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You never know what you might discover by thinking outside the box that
culture, conformity, and critics have tried to impose. — T.D. Jakes
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Introduction



Secure transmission system
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Figure 1: Block diagram of a secure transmission system.



Quantum key distribution system
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Figure 2: Block diagram of a quantum key distribution (QKD) system.



Discrete and continuous-variable QKD

Table 1: Comparison of discrete- and continuous-variable QKD.

Discrete Continuous
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Continuous-variable QKD using coherent states
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Figure 3: Phase space diagram of transmitted and received coherent states with mean
(dots) and variances (opaque circles).




Continuous-variable QKD using continuous-time coherent states
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Figure 4: Phase space diagram of continuous-time coherent states with mean (dots) and
variances (opaque circles) at two time instances.



Software-defined transmission system
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Figure 5: Block diagram of the software-defined transmitter architecture.
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Figure 6: Block diagram of software-defined receiver architecture.



Coherent state transmitter




Digital signal processing pipeline for symbol encoding
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Figure 7: Block diagram of the digital signal processing for symbol encoding.



Symbol-encoding in the time domain
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Figure 8: Symbol-encoding steps in the time domain for random QPSK sequence with

real (orange) and imaginary (green) part.
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Symbol-encoding steps in the frequency domain
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Figure 9: Symbol-encoding steps in the frequency domain for random symbols (green)

and single symbol (orange).
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Dual-quadrature upconversion in the time domain
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Figure 10: Power spectrum illustrating single-quadrature upconversion.

s(t) = x(t) cos(w.t) — p(t) sin(w.t) = Re [a(t)et™@et] with  a(t) = x(t) +ip(t) (1)
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Dual-quadrature upconversion in the frequency domain
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Figure 11: Power spectrum illustrating dual-quadrature upconversion.
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In-phase and quadrature modulator as dual-quadrature upconverter
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Figure 12: Drawing of an integrated in-phase and quadrature modulator.

g(O)etieety > Ja()et™@t)  a(t) = g(t) [x(t) + iq(t)] (3)



Interaction Hamiltonian of the electro-optical phase modulator
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Figure 13: Traveling-wave electro-optical phase modulator of length L.
Hp = f f g(w, Q)af(w)a(Q)a(w — Q) + H.c. (4)
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Single-mode frequency-conversion operator

Upconversion operator:
Simplifying assumptions:

- a(Q) - B(Q) T, (Qo) = f 3—:&T(a)+90)d(a)) (6)

© B(Q) = Bo2m8MEM(Q — Q)

- 0e'?/2 = Big(w, Q)/T
Evolution operator:

[T,(Q), d"(@)] = aT(w+Qy)  (7)
Creation operator transform:

—%9T+(Qo)e‘i‘/’+H4c4 (5) Uta(w)U = Z Tn(8)a(e+ meoy)e=m?

Uint = mezZ
(8)



Coherent state receiver




Signal processing pipeline for symbol decoding
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Figure 14: Block diagram of single-quadrature downconversion.
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Figure 15: Block diagram of the analog-to-digital conversion and symbol-decoding.



Single-quadrature downconversion in the frequency domain
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Figure 16: Power spectrum illustrating single-quadrature downconversion.
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Single-quadrature homodyne detection
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Figure 17: Power spectrum illustrating homodyne detection.

+Bd/2
u(t) = Re/ aw [B(w)eti®t + B(w)*e~i®t] e=1¥ (10)
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Single-quadrature heterodyne detection

Figure 18: Power spectrum illustrating heterodyne detection.
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Comparison homo- and heterodyne detection

Table 2: Comparison of coherent receiver designs and their implications

Homodyne (single)  Homodyne (dual) Heterodyne

Balanced detectors 1 2 1
Quadratures 1 2 2
Intermediate frequency w; =0 w; #0
Optical complexity Low High Low
Signal bandwidth High High Low

LO synchronization Frequency and phase Frequency Bandwidth

SNR High Low Low
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Balanced detector as single-quadrature downconverter

Differential photocurrent signal
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Figure 19: Electro-optical setup for
balanced detection.

R +o0 deo X it )
X() =f o [a(w)e™ @+ + He]  (13)

Frequency-converted annihilation operator

Uta(@)U = D Jn(8)a(w + mwpe™ ™ (14)
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Conclusion and outlook




- Introduction to CV-QKD as a mechanism for secure key distribution.

- Raised awareness to dependence of transmissions.

- Introduction to a software-defined coherent transmission system.

- Introduction to concepts and methods from communication engineering.

- Extension of coherent transmission system to quantum regime.

23



Additional topics covered in the thesis

- Overview and comparison of DV- and CV-QKD protocols including post
processing.

- Derivation of continuous-mode quantum theory of light rooted in quantum
field theory.

- Summary of quantum models for the most important (electro-)optical
components as building blocks for communication system.
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- Noise model for measurements.

- Comparison of image band and squeezing attack.

- Further transfer of telecommunication methods, e.g., orthogonal
frequency-division multiplexing (OFDM).

- Properties of frequency-squeezed states.

- Equivalence of tensor-product with continuous-time coherent state
transmission.
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Maxwell equation of motion in the radiation gauge and momentum space

Free equation of motion in radiation gauge:
FA=V?’A Ay=0 GA' =0 (15)
Four-dimensional Fourier transform:
— = t
A(t,x)—-/‘(2 )4A(p0,p)e ipot+ip-x (16)
Equation of motion in momentum space:

0=(po—IlPD(po +llPl) (@)= Ipl (17)



Plane-wave and polarization basis expansion in the radiation gauge

General plane-wave expansion in radiation gauge:

d* —_
A= f G ? " (98 = w(®)) Apo, p)e= o2

/‘ d4p (18)
= | ————A(w(p),p) e~ PP 4 hc
(27)%/ 20(p)
Polarization basis expansion
A(t,x) = ), a;(p)éx(p) (19)

A=1,2
Polarization basis transverse to momentum:

o pipl
p-&(P) =0 é&pe;p) =i D, exp)ep) =6 — F (20)
A=1,2



Canonical quantization in the Coulomb gauge

Conjugate momentum density:

Equal-time commutation relations:

[Ait,%), Bt y)] = —i8)(x - y) (22)
[Ai(t’ X)’Aj(t’ Y)] = [Ei(t’ X)’E}(t’ Y)] =0 (23)

Transverse delta distribution:

9:0; d3 Dibj\
55_331()( -y)= (5 - ?) 5 (x — y) = (2753 <5ij - I:zj>elp.x (24)



Maxwell field operators

Negative-frequency Maxwell field operator

d3p . .
AD)(t,x) = / —————a;(p)é;(p)e @ @I+Px (25)
A;:,z (27)3y/ 2(p)
Negative-frequency electric field operator
EOx) =i ), | ——F—=w(p)iy(p)éy(p)e @I +Px (26)

A=1,2 (271')3\/ ZCU(P)

Hamiltonian and momentum operator

3
f on )3w(p)al(p)aa(p) P= 3 f (gﬂl;gpdﬁ(mda(p) (27)
A=1,2 A=1,2



Axiomatic particle state construction
vomentum state

Vacuum state Algebraic commutation relations:
Poincare invariance:

[N, a*(p)] = a"(p) (31)
U(a, A)[0) = [0) (28) [P, a"(p)] = pa’(p) (32)

Implies zero energy and momentum: Implies eigenstates:
Hlo)=0[0)  Plo)=0[0) (29) Vaf(p)|0) = 14T (p)|0) (33)
Pa’(p)|0) = pa'(p)|0) (34)

Implies annihilation operator destroying
vacuum: but not normalizable
a(p)|0) =0 (30)

(ola()a’(p)|o) = 2n)*6®(p—q) (35)



Smeared single-particle state

Interpretation as quantum operators as distributions:

d*p f(w(p),p)

AD[f]10) = fd“x (£, x)AN(t,x) = ny? o00) (36)
Normalizable iff;
SV 1A d*p | f(w(p), p) ’
(=) (+) — = 3
OADAVIN0 = | 5| s | = (37)

Implies eigenstates:

2
LERB| A1)

3
NAD[f]l0)y = LAD[f]loy  HAD[f]|0) = f (gﬂl))sw(P)‘
(38)



Generalized number and coherent state

Number state Coherent state

_ L e ) = exp [AD[a] —H.cllo)  (42)
Ins) MA [£1"|0) (39) a) = exp {A+)[a }

Mean energy:
Mean energy:

f(co(p) p)| SR
,/(271')3 V2w(p) (40 f( g

oc(w(p) p)
V2w(p)

(43)

A Electric field at (¢,x):
Electric field at (¢,x):

. . d3
m{OC(P)e_lw(p)t“p'x}i% f (2711))3 w(p)
(44)

d3p
%f (gjrl;‘“(p)* Al(e x)1” (41>f @y



Connection to continuous-mode quantum optics

Central assumption
No relative motion, i.e, no Lorentz

boosts.
Typical approximations:

- Neglect polarization degrees of
freedom

- Neglect transverse momentum
distribution

- Neglect relativistic Lorentz factor

172w

Phase-rotated quadrature operator:

(1) = % f g—i{d(co)e‘i(“’“‘g) + H.c.}

(45)
Maxwell field at (¢, x):

A(t,x) = f (i;o_{d(w)e‘i“’(t‘x)+H.c.}

2m\ 2w

(46)
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