

Table of Contents

About the book 8 ..
About the author 9 ...
Sponsors 10 ..
Ebook PDF Generation Tool 12 ...
Book Cover 13 ..
License 14 ..

Databases 15 ..
Tables and columns 16 ...

MySQL 18 ...
Installing MySQL 19 ..
Accessing MySQL via CLI 21 ...
Creating a database 22 ..
Configuring .my.cnf 23 ...
The mysqladmin command 24 ...
GUI clients 25 ...

Tables 26 ...
Data types 27 ...
Creating a database 28 ..
Creating tables 30 ..
Rename tables 32 ..
Dropping tables 33 ...
Allowing NULL values 34 ..
Specifying a primary key 35 ...

Index Optimization for Database Queries 36
Updating tables 38 ...
Truncate table 40 ...

Basic Syntax 41 ..
INSERT 43 ...
SELECT 44 ..
UPDATE 46 ...
DELETE 47 ..
Comments 48 ...
Conclusion 49 ...

SELECT 50 ..
SELECT all columns 52 ...
Pattern matching 54 ...
Formatting 56 ...
SELECT specific columns only 57 ...
SELECT with no FROM Clause 58 ..
SELECT with Arithmetic Operations 59 ...
LIMIT 60 ..
COUNT 61 ...
MIN, MAX, AVG, and SUM 62 ..
DISTINCT 64 ...
Conclusion 66 ...

WHERE 67 ..
WHERE Clause example 68 ..
Operators 70 ..
AND keyword 71 ...
OR keyword 72 ...

LIKE operator 73 ...

IN operator 74 ..
IS operator 75 ...
BETWEEN operator 76 ..
Conclusion 77 ...

Sorting with ORDER and GROUP BY 78 ..
ORDER BY 79 ..
GROUP BY 82 ..
HAVING Clause 83 ..

INSERT 84 ..
Inserting multiple records 86 ...
Inserting multiple records using another table 87

UPDATE 88 ..
Updating records using another table 91 ...

DELETE 92 ...
Delete from another table 94 ...

JOIN 95 ...
CROSS JOIN 98 ..
INNER JOIN 100 ...
LEFT JOIN 103 ...
RIGHT JOIN 104 ...
The Impact of Conditions in JOIN vs. WHERE Clauses 106
Equivalence of RIGHT and LEFT JOINs 108
Conclusion 109 ...

SQL | DDL, DQL, DML, DCL and TCL Commands 110

SQL Sub Queries 115 ...

SQL - UNIONS CLAUSE 119 ...

Relational Keys- Keys in a Relational Database 123
Types of Relational Keys 124 ...

Logical Operator Keywords 127 ..

HAVING Clause 128 ..
Syntax 129 ...
Description 130 ..
Aggregate Functions 131 ...
Aggregate Functions Examples 132 ...
Having clause Examples 135 ..

Essential MySQL Functions 137 ...
Numeric Functions 138 ...
STRING Functions 140 ..
DATE Functions 142 ...
Formatting Dates and Times 144 ...
Calculating Dates and Times 145 ...

Triggers In SQL 146 ...

Example : 148 ...

Transaction Control Language 151 ...
TCL Commands 152 ...
COMMIT 153 ...
ROLLBACK 154 ...
SAVEPOINT 155 ..
Examples 156 ...
Conclusion 160 ...

Data Control Language 161 ..
DCL Commands 162 ...
GRANT 163 ...
REVOKE 164 ...
Conclusion 168 ...

The MySQL dump command 169 ...
Exporting a Database 170 ..
Exporting all databases 171 ...

Automated backups 173 ...
Conclusion 175 ...

Learn Materialize by running streaming SQL on your nginx logs
176 ...

Prerequisites 177 ...

What is Materialize 178 ..

Installing Materialize 179 ...

Installing mzcli 180 ..
Installing nginx 181 ..
Adding a Materialize Source 182 ..

Creating a Materialized View 184 ...

Reading from the view 186 ..

Conclusion 189 ...

Conclusion 190 ...
Other eBooks 191 ...

8

About the book

This version was published on October 13,2021

This open-source introduction to SQL guide will help you learn the
basics of SQL and start using relational databases for your SysOps,
DevOps, and Dev projects. Whether you are a DevOps/SysOps engineer,
developer, or just a Linux enthusiast, you will most likely have to use
SQL at some point in your career.

The guide is suitable for anyone working as a developer, system
administrator, or DevOps engineer who wants to learn the basics of
SQL.

9

About the author

My name is Bobby Iliev, and I have been working as a Linux DevOps
Engineer since 2014. I am an avid Linux lover and supporter of the
open-source movement philosophy. I am always doing that which I
cannot do in order that I may learn how to do it, and I believe in sharing
knowledge.

I think it's essential always to keep professional and surround yourself
with good people, work hard, and be nice to everyone. You have to
perform at a consistently higher level than others. That's the mark of a
true professional.

For more information, please visit my blog at https://bobbyiliev.com,
follow me on Twitter @bobbyiliev_ and YouTube.

https://bobbyiliev.com
https://twitter.com/bobbyiliev_
https://www.youtube.com/channel/UCQWmdHTeAO0UvaNqve9udRw

10

Sponsors

This book is made possible thanks to these fantastic companies!

Materialize

The Streaming Database for Real-time Analytics.

Materialize is a reactive database that delivers incremental view
updates. Materialize helps developers easily build with streaming data
using standard SQL.

DigitalOcean

DigitalOcean is a cloud services platform delivering the simplicity
developers love and businesses trust to run production applications at
scale.

It provides highly available, secure, and scalable compute, storage, and
networking solutions that help developers build great software faster.

Founded in 2012 with offices in New York and Cambridge, MA,
DigitalOcean offers transparent and affordable pricing, an elegant user
interface, and one of the largest libraries of open source resources
available.

For more information, please visit https://www.digitalocean.com or
follow @digitalocean on Twitter.

If you are new to DigitalOcean, you can get a free $100 credit and spin
up your own servers via this referral link here:

Free $100 Credit For DigitalOcean

https://materialize.com/
https://www.digitalocean.com
https://twitter.com/digitalocean
https://m.do.co/c/2a9bba940f39

11

DevDojo

The DevDojo is a resource to learn all things web development and web
design. Learn on your lunch break or wake up and enjoy a cup of coffee
with us to learn something new.

Join this developer community, and we can all learn together, build
together, and grow together.

Join DevDojo

For more information, please visit https://www.devdojo.com or follow
@thedevdojo on Twitter.

https://devdojo.com?ref=bobbyiliev
https://www.devdojo.com?ref=bobbyiliev
https://twitter.com/thedevdojo

12

Ebook PDF Generation Tool

This ebook was generated by Ibis developed by Mohamed Said.

Ibis is a PHP tool that helps you write eBooks in markdown.

https://github.com/themsaid/ibis/
https://github.com/themsaid

13

Book Cover

The cover for this ebook was created with Canva.com.

If you ever need to create a graphic, poster, invitation, logo,
presentation – or anything that looks good — give Canva a go.

https://www.canva.com/join/determined-cork-learn

14

License

MIT License

Copyright (c) 2020 Bobby Iliev

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

15

Databases

Before we dive deep into SQL, let's quickly define what a database is.

The definition of databases from Wikipedia is:

A database is an organized collection of data, generally stored and
accessed electronically from a computer system.

In other words, a database is a collection of data stored and structured
in different database tables.

16

Tables and columns

You've most likely worked with spreadsheet systems like Excel or
Google Sheets. At the very basic, database tables are quite similar to
spreadsheets.

Each table has different columns which could contain different types of
data.

For example, if you have a todo list app, you would have a database,
and in your database, you would have different tables storing different
information like:

Users - In the users table, you would have some data for your
users like: username, name, and active, for example.
Tasks - The tasks table would store all of the tasks that you are
planning to do. The columns of the tasks table would be for
example, task_name, status, due_date and priority.

The Users table will look like this:

+----+----------+---------------+--------+
| id | username | name | active |
+----+----------+---------------+--------+
1	bobby	Bobby Iliev	true
2	grisi	Greisi I.	true
3	devdojo	Dev Dojo	false
+----+----------+---------------+--------+

Rundown of the table structure:

We have 4 columns: id, username, name and active.
We also have 3 entries/users.
The id column is a unique identifier of each user and is auto-
incremented.

17

In the next chapter, we will learn how to install MySQL and create our
first database.

18

MySQL

Now that you know what a database, table, and column are, the next
thing that you would need to do is install a database service where you
would be running your SQL queries on.

We will be using MySQL as it is free, open-source, and very widely used.

19

Installing MySQL

Depending on your operating system, to install MySQL run the following
commands.

Install MySQL on Ubuntu

To install MySQL on a Linux or Ubuntu machine, run the following
commands:

First update your apt repository:

sudo apt update -y

Then install MySQL:

sudo apt install mysql-server mysql-client

We are installing two packages, one is the actual MySQL server, and the
other is the MySQL client, which would allow us to connect to the
MySQL server and run our queries.

To check if MySQL is running, run the following command:

sudo systemctl status mysql.service

To secure your MySQL server, you could run the following command:

sudo mysql_secure_installation

20

Then follow the prompt and choose a secure password and save it in a
secure place like a password manager.

With that, you would have MySQL installed on your Ubuntu server. The
above should also work just fine on Debian.

Install MySQL on Mac

I would recommend installing MySQL using Homebrew:

brew install mysql

After that, start MySQL:

brew services start mysql

And finally, secure it:

mysql_secure_installation

In case that you ever need to stop the MySQL service, you could do so
with the following command:

brew services stop mysql

Install MySQL on Windows

To install MySQL on Windows, I would recommend following the steps
from the official documentation here:

https://dev.mysql.com/doc/refman/8.0/en/windows-installation.html

https://dev.mysql.com/doc/refman/8.0/en/windows-installation.html

21

Accessing MySQL via CLI

To access MySQL run the mysql command followed by your user:

mysql -u root -p

22

Creating a database

After that, switch to the demo database that we created in the previous
chapter:

USE demo;

To exit the just type the following:

exit;

23

Configuring .my.cnf

By configuring the ~/.my.cnf file in your user's home directory, MySQL
would allow you to log in without prompting you for a password.

To make that change, what you need to do is first create a .my.cnf file
in your user's home directory:

touch ~/.my.cnf

After that, set secure permissions so that other regular users could not
read the file:

chmod 600 ~/.my.cnf

Then using your favourite text editor, open the file:

nano ~/.my.cnf

And add the following configuration:

[client]
user=YOUR_MYSQL_USERNAME
password=YOUR_MYSQL_PASSWORD

Make sure to update your MySQL credentials accordingly, then save the
file and exit.

After that, if you run just mysql, you will be authenticated directly with
the credentials that you've specified in the ~/.my.cnf file without being
prompted for a password.

24

The mysqladmin command

As a quick test, you could check all of your open SQL connections by
running the following command:

mysqladmin proc

The mysqladmin tool would also use the client details from the
~/.my.cnf file, and it would list your current MySQL process list.

Another cool thing that you could try doing is combining this with the
watch command and kind of monitor your MySQL connections in almost
real-time:

watch -n1 mysqladmin proc

To stop the watch command, just hit CTRL+C

25

GUI clients

If you prefer using GUI clients, you could take a look a the following
ones and install them locally on your laptop:

MySQL Workbench
Sequel Pro
TablePlus

This will allow you to connect to your database via a graphical interface
rather than the mysql command-line tool.

If you want to have a production-ready MySQL database, I would
recommend giving DigitalOcean a try:

Worry-free managed database hosting

https://www.mysql.com/products/workbench/
https://www.sequelpro.com/
https://tableplus.com/
https://www.digitalocean.com/products/managed-databases/

26

Tables

Before we get started with SQL, let's learn how to create tables and
columns.

As an example, we are going to create a users table with the following
columns:

id - this is going to be the primary key of the table and would be
the unique identifier of each user.
username - this column would hold the username of our users.
name - here, we will store the full name of users.
status - here, we will store the status of a user, which would
indicate if a user is active or not.

You need to specify the data type of each column.

In our case it would be like this:

id - Integer
username - Varchar
name - Varchar
status - Number

27

Data types

The most common data types that you would come across are:

CHAR(size): Fixed-length character string with a maximum length of
255 bytes.
VARCHAR(size): Variable-length character string. Max size is
specified in parenthesis.
TEXT(size): A string with a maximum length of 65,535 bytes.
INTEGER(size) or INT(size): A medium integer.
BOOLEAN or BOOL: Holds a true or false value.
DATE: Holds a date.

Let's have the following users table as an example:

id: We would want to set the ID to INT.
name: The name should fit in a VARCHAR column.
about: As the about section could be longer, we could set the
column data type to TEXT.
birthday: For the birthday column of the user, we could use DATE.

For more information on all data types available, make sure to check
out the official documentation here.

https://dev.mysql.com/doc/refman/8.0/en/data-types.html

28

Creating a database

As we briefly covered in the previous chapter, before you could create
tables, you would need to create a database by running the following:

First access MySQL:

mysql -u root -p

Then create a database called demo_db:

CREATE DATABASE demo_db;

Note: the database name needs to be unique, if you already have a
database named demo_db you would receive an error that the database
already exists.

You can consider this database as the container where we would create
all of the tables in.

Once you've created the database, you need to switch to that database:

USE demo_db;

You can think of this as accessing a directory in Linux with the cd
command. With USE, we switch to a specific database.

Alternatively, if you do not want to 'switch' to the specific database, you
would need to specify the so-called fully qualified table name. For
example, if you had a users table in the demo_db, and you wanted to
select all of the entries from that table, you could use one of the

29

following two approaches:

Switch to the demo_db first and then run a select statement:

USE demo_db;
SELECT username FROM users;

Alternatively, rather than using the USE command first, specify the
database name followed by the table name separated with a dot:
db_name.table_name:

SELECT username FROM demo_db.users;

We are going to cover the SELECT statement more in-depth in the
following chapters.

30

Creating tables

In order to create a table, you need to use the CREATE TABLE statement
followed by the columns that you want to have in that table and their
data type.

Let's say that we wanted to create a users table with the following
columns:

id: An integer value
username: A varchar value
about: A text type
birthday: Date
active: True or false

The query that we would need to run to create that table would be:

CREATE TABLE users
(
 id INT,
 username VARCHAR(255),
 about TEXT,
 birthday DATE,
 active BOOL
);

Note: You need to select a database first with the USE command as
mentioned above. Otherwise you will get the following error: `ERROR
1046 (3D000): No database selected.

To list the available tables, you could run the following command:

SHOW TABLES;

31

Output:

+-------------------+
| Tables_in_demo_db |
+-------------------+
| users |
+-------------------+

Creating a new table from an existing table

You can create a new table from an existing table by using the CREATE
TABLE AS statement.

Let's test that by creating a new table from the table users which we
created earlier.

CREATE TABLE users2 AS
(
 SELECT * FROM users
);

The output that you would get would be:

Query OK, 0 rows affected (0.07 sec)
Records: 0 Duplicates: 0 Warnings: 0

Note: When creating a table in this way, the new table will be populated
with the records from the existing table (based on the SELECT
Statement)

32

Rename tables

You can rename a table by using ALTER TABLE statement.

Let's change name of user2 table to user3

ALTER TABLE user2 RENAME TO user3

33

Dropping tables

You can drop or delete tables by using the DROP TABLE statement.

Let's test that and drop the table that we've just created:

DROP TABLE users;

The output that you would get would be:

Query OK, 0 rows affected (0.03 sec)

And now, if you were to run the SHOW TABLES; query again, you would
get the following output:

Empty set (0.00 sec)

34

Allowing NULL values

By default, each column in your table can hold NULL values. In case that
you don't wanted to allow NULL values for some of the columns in a
specific table, you need to specify this during the table creation or later
on change the table to allow that.

For example, let's say that we want the username column to be a
required one, we would need to alter the table create statement and
include NOT NULL right next to the username column like this:

CREATE TABLE users
(
 id INT,
 username VARCHAR(255) NOT NULL,
 about TEXT,
 birthday DATE,
 active BOOL
);

That way, when you try to add a new user, MySQL will let you know that
the username column is required.

35

Specifying a primary key

The primary key column, which in our case is the id column, is a unique
identifier for our users.

We want the id column to be unique, and also, whenever we add new
users, we want the ID of the user to autoincrement for each new user.

This can be achieved with a primary key and AUTO_INCREMENT. The
primary key column needs to be NOT NULL as well.

If we were to alter the table creation statement, it would look like this:

CREATE TABLE users
(
 id INT PRIMARY KEY AUTO_INCREMENT,
 username VARCHAR(255) NOT NULL,
 about TEXT,
 birthday DATE,
 active BOOL
);

36

Index Optimization for Database Queries

In database management, establishing a PRIMARY KEY for tables is
fundamental. Using our previous example, the id column serves as this
primary key. However, as the volume of data grows, searching by
attributes other than the primary key, like the date of birth, can
become increasingly slow. To optimize such queries, you can introduce
an INDEX on specific columns.

Consider the birthday column. To enhance the speed of queries
focused on this column, an INDEX can be pivotal:

CREATE INDEX birthday_idx ON users(birthday);

Tip: For queries spanning multiple fields, you have the option to create
a composite index incorporating all the relevant fields. Let's say, for
example, you want to index both the birthday and active columns.

The order in which you list the fields in a composite index matters. For
instance, given that the active column might have limited unique
values (e.g., true or false) compared to the birthday column, the
sequence of fields in the index can influence efficiency. Designing the
index like this:

CREATE INDEX users_multi_idx ON users(active, birthday);

May not be as efficient as:

CREATE INDEX users_multi_idx ON users(birthday, active);

Placing birthday first in the index ensures a quicker reduction in

37

potential matches, optimizing the server's data manipulation process.

38

Updating tables

In the above example, we created a new table and then dropped it as it
was empty. However, in a real-life scenario, this would really be the
case.

So whenever you need to add or remove a new column from a specific
table, you would need to use the ALTER TABLE statement.

Let's say that we wanted to add an email column with type varchar to
our users table.

The syntax would be:

ALTER TABLE users ADD email VARCHAR(255);

After that, if you were to describe the table, you would see the new
column:

DESCRIBE users;

Output:

+----------+--------------+------+-----+---------+
| Field | Type | Null | Key | Default |
+----------+--------------+------+-----+---------+
id	int	NO	PRI	NULL
username	varchar(255)	NO		NULL
about	text	YES		NULL
birthday	date	YES		NULL
active	tinyint(1)	YES		NULL
email	varchar(255)	YES		NULL
+----------+--------------+------+-----+---------+

39

If you wanted to drop a specific column, the syntax would be:

ALTER TABLE table_name DROP COLUMN column_name;

Note: Keep in mind that this is a permanent change, and if you have
any critical data in the specific column, it would be deleted instantly.

You can use the ALTER TABLE statement to also change the data type of
a specific column. For example, you could change the about column
from TEXT to LONGTEXT type, which could hold longer strings.

Note: Important thing to keep in mind is that if a specific table already
holds a particular type of data value like an integer, you can't alter it to
varchar, for example. Only if the column does not contain any values,
then you could make the change.

40

Truncate table

The TRUNCATE TABLE command is used to delete all of the data from
an existing table, but not the table itself.

Syntax of Truncate table:

TRUNCATE TABLE table_name;

Example:

Consider a Sellers table having the following records:

+----+----------+-----+-----------+----------+
| ID | NAME |Items| CITY | SALARY |
+----+----------+-----+-----------+----------+
1	Shivam	34	Ahmedabad	2000.00
2	Ajay	22	Delhi	4400.00
3	Kaushik	28	Kota	2000.00
4	Chaitali	25	Mumbai	6600.00
5	Hardik	26	Bhopal	8100.00
6	Maria	23	MP	4200.00
7	Muffy	29	Indore	9000.00
+----+----------+-----+-----------+----------+

Following is the example of a Truncate command:

TRUNCATE TABLE Sellers;

After that if you do a COUNT(*) on that table you would see that the
table is completely empty.

41

Basic Syntax

In this chapter, we will go over the basic SQL syntax.

SQL statements are basically the 'commands' that you run against a
specific database. Through the SQL statements, you are telling MySQL
what you want it to do, for example, if you wanted to get the username
of all of your users stored in the users table, you would run the
following SQL statement:

SELECT username FROM users;

Rundown of the statement:

SELECT: First, we specify the SELECT keyword, which indicates that
we want to select some data from the database. Other popular
keywords are: INSERT, UPDATE and DELETE.
username: Then we specify which column we want to select.
FROM users: After that, we specify the table that we want to select
the data from using the FROM keyword.
The semicolon ; is highly recommended to put at the end.
Standard SQL syntax requires it, but some "Database Management
Systems' (DBMS)" are tolerant about it, but it's not worth the risk.

If you run the above statement, you will get no results as the new users
table that we've just created is empty.

As a good practice, all SQL keywords should be with uppercase,
however, it would work just fine if you use lower case as well.

42

Let's go ahead and cover the basic operations next.

43

INSERT

To add data to your database, you would use the INSERT statement.

Let's use the table that we created in the last chapter and insert 1 user
into our users table:

INSERT INTO users (username, email, active)
VALUES ('bobby', 'bobby@bobbyiliev.com', true);

Rundown of the insert statement:

INSERT INTO: first, we specify the INSERT INTO keyword, which
tells MySQL that we want to insert data a table.
users (username, email, active): then, we specify the table
name users and the columns that we want to insert data into.
VALUES: then, we specify the values that we want to insert in. The
order of attributes is the same as in users (...).

44

SELECT

Once we've inserted that user, let's go ahead and retrieve the
information.

To retrieve information from your database, you could use the SELECT
statement:

SELECT * FROM users;

Output:

+----+----------+-------+----------+--------+---------------+
| id | username | about | birthday | active | email |
+----+----------+-------+----------+--------+---------------+
| 1 | bobby | NULL | NULL | 1 | bobby@b...com |
+----+----------+-------+----------+--------+---------------+

We specify * right after the SELECT keyword, this means that we want
to get all of the columns from the users table.

If we wanted to retrieve only the username and the email columns
instead, we would change the statement to:

SELECT username, email FROM users;

This will return all of the users, but as of the time being we have only 1:

45

+----------+----------------------+
| username | email |
+----------+----------------------+
| bobby | bobby@bobbyiliev.com |
+----------+----------------------+

46

UPDATE

In order to modify data in your database, you could use the UPDATE
statement.

The syntax would look like this:

UPDATE users SET username='bobbyiliev' WHERE id=1;

Rundown of the statement:

UPDATE users: First, we specify the UPDATE keyword followed by
the table that we want to update.
SET username='bobbyiliev': Then we specify the columns that
we want to update and the new value that we want to set.
WHERE id=1: Finally, by using the WHERE clause, we specify which
user should be updated. In our case it is the user with ID 1.

NOTE: If we don't specify a WHERE clause, all of the entries inside the
users table would be updated, and all users would have the username
set to bobbyiliev. You need to be careful when you use the UPDATE
statement without a WHERE clause, as every single row will be updated.

We are going to cover WHERE more in-depth in the next few chapters.

47

DELETE

As the name suggests, the DELETE statement would remove data from
your database.

The syntax is as follows:

DELETE FROM users WHERE id=1;

Similar to the UPDATE statement, if you don't specify a WHERE clause, all
of the entries from the table will be affected, meaning that all of your
users will be deleted.

48

Comments

In case that you are writing a larger SQL script, it might be helpful to
add some comments so that later on, when you come back to the
script, you would know what each line does.

As with all programming languages, you can add comments in SQL as
well.

There are two types of comments:

Inline comments:

To do so, you just need to add -- before the text that you want to
comment out:

SELECT * FROM users; -- Get all users

Multiple-line comments:

Similar to some other programming languages in order to comment
multiple lines, you could wrap the text in /* */ as follows:

/*
Get all of the users
from your database
*/
SELECT * FROM users;

You could write that in a .sql file and then run it later on, or execute
the few lines directly.

49

Conclusion

Those were some of the most common basic SQL statements.

In the next chapters, we are going to go over each of the above
statements more in-depth.

50

SELECT

As we briefly covered in the previous chapter, the SELECT statement
allows us to retrieve data from single or multiple tables on the
database. In this chapter, we will be performing the query on a single
table.

It corresponds to the projection operation of Relational Algebra.

You can use SELECT to get all of your users or a list of users that match
a certain criteria.

Before we dive into the SELECT statement let's quickly create a
database:

CREATE DATABASE sql_demo;

Switch to that database:

USE sql_demo;

Create a new users table:

51

CREATE TABLE users
(
 id INT PRIMARY KEY AUTO_INCREMENT,
 username VARCHAR(255) NOT NULL,
 about TEXT,
 email VARCHAR(255),
 birthday DATE,
 active BOOL
);

Insert some data that we could work with:

INSERT INTO users
 (username, email, active)
VALUES
 ('bobby', 'b@devdojo.com', true),
 ('devdojo', 'd@devdojo.com', false),
 ('tony', 't@devdojo.com', true);

Output:

Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

We are going to learn more about the INSERT statement in the following
chapters.

52

SELECT all columns

Now that we've got some data in the users table, let's go ahead and
retrieve all of the entries from that table:

SELECT * FROM users;

Rundown of the statement:

SELECT: First, we specify the action that we want to execute, in our
case, we want to select or get some data from the database.
*: The star here indicates that we want to get all of the columns
associated with the table that we are selecting from.
FROM: The from statement tells MySQL which table we want to
select the data from. You need to keep in mind that you can select
from multiple tables, but this is a bit more advanced, and we are
going to cover this in the next few chapters.
users: This is the table name that we want to select the data from.

This will return all of the entries in the users table along with all of the
columns:

+----+----------+-------+----------+--------+---------------+
| id | username | about | birthday | active | email |
+----+----------+-------+----------+--------+---------------+
1	bobby	NULL	NULL	1	b@devdojo.com
2	devdojo	NULL	NULL	0	d@devdojo.com
3	tony	NULL	NULL	1	t@devdojo.com
+----+----------+-------+----------+--------+---------------+
3 rows in set (0.00 sec)

As you can see, we get a list of the 3 users that we've just created,
including all of the columns in that table. In some cases, the table might
have a lot of columns, and you might not want to see all of them. For

53

example, we have the about and birthday columns that are all NULL at
the moment. So let's see how we could limit that and get only a list of
specific columns.

54

Pattern matching

SQL pattern matching let's you to search for patterns if you don't know
the exact word or phrase you are looking for. To do this, we use so-
called wildcard characters to match a pattern together with LIKE and
ILIKE operators.

Two of the most common wildcard characters are _ and %.

_ matches any single character and % matches an arbitrary number of
characters.

Let's see an example how you would look for a username ending with y:

SELECT * FROM users WHERE username LIKE '%y';

Output:

+----+----------+-------+----------+--------+---------------+
| id | username | about | birthday | active | email |
+----+----------+-------+----------+--------+---------------+
| 1 | bobby | NULL | NULL | 1 | b@devdojo.com |
| 3 | tony | NULL | NULL | 1 | t@devdojo.com |
+----+----------+-------+----------+--------+---------------+

As you can see above, we used % to match any number of characters
preceding the character y.

If we know the exact number of characters we want to match, we can
use _. Each _ represents a single character.

So, if we want to look up an username that has e as its second
character, we would do something like this:

55

SELECT * FROM users WHERE username LIKE '_e%';

Output:

+----+----------+-------+----------+--------+---------------+
| id | username | about | birthday | active | email |
+----+----------+-------+----------+--------+---------------+
| 2 | devdojo | NULL | NULL | 0 | d@devdojo.com |
+----+----------+-------+----------+--------+---------------+

Please, keep in mind that LIKE operator is case sensitive, meaning it
won't mach capital letters with lowercase letters and vice versa. If you
wish to ignore capitalization, use ILIKE operator instead.

56

Formatting

As we mentioned in the previous chapters, each SQL statement needs
to end with a semi-colon: ;. Alternatively, rather than using a semi-
colon, you could use the \G characters which would format the output in
a list rather than a table.

The syntax is absolutely the same but you just change the ; with \G:

SELECT * FROM users \G

The output will be formatted like this:

*************************** 1. row ***************************
 id: 1
username: bobby
 about: NULL
birthday: NULL
 active: 1
 email: b@devdojo.com
*************************** 2. row ***************************
 id: 2
username: devdojo
 about: NULL
birthday: NULL
 active: 0
 email: d@devdojo.com
...

This is very handy whenever your table consists of a large number of
columns and they can't fit on the screen, which makes it very hard to
read the result set.

57

SELECT specific columns only

You could limit this to a specific set of columns. Let's say that you only
needed the username and the active columns. In this case, you would
change the * symbol with the columns that you want to select divided
by a comma:

SELECT username,active FROM users;

Output:

+----------+--------+
| username | active |
+----------+--------+
bobby	1
devdojo	0
tony	1
+----------+--------+

As you can see, we are getting back only the 2 columns that we've
specified in the SELECT statement.

NOTE: SQL names are case insensitive. For example, username ≡
USERNAME ≡ userName.

58

SELECT with no FROM Clause

In a SQL statement, a column can be a literal with no FROM clause.

SELECT 'Sunil' as username;

Output:

+----------+
| username |
+----------+
| Sunil |
+----------+

59

SELECT with Arithmetic Operations

The select clause can contain arithmetic expressions involving the
operation +, –, *, and /.

SELECT username, active*5 as new_active FROM users;

Output:

+----------+------------+
| username | new_active |
+----------+------------+
bobby	5
devdojo	0
tony	5
+----------+------------+

60

LIMIT

The LIMIT clause is very handy in case that you want to limit the
number of results that you get back. For example, at the moment, we
have 3 users in our database, but let's say that you only wanted to get
1 entry back when you run the SELECT statement.

This can be achieved by adding the LIMIT clause at the end of your
statement, followed by the number of entries that you want to get. For
example, let's say that we wanted to get only 1 entry back. We would
run the following query:

SELECT * FROM users LIMIT 1;

Output:

+----+----------+-------+----------+--------+---------------+
| id | username | about | birthday | active | email |
+----+----------+-------+----------+--------+---------------+
| 2 | bobby | NULL | NULL | 1 | b@devdojo.com |
+----+----------+-------+----------+--------+---------------+

If you wanted to get 2 entries, you would change LIMIT 2 and so on.

61

COUNT

In case that you wanted to get only the number of entries in a specific
column, you could use the COUNT function. This is a function that I
personally use very often.

The syntax is the following:

SELECT COUNT(*) FROM users;

Output:

+----------+
| COUNT(*) |
+----------+
| 3 |
+----------+

62

MIN, MAX, AVG, and SUM

Another useful set of functions similar to COUNT that would make your
life easier are:

MIN: This would give you the smallest value of a specific column.
For example, if you had an online shop and you wanted to get the
lowest price, you would use the MIN function. In our case, if we
wanted to get the lowest user ID, we would run the following:

SELECT MIN(id) FROM users;

This would return 1 as the lowest user ID that we have is 1.

MAX: Just like MIN, but it would return the highest value:

SELECT MAX(id) FROM users;

In our case, this would be 3 as we have only 3 users, and the highest
value of the id column is 3.

AVG: As the name suggests, it would sum up all of the values of a
specific column and return the average value. As we have 3 users
with ids 1, 2, and 3, the average would be 6 divided by 3 users
which is 2.

SELECT AVG(id) FROM users;

SUM: This function takes all of the values from the specified column
and sums them up:

63

SELECT SUM(id) FROM users;

64

DISTINCT

In some cases, you might have duplicate entries in a table, and in order
to get only the unique values, you could use DISTINCT.

To better demonstrate this, let's run the insert statement one more
time so that we could duplicate the existing users and have 6 users in
the users table:

INSERT INTO users
 (username, email, active)
VALUES
 ('bobby', 'b@devdojo.com', true),
 ('devdojo', 'd@devdojo.com', false),
 ('tony', 't@devdojo.com', true);

Now, if you run SELECT COUNT(*) FROM users; you would get 6 back.

Let's also select all users and show only the username column:

SELECT username FROM users;

Output:

+----------+
| username |
+----------+
| bobby |
| devdojo |
| tony |
| bobby |
| devdojo |
| tony |
+----------+

65

As you can see, each name is present multiple times in the list. We
have bobby, devdjo and tony showing up twice.

If we wanted to show only the unique usernames, we could add the
DISTINCT keyword to our select statement:

SELECT DISTINCT username FROM users;

Output:

+----------+
| username |
+----------+
| bobby |
| devdojo |
| tony |
+----------+

As you can see, the duplicate entries have been removed from the
output.

66

Conclusion

The SELECT statement is essential whenever working with SQL. In the
next chapter, we are going to learn how to use the WHERE clause and
take the SELECT statements to the next level.

67

WHERE

The WHERE clause allows you to specify different conditions so that you
could filter out the data and get a specific result set.

You would add the WHERE clause after the FROM clause.

The syntax would look like this:

SELECT column_name FROM table_name WHERE column=some_value;

68

WHERE Clause example

If we take the example users table from the last chapter, let's say that
we wanted to get only the active users. The SQL statement would look
like this:

SELECT DISTINCT username, email, activem FROM users WHERE
active=true;

Output:

+----------+---------------+--------+
| username | email | active |
+----------+---------------+--------+
| bobby | b@devdojo.com | 1 |
| tony | t@devdojo.com | 1 |
+----------+---------------+--------+

As you can see, we are only getting tony and bobby back as their
active column is true or 1. If we wanted to get the inactive users, we
would have to change the WHERE clause and set the active to false:

+----------+---------------+--------+
| username | email | active |
+----------+---------------+--------+
| devdojo | d@devdojo.com | 0 |
+----------+---------------+--------+

As another example, let's say that we wanted to select all users with
the username bobby. The query, in this case, would be:

69

SELECT username, email, active FROM users WHERE
username='bobby';

The output would look like this:

+----------+---------------+--------+
| username | email | active |
+----------+---------------+--------+
| bobby | b@devdojo.com | 1 |
| bobby | b@devdojo.com | 1 |
+----------+---------------+--------+

We are getting 2 entries back as we have 2 users in our database with
the username bobby.

70

Operators

In the example, we used the = operator, which checks if the result set
matches the value that we are looking for.

A list of popular operators are:

!= : Not equal operator
> : Greater than
>= : Greater than or equal operator
< : Less than operator
<= : Less than or equal operator

For more information about other available operators, make sure to
check the official documentation here.

https://dev.mysql.com/doc/refman/8.0/en/non-typed-operators.html

71

AND keyword

In some cases, you might want to specify multiple criteria. For example,
you might want to get all users that are active, and the username
matches a specific value. This could be achieved with the AND keyword.

Syntax:

SELECT * FROM users WHERE username='bobby' AND active=true;

The result set would contain the data that matches both conditions. In
our case, the output would be:

+----+----------+-------+----------+--------+---------------+
| id | username | about | birthday | active | email |
+----+----------+-------+----------+--------+---------------+
| 2 | bobby | NULL | NULL | 1 | b@devdojo.com |
| 5 | bobby | NULL | NULL | 1 | b@devdojo.com |
+----+----------+-------+----------+--------+---------------+

If we were to change the AND statement to active=false, we would not
get any results back as none of the entries in our database match that
condition:

SELECT * FROM users WHERE username='bobby' AND active=false;

-- Output:
Empty set (0.01 sec)

72

OR keyword

In some cases, you might want to specify multiple criteria. For example,
you might want to get all users that are active, or their username
matches a specific value. This could be achieved with the OR keyword.

As with any other programming language, the main difference between
AND and OR is that with AND, the result would only return the values that
match the two conditions, and with OR, you would get a result that
matches either of the conditions.

For example, if we were to run the same query as above but change the
AND to OR, we would get all users that have the username bobby and
also all users that are not active:

SELECT * FROM users WHERE username='bobby' OR active=false;

Output:

+----+----------+-------+----------+--------+---------------+
| id | username | about | birthday | active | email |
+----+----------+-------+----------+--------+---------------+
2	bobby	NULL	NULL	1	b@devdojo.com
3	devdojo	NULL	NULL	0	d@devdojo.com
5	bobby	NULL	NULL	1	b@devdojo.com
6	devdojo	NULL	NULL	0	d@devdojo.com
+----+----------+-------+----------+--------+---------------+

73

LIKE operator

Unlike the = operator, the LIKE operator allows you to do wildcard
matching similar to the * symbol in Linux.

For example, if you wanted to get all users that have the y letter in
them, you would run the following:

SELECT * FROM users WHERE username LIKE '%y%';

Output

+----+----------+-------+----------+--------+---------------+
| id | username | about | birthday | active | email |
+----+----------+-------+----------+--------+---------------+
| 2 | bobby | NULL | NULL | 1 | b@devdojo.com |
| 4 | tony | NULL | NULL | 1 | t@devdojo.com |
+----+----------+-------+----------+--------+---------------+

As you can see, we are getting only tony and bobby but not devdojo as
there is no y in devdojo.

This is quite handy when you are building some search functionality for
your application.

74

IN operator

The IN operator allows you to provide a list expression and would return
the results that match that list of values.

For example, if you wanted to get all users that have the username
bobby and devdojo, you could use the following:

SELECT * FROM users WHERE username IN ('bobby', 'devdojo');

Output:

+----+----------+-------+----------+--------+---------------+
| id | username | about | birthday | active | email |
+----+----------+-------+----------+--------+---------------+
2	bobby	NULL	NULL	1	b@devdojo.com
3	devdojo	NULL	NULL	0	d@devdojo.com
5	bobby	NULL	NULL	1	b@devdojo.com
6	devdojo	NULL	NULL	0	d@devdojo.com
+----+----------+-------+----------+--------+---------------+

This allows you to simplify your WHERE expression so that you don't have
to add numerous OR statements.

75

IS operator

If you were to run SELECT * FROM users WHERE about=NULL; you
would get an empty result set as the = operator can't be used to check
for NULL values. Instead, you would need to use the IS operator
instead.

The IS operator is only used to check NULL values, and the syntax is the
following:

SELECT * FROM users WHERE about IS NULL;

If you wanted to get the results where the value is not NULL, you just
need to change IS to IS NOT:

SELECT * FROM users WHERE about IS NOT NULL;

76

BETWEEN operator

The BETWEEN operator allows to select value with a given range.The
values can be numbers, text, or dates. BETWEEN operator is inclusive:
begin and end values are included.

For Example if you want to select those user which have id between 3
and 6.

SELECT * FROM users WHERE id BETWEEN 3 AND 6;

Output:

+----+----------+-------+----------+--------+---------------+
| id | username | about | birthday | active | email |
+----+----------+-------+----------+--------+---------------+
3	devdojo	NULL	NULL	0	d@devdojo.com
5	bobby	NULL	NULL	1	b@devdojo.com
6	devdojo	NULL	NULL	0	d@devdojo.com
+----+----------+-------+----------+--------+---------------+

77

Conclusion

In this chapter, you've learned how to use the WHERE clause with
different operators to get different type of results based on the
parameters that you provide.

In the next chapter, we will learn how to order the result set.

78

Sorting with ORDER and
GROUP BY

In the last chapter, you've learned how to use the SELECT statement
with the WHERE clause and filter the result set based on some
conditions.

More often than not, you would want to order the results in a specific
way based on a particular column. For example, you might want to
order the users alphabetically based on their username.

In this chapter, you will learn how to use the ORDER BY and GROUP BY
clauses.

79

ORDER BY

The main thing that you need to keep in mind when using ORDER BY is
to specify the column or columns you want to order by. In case you
want to specify multiple columns to order by, you need to separate
each column with a comma.

If we were to run the following statement without providing an ORDER
BY clause:

SELECT id, username FROM users;

We will get the following output:

+----+----------+
| id | username |
+----+----------+
2	bobby
3	devdojo
4	tony
5	bobby
6	devdojo
7	tony
+----+----------+

As you can see, the result set is sorted by the primary key, which, in our
case, is each user's id. If we wanted to sort the output by username, we
would run the following query:

SELECT id, username FROM users ORDER BY username;

Note: The ORDER BY statement is followed by the column's name that
we want to order by.

80

The output, in this case, will be:

+----+----------+
| id | username |
+----+----------+
2	bobby
5	bobby
3	devdojo
6	devdojo
4	tony
7	tony
+----+----------+

Note: You can use ORDER BY with and without specifying a WHERE clause.
If you've used a WHERE clause, you must put the ORDER BY clause after
the WHERE clause.

The default sorting is ascending and is specified with the ASC keyword,
and you don't need to add it explicitly, but if you want to sort by
descending order, you need to use the DESC keyword.

If we use the query above and add DESC at the end as follows:

SELECT id, username FROM users ORDER BY username DESC;

We will see the following output:

81

+----+----------+
| id | username |
+----+----------+
4	tony
7	tony
3	devdojo
6	devdojo
2	bobby
5	bobby
+----+----------+

As you can see, we've got the same list of users sorted alphabetically
but in reverse order.

82

GROUP BY

The GROUP BY statement allows you to use a function like COUNT, MIN,
MAX etc., with multiple columns.

For example, let's say that we wanted to get all user counts grouped by
username.

In our case, we have two users with the username bobby, two users
with the username tony, and two users with the username devdojo.
This represented in an SQL statement would look like this:

SELECT COUNT(username), username FROM users GROUP BY username;

The output, in this case, would be:

+-----------------+----------+
| COUNT(username) | username |
+-----------------+----------+
2	bobby
2	devdojo
2	tony
+-----------------+----------+

The GROUP BY statement grouped the identical usernames. Then it ran a
COUNT on each of bobby, tony and devdojo.

The main thing to remember here is that the GROUP BY should be added
after the FROM clause and after the WHERE clause.

83

HAVING Clause

The HAVING clause allows you to filter out the results on the groups
formed by the GROUP BY clause.

For example, let's say that we wanted to get all usernames that are
duplicates, i.e., all the usernames present in more than one table
record.

In our case, we have two users with the username bobby, two users
with the username tony, and two users with username devdojo. This
represented in an SQL statement would look like this:

SELECT COUNT(username), username
FROM users
GROUP BY username
HAVING COUNT(username) > 1;

The output, in this case, would be:

+-----------------+----------+
| COUNT(username) | username |
+-----------------+----------+
2	bobby
2	devdojo
2	tony
+-----------------+----------+

The GROUP BY clause grouped the identical usernames, calculated their
counts and filtered out the groups using the HAVING clause.

NOTE:- The WHERE clause places conditions on the selected columns,
whereas the HAVING clause places conditions on groups created by the
GROUP BY clause.

84

INSERT

To add data to your database, you would use the INSERT statement.
You can insert data into one table at a time only.

The syntax is the following:

INSERT INTO table_name
 (column_name_1,column_name_2,column_name_n)
VALUES
 ('value_1', 'value_2', 'value_3');

You would start with the INSERT INTO statement, followed by the table
that you want to insert the data into. Then you would specify the list of
the columns that you want to insert the data into. Finally, with the
VALUES statement, you specify the data that you want to insert.

The important part is that you need to keep the order of the values
based on the order of the columns that you've specified.

In the above example the value_1 would go into column_name_1, the
value_2 would go into column_name_2 and the value_3 would go into
column_name_x.

Let's use the table that we created in the last chapter and insert 1 user
into our users table:

85

INSERT INTO users
 (username, email, active)
VALUES
 ('greisi', 'g@devdojo.com', true);

Rundown of the insert statement:

INSERT INTO users: First, we specify the INSERT INTO keywords
which tells MySQL that we want to insert data into the users table.
users (username, email, active): Then, we specify the table
name users and the columns that we want to insert data into.
VALUES: Then, we specify the values that we want to insert in.

86

Inserting multiple records

We've briefly covered this in one of the previous chapters, but in some
cases, you might want to add multiple records in a specific table.

Let's say that we wanted to create 5 new users, rather than running 5
different queries like this:

INSERT INTO users (username, email, active) VALUES ('user1',
'user1@devdojo.com', true);
INSERT INTO users (username, email, active) VALUES ('user1',
'user2@devdojo.com', true);
INSERT INTO users (username, email, active) VALUES ('user1',
'user3@devdojo.com', true);
INSERT INTO users (username, email, active) VALUES ('user1',
'user4@devdojo.com', true);
INSERT INTO users (username, email, active) VALUES ('user1',
'user5@devdojo.com', true);

What you could do is to combine this into one INSERT statement by
providing a list of the values that you want to insert as follows:

INSERT INTO users
 (username, email, active)
VALUES
 ('user1', 'user1@devdojo.com', true),
 ('user2', 'user2@devdojo.com', true),
 ('user3', 'user3@devdojo.com', true),
 ('user4', 'user4@devdojo.com', true),
 ('user5', 'user5@devdojo.com', true);

That way, you will add 5 new entries in your users table with a single
INSERT statement. This is going to be much more efficient.

87

Inserting multiple records using another table

In the previous section, we have discussed how we can insert multiple
records using a single INSERT query. But sometimes there are cases
where we need to insert multiple records which are residing in some
other table.

In this section, we are going to learn how we can insert multiple records
at once using a single INSERT query.

Consider a table, say prospect_users, which stores the information of
the people who want to become the users of our service, but they are
not yet actual users.

In order to add them to our user database, we have to insert there
entries into our users table. We can achieve the same by writing an
INSERT query with multiple VALUES listed in them (as discussed in
previous section).

But there is an easier way where we achieve the same by querying the
prospect_users table.

INSERT INTO users (username, email, active)
SELECT username, email, active
FROM prospect_users
WHERE active=true;

Using the above statement, an entry for each active prospect users will
be made in our users table.

88

UPDATE

As the name suggests, whenever you have to update some data in your
database, you would use the UPDATE statement.

You can use the UPDATE statement to update multiple columns in a
single table.

The syntax would look like this:

UPDATE users SET username='bobbyiliev' WHERE id=1;

Rundown of the statement:

UPDATE users: First, we specify the UPDATE keyword followed by
the table that we want to update.
username='bobbyiliev': Then we specify the columns that we
want to update and the new value that we want to set.
WHERE id=1: Finally, by using the WHERE clause, we specify which
user should be updated. In our case, it is the user with ID 1.

The most important thing that you need to keep in mind is that if you
don't specify a WHERE clause, all of the entries inside the users table
would be updated, and all users would have the username set to
bobbyiliev.

Important: You need to be careful when you use the UPDATE statement
without a WHERE clause as every single row will be updated.

If you have been following along all of the user entries in our users
table, it currently have no data in the about column:

89

+----+----------+-------+
| id | username | about |
+----+----------+-------+
2	bobby	NULL
3	devdojo	NULL
4	tony	NULL
5	bobby	NULL
6	devdojo	NULL
7	tony	NULL
+----+----------+-------+

Let's go ahead and update this for all users and set the column value to
404 bio not found, For example:

UPDATE users SET about='404 bio not found';

The output would let you know how many rows have been affected by
the query:

Query OK, 6 rows affected (0.02 sec)
Rows matched: 6 Changed: 6 Warnings: 0

Now, if you were to run a select for all users, you would get the
following result:

+----+----------+-------------------+
| id | username | about |
+----+----------+-------------------+
2	bobby	404 bio not found
3	devdojo	404 bio not found
4	tony	404 bio not found
5	bobby	404 bio not found
6	devdojo	404 bio not found
7	tony	404 bio not found
+----+----------+-------------------+

90

Let's now say that we wanted to update the about column for the user
with an id of 2. In this case, we need to specify a WHERE clause followed
by the ID of the user that we want to update as follows:

UPDATE users SET about='Hello World :)' WHERE id=2;

The output here should indicate that only 1 row was updated:

Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

Now, if you again run the SELECT id, username, about FROM users
query, you would see that the user with id of 2 now has an updated
about column data:

+----+----------+-------------------+
| id | username | about |
+----+----------+-------------------+
2	bobby	Hello World :)
3	devdojo	404 bio not found
4	tony	404 bio not found
5	bobby	404 bio not found
6	devdojo	404 bio not found
7	tony	404 bio not found
+----+----------+-------------------+

91

Updating records using another table

As we've seen in the previous section, you can insert multiple rows in
your table using another table. You can use the same principle for the
update command.

To do that you simply have to list all needed table in the update
section, then you have to explain which action you want to perform on
the table, and then you need to link the table together.

For example, if you want to update the about field in the users table
using the content of the about field in the prospect_users table, you
would do something like this:

update users, prospect_users
set users.about = prospect_users.about
where prospect_users.username = users.username;

92

DELETE

As the name suggests, the DELETE statement would remove data from
your database.

The syntax is as follows:

DELETE FROM users WHERE id=5;

The output should indicate that 1 row was affected:

Query OK, 1 row affected (0.01 sec)

Important: Just like the UPDATE statement, if you don't specify a WHERE
clause, all of the entries from the table will be affected, meaning that all
of your users will be deleted. So, it is critical to always add a WHERE
clause when executing a DELETE statement.

DELETE FROM users;

The output should indicate (where x is the number of tuples in the
table):

Query OK, x row(s) affected (0.047 sec)

Similar to the Linux rm command, when you use the DELETE statement,
the data would be gone permanently, and the only way to recover your

93

data would be by restoring a backup.

94

Delete from another table

As we saw in the two precedents sections you can INSERT or UPDPATE
tables rows based on other table data. You can do the same for the
DELETE.

For example, if you want to delete the records from the users table if
the corresponding prospect has been disabled, you could do it this way:

delete users
from users, prospect_users
where users.username = prospect_users.username
and NOT prospect_users.active

95

JOIN

The JOIN clause allows you to combine the data from 2 or more tables
into one result set.

As we will be selecting from multiple columns, we need to include the
list of the columns we want to choose data from after the FROM clause is
separated by a comma.

In this chapter, we will go over the following JOIN types:

CROSS Join
INNER Join
LEFT Join
RIGHT Join

Before we get started, let's create a new database and two tables that
we are going to work with:

We are going to call the database demo_joins:

CREATE DATABASE demo_joins;

Then, switch to the new database:

USE demo_joins;

Then, the first table will be called users, and it will only have two
columns: id and username:

96

CREATE TABLE users
(
 id INT PRIMARY KEY AUTO_INCREMENT,
 username VARCHAR(255) NOT NULL
);

Then, let's create a second table called posts, and to keep things
simple, we will have three two columns: id, user_id and title:

CREATE TABLE posts
(
 id INT PRIMARY KEY AUTO_INCREMENT,
 user_id INT,
 title VARCHAR(255) NOT NULL
);

The user_id column would be used to reference the user's ID that the
post belongs to. It is going to be a one to many relations, e.g. one user
could have many posts:

Now, let's add some data into the two tables first by creating a few
users:

INSERT INTO users
 (username)
VALUES
 ('bobby'),
 ('devdojo'),
 ('tony'),
 ('greisi');

And finally add some posts:

97

INSERT INTO posts
 (user_id, title)
VALUES
 ('1', 'Hello World!'),
 ('2', 'Getting started with SQL'),
 ('3', 'SQL is awesome'),
 ('2', 'MySQL is up!'),
 ('1', 'SQL - structured query language');

Now that we've got our tables and demo data ready, let's go ahead and
learn how to use joins.

98

CROSS JOIN

The CROSS join allows you to put the result of two tables next to each
other without specifying any WHERE conditions. This makes the CROSS
join the simplest one, but it is also not of much use in a real-life
scenario.

So if we were to select all of the users and all of the posts side by side,
we would use the following query:

SELECT * FROM users CROSS JOIN posts;

The output will be all of your users and all of the posts side by side:

99

+----+----------+----+--------+-----------------+
| id | username | id |user_id | title |
+----+----------+----+--------+-----------------+
4	greisi	1	1	Hello World!
3	tony	1	1	Hello World!
2	devdojo	1	1	Hello World!
1	bobby	1	1	Hello World!
4	greisi	2	2	Getting started
3	tony	2	2	Getting started
2	devdojo	2	2	Getting started
1	bobby	2	2	Getting started
4	greisi	3	3	SQL is awesome
3	tony	3	3	SQL is awesome
2	devdojo	3	3	SQL is awesome
1	bobby	3	3	SQL is awesome
4	greisi	4	2	MySQL is up!
3	tony	4	2	MySQL is up!
2	devdojo	4	2	MySQL is up!
1	bobby	4	2	MySQL is up!
4	greisi	5	1	SQL
3	tony	5	1	SQL
2	devdojo	5	1	SQL
1	bobby	5	1	SQL
+----+----------+----+--------+-----------------+

As mentioned above, you will highly unlikely run a CROSS join for two
whole tables in a real-life scenario. If the tables have tens of thousands
of rows, an unqualified CROSS JOIN can take minutes to complete.

You would most likely use one of the following with a specific condition.

In MySQL, CROSS JOIN and INNER JOIN are equivalent to JOIN.

100

INNER JOIN

The INNER join is used to join two tables. However, unlike the CROSS
join, by convention, it is based on a condition. By using an INNER join,
you can match the first table to the second one.

As we have a one-to-many relationship, a best practice would be to use
a primary key for the posts id column and a foreign key for the
user_id; that way, we can 'link' or relate the users table to the posts
table. However, this is beyond the scope of this SQL basics eBook,
though I might extend it in the future and add more chapters.

As an example and to make things a bit clearer, let's say that you
wanted to get all of your users and the posts associated with each user.
The query that we would use will look like this:

SELECT *
FROM users
INNER JOIN posts
ON users.id = posts.user_id;

Rundown of the query:

SELECT * FROM users: This is a standard select we've covered
many times in the previous chapters.
INNER JOIN posts: Then, we specify the second table and which
table we want to join the result set.
ON users.id = posts.user_id: Finally, we specify how we want
the data in these two tables to be merged. The user.id is the id
column of the user table, which is also the primary ID, and
posts.user_id is the foreign key in the email address table
referring to the ID column in the users table.

The output will be the following, associating each user with their post

101

based on the user_id column:

+----+----------+----+---------+-----------------+
| id | username | id | user_id | title |
+----+----------+----+---------+-----------------+
1	bobby	1	1	Hello World!
2	devdojo	2	2	Getting started
3	tony	3	3	SQL is awesome
2	devdojo	4	2	MySQL is up!
1	bobby	5	1	SQL
+----+----------+----+---------+-----------------+

Note that the INNER JOIN could (in MySQL) equivalently be written
merely as JOIN, but that can vary for other SQL dialects:

SELECT *
FROM users
JOIN posts
ON users.id = posts.user_id;

The main things that you need to keep in mind here are the INNER JOIN
and ON clauses.

With the inner join, the NULL values are discarded. For example, if you
have a user who does not have a post associated with it, the user with
NULL posts will not be displayed when running the above INNER join
query.

To get the null values as well, you would need to use an outer join.

Types of INNER JOIN

Theta Join (θ) :- Theta join combines rows from different tables1.
provided they satisfy the theta condition. The join condition is
denoted by the symbol θ.

102

Here the comparison operators (≤, ≥, ˂, ˃, =, ̚) come into
picture.
Notation :- R1 ⋈θ R2.

For example, suppose we want to buy a mobile and a laptop,
based on our budget we have thought of buying both such that
mobile price should be less than that of laptop.

SELECT mobile.model, laptop.model FROM mobile, laptop
WHERE mobile.price < laptop.price;

Equijoin :- When Theta join uses only equality (=) comparison2.
operator, it is said to be equijoin.
For example, suppose we want to buy a mobile and a laptop,
based on our budget we have thought of buying both of the same
prices.

SELECT mobile.model, laptop.model FROM mobile, laptop
WHERE mobile.price = laptop.price;

Natural Join (⋈) :- Natural join does not use any comparison3.
operator. It does not concatenate the way a Cartesian product
does.
We can perform a Natural Join only if at least one standard column
exists between two tables. In addition, the column must have the
same name and domain.

SELECT * FROM mobile NATURAL JOIN laptop;

103

LEFT JOIN

Using the LEFT OUTER join, you would get all rows from the first table
that you've specified, and if there are no associated records within the
second table, you will get a NULL value.

In our case, we have a user called graisi, which is not associated with
a specific post. As you can see from the output from the previous query,
the graisi user was not present there. To show that user, even though
it does not have an associated post with it, you could use a LEFT OUTER
join:

SELECT *
FROM users
LEFT JOIN posts
ON users.id = posts.user_id;

The output will look like this:

+----+----------+------+---------+-----------------+
| id | username | id | user_id | title |
+----+----------+------+---------+-----------------+
1	bobby	1	1	Hello World!
2	devdojo	2	2	Getting started
3	tony	3	3	SQL is awesome
2	devdojo	4	2	MySQL is up!
1	bobby	5	1	SQL
4	greisi	NULL	NULL	NULL
+----+----------+------+---------+-----------------+

104

RIGHT JOIN

The RIGHT OUTER join is the exact opposite of the LEFT OUTER join. It
will display all of the rows from the second table and give you a NULL
value in case that it does not match with an entry from the first table.

Let's create a post that does not have a matching user id:

INSERT INTO posts
 (user_id, title)
VALUES
 ('123', 'No user post!');

We specify 123 as the user ID, but we don't have such a user in our
users table.

Now, if you were to run the LEFT outer join, you would not see the post
as it has a null value for the corresponding users table.

But if you were to run a RIGHT outer join, you would see the post but
not the greisi user as it does not have any posts:

SELECT *
FROM users
RIGHT JOIN posts
ON users.id = posts.user_id;

Output:

105

+------+----------+----+---------+-----------------+
| id | username | id | user_id | title |
+------+----------+----+---------+-----------------+
1	bobby	1	1	Hello World!
2	devdojo	2	2	Getting started
3	tony	3	3	SQL is awesome
2	devdojo	4	2	MySQL is up!
1	bobby	5	1	SQL
NULL	NULL	6	123	No user post!
+------+----------+----+---------+-----------------+

Joins can also be limited with WHERE conditions. For instance, in the
preceding example, if we wanted to join the tables and then restrict to
only username bobby.

SELECT *
FROM users
RIGHT JOIN posts
ON users.id = posts.user_id
WHERE username = 'bobby';

Output:

+------+----------+----+---------+-----------------+
| id | username | id | user_id | title |
+------+----------+----+---------+-----------------+
| 1 | bobby | 1 | 1 | Hello World! |
| 1 | bobby | 5 | 1 | SQL |
+------+----------+----+---------+-----------------+

106

The Impact of Conditions in JOIN vs. WHERE
Clauses

The placement of conditions within a SQL query, specifically in the JOIN
vs. the WHERE clause, can yield different results.

Take a look at the following example, which retrieves POSTS containing
the word "SQL" along with their associated user data:

SELECT users.*, posts.*
FROM users
LEFT JOIN posts
ON posts.user_id = users.id
WHERE posts.title LIKE '%SQL%';

Output:

+--+--------+--+-------+-------------------------------+
|id|username|id|user_id|title |
+--+--------+--+-------+-------------------------------+
2	devdojo	2	2	Getting started with SQL
3	tony	3	3	SQL is awesome
2	devdojo	4	2	MySQL is up!
1	bobby	5	1	SQL - structured query language
+--+--------+--+-------+-------------------------------+

However, by shifting the condition to the JOIN clause, all users are
displayed, but only posts with titles containing "SQL" are included:

SELECT users.*, posts.*
FROM users
LEFT JOIN posts
ON posts.user_id = users.id
 AND posts.title LIKE '%SQL%';

107

Output:

+--+--------+----+-------+-------------------------------+
|id|username|id |user_id|title |
+--+--------+----+-------+-------------------------------+
1	bobby	5	1	SQL - structured query language
2	devdojo	4	2	MySQL is up!
2	devdojo	2	2	Getting started with SQL
3	tony	3	3	SQL is awesome
4	greisi	null	null	null
+--+--------+----+-------+-------------------------------+

108

Equivalence of RIGHT and LEFT JOINs

The RIGHT JOIN and LEFT JOIN operations in SQL are fundamentally
equivalent. They can be interchanged by simply swapping the tables
involved. Here's an illustration:

The following LEFT JOIN:

SELECT users.*, posts.*
FROM posts
LEFT JOIN users
ON posts.user_id = users.id;

Can be equivalently written using RIGHT JOIN as:

SELECT users.*, posts.*
FROM users
RIGHT JOIN posts
ON posts.user_id = users.id;

109

Conclusion

Joins are fundamental to using SQL with data. The whole concept of
joins might be very confusing initially but would make a lot of sense
once you get used to it.

The best way to wrap your head around it is to write some queries, play
around with each type of JOIN, and see how the result set changes.

For more information, you could take a look at the official
documentation here.

https://dev.mysql.com/doc/refman/8.0/en/join.html

110

SQL | DDL, DQL, DML, DCL
and TCL Commands

Structured Query Language(SQL), as we all know, is the database
language by which we can perform certain operations on the existing
database. Also, we can use this language to create a database. SQL
uses specific commands like Create, Drop, Insert, etc., to carry out the
required tasks.

DDL – Data Definition Language1.
DQL – Data Query Language2.
DML – Data Manipulation Language3.
DCL – Data Control Language4.

Though many resources claim there to be another category of
SQL clauses TCL – Transaction Control Language, so we will see
in detail about TCL as well.

DDL (Data Definition Language):

DDL or Data Definition Language consists of the SQL commands used to
define the database schema. It simply deals with descriptions of the
database schema and is used to create and modify the structure of
database objects in the database. These commands usually are not
used by a general user, who should be accessing the database via an
application.

111

List of DDL commands:

CREATE: This command is used to create the database or its objects
(like table, index, function, views, store procedure, and triggers).

CREATE TABLE Persons (
 PersonID int,
 LastName varchar(255),
 FirstName varchar(255),
 Address varchar(255),
 City varchar(255)
);

DROP: This command is used to delete objects from the database.

DROP TABLE table_name;

ALTER: This is used to alter the structure of the database.

ALTER TABLE Persons
ADD Age int;

TRUNCATE: This is used to remove all records from a table,
including all spaces allocated for the records.

TRUNCATE TABLE Persons;

COMMENT: This is used to add comments to the data dictionary.

--SELECT * FROM Customers;
SELECT * FROM Persons;

- RENAME: This is used to rename an object existing in the database.

112

ALTER TABLE Persons
RENAME COLUMN Age TO Year;

DQL (Data Query Language):

DQL statements are used for performing queries on the data within
schema objects. The purpose of the DQL Command is to get some
schema relation based on the query passed to it. We can define DQL as
follows. It is a component of the SQL statement that allows getting data
from the database and imposing order upon it. It includes the SELECT
statement. This command allows getting the data out of the database
to perform operations with it. When a SELECT is fired against a table(s),
the result is compiled into a different temporary table, which is
displayed or perhaps received by the program, i.e. a front-end.

List of DQL:

SELECT: It is used to retrieve data from the database.

SELECT * FROM table_name;

+--------+--------------+------------+--------+---------+
| emp_id | emp_name | hire_date | salary | dept_id |
+--------+--------------+------------+--------+---------+
1	Ethan Hunt	2001-05-01	5000	4
2	Tony Montana	2002-07-15	6500	1
3	Sarah Connor	2005-10-18	8000	5
4	Rick Deckard	2007-01-03	7200	3
5	Martin Blank	2008-06-24	5600	NULL
+--------+--------------+------------+--------+---------+

The SQL commands that deal with the manipulation of data present in
the database belong to DML or Data Manipulation Language, including
most of the SQL statements. It is the component of the SQL statement

113

that controls access to data and the database. DCL statements are
grouped with DML statements.

List of DML commands:

INSERT : It is used to insert data into a table.

INSERT INTO Customers
 (CustomerName, ContactName, Address, City, PostalCode,
Country)
VALUES
 ('Cardinal', 'Tom B. Erichsen', 'Skagen 21', 'Stavanger',
'4006', 'Norway');

UPDATE: It is used to update existing data within a table.

UPDATE Customers
SET ContactName='Alfred Schmidt', City='Frankfurt'
WHERE CustomerID = 1;

DELETE : It is used to delete records from a database table.

 DELETE FROM Customers WHERE CustomerName='Alfreds
Futterkiste';

LOCK: Table control concurrency.

LOCK TABLES table_name [READ | WRITE]

UNLOCK TABLES;

CALL: Call a PL/SQL or JAVA subprogram.

114

CREATE PROCEDURE procedure_name
AS sql_statement
GO;

Execute a Stored Procedure

EXEC procedure_name;

EXPLAIN PLAN: It describes the access path to data.

DCL (Data Control Language):

DCL includes commands such as GRANT and REVOKE, which mainly
deal with the database system's rights, permissions, and other controls.

List of DCL commands:

GRANT: This command gives users access privileges to the
database.
REVOKE: This command withdraws the user’s access privileges
given by using the GRANT command.

Though many resources claim there to be another category of SQL
clauses TCL – Transaction Control Language, we will see in detail about
TCL. TCL commands deal with the transaction within the database.

List of TCL commands:

COMMIT: Commits a Transaction.
ROLLBACK: Rollbacks a transaction in case of any error occurs.
SAVEPOINT:Sets a savepoint within a transaction.
SET TRANSACTION: Specify characteristics for the transaction.

115

SQL Sub Queries

A subquery is a SQL query nested inside a larger query.

A subquery may occur in

A SELECT clause
A FROM clause
A WHERE clause

The subquery can be nested inside a SELECT, INSERT, UPDATE, or
DELETE statement or inside another subquery.

A subquery is usually added within the WHERE Clause of another
SQL SELECT statement.

The inner query executes first before its parent query so that the
results of an inner query can be passed to the outer query.

You can use a subquery in a SELECT, INSERT, DELETE, or
UPDATE statement to perform the following tasks:

Compare an expression to the result of the query.
Determine if an expression is included in the results of the query.
Check whether the query selects any rows.

Subqueries with the SELECT Statement:

Consider the CUSTOMERS table having the following records

116

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	35	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	Kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

Now, let us check the following subquery with a SELECT statement.

Example:

SELECT *
FROM CUSTOMERS
WHERE ID IN (
 SELECT ID
 FROM CUSTOMERS
 WHERE SALARY > 4500
);

This would produce the following result.

+----+----------+-----+---------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+---------+----------+
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+---------+----------+

Subqueries with the UPDATE Statement:

The subquery can be used in conjunction with the UPDATE statement.
Either single or multiple columns in a table can be updated when using

117

a subquery with the UPDATE statement.

Example:

Assuming, we have CUSTOMERS_BKP table available which is backup of
CUSTOMERS table. The following example updates SALARY by 0.25
times in the CUSTOMERS table for all the customers whose AGE is
greater than or equal to 27.

UPDATE CUSTOMERS
SET SALARY = SALARY * 0.25
WHERE AGE IN (
 SELECT AGE
 FROM CUSTOMERS_BKP
 WHERE AGE >= 27
);

This would impact two rows and finally CUSTOMERS table would have
the following records.

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	35	Ahmedabad	125.00
2	Khilan	25	Delhi	1500.00
3	Kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	2125.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

Subqueries with the DELETE Statement:

The subquery can be used in conjunction with the DELETE statement
like with any other statements mentioned above.

Example:

118

Assuming, we have a CUSTOMERS_BKP table available which is a
backup of the CUSTOMERS table. The following example deletes the
records from the CUSTOMERS table for all the customers whose AGE is
greater than or equal to 27.

DELETE FROM CUSTOMERS
WHERE AGE IN (
 SELECT AGE
 FROM CUSTOMERS_BKP
 WHERE AGE >= 27
);

This would impact two rows and finally the CUSTOMERS table would
have the following records.

+----+----------+-----+---------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+---------+----------+
2	Khilan	25	Delhi	1500.00
3	Kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+---------+----------+

119

SQL - UNIONS CLAUSE

The SQL UNION clause/operator is used to combine the results of two or
more SELECT statements without returning any duplicate rows.

While using this UNION clause, each SELECT statement must have:

The same number of columns selected
The same number of column expressions
The same data type and
Have them in the same order

But they need not have to be in the same length.

Example

Consider the following two tables.

Table 1 − customers table is as follows:

+----+----------+-----+-----------+----------+
| id | name | age | address | salary |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

Table 2 − orders table is as follows:

120

+-----+---------------------+-------------+--------+
| oid | date | customer_id | amount |
+-----+---------------------+-------------+--------+
102	2009-10-08 00:00:00	3	3000
100	2009-10-08 00:00:00	3	1500
101	2009-11-20 00:00:00	2	1560
103	2008-05-20 00:00:00	4	2060
+-----+---------------------+-------------+--------+

Now, let us join these two tables in our SELECT statement as follows:

SELECT id, name, amount, date
 FROM customer
 LEFT JOIN orders
 ON customers.id = orders.customer_id
UNION
 SELECT id, name, amount, date
 FROM customer
 RIGHT JOIN orders
 ON customers.id = orders.customer_id

This would produce the following result:

The UNION ALL Clause

The UNION ALL operator is used to combine the results of two SELECT
statements including duplicate rows.

The same rules that apply to the UNION clause will apply to the UNION
ALL operator.

Example - Consider the following two tables:

Table 1 − customers table is as follows:

121

+----+----------+-----+-----------+----------+
| id | name | age | address | salary |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

Table 2 − orders table is as follows:

+-----+---------------------+-------------+--------+
| oid | date | customer_id | amount |
+-----+---------------------+-------------+--------+
102	2009-10-08 00:00:00	3	3000
100	2009-10-08 00:00:00	3	1500
101	2009-11-20 00:00:00	2	1560
103	2008-05-20 00:00:00	4	2060
+-----+---------------------+-------------+--------+

Now, let us join these two tables in our SELECT statement as follows :

SELECT id, name, amount, date
 FROM customers
 LEFT JOIN orders
 ON customers.id = order.customer_id
UNION ALL
 SELECT id, name, amount, date
 FROM customers
 RIGHT JOIN orders
 ON customers.id = orders.customer_id;

This would produce the following result:

122

+------+----------+--------+---------------------+
| id | name | amount | date |
+------+----------+--------+---------------------+
1	Ramesh	NULL	NULL
2	Khilan	1560	2009-11-20 00:00:00
3	kaushik	3000	2009-10-08 00:00:00
3	kaushik	1500	2009-10-08 00:00:00
4	Chaitali	2060	2008-05-20 00:00:00
5	Hardik	NULL	NULL
6	Komal	NULL	NULL
7	Muffy	NULL	NULL
3	kaushik	3000	2009-10-08 00:00:00
3	kaushik	1500	2009-10-08 00:00:00
2	Khilan	1560	2009-11-20 00:00:00
4	Chaitali	2060	2008-05-20 00:00:00
+------+----------+--------+---------------------+

Note : There are two other clauses (i.e., operators), which are
like the UNION clause.

123

Relational Keys- Keys in a
Relational Database

A database must be able to inhibit inconsistency occurring due to
incorrect data. It must have certain identified attributes in relations to
uniquely distinguish the tuples. No two tuples in a relation should have
same value for all attributes since it will lead to duplicity of data.
duplicity of data leads to inconsistency . Relational database systems
have the concept of Relational Keys to distinguish between different
records.

124

Types of Relational Keys

Super Keys

A relation’s tuples can be uniquely identified by various combinations of
attributes. Super Keys is defined as a set of one attribute or
combinations of two or more attributes that help in distinguishing
between tuples in a relation.

For example, the Customer ID attribute of the relation Customer is
unique for all customers. The Customer ID can be used to identify each
customer tuple in the relation. Customer ID is a Super Key for relation
Customer.

Customer Name attribute of Customer cannot be considered as Super
Key because many customers for the organization can have same
name. However when combined with Customer ID it becomes a Super
Key {CustomerID, CustomerName}. It means that Super Key can have
additional attributes. Consider any key K which is identified as a super
key. Any superset of key K is also a super key. For example the possible
Super Keys for Customer Relation are

[CustomerID, CustomerName, Customer Address]
[CustomerID, CustomerName, Customer Contact Number]
[CustomerID, Customer Contact Number]

Candidate Keys

If we take a key from the set of super keys for which we don’t have any
proper subset defined as a superkey, it is called a candidate key. In
other words the minimal attribute super keys are termed as candidate
keys.

125

If we can identify some distinct sets of attributes which identify the
tuples uniquely they fall in the category of candidate keys. For example
the possible Candidate Keys for Customer Relation are

[CustomerID]
[CustomerName, Customer Address]
[CustomerName, Customer Contact Number]
[Customer Address, Customer Contact Number]

Primary Key

Out of all possible candidate keys only one is chosen by the database
designer as the key to identify the records in a relation in a database.
This selected candidate key is called the Primary Key. It is the property
of the relation and not of tuples. The primary key attribute(s) does not
allow any duplicate values. It also inhibits leaving the primary key
attribute without any value (NOT NULL).

A relation can have only one primary key.

In the Customer Database example {Customer ID} is the attribute
taken as the primary key of customer relation. While picking up a
candidate key as primary key the designer should ensure that it is an
attribute or group of attributes that do not change or may change
extremely rarely.

Alternate Keys

After selecting one key among candidate keys as primary key, the rest
of candidate keys are called the alternate keys. In the customer
Database these candidate keys are the alternate keys.

[CustomerName, Customer Address]
[CustomerName, Customer Contact Number]

126

[Customer Address, Customer Contact Number]

Foreign Key

A foreign key is used to reference values from one relation into another
relation. This is possible when the attribute or combination of attributes
is primary key in the referenced relation. The relation in which the
primary key of a relation is referenced is called the referencing table.
The foreign key constraint implements the referential integrity in a
database. The referencing relation attribute can have only those values
which exist in the primary key attribute(s) of the referenced relation

A relation can have multiple foreign key

For example in the customer database the orders' relation (referencing
relation) has the structure (Order ID, Customer ID, Order Date, Order
Status, Total Billing Amount). The attribute Customer ID is the foreign
key referencing Customer ID from customer relation (referenced
relation). It means that orders can be placed only for the customers
whose customer details are already available in the customer relation.

127

Logical Operator Keywords

Here are the most important Logical Operators summarized in a table.

Logical Operators can be used for conditions as they show a result in
form of a boolean (True/False) or Unknown. So, e.g. if an exact value is
True for a value, a Logical Operator can proof that it's True.

Logical
Operator Explanation

ALL If all comparisons are True: return True
ANY If any comparison is True: return True
AND If both expressions are True: return True
EXISTS If a subquery contains rows: return True

IN If compared value is equal to at least one value:
return True

BETWEEN If there are values in given range: return True
NOT Reverses the value of any boolean
OR If either expression is True: return True

128

HAVING Clause

Unlike where clause which imposes conditions on columns Having
clause enables you to specify conditions that filter which group results
appear in the results.

129

Syntax

SELECT column_name(s)
FROM table_name
WHERE condition
GROUP BY column_name(s)
HAVING condition
ORDER BY column_name(s);

130

Description

Used with aggregate functions
Must follow GROUP BY clause in the query

131

Aggregate Functions

SQL aggregation is the task of collecting a set of values to return a
single value.
An aggregate function is a function where the values of multiple
rows are grouped together as input on certain criteria to form a
single value of more significant meaning.

132

Aggregate Functions Examples

Suppose this are the table given to us

Students table
rollno name class
1 Sanskriti TE
1 Shree BE
2 Harry TE
3 John TE
3 Shivani TE
purchase table

item price customer_name
Pen 10 Sanskriti
Bag 1000 Sanskriti
Vegetables 500 Sanskriti
Shoes 5000 Sanskriti
Water Bottle 800 XYZ
Mouse 120 ABC
Sun Glasses 1350 ABC

AVG function

Calculates average of the given column of values

SELECT AVG(price) AS Avg_Purchase, customer_name
FROM purchase
GROUP BY customer_name;

Avg_Purchase customer_name
1627.5000 Sanskriti

133

SUM function

Calculates sum of values of given column.

SELECT SUM(price) AS Total_Bill, customer_name
FROM purchase
GROUP BY customer_name;

Total_Bill customer_name
6510 Sanskriti

COUNT function

Gives count of entries/ values in given column.

SELECT COUNT(item) AS Total_Items, customer_name
FROM purchase
GROUP BY customer_name;

Total_Items customer_name
4 Sanskriti

MAX function

Return maximum value from the number of values in the column.

SELECT MAX(price) AS Highest_Purchase, customer_name
FROM purchase
GROUP BY customer_name;

Highest_Purchase customer_name
5000 Sanskriti

134

MIN function

Return minimum value from the number of values in the column.

SELECT MIN(price) AS Lowest_Purchase, customer_name
FROM purchase
GROUP BY customer_name;

Lowest_Purchase customer_name
10 Sanskriti

135

Having clause Examples

Example 1

SELECT COUNT(class) AS strength, class
FROM Students
GROUP BY class
HAVING COUNT(class) > 2;

Above query gives number of students in a class having number of
students > 2

strength class
4 TE

Example 2

SELECT customer_name, MIN(price) AS MIN_PURCHASE
FROM purchase
GROUP BY customer_name
HAVING MIN(price) > 10;

Above query finds minimum price which is > 10

customer_name MIN_PURCHASE
XYZ 800
ABC 120

Example 3

136

SELECT customer_name, AVG(price) AS Average_Purchase
FROM purchase
GROUP BY customer_name
HAVING AVG(price) > 550
ORDER BY customer_name DESC;

Above query calculates average of price and prints customer name and
average price which is greater than 550 with descending order of
customer names.

customer_name Average_Purchase
XYZ 800.0000
Sanskriti 1627.5000
ABC 735.0000

Example 4

SELECT customer_name, SUM(price) AS Total_Purchase
FROM purchase
WHERE customer_name
LIKE "S%"
GROUP BY customer_name
HAVING SUM(price) > 1000;

Calculates SUM of price and returns customer name and sum > 1000.

customer_name Total_Purchase
Sanskriti 6510

137

Essential MySQL Functions

MySQL has many built-in functions. We will covering some important
most used built-in functions; for a complete list refer to the online
MySQL Reference Manual (http://dev.mysql.com/doc/).

NOTE: As of now we will be going through only function and their
output, as they would be self explanatory.

138

Numeric Functions

SELECT ROUND(5.73)

6

SELECT ROUND(5.73, 1)

5.7

SELECT TRUNCATE(5.7582, 2)

5.75

SELECT CEILING(5.2)

6

SELECT FLOOR(5.7)

5

SELECT ABS(-5.2)

5.2

139

SELECT RAND() -- Generates a random floating point number b/w
0 & 1

140

STRING Functions

SELECT LENGTH('sky')

3

SELECT UPPER('sky')

SKY

SELECT LOWER('sky)

sky

SELECT LTRIM(' sky')

sky

SELECT RTRIM('sky ')

sky

SELECT TRIM(' sky ')

sky

SELECT LEFT('Kindergarten', 4)

141

Kind

SELECT RIGHT('Kindergarten', 6)

garten

SELECT SUBSTRING('Kindergarten', 3, 5)

nderg

SELECT LOCATE('n','Kindergarten') -- LOCATE returns the first
occurrence of a character or character string, if found,
otherwise it returns 0

3

SELECT REPLACE('Kindergarten', 'garten', 'garden')

Kindergarden

SELECT CONCAT('first', 'last')

firstlast

142

DATE Functions

SELECT NOW()

2021-10-21 19:59:47

SELECT CURDATE()

2021-10-21

SELECT CURTIME()

20:01:12

SELECT MONTH(NOW())

10

SELECT YEAR(NOW())

2021

SELECT HOUR(NOW())

13

SELECT DAYTIME(NOW())

143

Thursday

144

Formatting Dates and Times

In MySQL, the default date format is "YYYY-MM-DD", ex: "2025-05-12",
MySQL allows developers to format it the way they want. We will
discuss some of them.

SELECT DATE_FORMAT(NOW(), '%M %D %Y')

October 22nd 2021

SELECT DATE_FORMAT(NOW(), '%m %d %y')

10 22 21

SELECT DATE_FORMAT(NOW(), '%m %D %y')

10 22nd 21

SELECT TIME_FORMAT(NOW(), '%H %i %p')

14:11 PM

145

Calculating Dates and Times

SELECT DATE_ADD(NOW(), INTERVAL 1 DAY) --return tomorrows date
and time

2021-10-23 14:26:17

SELECT DATE_ADD(NOW(), INTERVAL -1 YEAR)

or

SELECT DATE_SUB(NOW(), INTERVAL 1 YEAR)

Both the queries will return the same output

2020-10-22 14:29:47

SELECT DATEDIFF('2021-09-08 09:00', '2021-07-07 17:00') -- It
will return the difference in number of days, time won't be
considered

63

SELECT TIME_TO_SEC('09:00') - TIME_TO_SEC('09:02')

-120

146

Triggers In SQL

A trigger is a stored procedure in database which is automatically
invoked whenever any special event occurs in the database. The event
can be any event including INSERT, UPDATE and DELETE.

For eg: If you want to perfom a task after a record is inserted into the
table then we can make use of triggers

Syntax for creating triggers

create trigger [trigger_name]
[before | after]
{insert | update | delete}
on [table_name]
[for each row | for each column]
[trigger_body]

create trigger [trigger_name] : Creates or replaces an existing
trigger with the trigger_name.

[before | after] : Now we can specify when our trigger will get fired.
It can be before updating the database or after updating the database.

Generally , before triggers are used to validate the data before storing
it into the database.

{insert | update | delete} : Now, we specify the DML operation
for which our trigger should get fired .

on [table_name] : Here, we specify the name of the table which is
associated with the trigger.

147

[for each row] : This specifies a row-level trigger, i.e., the trigger will
be executed for each row being affected.

[for each column] : This specifies a column-level trigger, i.e., the
trigger will be executed after the specified column is affected.

[trigger_body] : Here, we specify the operations to be performed once
the trigger is fired.

Show Trigger

If you want to see all the triggers that are present in your database.

show triggers in database_name;

Drop Trigger

if you no longer want your trigger then you may delete it.

drop trigger trigger_name;

148

Example :

Let us consider we have our database named library. Consider a
scenario where we want a trigger which is fired everytime any
particular book is inserted into the books table . The trigger should
add the logs of all the books that are inserted into the books table.

We have created two tables :

books : It will store all the books available in the library1.
bookrecord : It will generate a statement a log for the inserted2.
book

Select * from library.books;

+----------+---------------+
| book_id | book_name |
+----------+---------------+
| | |
| | |
+----------+---------------+

Here, book_id is an auto-incremental field.

Select * from library.bookrecord;

149

+----------+---------------+-----------+
| SRNO | bookid | statement |
+----------+---------------+-----------+
| | | |
| | | |
+----------+---------------+-----------+

Here, SRNO is an auto-incremental field.

Now, we will create our trigger on the books table

create trigger library.addstatement
after insert
on library.books
for each row
insert into library.bookrecord(bookid,statement) values
(NEW.book_id,concat('New book named ',NEW.book_name," added
at ",curdate()));

In MySQL, NEW is used to access the currently inserted row. We are
inserting the log for the currently inserted book in our database.

Now we will insert a book and wait for the output.

insert into library.books(book_name) values ("Harry Potter and
the Goblet of fire");

Output for books:

150

+----------+---+
| book_id | book_name |
+----------+---+
| 1 | Harry Potter and the Goblet of fire
|
| |
|
+----------+---+

Output for bookrecord:

+----------+---------------+----------------------------------
--+
| SRNO | bookid | statement
|
+----------+---------------+----------------------------------
--+
| 1 | 1 | New book named Harry Potter
and the Goblet of fire added at 2021-10-22 |
| | |
|
+----------+---------------+----------------------------------
--+

See. it worked!!

Conclusion:

Here, you learnt what are triggers and how you create them. You can
create different types of triggers based on your needs and
requirements.

151

Transaction Control Language

Transaction Control Language can be defined as the portion of a
database language used for maintaining consistency of the
database and managing transactions in the database.

A set of SQL statements that are co-related logically and
executed on the data stored in the table is known as a
transaction.

152

TCL Commands

COMMIT Command
ROLLBACK Command
SAVEPOINT Command

153

COMMIT

The main use of COMMIT command is to make the transaction
permanent. If there is a need for any transaction to be done in the
database that transaction permanent through commit command.

Syntax

COMMIT;

154

ROLLBACK

Using this command, the database can be restored to the last
committed state. Additionally, it is also used with savepoint command
for jumping to a savepoint in a transaction.

Syntax

ROLLBACK TO savepoint-name;

155

SAVEPOINT

The main use of the Savepoint command is to save a transaction
temporarily. This way users can rollback to the point whenever it is
needed.

Syntax

SAVEPOINT savepoint-name;

156

Examples

This is purchase table that we are going to use through this
tutorial

item price customer_name
Pen 10 Sanskriti
Bag 1000 Sanskriti
Vegetables 500 Sanskriti
Shoes 5000 Sanskriti
Water Bottle 800 XYZ
Mouse 120 ABC
Sun Glasses 1350 ABC

UPDATE purchase SET price = 20 WHERE item = "Pen";

O/P : Query OK, 1 row affected (3.02 sec) (Update the price of Pen set it from
10 to 20)

SELECT * FROM purchase;

O/P

item price customer_name
Pen 20 Sanskriti
Bag 1000 Sanskriti
Vegetables 500 Sanskriti
Shoes 5000 Sanskriti
Water Bottle 800 XYZ
Mouse 120 ABC
Sun Glasses 1350 ABC

157

START TRANSACTION;

Start transaction

COMMIT;

Saved/ Confirmed the transactions till this point

ROLLBACK;

Lets consider we tried to rollback above transaction

SELECT * FROM purchase;

O/P:

item price customer_name
Pen 20 Sanskriti
Bag 1000 Sanskriti
Vegetables 500 Sanskriti
Shoes 5000 Sanskriti
Water Bottle 800 XYZ
Mouse 120 ABC
Sun Glasses 1350 ABC

As we have committed the transactions the rollback will not affect
anything

SAVEPOINT sv_update;

158

Create the savepoint the transactions above this will not be rollbacked

UPDATE purchase SET price = 30 WHERE item = "Pen";

O/P : Query OK, 1 row affected (0.57 sec)

Rows matched: 1 Changed: 1 Warnings: 0

SELECT * FROM purchase;

item price customer_name
Pen 30 Sanskriti
Bag 1000 Sanskriti
Vegetables 500 Sanskriti
Shoes 5000 Sanskriti
Water Bottle 800 XYZ
Mouse 120 ABC
Sun Glasses 1350 ABC

price of pen is changed to 30 using the update command

ROLLBACK to sv_update;

Now if we rollback to the savepoint price should be 20 after rollback
lets see

SELECT * FROM purchase;

item price customer_name
Pen 20 Sanskriti
Bag 1000 Sanskriti
Vegetables 500 Sanskriti

159

item price customer_name
Shoes 5000 Sanskriti
Water Bottle 800 XYZ
Mouse 120 ABC
Sun Glasses 1350 ABC
Torch 850 ABC

As expected we can see update query is rollbacked to sv_update.

160

Conclusion

With this short tutorial we have learnt TCL commands.

161

Data Control Language

DCL commands are used to grant and take back authority from any
database user.

162

DCL Commands

GRANT Command
REVOKE Command

163

GRANT

GRANT is used to give user access privileges to a database.

Syntax

GRANT privilege_name ON objectname TO user;

164

REVOKE

REVOKE remove a privilege from a user. REVOKE helps the owner to
cancel previously granted permissions.

Syntax

REVOKE privilege_name ON objectname FROM user;

DCL Examples

SELECT * FROM purchase;

Output:

item	price	customer_name
Pen	20	Sanskriti
Bag	1000	Sanskriti
Vegetables	500	Sanskriti
Shoes	5000	Sanskriti
Water Bottle	800	XYZ
Mouse	120	ABC
Sun Glasses	1350	ABC
Torch	850	ABC

Lets start with GRANT command:

 GRANT INSERT ON purchase TO 'Sanskriti'@'localhost';

Output:

165

O/P Query OK, 0 rows affected (0.31 sec)

Description In above command we have granted user Sanskriti
priviledge to Insert into purchase table.

Now if I login as Sanskriti and try to run Select statement as given
below what should happen?

SELECT * FROM purchase;

Output:

O/P ERROR 1142 (42000): SELECT command denied to user
'Sanskriti'@'localhost' for table 'purchase'

Yup as expected it gives error because we have granted insert
operation to Sanskriti.

So lets try inserting data to purchase table:

INSERT INTO purchase values("Laptop", 100000, "Sanskriti");

Output:

O/P Query OK, 1 row affected (0.34 sec)

Yes! It works!

Now I am checking the purchase table from my original account:

166

SELECT * FROM purchase;

Output:

item	price	customer_name
Pen	20	Sanskriti
Bag	1000	Sanskriti
Vegetables	500	Sanskriti
Shoes	5000	Sanskriti
Water Bottle	800	XYZ
Mouse	120	ABC
Sun Glasses	1350	ABC
Torch	850	ABC
Laptop	100000	Sanskriti

As you can see, the row is inserted.

Now lets try Revoke command:

REVOKE INSERT ON purchase FROM 'Sanskriti'@'localhost';

Output:

O/P Query OK, 0 rows affected (0.35 sec)

Now we have revoked the insert priviledge from Sanskriti.

If Sanskriti runs insert statement it should give error:

INSERT INTO purchase values("Laptop", 100000, "Sanskriti");

Output:

167

O/P ERROR 1142 (42000): INSERT command denied to user
'Sanskriti'@'localhost' for table 'purchase'

168

Conclusion

Through this tutorial we have learnt DCL commands and their usage.

169

The MySQL dump command

There are many ways and tools on how to export or backup your MySQL
databases. In my opinion, mysqldump is a great tool to accomplish this
task.

The mysqldump tool can be used to dump a database or a collection of
databases for backup or transfer to another database server (not
necessarily MariaDB or MySQL). The dump typically contains SQL
statements to create the table, populate it, or both.

One of the main benefits of mysqldump is that it is available out of the
box on almost all shared hosting servers. So if you are hosting your
database on a cPanel server that you don't have root access to, you
could still use it to export more extensive databases.

170

Exporting a Database

To export/backup a database, all you need to do is run the following
command:

mysqldump -u your_username -p your_database_name >
your_database_name-$(date +%F).sql

Note that you need to change the your_database_name with the actual
name of your database and the your_username part with your existing
MySQL username.

Rundown of the arguments:

-u: needs to be followed by your MySQL username
-p: indicates that you would be prompted for your MySQL
password
>: indicates that the output of the command should be stored in
the .sql file that you specify after that sign

You would create an export of your database by running the above
command, which you could later use as a backup or even transfer it to
another server.

171

Exporting all databases

If you have root access to the server, you could use the --all-
databases flag to export all of the databases hosted on the
particular MySQL server. The downside of this approach is
that this would create one single .sql` export, which would
contain all of the databases.

Let's say that you would like to export each database into a separate
.sql file. You could do that with the following script:

172

#!/bin/bash

##
Get a list of all databases except the system databases that
are not needed
##
DATABASES=$(echo "show databases;" | mysql | grep -Ev
"(Database|information_schema|mysql|performance_schema)")

DATE=$(date +%d%m%Y)
TIME=$(date +%s)
BACKUP_DIR=/home/your_user/backup

##
Create Backup Directory
##

if [! -d ${BACKUP_DIR}]; then
 mkdir -p ${BACKUP_DIR}
fi

##
Backup all databases
##

for DB in $DATABASES;
do
 mysqldump --single-transaction --skip-lock-tables $DB |
gzip > ${BACKUP_DIR}/$DATE-$DB.sql.gz
done

The script would backup each database and store the .sql dumps in the
/home/your_user/backup folder. Make sure to adjust the path to your
backup folder.

For more information on Bash scripting, check out this opensource
eBook here.

https://github.com/bobbyiliev/introduction-to-bash-scripting
https://github.com/bobbyiliev/introduction-to-bash-scripting

173

Automated backups

You can even set a cronjob to automate the backups above; that way,
you would have regular backups of your databases.

To do that, you need to make sure that you have the following content
in your .my.cnf file. The file should be stored at:

/home/your_user/.my.cnf

You should make sure that it has secure permissions:

chmod 600 /home/your_user/.my.cnf

And you should add the following content:

[client]
user=your_mysql_user
password=your_mysql_password

Once you have your .my.cnf file configured, you set up a cronjob to
trigger the mysqldump export of your database:

0 10,22 * * * /usr/bin/mysqldump -u your_username -p
your_database_name > your_database_name-$(date +%F).sql

The above would run at 10 AM and 10 PM every day, so you will have
two daily database backups.

174

You can even expand the logic and add a compression step so that the
.sql dumps do not consume too much webspace.

175

Conclusion

The mysqldump is a great tool to easily and quickly backup your MySQL
databases.

For more information, you could take a look at the official
documentation here:

mysqldump

This was initially posted here.

https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html
https://devdojo.com/bobbyiliev/how-to-exportbackup-a-mysqlmariadb-database-with-mysqldump

176

Learn Materialize by running
streaming SQL on your nginx
logs

In this tutorial, I will show you how Materialize works by using it to run
SQL queries on continuously produced nginx logs. By the end of the
tutorial, you will have a better idea of what Materialize is, how it's
different than other SQL engines, and how to use it.

https://materialize.com

177

Prerequisites

For the sake of simplicity, I will use a brand new Ubuntu 21.04 server
where I will install nginx, Materialize and mzcli, a CLI tool similar to
psql used to connect to Materialize and execute SQL on it.

If you want to follow along you could spin up a new Ubuntu 21.04 server
on your favorite could provider.

If you prefer runing Materialize on a different operating system, you can
follow the steps on how to install Materialize here:

How to install Materialize

https://materialize.com/docs/install/

178

What is Materialize

Materialize is a streaming database for real-time analytics.

It is not a substitution for your transactional database, instead it
accepts input data from a variety of sources like:

Messages from streaming sources like Kafka
Archived data from object stores like S3
Change feeds from databases like PostgreSQL
Data in Files: CSV, JSON and even unstructured files like logs (what
we'll be using today.)

And it maintains the answers to your SQL queries over time, keeping
them up-to-date as new data flows in (using materialized views),
instead of running them against a static snapshot at a point in time.

If you want to learn more about Materialize, make sure to check out
their official documentation here:

Materialize Documentation

https://materialize.com/docs/

179

Installing Materialize

Materialize runs as a single binary called materialized (d for daemon,
following Unix conventions). Since we're running on Linux, we'll just
install Materialize directly. To install it, run the following command:

sudo apt install materialized

Once it's installed, start Materialize (with sudo so it has access to nginx
logs):

sudo materialized

Now that we have the materialized running, we need to open a new
terminal to install and run a CLI tool that we use to interact with our
Materialize instance!

There are other ways that you could use in order to run Materialize as
described here. For a production-ready Materialize instance, I would
recommend giving Materialize Cloud a try!

https://materialize.com/docs/install/
https://materialize.com/product

180

Installing mzcli

The mzcli tool lets us connect to Materialize similar to how we would
use a SQL client to connect to any other database.

Materialize is wire-compatible with PostgreSQL, so if you have psql
already installed you could use it instead of mzcli, but with mzcli you
get nice syntax highlighting and autocomplete when writing your
queries.

To learn the main differences between the two, make sure to check out
the official documentation here: Materialize CLI Connections

The easiest way to install mzcli is via pipx, so first run:

apt install pipx

and, once pipx is installed, install mzcli with:

pipx install mzcli

Now that we have mzcli we can connect to materialized with:

mzcli -U materialize -h localhost -p 6875 materialize

For this demo, let's quickly install nginx and use Regex to parse the log
and create Materialized Views.

https://github.com/MaterializeInc/mzcli#quick-start
https://github.com/MaterializeInc/mzcli#quick-start
https://materialize.com/docs/connect/cli/

181

Installing nginx

If you don't already have nginx installed, install it with the following
command:

sudo apt install nginx

Next, let's populate the access log with some entries with a Bash loop:

for i in {1..200} ; do curl -s 'localhost/materialize' >
/dev/null ; echo $i ; done

If you have an actual nginx access.log, you can skip the step above.

Now we'll have some entries in the /var/log/nginx/access.log
access log file that we would be able to able to feed into Materialize.

182

Adding a Materialize Source

By creating a Source you are essentially telling Materialize to connect to
some external data source. As described in the introduction, you could
connect a wide variety of sources to Materialize.

For the full list of source types make sure to check out the official
documentation here:

Materialize source types

Let's start by creating a text file source from our nginx access log.

First, access the Materialize instance with the mzcli command:

mzcli -U materialize -h localhost -p 6875 materialize

Then run the following statement to create the source:

CREATE SOURCE nginx_log
FROM FILE '/var/log/nginx/access.log'
WITH (tail = true)
FORMAT REGEX '(?P<ipaddress>[^]+) - - \[(?P<time>[^\]]+)\]
"(?P<request>[^]+) (?P<url>[^]+)[^"]+"
(?P<statuscode>\d{3})';

A quick rundown:

CREATE SOURCE: First we specify that we want to create a source
FROM FILE: Then we specify that this source will read from a local
file, and we provide the path to that file
WITH (tail = true): Continually check the file for new content
FORMAT REGEX: as this is an unstructured file we need to specify
regex as the format so that we could get only the specific parts of

https://materialize.com/docs/sql/create-source/
https://materialize.com/docs/sql/create-source/text-file/

183

the log that we need.

Let's quickly review the Regex itself as well.

The Materialize-specific behavior to note here is the ?P<NAME_HERE>
pattern extracts the matched text into a column named NAME_HERE.

To make this a bit more clear, a standard entry in your nginx access log
file would look like this:

123.123.123.119 - - [13/Oct/2021:10:54:22 +0000] "GET /
HTTP/1.1" 200 396 "-" "Mozilla/5.0 zgrab/0.x"

(?P<ipaddress>[^]+): With this pattern we match the IP address
for each line of the nginx log, e.g. 123.123.123.119.
\[(?P<time>[^\]]+)\]: the timestamp string from inside square
brackets, e.g. [13/Oct/2021:10:54:22 +0000]
"(?P<request>[^]+): the type of request like GET, POST etc.
(?P<url>[^]+): the relative URL, eg. /favicon.ico
(?P<statuscode>\d{3}): the three digit HTTP status code.

Once you execute the create source statement, you can confirm the
source was created successfully by running the following:

mz> SHOW SOURCES;
// Output
+-----------+
name
nginx_log
+-----------+
SELECT 1
Time: 0.021s

Now that we have our source in place, let's go ahead and create a view!

184

Creating a Materialized View

You may be familiar with Materialized Views from the world of
traditional databases like PostgreSQL, which are essentially cached
queries. The unique feature here is the materialized view we are about
to create is automatically kept up-to-date.

In order to create a materialized view, we will use the following
statement:

CREATE MATERIALIZED VIEW aggregated_logs AS
 SELECT
 ipaddress,
 request,
 url,
 statuscode::int,
 COUNT(*) as count
 FROM nginx_log GROUP BY 1,2,3,4;

The important things to note are:

Materialize will keep the results of the embedded query in
memory, so you'll always get a fast and up-to-date answer
The results are incrementally updated as new log events arrive

Under the hood, Materialize compiles your SQL query into a
dataflow and then takes care of all the heavy lifting for you. This is
incredibly powerful, as it allows you to process data in real-time using
just SQL.

A quick rundown of the statement itself:

First we start with the CREATE MATERIALIZED VIEW

https://en.wikipedia.org/wiki/Materialized_view

185

aggregated_logs which identifies that we want to create a new
Materialized view named aggregated_logs.
Then we specify the SELECT statement that we are interested in
keeping track of over time. In this case we are aggregating the
data in our log file by ipaddress, request, url and statuscode,
and we are counting the total instances of each combo with a
COUNT(*)

When creating a Materialized View, it could be based on multiple
sources like a stream from Kafka, a raw data file that you have on an S3
bucket, or your PostgreSQL database. This single statement will give
you the power to analyze your data in real-time.

We specified a simple SELECT that we want the view to be based on but
this could include complex operations like JOINs, however for the sake
of this tutorial we are keeping things simple.

For more information about Materialized Views check out the official
documentation here:

Creating Materialized views

Now you could use this new view and interact with the data from the
nginx log with pure SQL!

https://materialize.com/docs/sql/create-materialized-view/

186

Reading from the view

If we do a SELECT on this Materialized view, we get a nice aggregated
summary of stats:

SELECT * FROM aggregated_logs;

 ipaddress | request | url |
statuscode | count
----------------+---------+--------------------------+--------
----+-------
 127.0.0.1 | GET | /materialize |
404 | 200

As more requests come in to the nginx server, the aggregated stats in
the view are kept up-to-date.

We could also write queries that do further aggregation and filtering on
top of the materialized view, for example, counting requests by route
only:

SELECT url, SUM(count) as total FROM aggregated_logs GROUP BY
1 ORDER BY 2 DESC;

If we were re-run the query over and over again, we could see the
numbers change instantly as soon as we get new data in the log as
Materialize processes each line of the log and keeps listening for new
lines:

187

+--------------------------+-------+
| url | total |
|--------------------------+-------|
/materialize/demo-page-2	1255
/materialize/demo-page	1957
/materialize	400
+--------------------------+-------+

As another example, let's use psql together with the watch command
to see this in action.

If you don't have psql already isntalled you can install it with the
following command:

sudo apt install postgresql-client

After that, let's run the SELECT * FROM aggregated_logs statement
every second using the watch command:

watch -n1 "psql -c 'select * from aggregated_logs' -U
materialize -h localhost -p 6875 materialize"

In another terminal window, you could run another for loop to
generate some new nginx logs and see how the results change:

for i in {1..2000} ; do curl -s 'localhost/materialize/demo-
page-2' > /dev/null ; echo $i ; done

The output of the watch command would look like this:

188

Feel free to experiment with more complex queries and analyze your
nginx access log for suspicious activity using pure SQL and keep track
of the results in real-time!

189

Conclusion

By now, hopefully you have a hands-on understanding of how
incrementally maintained materialized views work in Materialize. In
case that you like the project, make sure to star it on GitHub:

https://github.com/MaterializeInc/materialize

Source

https://github.com/MaterializeInc/materialize
https://devdojo.com/bobbyiliev/learn-materialize-by-running-streaming-sql-on-your-nginx-logs

190

Conclusion

Congratulations! You have just completed the SQL basics guide!

If you found this helpful, be sure to star the project on GitHub!

If you have any suggestions for improvements, make sure to contribute
pull requests or open issues.

In this introduction to SQL eBook, we just covered the basics, but you
still have enough under your belt to start working with any relational
database out there!

As a next step, try to create a database server, import some demo
data, and play around with all of the statements that you've learned so
far. You can also take a look at this website here to help you build your
tables and relations and visualize them:

https://dbdiagram.io/

In case that this eBook inspired you to contribute to some fantastic
open-source project, make sure to tweet about it and tag @bobbyiliev_
so that we could check it out!

Congrats again on completing this eBook!

https://github.com/bobbyiliev/introduction-to-sql
https://dbdiagram.io/
https://twitter.com

191

Other eBooks

Some other opensource eBooks that you might find helpful are:

Introduction to Git and GitHub
Introduction to Bash Scripting

https://github.com/bobbyiliev/introduction-to-git-and-github-ebook
https://github.com/bobbyiliev/introduction-to-bash-scripting

	Contents
	About the book
	About the author
	Sponsors
	Ebook PDF Generation Tool
	Book Cover
	License

	Databases
	Tables and columns

	MySQL
	Installing MySQL
	Accessing MySQL via CLI
	Creating a database
	Configuring .my.cnf
	The mysqladmin command
	GUI clients

	Tables
	Data types
	Creating a database
	Creating tables
	Rename tables
	Dropping tables
	Allowing NULL values
	Specifying a primary key
	Index Optimization for Database Queries
	Updating tables
	Truncate table

	Basic Syntax
	INSERT
	SELECT
	UPDATE
	DELETE
	Comments
	Conclusion

	SELECT
	SELECT all columns
	Pattern matching
	Formatting
	SELECT specific columns only
	SELECT with no FROM Clause
	SELECT with Arithmetic Operations
	LIMIT
	COUNT
	MIN, MAX, AVG, and SUM
	DISTINCT
	Conclusion

	WHERE
	WHERE Clause example
	Operators
	AND keyword
	OR keyword
	LIKE operator

	IN operator
	IS operator
	BETWEEN operator
	Conclusion

	Sorting with ORDER and GROUP BY
	ORDER BY
	GROUP BY
	HAVING Clause

	INSERT
	Inserting multiple records
	Inserting multiple records using another table

	UPDATE
	Updating records using another table

	DELETE
	Delete from another table

	JOIN
	CROSS JOIN
	INNER JOIN
	LEFT JOIN
	RIGHT JOIN
	The Impact of Conditions in JOIN vs. WHERE Clauses
	Equivalence of RIGHT and LEFT JOINs
	Conclusion

	SQL | DDL, DQL, DML, DCL and TCL Commands
	SQL Sub Queries
	SQL - UNIONS CLAUSE
	Relational Keys- Keys in a Relational Database
	Types of Relational Keys

	Logical Operator Keywords
	HAVING Clause
	Syntax
	Description
	Aggregate Functions
	Aggregate Functions Examples
	Having clause Examples

	Essential MySQL Functions
	Numeric Functions
	STRING Functions
	DATE Functions
	Formatting Dates and Times
	Calculating Dates and Times

	Triggers In SQL
	Example :
	Transaction Control Language
	TCL Commands
	COMMIT
	ROLLBACK
	SAVEPOINT
	Examples
	Conclusion

	Data Control Language
	DCL Commands
	GRANT
	REVOKE
	Conclusion

	The MySQL dump command
	Exporting a Database
	Exporting all databases

	Automated backups
	Conclusion

	Learn Materialize by running streaming SQL on your nginx logs
	Prerequisites
	What is Materialize
	Installing Materialize
	Installing mzcli
	Installing nginx
	Adding a Materialize Source

	Creating a Materialized View
	Reading from the view
	Conclusion
	Conclusion
	Other eBooks

