜔) ̂𝑎†1(𝜔) ̂𝑎2(𝜔)} , (3.1.5)

wherein 𝑔(𝜔) is a complex-valued coupling parameter encoding the material and geometry
of the coupler, describes the transitions of excitations between the first and the secondmode.
As the interaction Hamiltonian is time-independent, all but the first term in the Magnus
expansion vanish, and the time evolution operator is

𝑈̂int = exp {𝑖∫ d𝑡′∫ d𝜔
2𝜋 {𝑔(𝜔) ̂𝑎1(𝜔) ̂𝑎†2(𝜔) + 𝑔∗(𝜔) ̂𝑎†1(𝜔) ̂𝑎2(𝜔)}} (3.1.6)
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wherein the time integration is over the duration of the interaction. Assuming the inter-
action to be limited to the interaction length 𝑙, the interaction duration 𝑇 is approximately
equal to the interaction length 𝑙 divided by the group velocity 𝑣𝑔(𝜔). The group velocity
depends on the materials of the coupler, suggesting redefining the coupling parameter to
include the different interaction durations, i.e.,

𝑈̂int = exp {𝑖∫ d𝜔
2𝜋𝜃(𝜔) { ̂𝑎1(𝜔) ̂𝑎†2(𝜔)𝑒−𝑖𝜑(𝜔) + ̂𝑎†1(𝜔) ̂𝑎2(𝜔)𝑒+𝑖𝜑(𝜔)}} (3.1.7)

where the real-valued couplings 𝜃(𝜔) and 𝜑(𝜔) implicitly depend on the materials and ge-
ometry of the waveguide coupler and the interaction length 𝑙. We define the generator

̂𝐺 = −𝑖∫ d𝜔
2𝜋𝜃(𝜔) { ̂𝑎1(𝜔) ̂𝑎†2(𝜔)𝑒−𝑖𝜑(𝜔) + ̂𝑎†1(𝜔) ̂𝑎2(𝜔)𝑒+𝑖𝜑(𝜔)} (3.1.8)

and calculate the commutator of the generator with the annihilation operators

[ ̂𝐺, ̂𝑎1(𝜔)] = 𝑖𝜃(𝜔) ̂𝑎2(𝜔)𝑒+𝑖𝜑(𝜔) [ ̂𝐺, ̂𝑎2(𝜔)] = 𝑖𝜃(𝜔) ̂𝑎1(𝜔)𝑒−𝑖𝜑(𝜔). (3.1.9)

The transformed annihilation operators turn out to be5,

̂𝑎′1(𝜔) = 𝑈̂†
int ̂𝑎1(𝜔)𝑈̂int = 𝑒+𝐺̂ ̂𝑎1(𝜔)𝑒−𝐺̂

= ̂𝑎1 + [ ̂𝐺, ̂𝑎1] +
1
2![

̂𝐺, [ ̂𝐺, ̂𝑎1]] +
1
3![

̂𝐺, [ ̂𝐺, [ ̂𝐺, ̂𝑎1]]] + …

= ̂𝑎1(𝜔) + 𝑖𝜃(𝜔) ̂𝑎2(𝜔)𝑒+𝑖𝜑(𝜔) +
1
2! (𝑖𝜃(𝜔))

2 ̂𝑎1(𝜔) +
1
3! (𝑖𝜃(𝜔))

3 ̂𝑎2(𝜔)𝑒+𝑖𝜑(𝜔) +…

= cos 𝜃(𝜔) ̂𝑎1(𝜔) + 𝑖 sin 𝜃(𝜔) ̂𝑎2(𝜔)𝑒+𝑖𝜑(𝜔)

(3.1.10)

and

̂𝑎′2(𝜔) = 𝑈̂†
int ̂𝑎2(𝜔)𝑈̂int = 𝑒+𝐺̂ ̂𝑎2(𝜔)𝑒−𝐺̂

= ̂𝑎2 + [ ̂𝐺, ̂𝑎2] +
1
2![

̂𝐺, [ ̂𝐺, ̂𝑎2]] +
1
3![

̂𝐺, [ ̂𝐺, [ ̂𝐺, ̂𝑎2]]] + …

= ̂𝑎2(𝜔) + 𝑖𝜃(𝜔) ̂𝑎1(𝜔)𝑒−𝑖𝜑(𝜔) +
1
2! (𝑖𝜃(𝜔))

2 ̂𝑎2(𝜔) +
1
3! (𝑖𝜃(𝜔))

3 ̂𝑎1(𝜔)𝑒−𝑖𝜑(𝜔) +…

= cos 𝜃(𝜔) ̂𝑎2(𝜔) + 𝑖 sin 𝜃(𝜔) ̂𝑎1(𝜔)𝑒−𝑖𝜑(𝜔),
(3.1.11)

where we used a kind of Baker-Campbell-Hausdorff (BCH) formula, in agreement with
Ref. [18, p. 131]. Inmatrix notation, the transformation of the annihilation operators reads

( ̂𝑎′1(𝜔)
̂𝑎′2(𝜔)

) = 𝑈(𝜔) ( ̂𝑎1(𝜔)
̂𝑎2(𝜔)

) = ( cos 𝜃(𝜔) 𝑖 sin 𝜃(𝜔)𝑒+𝑖𝜑
𝑖 sin 𝜃(𝜔)𝑒−𝑖𝜑 cos 𝜃(𝜔) ) ( ̂𝑎1(𝜔)

̂𝑎2(𝜔)
) . (3.1.12)

Comparison of the annihilation operator transformation for thewaveguide coupler, eq. (3.1.12),
and the beam splitter, eq. (3.1.4), our waveguide result implies lossless coupling. Lossless
5Strictly speaking, the annihilation operators in the interaction picture have an additional factor 𝑒−𝑖𝜔𝑡.
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coupling is essential for the transformed annihilation operators to satisfy the canonical com-
mutation relation (CCR) [4, p. 38]. Modeling an absorbing coupler requires four quantum
modes, two annihilation operators for the field, and two for a bosonic reservoir, see Ref. [7,
p. 210] for details.

3.1.3. Unitary operator transform

The derived transforms of the free-ray beam splitter and the fiber or waveguide coupler,
eqs. (3.1.4) and (3.1.12), have in common that they are two-dimensional unitary matrices,
which is not surprising since a unitary matrix transform conserves energy. The optical cou-
pler transform being linear and unitary is not surprising since the coupler is a linear passive
device, which we further assumed to be lossless. It presents itself to take the unitary matrix
transform as the defining property of an ideal optical coupler.

A general decomposition of a two-dimensional unitary matrix is the product [82, p. 95]

𝑈(𝜔) = (𝑒
+𝑖Φ/2 0
0 𝑒−𝑖Φ/2) (

cos(Θ/2) sin(Θ/2)
− sin(Θ/2) cos(Θ/2)) (

𝑒+𝑖Ψ/2 0
0 𝑒−𝑖Ψ/2) 𝑒

𝑖Λ/2 (3.1.13)

whereinwe suppress the frequency-dependence of the real parameters,Λ(𝜔), Θ(𝜔), Ψ(𝜔), Φ(𝜔),
for clarity. We can read the matrix decomposition, eq. (3.1.13), as first adding a global phase
shift Λ/2, then adding a relative phase shift of Ψ between the incident fields, rotating (mix-
ing) the field amplitudes by the angle Θ/2, and adding another relative phase shift of Ψ
between the outgoing fields.

While the unitary matrix transforms the annihilation operators and the field amplitudes,
it cannot transform a generic quantum state. In the previous subsection, we found a time
evolution operator 𝑈̂ from linear mode coupling theory, which related to the unitary matrix
transform 𝑈 via

𝑈(𝜔) ( ̂𝑎1(𝜔)
̂𝑎2(𝜔)

) = ( ̂𝑎′1(𝜔)
̂𝑎′2(𝜔)

) = (𝑈̂
† ̂𝑎1(𝜔)𝑈̂

𝑈̂† ̂𝑎2(𝜔)𝑈̂
) = 𝑈̂† ( ̂𝑎1(𝜔)

̂𝑎2(𝜔)
) 𝑈̂. (3.1.14)

The unitary operators corresponding to the unitary matrix decomposition in eq. (3.1.13) are
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the Jordan-Schwinger operators6

𝐿̂𝑡 =
1
2 ∫

d𝜔
2𝜋 ( ̂𝑎1(𝜔)

̂𝑎2(𝜔)
)
†

𝟙2 (
̂𝑎1(𝜔)
̂𝑎2(𝜔)

) = 1
2 ∫

d𝜔
2𝜋 ( ̂𝑎†1(𝜔) ̂𝑎1(𝜔) + ̂𝑎†2(𝜔) ̂𝑎2(𝜔)) (3.1.15)

𝐿̂𝑥 =
1
2 ∫

d𝜔
2𝜋 ( ̂𝑎1(𝜔)

̂𝑎2(𝜔)
)
†

𝜎𝑥 (
̂𝑎1(𝜔)
̂𝑎2(𝜔)

) = 1
2 ∫

d𝜔
2𝜋 ( ̂𝑎†1(𝜔) ̂𝑎2(𝜔) + ̂𝑎†2(𝜔) ̂𝑎1(𝜔)) (3.1.16)

𝐿̂𝑦 =
1
2 ∫

d𝜔
2𝜋 ( ̂𝑎1(𝜔)

̂𝑎2(𝜔)
)
†

𝜎𝑦 (
̂𝑎1(𝜔)
̂𝑎2(𝜔)

) = 𝑖
2 ∫

d𝜔
2𝜋 ( ̂𝑎†2(𝜔) ̂𝑎1(𝜔) − ̂𝑎†1(𝜔) ̂𝑎2(𝜔)) (3.1.17)

𝐿̂𝑧 =
1
2 ∫

d𝜔
2𝜋 ( ̂𝑎1(𝜔)

̂𝑎2(𝜔)
)
†

𝜎𝑧 (
̂𝑎1(𝜔)
̂𝑎2(𝜔)

) = 1
2 ∫

d𝜔
2𝜋 ( ̂𝑎†1(𝜔) ̂𝑎1(𝜔) − ̂𝑎†2(𝜔) ̂𝑎2(𝜔)) (3.1.18)

where 𝜎1, 𝜎2, 𝜎3 denote the two-dimensional Pauli matrices. The Jordan-Schwinger opera-
tors satisfy the angular-momentum commutation algebra [82, p. 97]

[𝐿̂𝑖, 𝐿̂𝑗] = 𝑖𝜀𝑖𝑗𝑘𝐿̂𝑘 [𝐿̂𝑡, 𝐿̂𝑖] = 0 (3.1.19)

and act as generator for the individual components of thematrix decomposition in eq. (3.1.13).
The generator of the unitary matrix, eq. (3.1.13), is

𝑈̂ = 𝑒𝑖Λ𝐿̂𝑡𝑒𝑖Φ𝐿̂𝑧𝑒𝑖Θ𝐿̂𝑦𝑒𝑖Ψ𝐿̂𝑧. (3.1.20)

The inverse of the unitary operator, eq. (3.1.20), can be written

𝑈̂(Λ,Φ,Θ,Ψ)† = 𝑒−𝑖Ψ𝐿̂𝑧𝑒−𝑖Θ𝐿̂𝑦𝑒−𝑖Φ𝐿̂𝑧𝑒−𝑖Λ𝐿̂𝑡

= 𝑒−𝑖Λ𝐿̂𝑡𝑒−𝑖Ψ𝐿̂𝑧𝑒−𝑖Θ𝐿̂𝑦𝑒−𝑖Φ𝐿̂𝑧

= 𝑈̂(−Λ,−Ψ,−Θ,−Φ),

(3.1.21)

where we used that 𝐿̂𝑡 commutes with the other Jordan-Schwinger operators, and can be
used to find the reversed transform,

𝑈̂ ( ̂𝑎1(𝜔)
̂𝑎2(𝜔)

) 𝑈̂† = 𝑈(𝜔)† ( ̂𝑎1(𝜔)
̂𝑎2(𝜔)

) , (3.1.22)

of the annihilation operators.

3.1.4. Coherent state transform

Let us now consider the action of the ideal coupler on the tensor product of input coherent-
states7

|𝛂(𝑡)⟩ = |𝛼1(𝑡), 𝛼2(𝑡)⟩. (3.1.23)
6Generalized to a frequency continuum from Ref. [82, p. 97].
7Other quantum states typically produce entangled output states, see, for instance, Ref. [88], which is not of
interest here.
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The output states are given by applying the unitary evolution operator 𝑈̂, e.g., eq. (3.1.20),
onto the input state

𝑈̂|𝛂(𝑡)⟩ = 𝑈̂𝐷̂ [𝛂(𝑡)] 𝑈̂†𝑈̂|0, 0⟩ = 𝑈̂𝐷̂ [𝛂(𝑡)] 𝑈̂†|0⟩, (3.1.24)

wherein we inserted 𝟙 = 𝑈̂†𝑈̂ in the second step and we used the invariance of the vacuum
state in the third step. The transformed displacement operator reads8

𝑈̂𝐷̂ [𝛂(𝑡)] 𝑈̂† = 𝑈̂ exp {∫ d𝜔
2𝜋 {𝛂(𝜔)T𝑒−𝑖𝜔𝑡 ( ̂𝑎†1(𝜔)

̂𝑎†2(𝜔)
) − 𝛂(𝜔)†𝑒+𝑖𝜔𝑡 ( ̂𝑎1(𝜔)

̂𝑎2(𝜔)
)}} 𝑈̂†

= exp {∫ d𝜔
2𝜋 {𝛂T𝑒−𝑖𝜔𝑡𝑈̂ ( ̂𝑎†1(𝜔)

̂𝑎†2(𝜔)
) 𝑈̂† − 𝛂†𝑒+𝑖𝜔𝑡𝑈̂ ( ̂𝑎1(𝜔)

̂𝑎2(𝜔)
) 𝑈̂†}}

, (3.1.25)

wherein we used the operator identity

𝑈̂𝑒𝐴̂𝑈̂† =
∞
∑
𝑛=0

1
𝑛!𝑈̂

̂𝐴𝑛𝑈̂† =
∞
∑
𝑛=0

1
𝑛!𝑈̂

̂𝐴𝑈̂†⋯𝑈̂ ̂𝐴𝑈̂† =
∞
∑
𝑛=0

1
𝑛! (𝑈̂

̂𝐴𝑈̂†)𝑛 = 𝑒𝑈̂𝐴̂𝑈̂† (3.1.26)

in the second step to move the unitary operators into the argument of the exponential. We
already expressed the transformed annihilation operators in the second term of the expo-
nential using the unitary matrix in eq. (3.1.22). The transformed creation operators in the
first term can be brought into a similar form, i.e.,

𝑈̂ ( ̂𝑎†1(𝜔)
̂𝑎†2(𝜔)

) 𝑈̂† = ([𝑈̂ ̂𝑎1(𝜔)𝑈̂†]†

[𝑈̂ ̂𝑎2(𝜔)𝑈̂†]†
) = [(𝑈̂ ̂𝑎1(𝜔)𝑈̂†

𝑈̂ ̂𝑎2(𝜔)𝑈̂†)
†

]
T

= [(𝑈(𝜔) ( ̂𝑎1(𝜔)
̂𝑎2(𝜔)

))
†

]
T

= [( ̂𝑎1(𝜔)
̂𝑎2(𝜔)

)
†

𝑈(𝜔)]
T

= 𝑈(𝜔)T ( ̂𝑎†1(𝜔)
̂𝑎†2(𝜔)

) .

(3.1.27)

Inserting the previous result back into the transformed displacement operator, eq. (3.1.25),
we factor the unitary matrix to the Fourier amplitudes

𝐷̂′ [𝛂(𝑡)] = exp {∫ d𝜔
2𝜋 {𝛂(𝜔)T𝑒−𝑖𝜔𝑡𝑈(𝜔)T ( ̂𝑎†1(𝜔)

̂𝑎†2(𝜔)
) − 𝛂(𝜔)†𝑒+𝑖𝜔𝑡𝑈(𝜔)† ( ̂𝑎1(𝜔)

̂𝑎2(𝜔)
)}}

= exp {∫ d𝜔
2𝜋 {(𝑈(𝜔)𝛂(𝜔))T 𝑒−𝑖𝜔𝑡 ( ̂𝑎†1(𝜔)

̂𝑎†2(𝜔)
) − (𝑈(𝜔)𝛂(𝜔))† 𝑒+𝑖𝜔𝑡 ( ̂𝑎1(𝜔)

̂𝑎2(𝜔)
)}}

(3.1.28)

in agreement with Ref. [7, p. 210]. The transformed Fourier amplitudes are given by the
matrix product

𝛂′(𝜔) = 𝑈(𝜔)𝛂(𝜔). (3.1.29)

8We adopt matrix notation as in Ref. [7, p. 206] to have our result independent of a particular choice of the
unitary matrix.
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The product in frequency space implies a convolution in the time domain, i.e.,

𝛂′(𝑡) = (𝑈 ∗ 𝛂) (𝑡) = ∫ d𝜔
2𝜋𝑈(𝜔)𝛂(𝜔)𝑒

+𝑖𝜔𝑡, (3.1.30)

and we conclude that a tensor product of coherent states transforms under an ideal optical
coupler according to

𝑈̂|𝛼(𝑡)⟩ = |(𝑈 ∗ 𝛂) (𝑡)⟩ 𝑈(𝑡) = ∫ d𝜔
2𝜋𝑈(𝜔)𝑒

+𝑖𝜔𝑡 (3.1.31)

wherein 𝑈(𝜔) is a two-dimensional unitary matrix characterizing the coupler.

The fact that the ideal optical coupler only transforms the amplitudes of the input coherent-
states is specific to coherent states. The coherent states owe this special property due to
having a Poisson number distribution and the Poisson distribution being memoryless. As
a consequence, the output coherent-states are independent and consider a subsystem by
performing a partial trace, e.g.,

Tr2 {|𝛼, 𝛽⟩⟨𝛼, 𝛽|} = Tr2 {|𝛼⟩⟨𝛼| ⊗ |𝛽⟩⟨𝛽|} = |𝛼⟩⟨𝛼| ⊗ Tr2 {|𝛽⟩⟨𝛽|} = |𝛼⟩⟨𝛼|, (3.1.32)

where we used

Tr2 {|𝛽⟩⟨𝛽|} =
∞
∑
𝑛=0

⟨𝑛|𝛽⟩⟨𝛽|𝑛⟩ =
∞
∑
𝑛=0

|⟨𝑛|𝛽⟩|2 = 1, (3.1.33)

is equivalent to the projection of the subsystem

Tr2 {|𝛼, 𝛽⟩⟨𝛼, 𝛽|} = |𝛼⟩⟨𝛼| = ̂𝑃1|𝛼, 𝛽⟩⟨𝛼, 𝛽| ̂𝑃1. (3.1.34)

For non-coherent quantum states, it is not correct to project out a subsystem as the partial
trace does not generally yield a mixed but a pure state.

3.1.5. Splitter and spectral filter

Our considerations have so far been quite general except for restricting ourselves to input
coherent-states. We will now discuss two applications of our results: First, we consider the
special case of a coupler being used as a splitter. Second, we consider a coupler as an optical
filter relevant to signal processing and quantum-information theory.

An ideal optical splitter redistributes the power of one input among two outputs and is
a special case of the optical coupler with one input state being the vacuum state. Using
eq. (3.1.29), we find the transformed Fourier amplitudes to be

(𝛼
′
1(𝜔)
𝛼′2(𝜔)

) = 𝑒𝑖Λ/2 ( cos(Θ/2)𝑒
𝑖(+Φ+Ψ)/2 sin(Θ/2)𝑒𝑖(+Φ−Ψ)/2

− sin(Θ/2)𝑒𝑖(−Φ+Ψ)/2 cos(Θ/2)𝑒𝑖(−Φ−Ψ)/2) (
𝛼(𝜔)
0 )

= 𝛼(𝜔) (+ cos(Θ/2)𝑒
+𝑖Φ/2

− sin(Θ/2)𝑒−𝑖Φ/2) 𝑒
𝑖(Λ+Ψ)/2

(3.1.35)
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whereinwe again suppressed the frequency dependency of the splitting parameters. Instead
of choosing a parametrization for the splitting coefficients, which directly ensures energy
conservation, we can more generally write

(𝛼
′
1(𝜔)
𝛼′2(𝜔)

) = 𝛼(𝜔) (𝑐1(𝜔)𝑐2(𝜔)
) |𝑐1(𝜔)|2 + |𝑐2(𝜔)|2 = 1. (3.1.36)

Assuming theFourier transformof 𝑐1(𝜔), 𝑐2(𝜔) to bewell-defined, we find the output coherent-
states to be

𝑈̂|𝛼(𝑡), 0⟩ = |(𝑐1 ∗ 𝛼) (𝑡), (𝑐2 ∗ 𝛼) (𝑡)⟩ (3.1.37)

according to eq. (3.1.31). If we further assume the signal 𝛼(𝑡) to be bandwidth-limited to 𝐵
and the splitting coefficients to be approximately constant over the bandwidth 𝐵, i.e.,

𝑐1(𝜔) ≈ 𝑐1(𝜔0) 𝑐2(𝜔) ≈ 𝑐2(𝜔0) ∀𝜔 ∈ 𝐵, (3.1.38)

the output state takes the simple form

𝑈̂|𝛼(𝑡), 0⟩ = |𝑐1𝛼(𝑡), 𝑐2𝛼(𝑡)⟩ (3.1.39)

and the splitter only redistributes the signal power among the outputs while leaving the
signal itself unaltered.

Equation (3.1.37) already suggests the similarity of the ideal optical splitter with an optical
filter, the difference being that only one output matters for the optical filter. To remove the
second output, we perform a partial trace over the second subsystem, equivalent to applying
the projection operator to eq. (3.1.37), i.e.,

̂𝑃1𝑈̂|𝛼(𝑡), 0⟩ = |(ℎ ∗ 𝛼) (𝑡)⟩ (3.1.40)

where we introduced the optical filter function ℎ = 𝑐1. Ref. [7, p. 199] discusses a spectral
filter made of a dielectric slab of thickness 𝑙 and refractive index 𝑛, see Figure 3.4, with in-
coming and outgoing quantummodes to each side. Let ̂𝑎1(𝜔) be the signal mode approach-
ing the dielectric slab from the left. Let us assume that the mode ̂𝑎2(𝜔) is in vacuum and
that we are only interested in the mode ̂𝑎′2(𝜔), outgoing to the right. Then the optical filter
function in eq. (3.1.40) is equal to the transmission coefficient of the dielectric slab which is
equal to [7, p. 199]

ℎ(𝜔) = 1 − 𝑟2

1 − 𝑟2 exp(2𝑖𝜔𝑛𝑙)
exp [−𝑖(𝑛 − 1)𝑙𝜔] 𝑟2 = (𝑛 − 1

𝑛 + 1)
2
. (3.1.41)

By carefully selecting the geometry and dielectric (layers), it should be possible to tailor
the transmission coefficient in a specific bandwidth to implement a custom optical filter
function ℎ.
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̂𝑎1(𝜔)

̂𝑎′1(𝜔)

̂𝑎′2(𝜔)

̂𝑎2(𝜔)
𝑛

𝑙

Figure 3.4.: Dielectric slab of thickness 𝑙 and refractive index 𝑛 used as a spectral filter with
incident quantummodes, denoted by the annihilation operators, ̂𝑎1(𝜔) from the
left, and ̂𝑎2(𝜔) from the right, and outgoing quantum modes, ̂𝑎′1(𝜔) to the left,
and ̂𝑎2(𝜔) to the right.

3.2. Modulators

The (electro-optical) modulators allow encoding an electrical signal onto an optical carrier,
and in that sense, are the interface between the electrical and optical domains. The domain
crossover occurs at the electro-optical phase modulator, which we attempt to describe as a
nonlinear-mixing process mediated by the dielectric. Following, we construct, in the optical
domain, a complex amplitude modulator, or in-phase and quadrature modulator (IQM),
using Mach-Zehnder interferometers (MZIs) driven by electro-optical phase modulators.

3.2.1. Phase modulator

In an electro-optical phase modulator, an electrical signal changes the refractive index of
an optical transmission medium, causing a phase shift. The linear electro-optic effect, also
known as the Pockels effect, characterizes a linear refractive index change proportional to
the amplitude of an external electric field [89, Ch. 18]. It is present in noncentrosymmetric
crystals [90, p. 2], e.g., lithium niobate [91, p. 237], commonly used in photonic integration.
Figure 3.5 depicts a traveling-wave electro-optical phase modulator. The phase modulation
signal is applied to the electrodes creating a traveling-wave RF field between the two elec-
trodes. The linear-electro optical effect couples the different RF and optical frequency com-
ponents. The output field contains sidebands, 𝜔 ± Ω0, at the modulation frequency, Ω0.

The modulation frequency, Ω, is typically many magnitudes smaller than the optical fre-
quency, 𝜔, and the phase-shift due to the refractive index change appears static from the
optical domain. In this case, we expect the complex amplitude of the optical signal leaving
the phase modulator to be

𝛼′(𝑡) = 𝛼(𝑡)𝑒−𝑖𝜑(𝑡), (3.2.1)
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𝐿

𝜔 𝜔

𝜔 + Ω0

𝜔 − Ω0

Ω0

Figure 3.5.: Traveling-wave electro-optical phase modulator comprising two electrodes of
length 𝐿 (black). The electrodes are driven by a sinusoidal voltage signal cre-
ating an radio frequency (RF) field with frequency Ω0 between the electrodes.
An optical field with frequency𝜔 reaches the phasemodulator from the left, and
an optical field with multiple frequency components, 𝜔,𝜔 ±Ω0, exits the phase
modulator to the right.

wherein 𝛼(𝑡) is the initial amplitude and 𝜑(𝑡) is some time-dependent phase. To a good
approximation, the phase modulator is an LTI system for which the time-dependent phase
signal is a convolution

𝜑(𝑡) = (ℎ ∗ 𝑥) (𝑡) = ∫ d𝑡′ ℎ(𝑡′)𝑥(𝑡 − 𝑡′) (3.2.2)

with ℎ(𝑡) being the linear time-response of the phase modulator system and 𝑥(𝑡) being the
voltage signal driving the modulator. As a rough estimate of when the phase is effectively
static concerning the optical field, we can compare the transmission time of the optical sig-
nal through the modulator with the period of the optical signal.9

While the former classical approach is perfectly sufficient, it does not fitwell into our quantum-
mechanical frameworkusing interactions andunitary operators. In the following, wepresent
the essence of Ref. [81] and Ref. [84] to get an insight into quantum-optical frequency-
conversion. To simplify the discussion, we approximate the electric field (averages) inside
the dielectric with free electric field operators at the cost of correctness relating to, e.g.,
phase-matching. One particular challenge regarding time-dependent phase modulation is
that there exists no simple representation in the frequency domain for arbitrary modulation
signals. The best we can do is assume a sinusoidal modulation, e.g.,

𝜑(𝑡) = 𝛽0 sin(Ω0𝑡 + 𝜙), (3.2.3)

for which we can use the Jacobi-Anger expansion [84, eq. 23]

𝑒−𝑖𝛽0 sin(Ω0𝑡+𝜙) = ∑
𝑚∈ℤ

𝐽𝑚(𝛽0)𝑒−𝑖𝑚(Ω0𝑡+𝜙) (3.2.4)

wherein 𝐽𝑚(𝛽0) is the𝑚thBessel function of the first kind. Inserting eq. (3.2.3) into eq. (3.2.1)

9The transmission time 𝑇 is equal to the group velocity, 𝑣𝑔(𝜔), divided by the length of the modulator, 𝐿.
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and performing the Jacobi-Anger expansion, we identify the Fourier transform with

𝛼′(𝜔) = ∑
𝑚∈ℤ

𝐽𝑚(𝛽0)𝑒−𝑖𝑚𝜙∫ d𝑡 𝛼(𝑡)𝑒−𝑖(𝜔+𝑚Ω0)𝑡

= ∑
𝑚∈ℤ

𝐽𝑚(𝛽0)𝑒−𝑖𝑚𝜙𝛼(𝜔 + 𝑚Ω0).
(3.2.5)

Sinusoidal phase modulation with frequency Ω0 creates infinitely many sidebands around
the carrier frequency 𝜔. As we can write an arbitrary time-dependent signal as a sum of
sinusoidals of different frequencies, wehave to dealwith an integral of infinite sums,making
arbitrary phase-modulation untractable.

Creating new frequency components requires a nonlinear interaction, not unlike the clas-
sical case, where a diode is used as a nonlinear element for frequency conversion. In Ap-
pendix B, we discuss nonlinear processes mediated by the electric susceptibility of a nonab-
sorptive dielectric and find the interaction Hamiltonian corresponding to frequency conver-
sion to be

𝐻̂int = ∫ d𝜔
2𝜋 ∫ dΩ

2𝜋 𝑔(𝜔,Ω) ̂𝑎†(𝜔) ̂𝑎(Ω) ̂𝑎(𝜔 − Ω) +H.c., (3.2.6)

wherein 𝑔(𝜔,Ω) encodes the geometry and properties of the dielectric material. The cou-
pling parameter 𝑔(𝜔,Ω) is only non-zero for 𝜔 being an optical and Ω being an electrical
frequency. The operators in eq. (3.2.6) describe the simultaneous absorption of an ”electric”
photon with RFΩ, ̂𝑎(Ω), and an ”optical” photon with frequency 𝜔−Ω, ̂𝑎(𝜔−Ω), to create
an ”optical” photon at a higher frequency 𝜔, ̂𝑎†(𝜔). We are not interested in the quantum
properties of the RF field and assume it to be in a coherent state with complex amplitude
𝛽(𝑡)

𝐻̂int = ∫ d𝜔
2𝜋 ∫ dΩ

2𝜋 𝑔(𝜔,Ω)𝛽(Ω) ̂𝑎†(𝜔) ̂𝑎(𝜔 − Ω) +H.c., (3.2.7)

wherein 𝛽(Ω) is the Fourier amplitude corresponding to 𝛽(𝑡). A sinusoidal modulation sig-
nal has a single frequency component,

𝛽(𝑡) = 𝛽0𝑒𝑖Ω0𝑡 𝛽(Ω) = 𝛽0(2𝜋)𝛿(1)(Ω − Ω0), (3.2.8)

Inserting the frequency representation of the sinusoidal modulation into the interaction
Hamiltonian, eq. (3.2.7), we find

𝐻̂int = 𝛽0∫
d𝜔
2𝜋𝑔(𝜔,Ω0) ̂𝑎†(𝜔) ̂𝑎(𝜔 + Ω0) +H.c.. (3.2.9)

Let the optical signal be limited to the bandwidth 𝐵, then according to the mean-value the-
orem for integrals, there exists an 𝜔0 ∈ 𝐵 such that we can write

𝐻̂int = 𝛽0𝑔(𝜔0, Ω0)∫
d𝜔
2𝜋 ̂𝑎†(𝜔) ̂𝑎(𝜔 + Ω0) + 𝛽∗0𝑔(𝜔0, Ω0)∗∫

d𝜔
2𝜋 ̂𝑎†(𝜔) ̂𝑎(𝜔 − Ω0)

= 𝛽0𝑔(𝜔0, Ω0)∫
d𝜔
2𝜋 ̂𝑎†(𝜔 − Ω0) ̂𝑎(𝜔) + 𝛽∗0𝑔(𝜔0, Ω0)∗∫

d𝜔
2𝜋 ̂𝑎†(𝜔 + Ω0) ̂𝑎(𝜔)

(3.2.10)
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where we performed an integration variable substitution in the second step.

We define the up- and downconversion operators for the frequency Ω0 as

̂𝑇±(Ω0) = ∫ d𝜔
2𝜋 ̂𝑎†(𝜔 ± Ω0) ̂𝑎(𝜔) (3.2.11)

which are related via the Hermitian conjugate, ̂𝑇+(Ω0) = ̂𝑇−(Ω0)†, and satisfy the commu-
tation relations

[ ̂𝑇±(Ω0), ̂𝑎(𝜔)] = − ̂𝑎(𝜔 ∓ Ω0) [ ̂𝑇±(Ω0), ̂𝑎†(𝜔)] = + ̂𝑎†(𝜔 ± Ω0), (3.2.12)

which can be used to up- or donwconvert the frequency of a photon by Ω0.

The time-evolution operator corresponding to the interaction Hamiltonian in eq. (3.2.10)
turns out to be

𝑈̂(𝜃,Ω0, 𝜑) = exp {−𝑖𝑇𝐻̂int} = exp {−𝑖12𝜃 [
̂𝑇+(Ω0)𝑒−𝑖𝜑 + ̂𝑇−(Ω0)𝑒+𝑖𝜑]} (3.2.13)

where we new parameters Θ, 𝜑 relate to the old coupling parameters via

𝛽∗0𝑔(𝜔0, Ω0)∗𝑇 = 1
2𝜃𝑒

+𝑖𝜑 (3.2.14)

with 𝑇 being the interaction time approximately equal to the transmit time of the light
through the phase modulator.10 Before, we transform the annihilation operator, we define
the generator

̂𝐺(𝜑,Ω0) = ̂𝑇+(Ω0)𝑒−𝑖𝜑 + ̂𝑇−(Ω0)𝑒+𝑖𝜑 (3.2.15)

which relates to the evolution operator via

𝑈̂(𝜃,Ω0, 𝜑) = exp {−𝑖12𝜃
̂𝐺(𝜑,Ω0)} . (3.2.16)

The iterated commutators of the generator with the annihilation operator are

[ ̂𝐺, ̂𝑎(𝜔)] = (−1) [ ̂𝑎(𝜔 − Ω0)𝑒−𝑖𝜑 + ̂𝑎(𝜔 + Ω0)𝑒+𝑖𝜑] (3.2.17)
[ ̂𝐺, [ ̂𝐺, ̂𝑎(𝜔)]] = (−1)2 [ ̂𝑎(𝜔 − 2Ω0)𝑒−2𝑖𝜑 + 2 ̂𝑎(𝜔) + ̂𝑎(𝜔 + 2Ω0)𝑒+2𝑖𝜑] (3.2.18)

[ ̂𝐺, [ ̂𝐺, [ ̂𝐺, ̂𝑎(𝜔)]]] = (−1)3[ ̂𝑎(𝜔 − 3Ω0)𝑒−3𝑖𝜑 + 22 ̂𝑎(𝜔 − Ω0)𝑒−𝑖𝜑 (3.2.19)
+ ̂𝑎(𝜔 + 3Ω0)𝑒+3𝑖𝜑 + 22 ̂𝑎(𝜔 + Ω0)𝑒+𝑖𝜑] (3.2.20)

and we can invoke the BCH formula, to transform the annihilation operator

̂𝑎′(𝜔) = 𝑈̂(𝜃,Ω0, 𝜑)† ̂𝑎(𝜔)𝑈̂(𝜃,Ω0, 𝜑)

= ̂𝑎(𝜔) + 𝑖𝜃
2 [

̂𝐺, ̂𝑎(𝜔)] + 𝑖2𝜃2

222![
̂𝐺, [ ̂𝐺, ̂𝑎(𝜔)]] + 𝑖3𝜃3

233![
̂𝐺, [ ̂𝐺,…]] + …

= ∑
𝑚∈ℤ

𝐽𝑚(𝜃)𝑒𝑖𝑚(𝜑−𝜋/2) ̂𝑎(𝜔 + 𝑚Ω0)

(3.2.21)

10Strictly speaking, the transmit time is frequency-dependent requiring a frequency response filter instead of
coupling constant.
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in agreement with Ref. [84, eq. 40].

To transform the displacement operator, we need to evaluate

𝑈̂(𝜃,Ω0, 𝜑) ̂𝑎†(𝜔)𝑈̂(𝜃,Ω0, 𝜑)† = [𝑈̂(𝜃,Ω0, 𝜑) ̂𝑎(𝜔)𝑈̂(𝜃,Ω0, 𝜑)†]
†

= [𝑈̂(−𝜃,Ω0, 𝜑)† ̂𝑎(𝜔)𝑈̂(−𝜃,Ω0, 𝜑)]
†

= [ ∑
𝑚∈ℤ

𝐽𝑚(−𝜃)𝑒+𝑖𝑚(𝜑−𝜋/2) ̂𝑎(𝜔 + 𝑚Ω0)]
†

= ∑
𝑚∈ℤ

𝐽𝑚(−𝜃)𝑒−𝑖𝑚(𝜑−𝜋/2) ̂𝑎†(𝜔 + 𝑚Ω0)

= ∑
𝑚∈ℤ

𝐽𝑚(𝜃)𝑒+𝑖𝑚(𝜑+𝜋/2) ̂𝑎†(𝜔 + 𝑚Ω0)

(3.2.22)

where we used

𝐽𝑚(−𝜃)𝑒−𝑖𝑚(𝜑−𝜋/2) = (−1)𝑚𝐽𝑚(𝜃)𝑒+𝑖𝑚(𝜑−𝜋/2) = 𝐽𝑚(𝜃)𝑒+𝑖𝑚(𝜑+𝜋/2) (3.2.23)

in the last step. The transformed displacement operator then reads

𝐷̂′ [𝛼(𝑡)] = 𝑈̂(𝜃,Ω0, 𝜑)𝐷̂ [𝛼(𝑡)] 𝑈̂(𝜃,Ω0, 𝜑)†

= exp {∫ d𝜔
2𝜋 [𝛼(𝜔)𝑈̂(𝜃,Ω0, 𝜑) ̂𝑎†(𝜔)𝑈̂(𝜃,Ω0, 𝜑)† −H.c.]}

= exp {∫ d𝜔
2𝜋 [ ∑

𝑚∈ℤ
𝛼(𝜔)𝐽𝑚(𝜃)𝑒+𝑖𝑚(𝜑+𝜋/2) ̂𝑎†(𝜔 + 𝑚Ω0) −H.c.]}

= exp {∫ d𝜔
2𝜋 [ ∑

𝑚∈ℤ
𝐽𝑚(𝜃)𝛼(𝜔 − 𝑚Ω0)𝑒𝑖𝑚(𝜑+𝜋/2) ̂𝑎†(𝜔) −H.c.]}

= exp {∫ d𝜔
2𝜋 [𝛼′(𝜔) ̂𝑎†(𝜔) −H.c.]}

(3.2.24)

where we identified the transformed Fourier amplitude with

𝛼′(𝜔) = ∑
𝑚∈ℤ

𝐽𝑚(𝜃)𝑒𝑖𝑚(𝜑+𝜋/2)𝛼(𝜔 − 𝑚Ω0). (3.2.25)

Written as a convolution, the transformed Fourier amplitude reads

𝛼′(𝜔) = ∫ d𝜔′
2𝜋 ℎ(𝜔′)𝛼(𝜔 − 𝜔′), (3.2.26)

where the convolution kernel is the Dirac train

∑
𝑚∈ℤ

𝐽𝑚(𝜃)𝑒𝑖𝑚(𝜑+𝜋/2)(2𝜋)𝛿(1)(𝜔′ −𝑚Ω0). (3.2.27)
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As the transformed Fourier amplitude is a convolution in frequency space, we expect a prod-
uct in time space, i.e.,

𝛼′(𝑡) = ∫ d𝜔
2𝜋𝛼

′(𝜔)𝑒−𝑖𝜔𝑡 = ∫ d𝜔
2𝜋𝛼(𝜔 − 𝑚Ω0)𝑒−𝑖𝜔𝑡 ∑

𝑚∈ℤ
𝐽𝑚(𝜃)𝑒𝑖𝑚(𝜑+𝜋/2)

= ∫ d𝜔
2𝜋𝛼(𝜔)𝑒

−𝑖𝜔𝑡 ∑
𝑚∈ℤ

𝐽𝑚(𝜃)𝑒−𝑖𝑚(Ω0𝑡−𝜑−𝜋/2)

= 𝛼(𝑡)𝑒−𝑖𝜃 sin(Ω0𝑡−𝜑−𝜋/2) = 𝛼(𝑡)𝑒+𝑖𝜃 cos(Ω0𝑡−𝜑)

(3.2.28)

where we again used the Jacobi-Anger expansion, eq. (3.2.4). We conclude that a coherent
state transform under sinusoidal phase-modulation as

𝑈̂(𝜃,Ω0, 𝜑)|𝛼(𝑡)⟩ = ||𝛼(𝑡)𝑒+𝑖𝜃 cos(Ω0𝑡−𝜑)⟩. (3.2.29)

To extend our result to signals of finite duration, we first note that we canwrite such a signal
as a sum of harmonics, i.e.,

𝜑(𝑡) =
𝑁
∑
𝑘=0

𝜃𝑘 cos(Ω𝑘𝑡 − 𝜑𝑘), (3.2.30)

and apply a product of sinusoidal phase modulation operators, eq. (3.2.13),

(
𝑁
∏
𝑘=0

𝑈̂(𝜃𝑘, Ω𝑘, 𝜑𝑘)) |𝛼(𝑡)⟩ = ||𝛼(𝑡)𝑒+𝑖𝜑(𝑡)⟩, (3.2.31)

which corresponds to having a different sinusoidal phase modulators in sequence. For dif-
ferent frequencies in the same phase modulator, we have the problem that they all interact.
That said, it should be possible to generalize the frequency up- and downconversion opera-
tors to a spectrum and argue that the commutator between the generator, eq. (3.2.15), and
the annihilation operator vanishes except for the dominant frequency components.

3.2.2. Amplitude modulator

The Mach-Zehnder modulator (MZM) uses two phase modulators to perform amplitude
modulation through interference. Figure 3.6 shows a symmetric MZI11 using free-space
optics with one signal input; the other input being in the vacuum state. The most crucial
components of theMZI are a splitter, a coupler, and two independent phasemodulators. The
splitter divides the input light into two branches, which are phase modulated with 𝜙1(𝑡) and
𝜙2(𝑡) by PM1 respectively PM2. The coupler recombines both branches into two outputs.
Two cubic beam splitters implement the splitter (BS1) and the coupler (BS2) for our free-
space setup. For additional beam alignment, our free-space setup utilizes two mirrors (M1
and M2).
11We distinguish between MZI and MZM, whether it is an optical MZI or integrated MZM embodiment. How-
ever, there is no difference in the theoretical treatment.
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Figure 3.6.: Symmetric MZI using free-space optics comprising two balanced beam splitter
(BS), BS1 and BS2, two mirrors, M1 and M2, and two phase modulators, PM1
and PM2. The input amplitudes, 𝛼1(𝑡) and 𝛼2(𝑡), enter BS1 and are split into
an upper and lower path. The upper path receives a phase shift of 𝜙1(𝑡) + 𝜋
from PM1 and M1 before entering BS2 from the top. The lower path receives
a phase shift of 𝜙2(𝑡) + 𝜋 from M2 and PM2 before entering BS2 from the left.
BS2 recombines the phase-shifted upper and lower path into the output Fourier
amplitudes 𝛼′1(𝑡) and 𝛼′2(𝑡).

To find the effect of the MZM on an input coherent-state, we study the cumulative effect of
the individual optical components. One particular challenge is that the transformation of
passive components is a convolution in the time domain. In contrast, the transformation of
active components is a convolution in the frequency domain. A possible way forward is to
invoke the narrow-bandwidth approximation and assume that the passive components are
free of dispersion over the relevant optical bandwidth. Under this simplifying assumption,
the passive components are described by the ideal transformations

𝑈BS1 =
1
√2

(1 𝑖
𝑖 1) 𝑈BS2 =

1
√2

(𝑖 1
1 𝑖) , (3.2.32)

which are valid in both time and frequency space.12 The transformation of the active phase
modulation is

𝑈PM(𝑡) = (𝑒
𝑖𝜙1(𝑡) 0
0 𝑒𝑖𝜙2(𝑡)) , (3.2.33)

where we ignored static phase shifts.13 The composition of these transformations yields the
transformation of the MZM

𝑈MZM(𝑡) = 𝑈BS2𝑈PM(𝑡)𝑈BS1 = ( cos𝜙−(𝑡) + sin𝜙−(𝑡)
− sin𝜙−(𝑡) cos𝜙−(𝑡)

) 𝑖𝑒𝑖𝜑+(𝑡), (3.2.34)

12The particular choice corresponds to a perfect cubic beam splitter with a single dielectric layer [4, p. 139],
where we exchanged the rows of the second BS for consistency with the input labels.

13For practical applications, one calibrates the phase modulators with a static bias voltage to compensate for
undesired static phase shifts.
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where we introduced the common-mode and differential-mode phase signals

𝜙+(𝑡) =
𝜙2(𝑡) + 𝜙1(𝑡)

2 𝜙−(𝑡) =
𝜙2(𝑡) − 𝜙1(𝑡)

2 . (3.2.35)

For the input state being a tensor product of a coherent and a vacuum state

|𝛂(𝑡)⟩ = |𝛼(𝑡), 0⟩, (3.2.36)

the matrix transformation of the MZM, eq. (3.2.34), predicts the output amplitudes to be

𝛼′(𝑡) = 𝑈MZM(𝑡)𝛼(𝑡) = 𝛼(𝑡) ( cos𝜙−(𝑡)− sin𝜙−(𝑡)
) 𝑖𝑒𝑖𝜑+(𝑡) (3.2.37)

where the common-mode phase signal 𝜑+(𝑡) changes the global phase of the output signal
and the differential-mode signal𝜑−(𝑡) changes the power splitting ratio of the outputs. In the
previous sections, we derived the unitary evolution operator corresponding to the unitary
matrix transforms. We therefore claim the existence of an unitary operator, 𝑈̂MZM, corre-
sponding to the unitary matrix transform of eq. (3.2.34), where the action of such operator
on a coherent and vacuum input state is

𝑈̂MZM(𝑡)|𝛼(𝑡), 0⟩ = ||𝛼(𝑡) cos𝜙−(𝑡)𝑖𝑒𝑖𝜑+(𝑡), 𝛼(𝑡) sin𝜙−(𝑡)𝑖𝑒𝑖𝜑+(𝑡)⟩. (3.2.38)

Usually, one output is monitored for bias control of the phase modulators, and the other
output is used for further processing. In this case, we can remove the other other output
using a projection operator, ̂𝑃, and we find

̂𝑃𝑈̂MZM(𝑡)|𝛼(𝑡), 0⟩ = |𝛼(𝑡)𝛽MZM(𝑡)⟩, (3.2.39)

where we defined the complex-valued amplitude modulation signal 𝛽(𝑡) with |𝛽(𝑡)| ≤ 1.

Equation (3.2.39) suggests that a MZM with two independent phase modulators allows for
complex amplitude modulation, i.e., modulation of in-phase and quadrature components
of the input signal 𝛼(𝑡). In practice, however, we implement the IQM using three MZMs
as depicted in Figure 3.7. The phases of the MZM in an integrated IQM are only driven
differentially. The upper branch modulates the in-phase component, 𝐼(𝑡), while the lower
branchmodulates the quadrature component,𝑄(𝑡). A thirdMZMadds a static relative phase
Λ between the in-phase and quadrature branch such that these branches are recombined at
𝜋/2. For the output coherent-state, we find

|𝛼′(𝑡)⟩ = 𝑈̂IQM(𝑡)|𝛼(𝑡)⟩ = ||𝛼(𝑡)𝛽IQM(𝑡)⟩ (3.2.40)

wherein the complex amplitude-modulation signal is now

𝛽IQM(𝑡) = 𝐼(𝑡) + 𝑖𝑄(𝑡). (3.2.41)

While the IQM is equivalent to a MZM with two independent phase modulators for time-
independent modulation, the MZM cannot, in general, perform continuously phase mod-
ulation. The reason being that the complex phase of the MZM, eq. (3.2.37), cannot be in-
creased arbitrary for practical electro-optical phase modulators but must be brought back to
some working point, which would require instantaneous jumps.
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𝛼(𝑡) 𝛼′(𝑡)

Figure 3.7.: Integrated IQM using three MZM arms. An input signal with amplitude 𝛼(𝑡)
is split into an upper and lower branch. The upper and lower branches com-
prise an integratedMZM that performs amplitudemodulationwith the in-phase
and quadrature signal, 𝐼(𝑡) respectively 𝑄(𝑡). The integrated MZM consists of
a hexagonal-shaped waveguide with an inside signal electrode and two outer
grounds. The outputs of the in-phase- and quadrature-modulated form a third
MZM used to set a relative phase of Λ between the in-phase and quadrature sig-
nals, yielding an output signal with amplitude 𝛼′(𝑡).

3.3. Photodetectors

The photodetectors let us probe the quantum-optical states via an electrical signal. In the fol-
lowing, we will briefly review the results of the photodetection theory according to Refs. [8,
26] and then take a closer look at the direct and balanced detector.

3.3.1. Photoelectric effect

The photoelectric effect describes the emission of electrons from an illuminated material.
Historically, it provided strong evidence for the existence of a light quantum, the photon, as
the kinetic energy of the emitted electrons,

𝐸𝑘 = 𝐸𝛾 − 𝐸𝑤, (3.3.1)

does not depend on the intensity but on the frequency, 𝐸𝛾 = 𝜔, of the incident light minus
somework energy,𝐸𝑤. The photoelectric effect relates themomentum spectrumof electrons
with the frequency spectrum of photons and provides a mechanism for photodetection. We
present two kinds of photodetectors exploiting the photoelectric effect: the phototube and
the photodiode.

A phototube (Figure 3.8) comprises a metallic cathode and a biased anode parallel to the
cathode. Whenever photons with energy 𝜔 > 𝐸𝑤, wherein 𝐸𝑤 is the work energy of the
cathode, hit eject an electrode, the anode accelerates the emitted electrons away from the
cathode. The cathode is then in excess of positive charge carriers, creating a positive current,
𝐼.
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Figure 3.8.: Schematic of a phototube, a vacuum tube utilizing the photoelectric effect for
photodetection. Photons, 𝛾, hit a metallic cathode and eject electrons, 𝑒−,
through the photoelectric effect. The anode is biased with a positive voltage,
𝑉 > 0, to attract the emitted electrons. The cathode is in excess of positive
charge carriers, creating a positive electric current, 𝐼 > 0.

Contrary, a photodiode is typicallymade of a PN-junction (Figure 3.9), a junction of a positively-
(P) with a negatively-doped (N) semiconductor, supplemented by a contact on the P- and a
contact on the N-doped semiconductor. The contact at the P-doped semiconductor is nega-
tively charged, creating a depletion layer between the PN-junction with no free charge car-
riers. The P layer absorbs incident photons, 𝛾, exciting electrons, which accelerate through
the depletion layer towards the cathode, creating the photocurrent, 𝐼. Contrary to the pho-
totube, the excited electrons are not truly free but rather excited to an energy band, where
they move with higher mobility through the semiconductor. That said, the central idea of
exciting photoelectrons through photon absorption to some higher energy, applies to both
kinds of photodetectors [92, p. 128].

We will oversee the subtile differences and assume a single photoelectron bound to a single
atom in a unique ground state, |𝑔⟩, which is excited through photon absorption to some
excited state continuum, |𝑒⟩.14 The Hamiltonian of an electron is

𝐻̂𝑒 =
𝐩̂2

2𝑚𝑒
+ 𝑉(𝐱̂), (3.3.2)

wherein 𝑉(𝐱̂) denotes the binding potential. We expect the ground state, |𝑔⟩, to be an energy
eigenstate with eigenvalue, 𝐸𝑔. In the ground state, |𝑔⟩, the electron is bound and dominated
by the potential term in the Hamiltonian. In an excited state, |𝑒⟩, the electron is approxi-
mately free and dominated by the kinetic term in the Hamiltonian. Figure 3.10 shows the

14Quantum models for photon absorption specific to semiconductors are found in Ref. [93] and Ref. [94].
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Figure 3.9.: Schematic of a photodiode, a PN-junction. The P layer absorbs incident photons,
𝛾, exciting electrons, 𝑒−, and holes, 𝑒+. The electrons are accelerated towards the
anode (not shown), and the holes are accelerated towards the cathode, creating
a photocurrent 𝐼.

corresponding energy level diagram. The ground state, |𝑔⟩, is unique and has the single en-
ergy 𝐸𝑔. For the excited state, |𝑒⟩, an energy continuum exists with energies ranging from
min𝑒 𝐸𝑒 to max𝑒 𝐸𝑒. The difference of the lowest excited energy, min𝑒 𝐸𝑒, and the ground
state energy, 𝐸𝑔, is equivalent to the bandgap energy inside a semiconductor. The transition
from the ground to an excited state, |𝑔⟩ → |𝑒⟩, through photon absorption requires the pho-
ton energy, 𝜔, to be at least the bandgap energy, 𝜔 ≥ min𝑒 𝐸𝑒−𝐸𝑔. In Appendix C we extend
the photoelectron model to derive the differential probability for photoelectron emission.

89



|𝑔⟩

min𝑒 𝐸𝑒

max𝑒 𝐸𝑒

𝐸𝑔

|𝑒⟩

𝛾 min𝑒 𝐸𝑒 − 𝐸𝑔
𝐸𝛾

Figure 3.10.: Energy level diagram of a photoelectron excited from a bound ground state, |𝑔⟩,
with energy 𝐸𝑔 to a free excited state, |𝑒⟩, with energy 𝐸𝑒 by absorbing a photon
with energy 𝐸𝛾. To excite the electron from the ground state the photon must
have at least the energy of the bandgap, min𝑒 𝐸𝑒 − 𝐸𝑔, wherein min𝑒 𝐸𝑒 is the
minimum energy of the excitation energy band.

3.3.2. Photocurrent operator

Ref. [8, p. 725] generalizes the differential probability for a single photoelectron excitation to
the positive operator-valued measure (POVM) of counting𝑚 photoelectrons from infinitely
many independent detector atoms from time 𝑡 to 𝑡 + 𝑇 as15

̂𝑃𝑚(𝑡, 𝑇) = 𝒯+∶
1
𝑚!

̂𝐼(𝑡, 𝑇)𝑚 exp {− ̂𝐼(𝑡, 𝑇)}∶, (3.3.3)

wherein the photocurrent operator is equal to the integrated equal-time correlation function
of the electric field,16

̂𝐼(𝑡, 𝑇) = 𝜂∫
𝑡+𝑇

𝑡
d𝑡′⟨ ̂𝐸(+)(𝑡′) ̂𝐸(−)(𝑡′)⟩ (3.3.4)

with detector efficiency constant 𝜂. From a signal-processing perspective, it is more natural
to define a detector response function, 𝜂(𝑡), which generalizes the measurement period 𝑇
and is experimentally accessible. The convolved photocurrent operator,

̂𝐼(𝑡) = 𝜂∫ d𝑡′ 𝜂(𝑡′)⟨ ̂𝐸(+)(𝑡 − 𝑡′) ̂𝐸(−)(𝑡 − 𝑡′)⟩, (3.3.5)

reduces to the integrated photocurrent operator, eq. (3.3.4), when using a constant step re-
sponse for the detector. Fromhere on, we use the eq. (3.3.3)with the convolved photocurrent
operator, eq. (3.3.5).

15If we assume no sources present inside the detector, the fields are approximately free at the detector, and we
can neglect the time-ordering in eq. (3.3.6) [7, p. 183].

16In Ref. [8] the photocurrent operator is equal to the equal-time correlation function of the Maxwell field. The
electric and Maxwell field operator are connected by an unitary transformation.
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Using the generating function of the photoelectron POVM, eq. (3.3.3), we find the average
number of photoelectrons emitted at 𝑡 to be [7, p. 183]

𝑛(𝑡) = ∑
𝑚∈ℕ0

𝑚⟨ ̂𝑃𝑚(𝑡)⟩ = ⟨ ̂𝐼(𝑡)⟩. (3.3.6)

For the variance, we find [8, p. 736]

(Δ𝑛(𝑡))2 = 𝑛(𝑡) + ⟨(Δ ̂𝐼(𝑡))2⟩, (3.3.7)

wherein ⟨(Δ ̂𝐼(𝑡))2⟩denotes the variance of the bandwidth-limited intensity operator, eq. (3.3.5),
which canbecomenegative indicating sub-Poissionian statistics for certain quantumstates.

3.3.3. Direct detector

The direct detector resembles a power or intensity measurement of the optical state, so it is
also sometimes called a square-law detector. Figure 3.11 presents the electronic schematic of
a direct-detector circuit. A photodiode, PD, is reverse biased with voltage −𝑉𝑏 < 0 to reduce
the response time of the photodiode. Under optical illumination, PD produces a photocur-
rent, 𝑖(𝑡), which in natural units is equal to the mean photoelectron number, eq. (3.3.6). For

−

+

𝑉
𝑖

−𝑉𝑏

PD

𝑍𝑓

Figure 3.11.: Electronic schematic of a direct (intensity) detector comprising a photodiode
and an operational amplifier with a transimpedance amplifier (TIA) frontend.
The anode of the photodiode is reverse biased with voltage −𝑉𝑏 < 0. The cath-
ode of the photodiode emits the photocurrent 𝑖 and is connected to the inverting
input of the operational amplifier. The non-inverting input of the operational
amplifier is connected with ground, while the inverting input is coupled with
feedback impedance 𝑍𝑓 to the operational amplifier output voltage, 𝑉.
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a coherent state, |𝛼(𝑡)⟩, we find themean photocurrent to be equal to the power of the signal,
|𝛼(𝑡)|2, convolved with the detector response function,

𝑖(𝑡) = ∫ d𝑡′ 𝜂(𝑡′)|𝛼(𝑡 − 𝑡′)|2 = (𝜂 ∗ |𝛼|2) (𝑡). (3.3.8)

Assuming an ideal operational amplifier, the TIA outputs the voltage signal proportional to
the feedback impedance

𝑉𝑝(𝑡) = −𝑍𝑓𝑖𝑝(𝑡). (3.3.9)

More realistically, we expect the response of the TIA to be characterized by a frequency-
response function ℎ, and the output voltage is given by

𝑉𝑝(𝑡) = (ℎ ∗ 𝑖) (𝑡) = (ℎ ∗ 𝜂 ∗ |𝛼|2) (𝑡). (3.3.10)

In eq. (3.3.10), we find the absolute square of the signal to be convolved with the detector
response-function and the response function of the TIA, which can be summarized into one
effective response-function.

3.3.4. Balanced detector

To obtain information about the quadratures of the signal, we can mix the optical signal
with a local oscillator (LO) and measure the mixer outputs with two direct detectors in a
balanced configuration. Figure 3.12 shows a possible arrangement of electro-optical compo-
nents for balanced detection. Assuming a perfectly-balanced beam splitter over the optical
bandwidths, we find the output amplitudes to be

𝛼±(𝑡) =
1
√2

[𝛼𝑠(𝑡) ± 𝛼𝑙(𝑡)] , (3.3.11)

where we choose the phase properties of the beam splitter for notational convenience.17
Figure 3.13 shows the electrical setup of the two photodiodes, PD1 and PD2. PD1 and PD2
are both reverse biased to reduce the response time and connected to each other to directly
produce a difference photocurrent signal,

𝑖(𝑡) = 𝑖+(𝑡) − 𝑖−(𝑡) = (𝜂 ∗ [|𝛼+|2 − |𝛼−|2]) (𝑡)
= (𝜂 ∗ [𝛼𝑠𝛼∗𝑙 + 𝛼∗𝑠𝛼𝑙]) (𝑡)
= (𝜂 ∗ 2Re [𝛼𝑠𝛼∗𝑙 ]) (𝑡),

(3.3.12)

17In practice, the phase properties of the optical coupler, as well as the input fields, are not well-known, and
must be corrected.
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Figure 3.12.: Electro-optical setup of a balanced detector comprising a beam splitter and two
photodetectors. The beam splitter superimposes the signal and LO fields, 𝛼𝑠(𝑡)
and 𝛼𝑙(𝑡), to the output fields 𝛼±(𝑡), each monitored by a photodiode with out-
put current 𝑖±(𝑡).

wherein we used the linearity of the convolution and inserted eq. (3.3.11). We rewrite the
product of the input and LO signal to equal

𝛼𝑠(𝑡)𝛼𝑙(𝑡)∗ = 𝛼(𝑡)𝑒−𝑖(𝜔𝑙𝑡−𝜗) = ∫
+∞

−∞

d𝜔
2𝜋𝛼(𝜔)𝑒

+𝑖𝜔𝑡𝑒−𝑖(𝜔𝑙𝑡−𝜗)

= ∫
+∞

−∞

d𝜔
2𝜋𝛼(𝜔 + 𝜔𝑙)𝑒+𝑖(𝜔𝑡+𝜗),

(3.3.13)

wherein we redefined the signal amplitude

𝛼(𝑡) = 𝛼𝑠(𝑡)𝑔(𝑡)∗ (3.3.14)

to include the linewidth profile 𝑔(𝑡) of the LO signal 𝛼𝑙(𝑡) = 𝑔(𝑡)𝑒−𝑖(𝜔𝑙𝑡−𝜗).18. Inserting
eq. (3.3.13) into eq. (3.3.12), we find

𝑖(𝑡) = 2Re [𝜂 ∗ (𝛼𝑠𝛼∗𝑙 )] (𝑡) = 2Re∫
+∞

−∞

d𝜔
2𝜋𝜂(𝜔 + 𝜔𝑙)𝛼(𝜔 + 𝜔𝑙)𝑒+𝑖(𝜔𝑡+𝜗). (3.3.15)

Assuming the detector response-function 𝜂(𝜔) to be constant over the detector bandwidth
𝐵𝑑, eq. (3.3.15) simplifies to

𝑖(𝑡) ∝ 2Re∫
+𝐵𝑑/2

−𝐵𝑑/2

d𝜔
2𝜋𝛼(𝜔 + 𝜔𝑙)𝑒+𝑖(𝜔𝑡+𝜗). (3.3.16)

18For instance, 𝑔(𝑡) ∝ 𝑒−𝛾𝑡/2 for a Lorentzian profile, see Ref. [95].
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Figure 3.13.: Electronic schematic of a balanced (quadrature) detector comprising two pho-
todiodes and an operational amplifier in TIA configuration. The cathode of the
first photodiode, PD1, is reverse biased with voltage +𝑉𝑏 > 0. The cathode of
the second photodiode, PD2, is reverse biased with voltage −𝑉𝑏 < 0. The cath-
ode of PD1 and the anode of PD2 are connected to supply the difference pho-
tocurrent signal, 𝑖(𝑡) = 𝑖+(𝑡) − 𝑖−(𝑡), to the inverting input of the operational
amplifier. The non-inverting input of the operational amplifier is connected
to ground. The inverting input is coupled to the output through the feedback
impedance 𝑍𝑓. The TIA outputs a voltage signal 𝑉(𝑡) proportional to the dif-
ference photocurrent signal 𝑖(𝑡).

Comparing our final result for the photocurrent, eq. (3.3.15), with the expectation value of
the quadrature operator for the coherent state |𝛼(𝑡)⟩,

⟨𝛼(𝑡)| ̂𝑋(𝑡)|𝛼(𝑡)⟩ = ∫
+∞

−∞

d𝜔
2𝜋 [𝛽(𝜔)𝑒−𝑖𝜔𝑡 + c.c.] = 2Re∫

+∞

−∞

d𝜔
2𝜋𝛽(𝜔)𝑒

−𝑖𝜔𝑡, (3.3.17)

we note that the quadrature operator lacks the notion of a downconversion frequency and
phase aswell as a bandwidth. Fortunately, we already derived aunitary frequency-conversion
operator in our treatment of the phasemodulator, eq. (3.2.13). Transforming the quadrature
operator with the frequency-conversion operator 𝑈̂FC,

𝑈̂†
FC ̂𝑋(𝑡)𝑈̂FC = ∫

+∞

−∞

d𝜔
2𝜋 [𝑈̂†

FC ̂𝑎(𝜔)𝑈̂FC𝑒−𝑖𝜔𝑡 +H.c.]

= ∑
𝑚∈ℤ

𝐽𝑚(𝜃)∫
+∞

−∞

d𝜔
2𝜋 [ ̂𝑎(𝜔 + 𝑚𝜔𝑙)𝑒−𝑖(𝜔𝑡+𝑚𝜗) +H.c.] ,

(3.3.18)

creates not only the downconversion frequency 𝜔𝑙 but also all of its harmonics. To remove
the harmonics, we add a reservoir to the detection system, whichwe assume to be in the vac-
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uum state 19, and couple it such that it absorbs all the energy outside the frequency interval
[−𝐵𝑑/2, +𝐵𝑑/2]. As a result, we discover the generalized quadrature operator,

̂𝑋(𝑡; 𝜔𝑙, 𝐵𝑑) ∝ ∫
+𝐵𝑑/2

−𝐵𝑑/2

d𝜔
2𝜋 [ ̂𝑎(𝜔 + 𝜔𝑙)𝑒−𝑖(𝜔𝑡+𝜗) +H.c.] , (3.3.19)

which for coherent states has expectation value equal to the photocurrent of our balanced
detector, eq. (3.3.16).

Summary

In this chapter, we presented quantum models of the optical coupler, electro-optical mod-
ulator, and detector. We left out a quantum theory of a coherent-state source with narrow
line width in the optical range, typically implemented by a laser. Proper quantum-treatment
of the laser requires analysis of nonlinear quantum-stochastic equations and is beyond the
scope of this thesis. We refer the interested reader to Ref. [8, p. 900] and Ref. [96, 97]. For an
intuitive argument why lasers emit coherent states based on decoherence, see Ref. [98].

For the lossless and LTI optical coupler, we found the most intuitive a characterization in
terms of a unitary scattering matrix comprising reflection and transmission coefficients [7].
That said, we also investigated theoretical methods including evolution operators [18] and
the Jordan-Schwinger operator algebra [17]. Concerning coherent states, the scattering ma-

Coupler
|𝛼(𝑡)⟩

|𝛽(𝑡)⟩

|𝛼′(𝑡)⟩

|𝛽′(𝑡)⟩

Figure 3.14.: Quantum-optical coupler with the input coherent-states, |𝛼(𝑡)⟩ and |𝛽′(𝑡)⟩, on
the left side, and the output coherent-states, |𝛼′(𝑡)⟩ and |𝛽′(𝑡)⟩, on the right side.

trix connects the amplitudes of the coherent in- and output states in Figure 3.14 via

(𝛼
′(𝑡)
𝛽′(𝑡)) = (𝑟(𝑡) 𝑡′(𝑡)

𝑡(𝑡) 𝑟′(𝑡)) ∗ (
𝛼(𝑡)
𝛽(𝑡)) (3.4.1)

in the time and
(𝛼

′(𝜔)
𝛽′(𝜔)) = (𝑟(𝜔) 𝑡′(𝜔)

𝑡(𝜔) 𝑟′(𝜔)) (
𝛼(𝜔)
𝛽(𝜔)) (3.4.2)

in the frequency domain. The complex reflection and transmission coefficients, the scattering-
matrix parameters, are required to satisfy

|𝑟(𝜔)| + |𝑡′(𝜔)| = 1 = |𝑡(𝜔)| + |𝑟′(𝜔)| (3.4.3)
19In a more realistic model, we would assume the reservoir to be in a thermal state, which directly includes
thermal noise into our signals.
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for conservation of energy flow and the CCR, making the scattering matrix unitary. If we
assume the input coherent-states to be narrow-bandwidth and the optical coupler to have
a constant frequency response over the optical bandwidth, the convolution in the time do-
main reduces to a multiplication. Certain embodiments of the optical coupler, such as the
plate beam-splitter, arbitrarily superimpose two input coherent-states. That said, most im-
plementations of optical couplers exhibit backscattering, which accounting for requires an
optical four-port. As the scattering matrix of an optical four-port requires 16 complex pa-
rameters, most calculations become impractical. An optical coupler with a vacuum state as

Filter|𝛼(𝑡)⟩ |𝛼′(𝑡)⟩

Figure 3.15.: Quantum optical filter with input coherent-state, |𝛼(𝑡)⟩, and output coherent-
state, |𝛼′(𝑡)⟩.

a second input and tracing out one output effectively implements a linear filter. The output
coherent-state in Figure 3.15 relates to the input coherent-state via

𝛼′(𝑡) = (ℎ ∗ 𝛼) (𝑡) 𝛼′(𝜔) = ℎ(𝜔)𝛼(𝜔)

in the time and frequency domain, wherein the frequency-response function of the filter is
required to satisfy |ℎ(𝜔)| ≤ 1.

Using the linear electro-optical effect and nonlinear frequency-conversion with the help
of Ref. [84, 81], we derived a unitary evolution operator corresponding to phase modula-
tion with a sinusoidal signal. Neglecting second-order interactions between the modulation
sidebands, we argued that phase modulation with an arbitrary signal is thinkable. The am-

Phase
modulator|𝛼(𝑡)⟩

𝜑(𝑡)

|𝛼′(𝑡)⟩

Figure 3.16.: Quantum-optical phase modulator with electric phase signal 𝜑(𝑡), input
coherent-state |𝛼(𝑡)⟩, and output coherent-state, |𝛼′(𝑡)⟩.

plitude of the output coherent-state in Figure 3.17 is

𝛼′(𝑡) = 𝛼(𝑡)𝑒𝑖𝜑(𝑡) 𝛼′(𝜔) = (𝑔 ∗ 𝛼) (𝜔) (3.4.4)

in the time and frequency domain, where we can only give an explicit expression for the ker-
nel 𝑔(𝜔) in the case of a sinusoidal modulation, eq. (3.2.27). Arranging two electro-optical
phasemodulators in anMZM and driving themodulators with a differential voltage enables
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electro-optical amplitude modulation. Arranging two electrically-driven MZMs with a rel-
ative phase shift of 𝜋/2 generalizes amplitude modulation with a real- to a complex-valued
signal. The amplitude of the output coherent-state in Figure 3.17 is

Amplitude
modulator|𝛼(𝑡)⟩

𝑥(𝑡) 𝑝(𝑡)

|𝛼′(𝑡)⟩

Figure 3.17.: Quantum-optical amplitude modulator with input voltage-signals, 𝑥(𝑡) and
𝑝(𝑡), input coherent-state |𝛼(𝑡)⟩, and output coherent-state |𝛼′(𝑡)⟩.

𝛼′(𝑡) = [𝑥(𝑡) + 𝑖𝑝(𝑡)] 𝛼(𝑡) |𝑥(𝑡)|, |𝑝(𝑡)| ≤ 1, (3.4.5)

wherein 𝑥(𝑡) and 𝑝(𝑡) are proportional to the differential voltages driving the MZMs and
the constraint follows from the constructive interference used for amplitude modulation
(AM). As with the phase modulator, no closed form exists for the convolution kernel in the
frequency domain.

Regarding the detectors, we studied photodetection theory from Ref. [8, 99, 7] in the ap-
pendix, Appendix C, and started employing the photocurrent operator to predict the mean
photocurrent. Additionally, we presented an electric circuit of a TIA converting and am-
plifying the photocurrent to a voltage signal. The output voltage-signal 𝑦(𝑡) in Figure 3.18

Direct
detector|𝛼(𝑡)⟩ 𝑦(𝑡)

Figure 3.18.: Quantum-optical direct detector with input coherent-state |𝛼(𝑡)⟩, and output
voltage-signal 𝑦(𝑡).

is equal to the photon flux |𝛼(𝑡)|2 convolved with the combined response-function of the
detector and the TIA 𝜂(𝜔), i.e.,

𝑦(𝑡) = (𝜂 ∗ |𝛼|2) (𝑡) = ∫
+∞

−∞

d𝜔
2𝜋𝜂(𝜔)|𝛼(𝜔)|

2, (3.4.6)

wherein |𝛼(𝜔)|2 is the signal power. The direct detector is a square-law detector where the
photocurrent is proportional to the signal power. To resolve the quadratures of the signal, we
combine the input with a LO signal in an optical coupler and monitor the outputs with two
direct detectors in a balanced configuration. The output voltage-signal 𝑧(𝑡) in Figure 3.19 is
equal to the projection of the downconverted signal 𝛼(𝑡) onto a real axis under the LO angle
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Balanced
detector

|𝛼(𝑡)⟩

|𝑒+𝑖(𝜔0𝑡+𝜗)⟩
𝑧(𝑡)

Figure 3.19.: Quantum-optical balanced detector with input coherent-state |𝛼(𝑡)⟩, LO
coherent-state |𝑒𝑖(𝜔0𝑡+𝜗)⟩, and output voltage-signal 𝑧(𝑡).

𝜗, i.e.,

𝑧(𝑡) = 2Re∫
+∞

−∞

d𝜔
2𝜋𝜂(𝜔 + 𝜔𝑙)𝛼(𝜔 + 𝜔𝑙)𝑒+𝑖(𝜔𝑡+𝜗), (3.4.7)

wherein𝜔𝑙 and 𝜗 are the LO frequency and phase, and the LO lineshape is absorbed into the
signal𝛼(𝜔). Comparison of the balanced detector’smean voltage signal with the expectation
value of the quadrature operator leads us to motivate the generalized quadrature operator

̂𝑋(𝑡; 𝜔𝑙, 𝐵𝑑) = ∫
+𝐵𝑑/2

−𝐵𝑑/2

d𝜔
2𝜋 [ ̂𝑎(𝜔 + 𝜔𝑙)𝑒−𝑖(𝜔𝑡+𝜗) +H.c.] , (3.4.8)

accounting for an effective detector-bandwidth𝐵𝑑 anddownconversion frequency andphase,
by combining the frequency-conversion operator with a spectral filter. Our results are com-
patible with Ref. [97, 19, 9, 7, 20] on homo- and heterodyne detection but are more general
in that we account for continuous-time signals, downconversion frequency and phase, and
the detector bandwidth.
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Chapter 4.
Coherent state transmission system

In the chapter on quantum-key distribution (QKD), Chapter 1, we argued why practical
continuous-variable quantum-key distribution (CV-QKD) devices are effectively coherent-
state transmission systems. In the present chapter, we use the theoretical framework of the
preceding sections to provide a quantumdescription of a coherent-state transmission system
and solve the mystery of CV-QKD.

A coherent-state transmission system attempts to correlate a classical information desti-
nation at a spacetime event 𝑦 with a classical information source at a spacetime event 𝑥,
wherein 𝑦 is in the forward light cone of 𝑥, by sending coherent states. Figure 4.1 presents

Information
source

Transmitter Channel Receiver

Information
destination

{𝛼𝑛}𝑛∈𝐼

|𝛼(𝑡)⟩ |𝛽(𝑡)⟩

{𝛽𝑛}𝑛∈𝐼

Figure 4.1.: Block diagram of a coherent-state transmission system used for practical
QKD. An information source supplies a sequence of complex numbers,
{𝛼𝑛 ∈ ℂ∶ 𝑛 ∈ 𝐼}, to a transmitter which encodes the information onto a coher-
ent state |𝛼(𝑡)⟩ and transmits it through a (quantum) channel. The channelmaps
the transmitted coherent state |𝛼(𝑡)⟩ to a received coherent state |𝛽(𝑡)⟩. The re-
ceiver decodes a sequence of complex numbers, {𝛽𝑛 ∈ ℂ∶ 𝑛 ∈ 𝐼}, from the re-
ceived coherent state |𝛽(𝑡)⟩ and passes it to the information destination.

an attempt to extend the classical communication system introduced by Shannon [100] to
coherent states.1 We represent the classical information of the source and destination as a

1Contemporary to the literature, we distinguish between a transmission and a communication system. The
former allows only unidirectional, the later bidirectional transport of information.
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sequence of complex numbers, which we term symbols. On the one hand, a complex num-
ber is a natural parameterization for the amplitude and phase of a single-mode coherent
state also representing a plane wave. On the other hand, there are many established tech-
niques tomap information to complex numbers, e.g., quadrature phase-shift keying (QPSK).
For our description, it is irrelevant whether the complex numbers are value-continuous or
-discrete, so we only restrict ourselves to time-discrete symbols. The transmitter encodes the
symbol sequence {𝛼𝑛 ∈ ℂ∶ 𝑛 ∈ 𝐼}2 onto a continuous-time coherent state |𝛼(𝑡)⟩ and passes
this on to the (quantum) channel. The received coherent state |𝛽(𝑡)⟩ contains information
about the transmitted state. The receiver decodes a symbol sequence {𝛽𝑛 ∈ ℂ∶ 𝑛 ∈ 𝐼} from
the received state |𝛽(𝑡)⟩. The received symbols are realizations of a complex normal distri-
bution due to the quantum uncertainty in the measurement. More precisely, the 𝑗th symbol
at the receiver, 𝛽𝑗, is a realization of the complex normal distribution

𝒞𝒩(𝛼𝑗, Σ) ,

wherein 𝛼𝑗 is the corresponding 𝑗th symbol at the transmitter and Σ is a two-dimensional
Hermitian and non-negative definite covariance matrix. For an ideal coherent-state trans-
mission system, we expect the covariance matrix to be proportional to the noise of the sys-
tem.

4.1. Transmitter

We introduced the transmitter as a component encoding a sequence of complex symbols,

{𝛼𝑛 ∈ ℂ∶ 𝑛 ∈ 𝐼} , (4.1.1)

onto a coherent state |𝛼(𝑡)⟩. Efficient transmission through the channel and effective re-
ceiver detection impose additional constraints on the space of useful coherent states. To-
gether with practical considerations, these constraints lead to the particular design embod-
iment of the transmitter we will discuss.

First and foremost, the channel and receiver limit the spectrum of useful coherent states.
For instance, the receiver has limited bandwidth to detect the signal with signal power out-
side that bandwidth being lost. Apart from that, the physical channel only shows favor-
able transmission properties over a certain frequency range, outside the signal is strongly
suppressed and distorted.3 Additionally, different users may jointly use the same physical
channel, and using the available bandwidth efficiently while reducing interference between
users, requires the signal bandwidth to be well-defined.

2𝐼 denotes an index set, e.g., 𝐼 = ℕ
3For instance, the C-band, spanning wavelengths from 1530nm to 1565nm, is widely deployed for optical
telecommunication.
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While the symbol rate effectively defines the bandwidth, insufficient usage of the band-
width degrades the signal-to-noise ratio (SNR). In addition, we need to shift the baseband
spectrum to an optical frequency 𝜔0 for which the channel shows desirable transmission
characteristics. So from a signal-processing point of view, we want the transmitter to

1. first create a baseband signal with well-defined spectrum,4

2. then transfer it to a passband signal in the optical domain.

In the following, we term the first step symbol encoding and the second stepupconversion.

In the present setup, the signal is almost exclusively constructed in the digital domain, and
the analog part is limited to the digital-to-analog conversion. Constructing the signal dig-
itally allows for greater flexibility in the development process is mostly software-defined.
For upconversion of the analog signal to the optical domain, we modulate the electric sig-
nal onto an optical carrier. Figure 4.2 illustrates how such a software-defined transmitter

DSP DAC MOD
{𝛼𝑛}𝑛∈𝐼

𝑥[𝑚]

𝑝[𝑚]

𝑥(𝑡)

𝑝(𝑡)
|𝛼(𝑡)⟩

Figure 4.2.: Block diagram of the transmitter’s signal-processing domains. The digital signal
processing (DSP) transforms a complex symbol sequence {𝛼𝑛}𝑛∈𝐼 into two digital
signals, 𝑥′[𝑚] and 𝑝′[𝑚], corresponding to the real and imaginary part. The
digital-to-analog converter (DAC) converts the digital signals to analog signals,
𝑥(𝑡) and 𝑝(𝑡) we modulate onto a coherent state |𝛼(𝑡)⟩.

architecture applies to our coherent-state transmission system. The software-defined DSP
constructs the bandwidth-optimized digital signals 𝑥[𝑚] and 𝑝[𝑚], encoding the real and
imaginary parts of the complex symbols. The DAC stage converts the digital signals, 𝑥[𝑚]
and 𝑝[𝑚], to bandwidth-limited analog signals 𝑥(𝑡) and 𝑝(𝑡). Finally, the analog signals are
modulated onto an optical carrier yielding a coherent state |𝛼(𝑡)⟩ with well-defined spec-
trum.

4.1.1. Symbol encoding

To construct a bandwidth-optimized baseband signal, encoding the complex symbol se-
quence {𝛼𝑛 ∈ ℂ∶ 𝑛 ∈ 𝐼}, we first remark that the symbol sequence itself has no notion
of time. In contrast, a digital (time-discrete) signal, consisting of discrete samples, includes

4We consider a spectrum well-defined if bandwidth-limited and compatible with the Nyquist criterion, which
requires the signal bandwidth 𝐵 to equal at least half the symbol rate 2𝐵 > 𝑓𝑠.
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a time reference, the sample period 𝑇𝑠, denoting the temporal distance between two consec-
utive samples. By defining the digital signal with samples equal to the symbols, 𝛼[𝑛] = 𝛼𝑛,
and introducing the symbol period 𝑇𝑠 as sample period, we find ourselves with the com-
plete DSP toolbox at our disposal.5 Figure 4.3 summarizes the essential DSP steps including

↑ 𝑘 RRC D
A

𝑥[𝑘𝑚] 𝑟[𝑚] 𝑞[𝑚] 𝑞(𝑡) 𝑥(𝑡)

Figure 4.3.: Block diagram of the signal processing for the symbol encoding. The digital
signal 𝑥[𝑘𝑚] is upsampled by a factor 𝑘 to 𝑟[𝑚] and pulse-shaped by a root-
raised-cosine (RRC) filter to yield 𝑞[𝑚]. A DAC converts the pulse-shaped signal
𝑞[𝑚] to the analog signal 𝑞(𝑡). Finally, the analog signal 𝑞(𝑡) is low-pass (LP)
filtered to yield the analog anti-aliased signal 𝑥(𝑡).

analog conversion of a real-valued digital signal 𝑥[𝑘𝑚] to construct a bandwidth-optimized
analog baseband signal 𝑥(𝑡).6 The digital signal 𝑥[𝑘𝑚], containing the symbols, is first up-
sampled by an upsampling factor of 𝑘, adding 𝑘 zero-valued samples in between the original
samples. The pulse-shaping of the RRC filter interpolates between the non-zero samples,
the symbols, to precisely define the signal bandwidth. Finally, an ideal DAC converts the
digital signal 𝑞[𝑚] to the analog signal 𝑞(𝑡), equivalent to infinite upsampling. The analog
signal 𝑞(𝑡) contains infinite aliases through the upsampling, which we remove by filtering
𝑞(𝑡) with a LP, yielding the anti-aliased analog signal 𝑥(𝑡). Figure 4.4 illustrates the time
domain signals for each signal-processing step for a symbol sequence which contains only a
single non-zero symbol with unit value. We see very well how the upsampling increases the
resolution of the digital signal in the time domain and how the pulse-shaping filter interpo-
lates between the samples. We also see that the RRC pulse-shaping filter corresponds to a
sinc-like impulse response. The similarity of the analog signal with a sinc pulse is not sur-
prising since the RRC is the square-root of the raised-cosine filter. The raised-cosine filter
has frequency response

|ℎrc (𝑓/𝑓𝑠)| =
⎧

⎨
⎩

1 |𝑓/𝑓𝑠| ≤ (1 − 𝛼)
cos [ 𝜋

4𝛼
(|𝑓/𝑓𝑠| − 1 + 𝛼)] 1 − 𝛼 ≤ |𝑓/𝑓𝑠| ≤ 1 + 𝛼

0 otherwise
, (4.1.2)

wherein 𝑓𝑠 = 1/𝑇𝑠 is the symbol rate and 𝛼 determines the roll-off and satisfies the Nyquist
criterion for optimal bandwidth [6, p. 51]. Taking the square-root of the raised-cosine pulse-
shaping filter and applying it once on the transmitter-side and once on the receiver-side,
where it is named the matched filter, also satisfies the Nyquist criteria but suppresses out-
of-band noise.7 Figure 4.5 illustrates the time domain signals for each signal-processing
5Even if the DSP itself does not work explicitly with the time reference 𝑇𝑠, we need time to give a meaningful
interpretation of the signal between the steps.

6The baseband construction generalizes to a complex digital signal by applying the real-valued baseband con-
struction separately to the real and imaginary part.

7From a mathematical point of view, the matched filter is only asymptotically ideal for close-to-zero SNR. For
sufficiently bad SNR the matched filter is almost as good as a Wiener filter.

102



10 11 12 13 14 15 16 17 18 19 20

0

0.5

1

Symbol index 𝑘𝑚

Sy
m

bo
ls

𝑥[
𝑘𝑚

]

0

0.5

1

Up
sa

m
pl

in
g

𝑟[
𝑚
]

0

0.5

1

Pu
lse

-s
ha

pi
ng

𝑞[
𝑚
]

10 11 12 13 14 15 16 17 18 19 20

0

0.5

1

Signal time 𝑡/𝑇𝑠

An
al

og
-c

on
v.

𝑥(
𝑡)

Figure 4.4.: Symbol encoding for a single unit symbol in the time domain. The symbol se-
quence {𝑥𝑛 ∈ ℝ∶ 𝑛 ∈ 𝐼} is represented by the digital signal 𝑥[𝑘𝑚] with sample
period𝑇𝑠 (first row). The digital signal 𝑥[𝑘𝑚] is upsampled to 𝑟[𝑚] by an upsam-
pling factor of 𝑘 = 2 (second row). The upsampled signal 𝑟[𝑚] is pulse-shaped
with a RRC filter to yield 𝑞[𝑚] (third row). The pulse-shaped digital signal 𝑞[𝑚]
is converted to the anti-aliased analog signal 𝑥(𝑡).

step for a randomQPSK symbol sequence. Figure 4.6 provides further inside into the signal-
processing steps by presenting the power spectrum of the unit and QPSK symbol sequences.
In the frequency domain, it is very clear to see howupsamplingwidens the spectrumwithout
adding additional information. We also see how the pulse-shaping filter shapes the upsam-
pled spectrum, and the LP filter suppresses aliases.
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Figure 4.5.: Symbol encoding for a randomQPSK symbol-sequence in the time domain with
real (orange) and imaginary (green) part . The complex symbol sequence {𝛼𝑛 ∈
ℂ∶ 𝑛 ∈ 𝐼} is represented by the digital signal 𝛼[𝑘𝑚]with sample period 𝑇𝑠 (first
row). The digital signal 𝛼[𝑘𝑚] is upsampled to 𝜌[𝑚] by an upsampling factor
of 𝑘 = 2 (second row). The upsampled signal 𝜌[𝑚] is pulse-shaped with a RRC
filter to yield 𝛾[𝑚] (third row). The pulse-shaped digital signal 𝛾[𝑚] is converted
to the anti-aliased analog signal 𝛼(𝑡).
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Figure 4.6.: Power spectrum of the symbol encoding steps for a random QPSK symbol se-
quence (green) and the unit symbol sequence (orange). The initial spectrum
spans from −1/2 to +1/2 the normalized sampling frequency 𝑓/𝑓𝑠 (first row).
Upsampling by 𝑘 = 2 adds aliases left and right to the initial spectrum (sec-
ond row). Pulse-shaping suppresses the left and ride flanks of the spectrum to
precisely define the spectrum (third row). Analog conversion corresponds to in-
finite upsampling, adding infinite aliases left and right of the spectrum. (fourth
row). Applying a LP filter strongly suppresses the aliases with relaxed require-
ments on the filter spectrum (last row).
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4.1.2. Upconversion

We previously constructed the pulse-shaped baseband signals 𝑥(𝑡) and 𝑝(𝑡) encoding the
real respective imaginary part of a complex symbol sequence {𝛼𝑛 ∈ ℂ∶ 𝑛 ∈ 𝐼}. Modulating
the signals onto the optical carrier frequency𝜔𝑐 resembles an upconversion by the frequency
𝜔𝑐, corresponding to the multiplication with an local oscillator (LO) signal, as illustrated in
Figure 4.7. In the frequency representation, we find that the multiplication of the signal

𝑥(𝑡)

cos(𝜔𝑐𝑡)

𝑥(𝑡) cos(𝜔𝑐𝑡)

Figure 4.7.: Block diagram of single-quadrature upconversion. The signal 𝑥(𝑡) is mixed with
the LO signal cos(𝜔𝑐𝑡) and the output is filtered by a bandpass to remove har-
monics.

𝑥(𝑡) with the LO signal cos(𝜔𝑐𝑡) creates two copies of the spectrum 𝑥(𝜔), at the positive
and negative upconversion-frequency ±𝜔𝑐, as illustrated in Figure 4.8. Because Figure 4.8

|𝑥(𝜔)|2

𝜔
0 +𝜔𝑐−𝜔𝑐

𝐵𝑠

Figure 4.8.: Power spectrum illustrating upconversion of the real-valued signal 𝑥(𝑡) centered
at zero frequency 𝜔 = 0 (solid spectrum) to the carrier frequencies ±𝜔𝑐 (dashed
spectra).

shows the power spectrum, it fails to convey that the spectrum at the negative frequencies
is complex conjugate, 𝑥(−𝜔) = 𝑥(𝜔)∗, with respect to the positive frequencies, as required
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for real-valued signals, i.e.,

𝑥(𝑡) cos(𝜔𝑐𝑡) = ∫
+𝐵𝑠/2

−𝐵𝑠/2

d𝜔
2𝜋𝑥(𝜔)𝑒

+𝑖𝜔𝑡 cos(𝜔𝑐𝑡)

= 1
2 ∫

+𝐵𝑠/2

−𝐵𝑠/2

d𝜔
2𝜋𝑥(𝜔) [𝑒

+𝑖(𝜔+𝜔𝑐)𝑡 + 𝑒+𝑖(𝜔−𝜔𝑐)𝑡]

= 1
2 ∫

+𝜔𝑐+𝐵𝑠/2

+𝜔𝑐−𝐵𝑠/2

d𝜔
2𝜋𝑥(𝜔 − 𝜔𝑐)𝑒+𝑖𝜔𝑡 +

1
2 ∫

−𝜔𝑐+𝐵𝑠/2

−𝜔𝑐−𝐵𝑠/2

d𝜔
2𝜋𝑥(𝜔 + 𝜔𝑐)𝑒+𝑖𝜔𝑡

= 1
2 ∫

+𝜔𝑐+𝐵𝑠/2

+𝜔𝑐−𝐵𝑠/2

d𝜔
2𝜋𝑥(𝜔 − 𝜔𝑐)𝑒+𝑖𝜔𝑡 −

1
2 ∫

+𝜔𝑐−𝐵𝑠/2

+𝜔𝑐+𝐵𝑠/2

d𝜔
2𝜋𝑥(−𝜔 + 𝜔𝑐)𝑒−𝑖𝜔𝑡

= 1
2 ∫

+𝜔𝑐+𝐵𝑠/2

+𝜔𝑐−𝐵𝑠/2

d𝜔
2𝜋𝑥(𝜔 − 𝜔𝑐)𝑒+𝑖𝜔𝑡 +

1
2 ∫

+𝜔𝑐+𝐵𝑠/2

+𝜔𝑐−𝐵𝑠/2

d𝜔
2𝜋𝑥(𝜔 − 𝜔𝑐)∗𝑒−𝑖𝜔𝑡

= Re∫
+𝜔𝑐+𝐵𝑠/2

+𝜔𝑐−𝐵𝑠/2

d𝜔
2𝜋𝑥(𝜔 − 𝜔𝑐)𝑒+𝑖𝜔𝑡,

(4.1.3)

wherein we used the conjugate symmetry of the spectrum in the last step.

Figure 4.9 shows how to extend the previously-discussed single-quadrature upconversion
to dual-quadrature upconversion by splitting a single LO with relative phase shift of 𝜋/2.
The filtered output of the lower branch mixer is obtained by adding a phase of 𝜋/2 to the

0∘
90∘ √2 cos(𝜔𝑐𝑡)

𝑥(𝑡)

𝑝(𝑡)

𝑠(𝑡)

Figure 4.9.: Block diagram illustrating upconversion of two real-valued baseband signals,
𝑥(𝑡) and 𝑝(𝑡), to a real-valued passband signal 𝑠(𝑡). The LO signal √2 cos(𝜔𝑐𝑡)
is split into two branches with a relative phase shift between the branches of
𝜋/2. One branch is mixed with the baseband signal 𝑥(𝑡), the other is mixed with
𝑝(𝑡). The output of each mixer is filtered to remove harmonics and then added
to yield the upconverted signal 𝑠(𝑡).
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complex exponential and replacing 𝑥(𝑡) with 𝑝(𝑡) in eq. (4.1.4), i.e.,

𝑝(𝑡) sin(𝜔𝑐𝑡) = Im∫
+𝜔𝑐+𝐵𝑠/2

+𝜔𝑐−𝐵𝑠/2

d𝜔
2𝜋𝑝(𝜔 − 𝜔𝑐)𝑒+𝑖𝜔𝑡. (4.1.4)

The sum of both branches in Figure 4.9 equals

𝑠(𝑡) = 𝑥(𝑡) cos(𝜔𝑐𝑡) − 𝑝(𝑡) sin(𝜔𝑐𝑡)

= Re∫
+𝜔𝑐+𝐵𝑠/2

+𝜔𝑐−𝐵𝑠/2

d𝜔
2𝜋𝑥(𝜔 − 𝜔𝑐)𝑒+𝑖𝜔𝑡 − Im∫

+𝜔𝑐+𝐵𝑠/2

+𝜔𝑐−𝐵𝑠/2

d𝜔
2𝜋𝑝(𝜔 − 𝜔𝑐)𝑒+𝑖𝜔𝑡

= Re∫
+𝜔𝑐+𝐵𝑠/2

+𝜔𝑐−𝐵𝑠/2

d𝜔
2𝜋 [𝑥(𝜔 − 𝜔𝑐) + 𝑖𝑝(𝜔 − 𝜔𝑐)] 𝑒+𝑖𝜔𝑡,

(4.1.5)

where we used Im(𝑧) = −Re(𝑖𝑧) in the last step. Equation (4.1.5) suggests defining the
complex-valued baseband signal

𝛼(𝑡) = 𝑥(𝑡) + 𝑖𝑝(𝑡) (4.1.6)

for which we can show that the dual-quadrature upconversion equals the multiplication
with a complex exponential, i.e.,

𝑠(𝑡) = Re [𝛼(𝑡)𝑒+𝑖𝜔𝑐𝑡] , (4.1.7)

demonstrating equivalence between the baseband and passband representations. Compared

|𝑥(𝜔)|2

𝜔
0 +𝜔𝑐−𝜔𝑐

𝐵𝑠

Figure 4.10.: Power spectrum illustrating dual-quadrature upconversion of the complex-
valued signal 𝛼(𝑡) centered at zero frequency 𝜔 = 0 (solid spectrum) to the
carrier frequencies ±𝜔𝑐 (dashed spectra).

to the power spectrum illustrating the single-quadrature upconversion in Figure 4.9, the
power spectras concentrated are now asymmetric around their respective carrier frequen-
cies, 𝜔 = 0,±𝜔𝑐. However, the upconverted spectrum including the positive and negative
frequencies remains to have complex conjugate symmetry, as depicted in Figure 4.10.

Using the complex baseband representation, eq. (4.1.6), it is simple to link the dual-quadrature
upconversion to our result of the electro-optical in-phase and quadrature modulator (IQM).
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In particular, if we assume a narrow-linewidth LO at frequency 𝜔𝑐, represented by the co-
herent state

|𝑔(𝑡)𝑒+𝑖𝜔𝑐𝑡⟩ (4.1.8)

with 𝑔(𝑡) encoding the laser profile, the unitary evolution operator associated with the IQM
acting on the LO coherent state produces,

𝑈̂IQM[𝛼(𝑡)]|𝑔(𝑡)𝑒+𝑖𝜔𝑐𝑡⟩ = |(𝑔𝛼)(𝑡)𝑒+𝑖𝜔𝑐𝑡⟩, (4.1.9)

the upconversion from the electrical to the quantum-optical domain.

4.2. Receiver

We introduced the receiver as a component decoding a sequence of complex symbols,

{𝛽𝑛 ∈ ℂ∶ 𝑛 ∈ 𝐼} , (4.2.1)

from a coherent state |𝛽(𝑡)⟩. Just like the transmitter, we want to keep the receiver software-
defined. Figure 4.11 shows the signal processing of a possible software-defined receiver. The

DEMOD ADC DSP
|𝛽(𝑡)⟩

𝑢(𝑡)

𝑣(𝑡)

𝑢[𝑚]

𝑣[𝑚]
{𝛽𝑛}𝑛∈𝐼

Figure 4.11.: Block diagram of the receiver’s signal processing domains. The analog elec-
trical signals 𝑢(𝑡), and optional 𝑣(𝑡), are demodulated from the quadratures
of the optical coherent state |𝛽(𝑡)⟩, and then converted to the digital signals
𝑢[𝑚], and optional 𝑣[𝑚], from which the DSP decodes the symbol sequence
{𝛽𝑛 ∈ ℂ∶ 𝑛 ∈ 𝐼}.

coherent state is transferred from the optical via the analog to the digital.

4.2.1. Downconversion

At the transmitter, we upconverted two real baseband signals to a real passband signal. For
the receiver, we discuss options involving one and two real baseband signals. We first con-
sider the simpler case of direct downconversion as depicted in Figure 4.12. In direct down-
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𝑧(𝑡)

cos(𝜔𝑙𝑡 + 𝜗)

𝑢(𝑡)

Figure 4.12.: Block diagram of single-quadrature downconversion. The signal 𝑧(𝑡) is mixed
with the LO signal cos(𝜔𝑙𝑡 + 𝜗). The downconverted signal 𝑢(𝑡) is obtained by
LP filtering the output signal of the mixing.

conversion, we mix a real-valued signal,

𝑧(𝑡) = ∫
+∞

−∞

d𝜔
2𝜋𝑧(𝜔)𝑒

+𝑖𝜔𝑡 = ∫
+∞

0

d𝜔
2𝜋𝑧(𝜔)𝑒

+𝑖𝜔𝑡 +∫
0

−∞

d𝜔
2𝜋𝑧(𝜔)𝑒

+𝑖𝜔𝑡

= ∫
+∞

0

d𝜔
2𝜋𝑧(𝜔)𝑒

+𝑖𝜔𝑡 −∫
0

+∞

d𝜔
2𝜋𝑧(−𝜔)𝑒

−𝑖𝜔𝑡

= ∫
+∞

0

d𝜔
2𝜋 [𝑧(𝜔)𝑒+𝑖𝜔𝑡 + 𝑧(𝜔)∗𝑒−𝑖𝜔𝑡]

= ∫
+∞

0

d𝜔
2𝜋2Re [𝑧(𝜔)𝑒

+𝑖𝜔𝑡] ,

(4.2.2)

where we used the conjugate symmetry, 𝑧(−𝜔) = 𝑧(𝜔)∗, of the Fourier transform of a real-
valued function 𝑧(𝑡). Multiplication with the LO signal cos(𝜔𝑙𝑡 + 𝜗), the mixing produces a
high- and low-frequency band

𝑧(𝑡) cos(𝜔𝑙𝑡 + 𝜗) = 2Re∫
∞

0

d𝜔
2𝜋𝑧(𝜔)𝑒

+𝑖𝜔𝑡 cos(𝜔𝑙𝑡 + 𝜗)

= Re∫
∞

0

d𝜔
2𝜋𝑧(𝜔)𝑒

+𝑖𝜔𝑡 [𝑒+𝑖(𝜔𝑙𝑡+𝜗) + 𝑒−𝑖(𝜔𝑙𝑡+𝜗)]

= Re∫
∞

0

d𝜔
2𝜋𝑧(𝜔) [𝑒

+𝑖(𝜔+𝜔𝑙)𝑡+𝑖𝜗 + 𝑒+𝑖(𝜔−𝜔𝑙)𝑡−𝑖𝜗]

= Re∫
∞

+𝜔𝑙

d𝜔
2𝜋𝑧(𝜔 − 𝜔𝑙)𝑒+𝑖𝜔𝑡+𝑖𝜗

+ Re∫
∞

−𝜔𝑙

d𝜔
2𝜋𝑧(𝜔 + 𝜔𝑙)𝑒+𝑖𝜔𝑡−𝑖𝜗.

(4.2.3)
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However, we suppress the high-frequency bandusing an ideal LP filterwith bandwidth𝐵𝑑,

𝑢(𝑡) = Re∫
+𝐵𝑑/2

−𝐵𝑑/2

d𝜔
2𝜋𝑧(𝜔 + 𝜔𝑙)𝑒+𝑖𝜔𝑡−𝑖𝜗

= Re∫
+𝐵𝑑/2

0

d𝜔
2𝜋𝑧(𝜔 + 𝜔𝑙)𝑒+𝑖𝜔𝑡−𝑖𝜗 + Re∫

0

−𝐵𝑑/2

d𝜔
2𝜋𝑧(𝜔 + 𝜔𝑙)𝑒+𝑖𝜔𝑡−𝑖𝜗

= Re∫
+𝐵𝑑/2

0

d𝜔
2𝜋𝑧(𝜔 + 𝜔𝑙)𝑒+𝑖𝜔𝑡−𝑖𝜗 − Re∫

0

𝐵𝑑/2

d𝜔
2𝜋𝑧(𝜔 − 𝜔𝑙)∗𝑒−𝑖𝜔𝑡−𝑖𝜗

= Re∫
+𝐵𝑑/2

0

d𝜔
2𝜋 [𝑧(𝜔 + 𝜔𝑙)𝑒+𝑖𝜔𝑡 + 𝑧(𝜔 − 𝜔𝑙)∗𝑒−𝑖𝜔𝑡] 𝑒−𝑖𝜗,

(4.2.4)

where we assumed 𝜔𝑙 ≫ 𝐵𝑑/2. For 𝜗 = 0, the downconverted signal 𝑣(𝑡) is equal to pro-
jecting the real part of the complex input spectrum 𝑧(𝜔), losing the imaginary part’s in-
formation. Furthermore, when rewriting 𝑢(𝑡) as an integral over positive frequencies, i.e.,
frequencies we can measure, we find a second term mirroring the first term. Figure 4.13

|𝑥(𝜔)|2

𝜔
0 𝜔𝑖 𝜔𝑙 + 𝜔𝑖

𝐵𝑑

Figure 4.13.: Power spectrum illustrating downconversion of a passband signal (solid spec-
trum)mixedwith a LO signal𝜔𝑙 to the intermediate frequency𝜔𝑖 (dashed spec-
trum) and measurement with bandwidth 𝐵𝑑 (dotted spectrum).

shows the downconversion of the signal 𝑧(𝑡) around the LO at 𝜔𝑙 to the intermediate fre-
quency 𝜔𝑖. The actual measurement involved only positive frequencies up to the detector
bandwidth 𝐵𝑑/2 causing the actual signal to be imposed with the mirrored spectrum.

Single-quadrature downconversion only reveals a real projection of the complex spectrum.
To conserve both quadratures, we need to split the input signal into two branches and per-
form single-quadrature downconversion with two orthogonal phase references of the LO,
see Figure 4.14. The signal of the upper branch 𝑢(𝑡) is equal to our result for the single-
quadrature downconversion, eq. (4.2.4). The signal of the lower branch,

𝑣(𝑡) = Im∫
+𝐵𝑑/2

−𝐵𝑑/2

d𝜔
2𝜋𝑧(𝜔 − 𝜔𝑙)𝑒+𝑖(𝜔𝑡+𝜗)

= Im∫
+𝐵𝑑/2

0

d𝜔
2𝜋 [𝑧(𝜔 − 𝜔𝑙)𝑒+𝑖(𝜔𝑡+𝜗) + 𝑧(𝜔 + 𝜔𝑙)∗𝑒−𝑖(𝜔𝑡+𝜗)] ,

(4.2.5)
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𝑧(𝑡) 50%
50%

90∘
0∘

2 sin(𝜔𝑐𝑡 + 𝜗)

𝑢(𝑡)

𝑣(𝑡)

Figure 4.14.: Block diagram of dual-quadrature downconversion. The signal 𝑧(𝑡) is divided
equally into an upper and a lower branch. The upper branch is mixed with
the phase shifted LO signal cos(𝜔𝑐𝑡 + 𝜗). The lower branch is mixed with LO
signal sin(𝜔𝑐𝑡 + 𝜗). The mixer outputs are filtered separately by a LP yielding
the downconverted signals 𝑢(𝑡) and 𝑣(𝑡).

is simply obtained fromeq. (4.2.4) by shifting the LOphase reference by 90∘, i.e., 𝜗 → 𝜗+𝜋/2.
Regardless of the particular value of the LO phase reference 𝜗, dual-quadrature downcon-
version recovers the complete information, the real and imaginary part, of the input signal
spectrum 𝑧(𝜔).

We presented the electro-optical receiver setups implementing single- and dual-quadrature
downconversion in Figure 1.14 and Figure 1.15 in Chapter 1. In Chapter 3, we investigated
the balanced detector, effectively implementing the single-quadrature downconversion.

4.2.2. Homo- and heterodyning

So far, we have not assumed any particular signal for the downconversion but treated the
receiver as a spectrum analyzer. If we now assume the input signal to be from the coherent-
state transmitter |𝛽(𝑡)⟩, eq. (4.1.5), the downconverted signals read

𝑢(𝑡) = Re∫
+𝐵𝑑/2

−𝐵𝑑/2

d𝜔
2𝜋𝛽(𝜔 − 𝜔𝑐 + 𝜔𝑙)𝑒+𝑖(𝜔𝑡+𝜃) (4.2.6)

𝑣(𝑡) = Im∫
+𝐵𝑑/2

−𝐵𝑑/2

d𝜔
2𝜋𝛽(𝜔 − 𝜔𝑐 + 𝜔𝑙)𝑒+𝑖(𝜔𝑡+𝜃), (4.2.7)

wherein 𝜃 accounts for the phases of the up- and downconversion LOs. We define the the
intermediate frequency as the difference between the transmitter and receiver LOs, i.e.,

𝜔𝑖 = |𝜔𝑐 − 𝜔𝑙| < 𝐵𝑑/2, (4.2.8)
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and distinguish between homodyning for zero intermediate frequency 𝜔𝑖 = 0, and other-
wise, heterodyning 𝜔𝑖 ≠ 0. In heterodyning, we shift the spectrum surrounding 𝜔𝑐, dashed

|𝑥(𝜔)|2

𝜔
0 𝜔𝑖 𝜔𝑐 𝜔𝑙

𝐵𝑠𝐵𝑑

Figure 4.15.: Power spectrum illustrating heterodyne detection. The passband signal with
carrier frequency𝜔𝑐 and bandwidth 𝐵𝑠 (dashed) is downconverted with the LO
frequency𝜔𝑙 > 𝜔𝑐. The downconverted spectrum is measured with bandwidth
𝐵𝑑 (solid), which contains the image band (dotted) from the right side of the
LO.

lines in Figure 4.15, to the zero frequency 𝜔 = 0, where we superimpose the negative fre-
quencieswith the positive frequencies, dotted lines in Figure 4.15. The noise spectrumoppo-
site of LO frequency, which contributes to the measurement, is knowns as the image band.
In homodyning, we calibrate the LO signal to match the carrier frequency, 𝜔𝑙 = 𝜔𝑐, as illus-
trated in Figure 4.16, which separates the image from the signal band but folds the positive
and negative frequencies of the baseband signal. As a result, homodyning recovers only one

|𝑥(𝜔)|2

𝜔
0 𝜔𝑐 = 𝜔𝑙

𝐵𝑠𝐵𝑑

Figure 4.16.: Power spectrum illustrating homodyne detection. The passband signal with
carrier frequency 𝜔𝑐 and bandwidth 𝐵𝑠 (dashed) is downconverted with the
LO frequency, equal to the carrier frequency, 𝜔𝑙 = 𝜔𝑐. The downconverted
spectrum is measured with bandwidth 𝐵𝑑 (solid), which contains the mirror
(dotted) from the right side of the LO.

quadrature To resolve both quadratures, we need to perform dual-quadrature downconver-
sion requiring two homodyne detectors. Table 4.1 summarizes the characteristics between
the single- and dual-quadrature homodyning and heterodyning. A strong advantage of the
heterodyne receiver design is that both quadratures can be resolved with a single balanced
detector, keeping the optical complexity low. Concerning the SNR, dual-quadrature homo-
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Scheme Homodyne (single) Homodyne (dual) Heterodyne

Balanced detectors 1 2 1
Quadratures 1 2 2
Intermediate frequency 𝜔𝑖 = 0 𝜔𝑖 ≠ 0
Optical complexity Low High Low
Signal bandwidth High High Low
LO synchronization Frequency and phase Frequency Bandwidth

Table 4.1.: Comparison of receiver schemes according to Ref. [101]. The single-quadrature
homodyne detection offers low optical complexity and high bandwidth but only
resolves one of two quadratures and required frequency and phase synchroniza-
tion of the LO. The dual-quadrature homodyne detection resolves both quadra-
tures with high bandwidth but requires two balanced detectors increasing the op-
tical complexity and phase synchronization of the LO. The heterodyne detection
schemes resolves both quadratures with low complexity and no requirements on
LO synchronization at the cost of signal bandwidth.

dyne and heterodyne detection offer the same performance. For dual-quadrature homodyn-
ing, the signal power reduces among the two detectors, while the image band degrades the
SNR for heterodyning.

4.2.3. Symbol decoding

We continue our receiver description, starting from the single-quadrature downconversion
and assuming themore general heterodyning, which for𝜔𝑖 = 0 reduces to single-quadrature
homodyning. Figure 4.17 summarizes the relevant signal processing for the symbol decod-

A
D

exp(𝑖𝜔𝑖𝑡)

↓ 𝑙 RRC ↓ 𝑘
𝑢(𝑡) 𝑢 [𝑚

𝑘𝑙
] 𝜎 [𝑚

𝑘𝑙
] 𝜇 [𝑚

𝑘
] 𝜅 [𝑚

𝑘
] 𝛽[𝑚]

Figure 4.17.: Block diagram of the signal processing for the symbol decoding. The analog
signal 𝑢(𝑡) is converted to the digital signal 𝑢[𝑚/(𝑘𝑙)]. The real digital signal
𝑢[𝑚/(𝑘𝑙)] is multiplied with the complex exponential exp(𝑖𝜔𝑖𝑡), yielding the
complex digital signal 𝜎[𝑚/(𝑘𝑙)]. 𝜎[𝑚/(𝑘𝑙)] is downsampled by 𝑙 to yield the
complex digital signal 𝜇[𝑚/𝑘]. 𝜇[𝑚/𝑘] is pulse-shaped with the matched RRC
filter to yield the complex digital signal 𝜅[𝑚/𝑘]. 𝜅[𝑚/𝑘] is downsampled to the
complex digital signal 𝛽[𝑚] corresponding to the decoded symbol sequence.
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ing. The downconverted signal 𝑢(𝑡) corresponding to the real part of the received coherent-
state spectrum 𝛽(𝜔), eq. (4.2.6), is sampled by an analog-to-digital converter (ADC), yielding
the digital signal 𝑢[𝑚/(𝑘𝑙)]. We remove the intermediate frequency in 𝑢[𝑚/(𝑘𝑙)] by multi-
plication with a complex exponential, i.e,

𝜎 [𝑚𝑘𝑙] = 𝑢 [𝑚𝑘𝑙] 𝑒
+2𝜋𝑖(𝑚/𝑘𝑙)𝑇𝑠, (4.2.9)

making the signal complex-valued. It follows a downsampling by 𝑙 of the signal such that
we can apply the same RRC filter, the matched filter, which we used in the symbol encoding
to maximize SNR. Finally, we downsample by 𝑘 to restore a digital signal corresponding to
the symbol sequence. Figure 4.18 illustrates how the symbol decoding is carried out in the
frequency domain. The demodulated signal spectrum is a passband signal at the intermedi-
ate frequency and downconversion reduces the passband to a baseband signal. Completing
the pulse-shaping with the matched filter increases the steepness of the flanks which are
collapsed with aliasing by the final downsampling step. Figure 4.19) shows the symbol de-
coding in the time domain.
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Figure 4.18.: Power spectrum of the symbol-decoding steps for a random QPSK symbol-
sequence. The demodulated signal is a real-valued passband signal centered at
the intermediate frequency (first row). After digital downconversion we have a
complex-valued baseband signal, centered at zero frequency (second row). Ap-
plying thematched RRC filter completes the pulse-shaping (third row). Down-
sampling recovers the initial symbol band (last row).
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Figure 4.19.: Signal amplitude of the symbol decoding steps for a random QPSK symbol-
sequence. The real-valued demodulated signal oscillates at the intermediate
frequency (first row). Digital downconversion removed the intermediate fre-
quency, yielding a complex signal (second row). Completing the pulse-shaping
and downsampling by applying a matched RRC filter (third row). Downsam-
pling recovers the complex symbol sequence equal to the transmitted sequence
(fourth and last row).

117



Summary

We presented a software-defined coherent-state transmission system for en- and decoding
of a complex symbol sequence onto and from an optical coherent state by following the
signal processing across the quantum-optical, analog and digital domains. For simplicity,
we assumed a perfect noiseless quantum channel without attenuation and perfect synchro-
nization between the transmitter and receiver clocks.8 Ref. [102] considers realistic quan-
tum channels, like the quantum analog of the classical additive Gaussian white-noise chan-
nel. To extend the detection to nonclassical states, methods of quantum tomography, as
discussed in, for example, Ref. [7], need to be considered.

Figure 4.20 summarizes the transmitter’s signal processing in a block diagram. First, the
complex digital signal corresponding to the symbol sequence 𝛼[𝑛] are encoded in two real-
valued bandwidth-optimized digital baseband signals. The digital baseband signals are trans-
ferred to the analog domain, where we upconvert them to a single passband signal. For

𝛼[𝑛] ↑ 𝑘 RRC Re
Im

D
A

D
A

90∘
0∘√2 sin(𝜔𝑐𝑡 + 𝜗) 𝑠(𝑡)

Figure 4.20.: Block diagram of the transmitter’s signal processing. The real and imaginary
part of a complex digital signal 𝛼[𝑛] is upsampled, pulse-shaped and converted
to anti-aliased analog signals, 𝑥(𝑡) and 𝑝(𝑡). The analog signals are individually
mixed with a phase-shifted LO with carrier frequency 𝜔𝑐 and then added to
yield a complex signal 𝛼(𝑡).

the receiver we discussed the differences between a single, dual homo- and heterodyne re-
ceiver. With homodyning, the optical signal is directly downconverted without intermedi-
ate frequency, 𝜔𝑖 = 0, while with heterodyning we have an intermediate frequency, which
we remove in the digital domain. Although, homodyning directly reveals the quadrature
information, it requires dual-quadrature downconversion in the electro-optical domain, in-
creasing the hardware complexity. Using heterodyning both quadratures can be digitally
restored given sufficient detector bandwidth. Figure 4.21 summarizes our heterodyning
receiver’s signal processing in a block diagram. First, the received passband signal 𝑧(𝑡) is
downconverted to an intermediate (radio) frequency and converted to a digital signal. The
digital signal is multiplied by a complex exponential removing the intermediate frequency

8Appendix D summarizes some important techniques to compensate for synchronization error of the optical
LOs and the ADC clock.
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𝑧(𝑡)

cos(𝜔𝑐𝑡 + 𝜗)

A
D

exp(𝑖𝜔𝑖𝑡)

↓ 𝑙 RRC ↓ 𝑘 𝛽[𝑛]

Figure 4.21.: Block diagramof the heterodying receiver’s signal processing. The signal 𝑧(𝑡) is
mixedwith cos(𝜔𝑐𝑡+𝜗). Themixed analog signal is bandwidth-limited through
a LP filter and converted to the digital domain where it is digitally downcon-
verted throughmultiplication with exp(𝑖𝜔𝑖𝑡). The digitally downconverted sig-
nal is downsampled a first time for compatibility with the matched RRC filter
and then downsampled a second time to recover the symbols.

and recovering dual-quadrature information. Finally, the pulse shaping is completed and
the digital signal is downsampled to recover the digital signal 𝛽[𝑛] corresponding to the
symbol sequence.

We found the coherent-state transformations for the IQM and balanced detector, derived
in the previous chapter, to exactly implement the electro-optical up- and downconversion
of the transmitter respectively receiver. Table 4.2 summarizes the relation between input

Signal-processing Optical implementation Input signal Output signal

Upconversion Modulation 𝛼(𝑡) |𝛼(𝑡)𝑒−𝑖𝜔𝑐𝑡⟩
Downconversion Balanced detection |𝛼(𝑡)𝑒−𝑖𝜔𝑐𝑡⟩ 𝛼(𝑡)𝑒−𝑖𝜔𝑖𝑡

Table 4.2.: Electro-optical components implementing signal-processing operations with
complex baseband signal 𝛼(𝑡), optical carrier frequency 𝜔𝑐 and electrical inter-
mediate frequency 𝜔𝑖.

and output state and signals for the electro-optical components implementing the up- and
downconversion. We have thus successfully bridged the gap between signal processing and
quantum-optical communication.
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Conclusion and outlook

This thesis aimed to outline the incorporation of quantum aspects into optical communica-
tion. By crafting a continuous-mode theory of light and applying it to describe electro-optical
components essential for optical communication, we proposed a coherent-state transmis-
sion systemas an extension of a classical optical transmission system to the quantum regime.
The suggested coherent-state transmission system offers a platform to explore and formulate
novel communication protocols inspired by classical communication and quantummechan-
ics, especially practical quantum-key distribution (QKD) protocols based on weak coherent
states.

Next to the practical results of our work, we illuminate quantum aspects of light that have
physical relevance but otherwise fall short, as our result on the generalized quadrature mea-
surement shows. From an abstract point of view, we can draw two key lessons from our
work. On the one hand, we need to be more careful in employing reductionism. Some con-
cepts are notoriously difficult to grasp, and there exists no shortcut to understanding them
truly. On the other hand, we need to be more encouraged to search for answers outside our
traditional domain. In deriving a continuous-mode quantum theory of light from quantum
field theory, we consciously opted against extending single-mode quantum optics, which
turned out to be a key factor in our research’s success, as there is more clarity in simplify-
ing a complete theory as opposed to extending a simplified theory. Of course, this does not
mean disavowing established methods. Rather it proves useful to switch perspectives from
time to time. For example, towards the end of our research, it turned out to be favorable to
move away from a constructive bottom-up approach and work our way backward from the
classical results.

Our work is difficult to place into the existing literature, largely since our problem statement
emerges from an applied industry-related setting. The closest to our research is Shapiro’s
work regarding a quantum theory of optical communication [19]. However, besides the
photodetection, Shapiro approaches the topic from a quantum-information perspective and
does neither consider a practical implementation nor a transmission setup. Concerning the
quantum theory of light, we are the first to our knowledge to present a continuous-mode
theory rooted in quantum field theory and emphasizing the communication aspects. The
few existing references [10, 9] do not attempt to justify their results but apply their formalism
towards quantum optics. For the quantum theory of electro-optical components, we have
summarized and unified the existing literature, most notably the beam splitter [18, 17, 7],
the photodetector [7, 8, 19], and the phase modulator [84, 81].
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Some topics, e.g., quantum information and non-classical quantum states, require addi-
tional attention to complete a theoretical framework for quantum-optical communication
not limited to practical QKD using weak coherent states. In addition, our description of the
coherent-state transmission systemmisses a discussion of the quantum statistics and effects
of a non-ideal quantum channel.

Even though our work leavesmany open questions, it provides asmany opportunities it pro-
vides, themost obvious being the transfer of classical communication protocols to QKD like,
for example, orthogonal frequency-division multiplexing (OFDM) [103], which requires a
continuous-mode theory of light. Another potential research direction concerns security
proofs for practical QKD protocols based on weak coherent states. Specific to continuous-
variable quantum-key distribution (CV-QKD), we can think of investigating mirror-band
and frequency-entangled squeezed-states with our framework. More general, it would be
interesting to follow up on the concept of a logical quantum channel investigating the equiv-
alence of a tensor-product coherent-state transmission system with our continuous-time
coherent-state transmission system. Such an equivalence, if confirmed, could be a useful
tool to simplify existing and future security proofs. Last but not least, it would be interesting
to extend our theoretical framework to the transmission of non-classical quantum states and
discuss if and how one can make sense of a communication system conveying not classical
but quantum information. One promising direction, which would benefit from our frame-
work, is the transmission of frequency-entangled squeezed states, also known as broadband
squeezed states [7, 8].
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Appendix A.
Supplemental theorems to Maxwell field
theory

In the present appendix, we provide supplementary theorems to support our claims of Chap-
ter 2. As the following excerpts highlight, many proofs reduce to exercising operator algebra,
which is rather verbose than interesting.

When working with the operator algebra of the Maxwell field, we frequently expand the
Maxwell field into positive andnegative frequency parts and sometimes into the annihilation
and creation operators to invoke the canonical commutation relation (CCR). The following
lemma is useful when working with both representations.

Lemma A.0.1. Let ̂𝑎(𝐤) and ̂𝑎†(𝐤) be the annihilation and creation operator satisfying the
CCR and ̂𝐴(±) be the positive and negative frequency field operator, then the commutator of
the annihilation and creation operator with the positive and negative smeared field operators
yields

[ ̂𝑎(𝐩), ̂𝐴(+)[𝑓]] = +
𝑓 (𝜔(𝐩), 𝐩)
√2𝜔(𝐩)

(A.0.1)

[ ̂𝑎†(𝐩), ̂𝐴(−)[𝑓]] = −
𝑓 (𝜔(𝐩), 𝐩)∗

√2𝜔(𝐩)
. (A.0.2)

Proof. Inserting the smeared field operator in momentum space and using the CCR to eval-
uate the integral yields the first identity

[ ̂𝑎(𝐩), ̂𝐴(+)[𝑓]] = ∫
d3𝑞

(2𝜋)3√2𝜔(𝐪)
𝑓 (𝜔(𝐪), 𝐪) [ ̂𝑎(𝐩), ̂𝑎†(𝐪)] = +

𝑓 (𝜔(𝐩), 𝐩)
√2𝜔(𝐩)

. (A.0.3)

The second identity follows analog

[ ̂𝑎†(𝐩), ̂𝐴(−)[𝑓]] = ∫
d3𝑞

(2𝜋)3√2𝜔(𝐪)
𝑓 (𝜔(𝐪), 𝐪)∗ [ ̂𝑎†(𝐩), ̂𝑎(𝐪)] = −

𝑓 (𝜔(𝐩), 𝐩)∗

√2𝜔(𝐩)
. (A.0.4)
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The number states form a countable and complete basis which heavily suggests employing
mathematical induction as a proof technique. The following lemma turns out to be of great
help in simplifying the induction steps.

Lemma A.0.2. Let ̂𝑎(𝐤) be the annihilation operator and ̂𝐴(−) be the negative frequency field
operator, then their commutator yields

̂𝑎(𝐩)|𝑛𝑓⟩ = √𝑛
𝑓 (𝜔(𝐩), 𝐩)
√2𝜔(𝐩)

|𝑛 − 1𝑓⟩. (A.0.5)

Proof. First, we note the recursive relation

̂𝑎(𝐩)|𝑛𝑓⟩ =
1
√𝑛

[
𝑓 (𝜔(𝐩), 𝐩)
√2𝜔(𝐩)

|𝑛 − 1𝑓⟩ + ̂𝐴(+)[𝑓] ̂𝑎(𝐩)|𝑛 − 1𝑓⟩] , (A.0.6)

where we used the commutator from lemma A.0.1. The induction start, 𝑛 = 0, follows from
the action of the annihilation operator on the vacuum state, eq. (2.2.7). The induction step,
𝑛 → 𝑛 + 1, goes

̂𝑎(𝐩)|𝑛 + 1𝑓⟩ =
1

√𝑛 + 1
̂𝑎(𝐩) ̂𝐴(+)[𝑓]|𝑛𝑓⟩

= 1
√𝑛 + 1

[
𝑓 (𝜔(𝐩), 𝐩)
√2𝜔(𝐩)

+ ̂𝐴(+)[𝑓] ̂𝑎(𝐩)] |𝑛𝑓⟩

= 1
√𝑛 + 1

[
𝑓 (𝜔(𝐩), 𝐩)
√2𝜔(𝐩)

|𝑛𝑓⟩ + ̂𝐴(+)[𝑓]√𝑛
𝑓 (𝜔(𝐩), 𝐩)
√2𝜔(𝐩)

|𝑛 − 1𝑓⟩]

= 1
√𝑛 + 1

𝑓 (𝜔(𝐩), 𝐩)
√2𝜔(𝐩)

[|𝑛𝑓⟩ + 𝑛|𝑛𝑓⟩]

= √𝑛 + 1
𝑓 (𝜔(𝐩), 𝐩)
√2𝜔(𝐩)

|𝑛𝑓⟩,

(A.0.7)

where we used the recursive relation.

With the help of lemma A.0.2, most of the expectation values of the number states follow
easily, as we demonstrate with the expectation value of the momentum operator.

Theorem A.0.3. Let |𝑛𝑓⟩ be a number state and 𝐏̂ be the momentum operator, eq. (2.1.55),
then

⟨𝑛𝑓|𝐏̂|𝑛𝑓⟩ = 𝑛∫
d3𝑝
(2𝜋)3

𝐩
||||
𝑓 (𝜔(𝐪), 𝐪)
√2𝜔(𝐩)

||||

2

. (A.0.8)
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Proof. We insert the definition of the momentum operator and use the action of the anni-
hilation operator on the number state, lemma A.0.2, and the Hermitian conjugate thereof,
i.e.,

⟨𝑛𝑓|𝐏̂|𝑛𝑓⟩ = ∫
d3𝑝
(2𝜋)3

𝐩⟨𝑛𝑓| ̂𝑎†(𝐩) ̂𝑎(𝐩)|𝑛𝑓⟩

= 𝑛∫
d3𝑝
(2𝜋)3

𝐩
||||
𝑓 (𝜔(𝐪), 𝐪)
√2𝜔(𝐩)

||||

2

⟨𝑛 − 1𝑓|𝑛 − 1𝑓⟩,
(A.0.9)

and are left to note that the number states are normalized to arrive at eq. (A.0.8).

For the mean and variance of the electric field operator, we need the following lemma.

Lemma A.0.4. Let ̂𝐸(+)(𝑡, 𝐱) and ̂𝐸(−)(𝑡, 𝐱) be the positive and negative frequency part of the
electric field operator, then their commutator equals

[ ̂𝐸(−)(𝑡, 𝐱), ̂𝐸(+)(𝑡, 𝐱)] = 1
2 ∫

d3𝑝
(2𝜋)3

𝜔(𝐩), (A.0.10)

known as the ”vacuum energy”.

Proof. Inserting the mode expansion of the positive and negative frequency operators and
using the CCR of the annihilation and creation operator, we find

[ ̂𝐸(−)(𝑡, 𝐱), ̂𝐸(+)(𝑡, 𝐱)] = ∫
d3𝑝

(2𝜋)3√2𝜔(𝐩)
𝜔(𝐩)𝑒+𝑖𝜔(𝐩)𝑡−𝑖𝐩⋅𝐱

+∫
d3𝑞

(2𝜋)3√2𝜔(𝐪)
𝜔(𝐪)𝑒−𝑖𝜔(𝐪)𝑡+𝑖𝐪⋅𝐱[ ̂𝑎(𝐩), ̂𝑎†(𝐪)]

= ∫
d3𝑝

(2𝜋)3√2𝜔(𝐩)
𝜔(𝐩)𝑒+𝑖𝜔(𝐩)𝑡−𝑖𝐩⋅𝐱

+∫
d3𝑞

(2𝜋)3√2𝜔(𝐪)
𝜔(𝐪)𝑒−𝑖𝜔(𝐪)𝑡+𝑖𝐪⋅𝐱(2𝜋)3𝛿(3)(𝐪 − 𝐩)

= ∫
d3𝑝

(2𝜋)32𝜔(𝐩)
𝜔(𝐩)2.

(A.0.11)

Although the ”vacuum energy” appears to be infinite, our processes are always bandwidth-
limited. We now employ lemma A.0.4 to find the mean and variance of the electric field
operator with respect to a number state.
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Theorem A.0.5. Let |𝑛𝑓⟩ be a number state and ̂𝐸(𝑡, 𝐱) be the electric field operator, then we
have zero mean and variance equal to the vacuum energy plus the wave function probability,
i.e.,

⟨𝑛𝑓| ̂𝐸(𝑡, 𝐱)|𝑛𝑓⟩ = 0, (A.0.12)

⟨𝑛𝑓| (Δ ̂𝐸(𝑡, 𝐱))2 |𝑛𝑓⟩ =
1
2 ∫

d3𝑝
(2𝜋)3

𝜔(𝐩) + 𝑛|Ψ(𝑡, 𝐱)|2. (A.0.13)

Proof. The expectation values of an unequal number of annihilation and creation operators
is always zero. Expanding the electric field operator into positive and negative frequency
parts

⟨𝑛𝑓| ̂𝐸(𝑡, 𝐱)|𝑛𝑓⟩ = ⟨𝑛𝑓| ̂𝐸(−)(𝑡, 𝐱)|𝑛𝑓⟩ + ⟨𝑛𝑓| ̂𝐸(+)(𝑡, 𝐱)|𝑛𝑓⟩, (A.0.14)

we note that the first term comprises 𝑛 + 1 annihilation and 𝑛 creation operators, and the
second term comprises 𝑛 annihilation and 𝑛+1 creation operators, i.e., an unequal number
of annihilation and creation operators, and conclude that the expectation value is zero. The
variance is equal to the second moment as the first moment is zero

⟨𝑛𝑓| (Δ ̂𝐸(𝑡, 𝐱))2 |𝑛𝑓⟩ = ⟨𝑛𝑓| ̂𝐸(𝑡, 𝐱)2|𝑛𝑓⟩ = ⟨𝑛𝑓| ̂𝐸(+)(𝑡, 𝐱) ̂𝐸(−)(𝑡, 𝐱)|𝑛𝑓⟩ +H.c. (A.0.15)

where we expanded the square of the electric field operator in its positive and negative
frequency parts and used that only mixed terms survive in the second equation. Using
lemma A.0.4, we can rewrite

⟨𝑛𝑓| (Δ ̂𝐸(𝑡, 𝐱))2 |𝑛𝑓⟩ =
1
2 ∫

d3𝑝
(2𝜋)3

𝜔(𝐩) + 2⟨𝑛𝑓| ̂𝐸(+)(𝑡, 𝐱) ̂𝐸(−)(𝑡, 𝐱)|𝑛𝑓⟩ (A.0.16)

and are left to evaluate the remaining mixed frequency term. Using lemma A.0.2, we find

⟨𝑛𝑓| ̂𝐸(+)(𝑡, 𝐱) ̂𝐸(−)(𝑡, 𝐱)|𝑛𝑓⟩ = ∫
d3𝑝

(2𝜋)3√2𝜔(𝐩)
𝜔(𝐩)𝑒+𝑖𝜔(𝐩)𝑡−𝑖𝐩⋅𝐱

×∫
d3𝑞

(2𝜋)3√2𝜔(𝐪)
𝜔(𝐪)𝑒−𝑖𝜔(𝐪)𝑡+𝑖𝐪⋅𝐱

× ⟨𝑛𝑓| ̂𝑎†(𝐩) ̂𝑎(𝐪)|𝑛𝑓⟩

= 𝑛
2
|||∫

d3𝑝
(2𝜋)3

𝑓 (𝜔(𝐩), 𝐩) 𝑒+𝑖𝜔(𝐩)𝑡−𝑖𝐩⋅𝐱
|||

2

= 𝑛
2 |Ψ(𝑡, 𝐱)|

2,

(A.0.17)

where we identified the momentum space representation of the momentum distribution
with the probability of the wave function.

Unlike in single-mode quantum optics, the variance of the electric field of a number state
contains a contribution from the wave function. Let us now find the mean and variance of
the electric field operator with respect to a coherent state.
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Theorem A.0.6. Let |𝛼⟩ be a coherent state and ̂𝐸(𝑡, 𝐱) be the electric field operator, then the
electric field’s mean evaluates to

⟨𝛼| ̂𝐸(𝑡, 𝐱)|𝛼⟩ = 𝑖
2 ∫

d3𝑝
(2𝜋)3 {

𝛼(𝐩)𝑒+𝑖𝜔(𝐩)𝑡−𝑖𝐩⋅𝐱 − 𝛼(𝐩)∗𝑒−𝑖𝜔(𝐩)𝑡+𝑖𝐩⋅𝐱} (A.0.18)

Proof. Inserting the positive and negative parts of the electric field operator

⟨𝛼| ̂𝐸(𝑡, 𝐱)|𝛼⟩ = ⟨𝛼| ̂𝐸(−)(𝑡, 𝐱)|𝛼⟩ + ⟨𝛼| ̂𝐸(+)(𝑡, 𝐱)|𝛼⟩, (A.0.19)

we evaluate the first term using that the coherent state is eigenstate of the annihilation op-
erator, eq. (2.2.57),

̂𝐸(−)(𝑡, 𝐱)|𝛼⟩ = −𝑖∫
d3𝑝

(2𝜋)3√2𝜔(𝐩)
𝜔(𝐩)𝑒−𝑖𝜔(𝐩)𝑡+𝑖𝐩⋅𝐱 ̂𝑎(𝐩)|𝛼⟩

= −𝑖∫
d3𝑝

(2𝜋)3√2𝜔(𝐩)
𝜔(𝐩)𝑒−𝑖𝜔(𝐩)𝑡+𝑖𝐩⋅𝐱

𝛼(𝐩)
√2𝜔(𝐩)

|𝛼⟩

= − 𝑖
2 ∫

d3𝑝
(2𝜋)3

𝛼(𝐩)𝑒−𝑖𝜔(𝐩)𝑡+𝑖𝐩⋅𝐱|𝛼⟩.

Using the normalization of the coherent states the expectation value equals

⟨𝛼| ̂𝐸(𝑡, 𝐱)|𝛼⟩ = 1
2𝑖 ∫

d3𝑝
(2𝜋)3

𝛼(𝐩)𝑒−𝑖𝜔(𝐩)𝑡+𝑖𝐩⋅𝐱 − c.c.

= Im∫
d3𝑝
(2𝜋)3

𝛼(𝐩)𝑒−𝑖𝜔(𝐩)𝑡+𝑖𝐩⋅𝐱,
(A.0.20)

resembling a superposition of plane-waves in three dimensions.

Theorem A.0.7. Let |𝛼⟩ be a coherent state and ̂𝐸(𝑡, 𝐱) be the electric field operator, then the
electric field’s variance evaluates to

⟨𝛼| (Δ ̂𝐸(𝑡, 𝐱))2 |𝛼⟩ = 1
2 ∫

d3𝑝
(2𝜋)3

𝜔(𝐩) (A.0.21)

Proof. We expand the square of the electric field operator and invoke lemmaA.0.4 to replace
one of the mixed-frequency terms, i.e.,

̂𝐸(𝑡, 𝐱)2 = [ ̂𝐸(+)(𝑡, 𝐱) + ̂𝐸(−)(𝑡, 𝐱)]
2

= ̂𝐸(+)(𝑡, 𝐱)2 + ̂𝐸(−)(𝑡, 𝐱)2 + ̂𝐸(+)(𝑡, 𝐱) ̂𝐸(−)(𝑡, 𝐱) + ̂𝐸(−)(𝑡, 𝐱) ̂𝐸(+)(𝑡, 𝐱)

= 1
2 ∫

d3𝑝
(2𝜋)3

𝜔(𝐩) + ̂𝐸(+)(𝑡, 𝐱)2 + ̂𝐸(−)(𝑡, 𝐱)2 + 2 ̂𝐸(+)(𝑡, 𝐱) ̂𝐸(−)(𝑡, 𝐱).

(A.0.22)
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For the mixed-frequency term, we find

⟨𝛼| ̂𝐸(+)(𝑡, 𝐱) ̂𝐸(−)(𝑡, 𝐱)|𝛼⟩ = ⟨𝛼| (+𝑖∫
d3𝑝

(2𝜋)2√2𝜔(𝐩)
𝜔(𝐩) ̂𝑎†(𝐩)𝑒+𝑖𝜔(𝐩)𝑡−𝑖𝐩⋅𝐱)

× (−𝑖∫
d3𝑞

(2𝜋)2√2𝜔(𝐪)
𝜔(𝐪) ̂𝑎(𝐪)𝑒−𝑖𝜔(𝐪)𝑡+𝑖𝐪⋅𝐱) |𝛼⟩

= ⟨𝛼| (+ 𝑖
2 ∫

d3𝑝
(2𝜋)2

𝛼(𝐩)∗𝑒+𝑖𝜔(𝐩)𝑡−𝑖𝐩⋅𝐱)

× (− 𝑖
2 ∫

d3𝑝
(2𝜋)2

𝛼(𝐩)𝑒−𝑖𝜔(𝐩)𝑡+𝑖𝐩⋅𝐱) |𝛼⟩

= 1
4
|||∫

d3𝑝
(2𝜋)2

𝛼(𝐩)𝑒−𝑖𝜔(𝐩)𝑡+𝑖𝐩⋅𝐱
|||

2

.

(A.0.23)

For the positive-frequency term, we find

⟨𝛼| ̂𝐸(+)(𝑡, 𝐱)2|𝛼⟩ = ⟨𝛼| (+ 𝑖
2 ∫

d3𝑝
(2𝜋)3

𝛼(𝐩)∗𝑒+𝑖𝜔(𝐩)𝑡−𝑖𝐩⋅𝐱)
2

|𝛼⟩

= −14 (∫
d3𝑝
(2𝜋)3

𝛼(𝐩)∗𝑒+𝑖𝜔(𝐩)𝑡−𝑖𝐩⋅𝐱)
2

,

(A.0.24)

and for the negative-frequency term, we find

⟨𝛼| ̂𝐸(+)(𝑡, 𝐱)2|𝛼⟩ = −14 (∫
d3𝑝
(2𝜋)3

𝛼(𝐩)𝑒−𝑖𝜔(𝐩)𝑡+𝑖𝐩⋅𝐱)
2

. (A.0.25)

We now define
𝑧(𝑡, 𝐱) = ∫

d3𝑝
(2𝜋)3

𝛼(𝐩)𝑒−𝑖𝜔(𝐩)𝑡+𝑖𝐩⋅𝐱 (A.0.26)

and find for the second moment

⟨𝛼| ̂𝐸(𝑡, 𝐱)2|𝛼⟩ = 1
2 ∫

d3𝑝
(2𝜋)3

𝜔(𝐩) + 1
4 [2|𝑧(𝑡, 𝐱)|

2 − 𝑧(𝑡, 𝐱)2 − (𝑧(𝑡, 𝐱)∗)2]

= 1
2 ∫

d3𝑝
(2𝜋)3

𝜔(𝐩) + 1
2|𝑧(𝑡, 𝐱)|

2.
(A.0.27)

For the square of the first moment, we find

⟨𝛼| ̂𝐸(𝑡, 𝐱)|𝛼⟩2 = [ 𝑖2𝑧(𝑡, 𝐱) −
𝑖
2𝑧(𝑡, 𝐱)

∗]
2

= −14 [𝑧(𝑡, 𝐱)
2 + (𝑧(𝑡, 𝐱)∗)2 − 2|𝑧(𝑡, 𝐱)|2]

= +12|𝑧(𝑡, 𝐱)|
2

(A.0.28)
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such that the total variance is equal to

⟨𝛼| (Δ ̂𝐸(𝑡, 𝐱))2 |𝛼⟩ = ⟨𝛼| ̂𝐸(𝑡, 𝐱)2|𝛼⟩ − ⟨𝛼| ̂𝐸(𝑡, 𝐱)|𝛼⟩2

= 1
2 ∫

d3𝑝
(2𝜋)3

𝜔(𝐩).
(A.0.29)
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Appendix B.
Nonlinear interaction theory

In the following, we summarize some results onnonlinear (quantum-)optics fromRefs. [104,
90, 81, 8], which are important for describing the linear electro-optic effect, essential for our
investigation of the phase modulator.

We start by looking into the Pockels effect by investigating the interaction of the classical
electric fieldwith a dielectric exhibiting a nonlinear susceptibility. The electric displacement
field, in the frequency domain given by [8, p. 1070]

𝐷𝑖(𝜔) = 𝐸𝑖(𝜔) + 𝑃𝑖(𝜔), (B.0.1)

accounts for macroscopic effects through the macroscopic polarization density 𝑃𝑖. Although
the Pockels effect causes a linear change of the refractive index by an external electric field,
it is macroscopically described by the second-order macroscopic polarization density, in the
time domain given by [90, p. 55]

𝑃(2)𝑖 (𝑡) = ∫ d𝑡1∫ d𝑡2 𝜒
(2)
𝑖𝑗𝑘(𝑡1, 𝑡2)𝐸𝑗(𝑡 − 𝑡1)𝐸𝑘(𝑡 − 𝑡2) (B.0.2)

wherein 𝜒(2)𝑖𝑗𝑘(𝑡1, 𝑡2) is the second-order time-response tensor of the dielectric. Inserting the
Fourier transform of the electric field components, we find

𝑃(2)𝑖 (𝑡) = ∫ d𝜔1
2𝜋 ∫ d𝜔2

2𝜋 𝜒(2)𝑖𝑗𝑘(𝜔1, 𝜔2)𝐸𝑗(𝜔1)𝐸𝑘(𝜔2)𝑒−𝑖(𝜔1+𝜔2)𝑡 (B.0.3)

wherein the second-order frequency-response tensor is the Fourier transform of the time-
response tensor, i.e.,

𝜒(2)𝑖𝑗𝑘(𝜔1, 𝜔2) = ∫ d𝑡1∫ d𝑡2 𝜒
(2)
𝑖𝑗𝑘(𝑡1, 𝑡2)𝑒+𝑖𝜔1𝑡𝑒+𝑖𝜔2𝑡. (B.0.4)
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The Fourier transform of the second-order polarization density turns out to be

𝑃(2)𝑖 (𝜔) = ∫ d𝑡 𝑃(2)𝑖 (𝑡)𝑒+𝑖𝜔𝑡

= ∫ d𝜔1
2𝜋 ∫ d𝜔2

2𝜋 𝜒(2)𝑖𝑗𝑘(𝜔1, 𝜔2)𝐸𝑗(𝜔1)𝐸𝑘(𝜔2)∫ d𝑡 𝑒−𝑖(𝜔1+𝜔2−𝜔)𝑡

= ∫ d𝜔1
2𝜋 ∫ d𝜔2

2𝜋 𝜒(2)𝑖𝑗𝑘(𝜔1, 𝜔2)𝐸𝑗(𝜔1)𝐸𝑘(𝜔2)(2𝜋)𝛿(1)(𝜔2 − 𝜔 + 𝜔1)

= ∫ d𝜔′
2𝜋 𝜒(2)𝑖𝑗𝑘(𝜔′, 𝜔 − 𝜔′)𝐸𝑗(𝜔′)𝐸𝑘(𝜔 − 𝜔′).

(B.0.5)

The presence of the integral in eq. (B.0.5) breaks the linearity in the electric field 𝐸𝑘. To
restore linearity, the external electric field is assumed to be effectively static, simplifying the
second-order polarization density to [90, p. 495]

𝑃(2)𝑖 (𝜔) = 𝜒(2)𝑖𝑗𝑘(0, 𝜔)𝐸𝑗(0)𝐸𝑘(𝜔). (B.0.6)

Inserting the so linearized second-order polarization density and inserting it into eq. (B.0.1),

𝐷𝑖(𝜔) = 𝐸𝑖(𝜔) + 𝜒(2)𝑖𝑗𝑘(0, 𝜔)𝐸𝑗(0)𝐸𝑘(𝜔)

= [𝛿𝑖𝑘 + 𝜒(2)𝑖𝑗𝑘(0, 𝜔)𝐸𝑗(0)] 𝐸𝑘(𝜔),
(B.0.7)

we can read off the electric susceptibility tensor

𝜀𝑖𝑘(𝜔) = 𝛿𝑖𝑘 + 𝜒(2)𝑖𝑗𝑘(0, 𝜔)𝐸𝑗(0). (B.0.8)

The refractive-index tensor is defined as the square root of the electric susceptibility ten-
sor [105, p. 3]

𝑛𝑖𝑗(𝜔) = √𝜀𝑖𝑗 ≈ 𝑛(0)𝑖𝑘 (𝜔) + 𝑛(1)𝑖𝑗𝑘(𝜔)𝐸𝑗(0), (B.0.9)

where we performed a series expansion of the square root and introduced the refractive-
index coefficients [106]

𝑛(0)𝑖𝑘 (𝜔) = √1 + 𝜒(1)𝑖𝑗 (𝜔) 𝑛(1)𝑖𝑗𝑘(𝜔) =
𝜒(2)𝑖𝑗𝑘(𝜔)

2√1 + 𝜒(1)𝑖𝑗 (𝜔)
. (B.0.10)

With eq. (B.0.9), we have shown the linear change of the refractive index with an external
electric field. However, it was necessary to assume the external electric field to be effectively
static in time to linearize the second-order macroscopic polarization density.

For a simple quantum treatment, we replace the classical fields with their respective free-
field operator. For instance, the quantum Hamiltonian of the electromagnetic field in a
dielectric is [107, p. 124]

𝐻̂ = 1
2 ∫ d3𝑥 { ̂𝐸𝑖(𝑡, 𝐱)𝐷̂𝑖(𝑡, 𝐱) + ̂𝐵𝑖(𝑡, 𝐱) ̂𝐵𝑖(𝑡, 𝐱)} , (B.0.11)
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wherein 𝐷̂𝑖(𝑡, 𝐱) is the electric displacement operator. Expanding the electric displacement
operator in terms of the macroscopic polarization-density operators, we find the interaction
Hamiltonian to involve three electric fields, i.e.,

𝐻̂(2)
int (𝑡) =

1
2 ∫ d3𝑥 ̂𝐸𝑖(𝑡, 𝐱) ̂𝑃(2)𝑖 (𝑡, 𝐱)

= 1
2 ∫ d3𝑥∫ d𝑡1∫ d𝑡2 𝜒

(2)
𝑖𝑗𝑘(𝑡1, 𝑡2, 𝐱) ̂𝐸𝑖(𝑡, 𝐱) ̂𝐸𝑗(𝑡 − 𝑡1, 𝐱) ̂𝐸𝑘(𝑡 − 𝑡2, 𝐱)

≈ 1
2 ∫ d𝑧∫ d𝑡1∫ d𝑡2 𝜒(2)(𝑡1, 𝑡2, 𝑧) ̂𝐸(𝑡, 𝑧) ̂𝐸(𝑡 − 𝑡1, 𝑧) ̂𝐸(𝑡 − 𝑡2, 𝑧),

(B.0.12)

where we assumed the electric fields to be polarized along the same axis in the last step
and ignored the transverse mode profile. Expanding the electric field operators into positive
and negative frequency parts reveals the possible absorption and emission processes. For
frequency conversion, we drop all but the following terms

𝐻̂FC
int (𝑡) ≈

1
2 ∫ d𝑧∫ d𝑡1∫ d𝑡2 𝜒(2)(𝑡1, 𝑡2, 𝑧) ̂𝐸(+)(𝑡, 𝑧) ̂𝐸(−)(𝑡 − 𝑡1, 𝑧) ̂𝐸(−)(𝑡 − 𝑡2, 𝑧) +H.c..

(B.0.13)
Inserting the plane-wave expansion of the positive- and negative-frequency electric-field
operators, eqs. (2.1.50) and (2.1.51),

𝐻̂FC
int (𝑡) =

1
2 ∫ d𝑧∫ d𝑡1∫ d𝑡2 𝜒(2)(𝑡1, 𝑡2, 𝑧)∫

d𝜔1
2𝜋 ∫ d𝜔2

2𝜋 ∫
d𝜔3
2𝜋 𝜔1𝜔2𝜔3

× ̂𝑎†(𝜔1) ̂𝑎(𝜔2) ̂𝑎(𝜔3)𝑒+𝑖𝜔1(𝑡−𝑧)𝑒−𝑖𝜔2(𝑡−𝑡1)+𝑖𝜔2𝑧𝑒−𝑖𝜔3(𝑡−𝑡2)+𝑖𝜔3𝑧 +H.c.

= 1
2 ∫

d𝜔1
2𝜋 ∫ d𝜔2

2𝜋 ∫
d𝜔3
2𝜋 𝜔1𝜔2𝜔3∫ d𝑧𝜒(2)(𝜔2, 𝜔3, 𝑧)

× ̂𝑎†(𝜔1) ̂𝑎(𝜔2) ̂𝑎(𝜔3)𝑒+𝑖(𝜔1−𝜔2−𝜔3)𝑡𝑒−𝑖(𝜔1−𝜔2−𝜔3)𝑧 +H.c.,

(B.0.14)

where we identified the Fourier transform of the second-order electric susceptibility

𝜒(2)(𝜔2, 𝜔3, 𝑧) = ∫ d𝑡1∫ d𝑡2 𝜒(2)(𝑡1, 𝑡2, 𝑧)𝑒+𝑖𝜔2𝑡1𝑒+𝑖𝜔3𝑡2. (B.0.15)

We assume the second-order electric susceptibility to be constant over the interaction length
𝐿 and zero otherwise, then we can further simplify the frequency-conversion Hamiltonian
to

𝐻̂FC
int (𝑡) =

1
2 ∫

d𝜔1
2𝜋 ∫ d𝜔2

2𝜋 ∫
d𝜔3
2𝜋 𝑔(𝜔1, 𝜔2, 𝜔3) ̂𝑎†(𝜔1) ̂𝑎(𝜔2) ̂𝑎(𝜔3)𝑒+𝑖(𝜔1−𝜔2−𝜔3)𝑡 +H.c.,

(B.0.16)
where we introduced the phase-matching function

𝑔(𝜔1, 𝜔2, 𝜔3) = 𝜔1𝜔2𝜔3𝜒(2)(𝜔2, 𝜔3) sinc (
𝜔1 − 𝜔2 − 𝜔3

𝐿/2 ) . (B.0.17)

Approximating the phase-matching function with a Delta distribution,

𝑔(𝜔1, 𝜔2, 𝜔3) ≈ 𝑔(𝜔1, 𝜔2)(2𝜋))𝛿(1)(𝜔1 − 𝜔2 − 𝜔3), (B.0.18)
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the interaction Hamiltonian further simplifies to

𝐻̂FC
int =

1
2 ∫

d𝜔1
2𝜋 ∫ d𝜔2

2𝜋 𝑔(𝜔1, 𝜔2) ̂𝑎†(𝜔1) ̂𝑎(𝜔2) ̂𝑎(𝜔1 − 𝜔2) +H.c., (B.0.19)

which agrees in the most important characteristics with the result reported in Ref. [84,
eq. 35].
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Appendix C.
Photodetection theory

This section aims to derive the differential photoelectron-emission probability from which
one can derive the photocurrent operator. Our derivation summarizes the steps in Refs. [8,
7] but adds additional details on the truncated steps.

The transition of a bound electron to a free photoelectron is a probabilistic process. Let |𝑖⟩
and |𝑓⟩ denote the initial and final light states, and let |𝑔⟩ and |𝑒⟩ be the electron ground and
excited states. The probability for the transition, |𝑔, 𝑖⟩ → |𝑒, 𝑓⟩, from time 𝑡 to 𝑡 + Δ𝑡 is equal
to

|⟨𝑒, 𝑓|𝑈̂int(𝑡, 𝑡 + Δ𝑡)|𝑔, 𝑖⟩|2, (C.0.1)

wherein 𝑈̂int is the time-evolution operator of the photo-atom interaction in the dipole ap-
proximation [8, p. 689],

𝑈̂int(𝑡, 𝑡 + Δ𝑡) = 𝒯+ exp {−𝑖∫
𝑡+Δ𝑡

𝑡
d𝑡′ 𝐻̂int(𝑡′)} 𝐻̂int(𝑡) = −𝐩̂(𝑡) ⋅ 𝐀̂(𝑡) (C.0.2)

with 𝐩̂ being the electron’s momentum operator, 𝐀̂(𝑡) = 𝐀̂(𝑡, 𝐱0) being the Maxwell field in
the Coulomb gauge approximated at the atom center of mass (COM), and 𝒯+ denoting (for-
ward) time-ordering. In the more general density operator formailism eq. (C.0.1) reads [8,
p. 686]

|⟨𝑒, 𝑓|𝑈̂int(𝑡, 𝑡 + Δ𝑡)|𝑔, 𝑖⟩|2 = ⟨𝑒, 𝑓|𝑈̂int(𝑡, 𝑡 + Δ𝑡)|𝑔, 𝑖⟩⟨𝑔, 𝑖|𝑈̂int(𝑡, 𝑡 + Δ𝑡)†|𝑒, 𝑓⟩

= Tr{⟨𝑒, 𝑓|𝑈̂int(𝑡, 𝑡 + Δ𝑡)|𝑔, 𝑖⟩⟨𝑔, 𝑖|𝑈̂int(𝑡, 𝑡 + Δ𝑡)†|𝑒, 𝑓⟩}

= Tr{|𝑒, 𝑓⟩⟨𝑒, 𝑓|𝑈̂int(𝑡, 𝑡 + Δ𝑡)|𝑔, 𝑖⟩⟨𝑔, 𝑖|𝑈̂int(𝑡, 𝑡 + Δ𝑡)†}

= Tr{ ̂𝜚𝑒,𝑓𝑈̂int(𝑡, 𝑡 + Δ𝑡) ̂𝜌(𝑡)𝑈̂int(𝑡, 𝑡 + Δ𝑡)†}

= Tr{ ̂𝜚𝑒,𝑓 ̂𝜌(𝑡 + Δ𝑡)},

(C.0.3)
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wherein we used that the trace of a scalar is the scalar in the second line and the cyclic prop-
erty of the trace in the third line. Performing the Magnus expansion of the time-evolution
operator, eq. (C.0.2), up to the first term,

𝑈̂int(𝑡, 𝑡 + Δ𝑡) ≈ exp {−𝑖∫
𝑡+Δ𝑡

𝑡
d𝑡′ 𝐻̂int(𝑡′)} , (C.0.4)

we use it to evolve the state in eq. (C.0.3),

̂𝜌(𝑡 + Δ𝑡) = 𝑈̂int(𝑡, 𝑡 + Δ𝑡) ̂𝜌(𝑡)𝑈̂int(𝑡, 𝑡 + Δ𝑡)†

= ̂𝜌(𝑡) + (−𝑖)∫
𝑡+Δ𝑡

𝑡
d𝑡1[𝐻̂int(𝑡1), ̂𝜌(𝑡0)]

× +(−𝑖)
2

2! ∫
𝑡+Δ𝑡

𝑡
d𝑡1∫

𝑡1

𝑡
d𝑡2[𝐻̂int(𝑡1), [𝐻̂int(𝑡2), ̂𝜌(𝑡)]] + …

(C.0.5)

where the second equation follows from the Baker-Campbell-Hausdorff (BCH) formula. In-
serting the expansion into the photoemission probability, eq. (C.0.3), the first two term van-
ish due to orthogonality with ̂𝜚𝑒,𝑓 [8, p. 686], leaving us with

Tr { ̂𝜚𝑒,𝑓 ̂𝜌(𝑡0 + Δ𝑡)} = ∫
𝑡+Δ𝑡

𝑡
d𝑡1∫

𝑡1

𝑡
d𝑡2 Tr { ̂𝜚𝑒,𝑓𝐻̂int(𝑡1) ̂𝜌(𝑡)𝐻̂int(𝑡2)} + c.c.

= ∫
𝑡+Δ𝑡

𝑡
d𝑡1∫

𝑡1

𝑡
d𝑡2⟨𝑒, 𝑓|𝐻̂int(𝑡1) ̂𝜌(𝑡)𝐻̂int(𝑡2)|𝑒, 𝑓⟩ + c.c..

(C.0.6)

Inserting the interactionHamiltonian, eq. (C.0.2), into our previous result, we find [8, p. 693]

Tr { ̂𝜚𝑒,𝑓 ̂𝜌(𝑡0 + Δ𝑡)} = ⟨𝑒| ̂𝑝𝑖|𝑔⟩⟨𝑔| ̂𝑝𝑗|𝑒⟩∫
𝑡+Δ𝑡

𝑡
d𝑡1∫

𝑡1

𝑡
d𝑡2

× ⟨𝑓| ̂𝐴𝑖(𝑡1)|𝑖⟩⟨𝑖| ̂𝐴𝑗(𝑡2)|𝑓⟩𝑒𝑖(𝐸𝑒−𝐸𝑔)(𝑡1−𝑡2) + c.c.,
(C.0.7)

wherein we used the energy eigenvalues of the electron’s ground and excited state, |𝑔⟩, |𝑒⟩.
The final states of the light field are of no interest to use and can be marginalized [8, p. 694],
i.e.,

∑
𝑓
Tr { ̂𝜚𝑒,𝑓 ̂𝜌(𝑡0 + Δ𝑡)} = ⟨𝑒| ̂𝑝𝑖|𝑔⟩⟨𝑔| ̂𝑝𝑗|𝑒⟩∫

𝑡+Δ𝑡

𝑡
d𝑡1∫

𝑡1

𝑡
d𝑡2

× ⟨𝑖| ̂𝐴𝑖(𝑡1) ̂𝐴𝑗(𝑡2)|𝑖⟩𝑒𝑖(𝐸𝑒−𝐸𝑔)(𝑡1−𝑡2) + c.c.

(C.0.8)

and we conclude the probability for a single photoelectron to be emitted between time 𝑡 and
𝑡 + Δ𝑡 to be

𝑝(𝑡, Δ𝑡) = ∫
𝑡+Δ𝑡

𝑡
d𝑡1∫

𝑡1

𝑡
d𝑡2 𝑘𝑖𝑗(𝑡1 − 𝑡2)⟨ ̂𝐴𝑖(𝑡1) ̂𝐴𝑗(𝑡2)⟩ + c.c., (C.0.9)
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wherein 𝑘𝑖𝑗(𝑡) is the effective response function of the detector atom1, and the expectation
value of the Maxwell field two-point correlation function is with respect to the initial light
state. It is possible to show that only the normal-ordered Maxwell field expectation value
contributes to the photoemission probability [8, p. 696]

𝑝(𝑡, Δ𝑡) = ∫
𝑡+Δ𝑡

𝑡
d𝑡1∫

𝑡1

𝑡
d𝑡2 𝑘𝑖𝑗(𝑡1 − 𝑡2)⟨∶ ̂𝐴𝑖(𝑡1) ̂𝐴𝑗(𝑡2)∶⟩ + c.c.. (C.0.10)

We select a coordinate system in which the Maxwell field propagates along the 𝑧 direction,
then one can show [99] that

𝑝(𝑡, Δ𝑡) = ∫
𝑡+Δ𝑡

𝑡
d𝑡1∫

𝑡1

𝑡
d𝑡2 𝑘(𝑡1 − 𝑡2) ∑

𝜆=1,2
⟨∶ ̂𝐴𝜆(𝑡1) ̂𝐴𝜆(𝑡2)∶⟩

= ∫
𝑡+Δ𝑡

𝑡
d𝑡1∫

𝑡1

𝑡
d𝑡2 𝑘(𝑡1 − 𝑡2)⟨∶ ̂𝐴(𝑡1) ̂𝐴(𝑡2)∶⟩ + c.c.,

(C.0.11)

wherein we defined the scalar polarization-averaged Maxwell field and have the effective
response function

𝑘(𝑡) = ∫
∞

0

d𝐸
2𝜋𝐾(𝐸)𝑒

−𝑖(𝐸−𝐸𝑔)𝑡 (C.0.12)

with 𝐾(𝐸) being a function of the electron wave function along the 𝑥𝑦 plane.

Expanding the normal-ordered two-point correlation function of theMaxwell field into pos-
itive and negative frequency parts

⟨∶ ̂𝐴𝑖(𝑡1) ̂𝐴𝑗(𝑡2)∶⟩ = ⟨∶[ ̂𝐴(−)𝑖 (𝑡1) + ̂𝐴(+)𝑖 (𝑡1)] [ ̂𝐴(−)𝑗 (𝑡2) + ̂𝐴(+)𝑗 (𝑡2)]∶⟩

= ⟨ ̂𝐴(+)𝑖 (𝑡1) ̂𝐴(−)𝑗 (𝑡2)⟩ + ⟨ ̂𝐴(+)𝑖 (𝑡2) ̂𝐴(−)𝑗 (𝑡1)⟩,
(C.0.13)

where the non-mixed frequency terms vanish because they contain an unequal number of
annihilation and creation operators [92, p. 134]. Inserting the mixed frequency terms into
the photoemission probability and expanding the effective detector response function in the
frequency domain, we drop the highly oscillatory terms and find2

𝑝(𝑡, Δ𝑡) = ∫
𝑡+Δ𝑡

𝑡
d𝑡1∫

𝑡1

𝑡
d𝑡2 𝑘𝑖𝑗(𝑡1 − 𝑡2)⟨ ̂𝐴(+)𝑖 (𝑡1) ̂𝐴(−)𝑗 (𝑡2)⟩ + c.c.. (C.0.14)

The differential probability for photoelectron emission of a single detector atom is [99]

𝑝(𝑡, Δ𝑡) ≈ 𝐾(𝜔0 + 𝐸𝑔)⟨ ̂𝐴(+)(𝑡) ̂𝐴(−)(𝑡)⟩Δ𝑡 (C.0.15)

wherein 𝜔0 is an optical center frequency.
1The effective response function depends on the electron’s density of states and dipole transitionmoments, see
Ref. [8, p. 694].

2See Ref. [8, p. 697] and Ref. [92, p. 136] for an exact argument.
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Appendix D.
Receiver synchronization

Our presentation of the coherent-state transmission system assumes the receiver and trans-
mitter use the same time reference, particularly regarding the analog-to-digital converter
(ADC), digital-to-analog converter (DAC), and laser local oscillators (LOs). However, in
practice, the receiver and transmitter run independent clocks requiring synchronization
procedures.

As shown in Chapter 4, the transmitter LO defines the upconversion frequency 𝜔𝑐, and the
receiver LO determines the downconversion frequency 𝜔𝑙. Together the up- and downcon-
version frequencies defines the intermediate frequency𝜔𝑖 = 𝜔𝑐−𝜔𝑙. For drifting transmitter
and receiver LOs, the intermediate frequency shifts and, in the worst case, exceeds the de-
tector bandwidth. The transmitter adds a pilot tone, a strong narrow-linewidth signal to
provide a frequency reference for the receiver.1 Additionally to frequency offsets, the pilot
tone allows to suppress phase noise by employing a Wiener filter [111] on the broadened
lineprofile of the pilot tone, as illustrated in Figure D.1.

The second set of oscillators that need synchronization are the clocks of the DAC and ADC.
Unlike the optical LOs, the electronic clocks oscillate much slower, and we only need to
compensate for timing offsets. Figure D.2 illustrates the timing offset between the trans-
mitted and received samples. To correct for symbol-timing errors on the receiver, one can
employ, for instance, the Goddard algorithm [112], which exploits that a delay increases the
phase of a signal.2.

On a protocol level, the receiver needs to detect the beginning of a data frame, i.e., a related
symbol sequence, and assign a frame number. One possibility for the transmitter to inform
the receiver about the beginning of a new frame is to interleave the data sequences with a
fixed training sequence, see Figure D.3, known to the receiver.

1Refs. [108, 109, 110] discuss the usage of a pilot tone for continuous-variable quantum-key distribution (CV-
QKD).

2See Ref. [24, p. 359] for more details on symbol-timing estimation techniques.
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lot tone (green) represents a perfect sinusoidal. The received pilot tone (orange)
is broadened by phase noise and shifted by the offset between the transmitter
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third row shows the linear increase in phase due to the accumulated delay.
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